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Montréal, Canada

yann-gael.gueheneuc@concordia.ca

William Flageol
Concordia University
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Abstract—The continuous growth of the mobile apps industry
creates a competition among apps developers. To succeed, app
developers must attract and retain users. User reviews provide
a wealth of information about bugs to fix and features to add
and can help app developers offer high-quality apps. However,
apps may receive hundreds of unstructured reviews, which
makes transforming them into change requests a difficult task.
Approaches exist for analyzing and extracting topics from mobile
app reviews, however, prioritizing these reviews has not gained
much attention. In this study, we introduce the use of a consensus
algorithm to help developers prioritize user reviews for the
purpose of app evolution. We evaluate the usefulness of our
approach and meaningfulness of its consensus rankings on four
Android apps. We compare the rankings against reviews ranked
by app developers manually and show that there is a strong
correlation between the two (average Kendall rank correlation
coefficient = 0.516). Thus, our approach can prioritize user
reviews and help developers focus their time/effort on improving
their apps instead of on identifying reviews to address in the next
release.

Index Terms—Consensus algorithms, Rankings, Review prior-
itization, User reviews, Software evolution.

I. INTRODUCTION

The mobile apps industry grew tremendously in the past

few years. Apple App Store and Google Play, the two largest

marketplaces for mobile apps, were launched in 2008 and host

more than 5 millions apps. As of September 2019, Google Play

reached a total of 3.3 million apps while Apple App Store 2.2

million apps [1].

In addition to the download service, these marketplaces

allow users to rate and review the apps using a five-point

Likert scale and unstructured text. These ratings and reviews

are important. Beside guiding prospective users in the choice

of apps to download, they provide a valuable source of

information for app maintenance and development.

Harman et al. [2] showed that there is a high correlation

between user ratings and reviews and numbers of downloads.

Recent studies [3]–[5] showed that one third of the information

in the user reviews could help developers maintain and develop

their apps. Therefore, it is important for app developers to

consider user reviews when updating their apps.

However, processing and analyzing these reviews present

three challenges. First, the volume of user reviews received

for some apps is extremely large and surpasses developers’

ability to read them manually. For example, while WordPress

app receives about 100 reviews every month [6], Facebook app

gets > 4, 000 reviews per day [7]. Second, reviews contain

unstructured text that is difficult to parse and analyze [8].

Third, the portion of high-quality reviews is relatively small,

only 35.1% is useful for app improvement [5].

To solve these challenges, many approaches exist to process,

analyze, classify, and cluster user reviews [2], [4], [8]–[12].

For example, AR-Miner [5] tags reviews as informative and

non-informative, extracts, groups, and ranks topics from re-

views. CLAP [13] categorizes them into categories and clusters

related reviews. URR [14] classifies reviews based on topics

and sub-topics taxonomy and links reviews to source code.

These approaches could help developers identify important

reviews, however their prioritization techniques are limited to

either labeling them as high/normal, or ranking them based

on a fixed formula. They are not flexible enough to consider

every possible review attribute into the prioritization process.

Developers would benefit from a prioritization method
that (1) takes into account multiple attributes and (2) finds
a consensus among all reviews and their attributes to help
developers plan the next releases of their apps.

In this study, we propose an approach of applying a consen-

sus algorithm to aggregate a set of rankings of user reviews

into one optimal ranking. The optimal ranking is a prioritized

list of user reviews that help app developers deciding what

improvements to implement in the next releases of their apps.

Figure 1 summarizes our approach. First, we collect the

publicly-available user reviews used in [13]. Second, we pre-

process, categorize, and cluster the reviews using CLAP [13].

Third, we define a set of attributes that are commonly used

by developers to rank reviews (cardinality, oldest date, average

rating, category). Fourth, we rank the clusters of reviews based
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on these four attributes. For example, the ranking by the oldest

date is an ordered list of clusters in which the first cluster

contains the review with the oldest date among all reviews.

Fifth, we apply a consensus algorithm on the rankings to

generate one consensus ranking of ordered clusters/reviews to

address in the next release.

Figure 1: Overview of the Approach

We validate our approach by prioritizing user reviews of

four Android apps released on Google Play. First, we com-

pare the consensus rankings generated by our approach with

manually-prioritized rankings by four app developers and sta-

tistically measure the correlation between them by computing

the kendall rank correlation coefficient. Second, we perform

a qualitative evaluation by inviting app developers to evaluate

the results. Finally, we survey apps developers whether they

would consider our approach in their next release planning.

Results show that our approach can produce useful rankings

and, thus, help successfully apps developers prioritizing their

users reviews when working on a new release.

The rest of this paper is as follows. Section II presents

related works. Section III describes a motivating example.

Section IV introduces the consensus algorithms. Section V

details our approach. Section VI discusses validation methods

and results. Finally, we discuss threats to validity in Section

VII and conclude in Section VIII.

II. RELATED WORK

Many studies pertain to users feedback to extract features for

different purposes. Harman et al. [2] extracted features from

user feedback via data mining and reported a strong correlation

between user rating and number of app downloads. Machine

learning approaches were used [4], [8] to process user reviews

and extract features to classify these reviews into maintenance

and evolution categories. Iacob et al. [9] analyzed hundreds of

reviews to define a set of the most common topics discussed

in reviews. In addition to extracting features for classifying

reviews, Ciurumelea et al. [14] linked classified reviews with

source code to help developers find code to modify.

Studying user feedback for information retrieval has gained

much attention, e.g., automated information retrieval systems

to query specific features or keywords in reviews [12]. Pagano

and Maalej [3] performed an exploratory study and concluded

that (1) numbers of reviews decrease in time, (2) most reviews

focus on three main topics, and (3) positive reviews lead to

high download. Fu et al. [10] identified reasons for users to

like/dislike apps at three levels of granularity. Gebauer et al.
[15] used structural equations to identify factors impacting

user reviews.

Our approach is different than the previous ones. We focus

on studying user reviews to prioritize them in a consensual

way to help developers plan their apps’ future releases.

Laurent et al. [16] proposed a semi-automated technique to

prioritize software requirements using a probabilistic traceabil-

ity model. Avesani et al. [17] introduced a case-based ranking

framework for software requirements prioritization, which uses

a pairwise comparison technique to identify/explain preferred

requirements. Beg et al. [18] used B-trees to prioritize soft-

ware requirements. These approaches do not apply to mobile

app reviews because they (1) do not work well on a large

number of reviews, (2) assume that clients participate in the

prioritization process, and (3) do not perform preprocessing,

categorizing, and clustering reviews activities.

Keertipati et al. [19] defined three user review prioritiza-

tion approaches on four review attributes (frequency, rating,

negative emotions, and deontics). Another approach proposed

by Gao et al. [20] is PAID to find issues in reviews at phrase

level rather than sentence level. These approaches do not take

into account all possible review attributes in the prioritization

process, and do not perform any review preprocessing.

AR-Miner by Chen et al. [5] was the first automated

approach to preprocess, classify, and rank user reviews. CLAP

by Scalabrino et al. [13] performs better than AR-Miner when

categorizing and clustering reviews. In addition, CLAP prior-

itizes the clusters of reviews by labeling them as high/normal.

Our approach differs from these two. It aggregates the results

of many rankings and provides developers with one consensus

ranking of ordered reviews.

III. MOTIVATING/RUNNING EXAMPLE

To motivate our work, we use this running example:

Matthew is an app developer for WordPress [6]: an Android

app on Google Play, with an average rating of 4.5, over

135,435 submitted reviews, and over 10 million downloads.

Matthew must regularly update his app with new features and

bug fixes to maintain its high rating and user satisfaction. He

needs to know what is the general opinion of users about

his app, expected features, and reported issues. Therefore, he

frequently reads the many user-submitted reviews on Google

Play.

However, he finds himself spending too much time ana-

lyzing, and extracting information from the reviews due to

the unstructured nature of these reviews. Table I shows some

reviews for his app on Google Play on different dates. Clearly,

the first and second reviews are somewhat useful and can help

Matthew improve his app; the other two contain no useful

development information.

To reduce effort, Matthew looks for an automated mobile

app review analysis tool that can do the job for him. He

chooses and applies CLAP on reviews of his app, which
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ID Date Rating Review
0 4/4/2014 5 I need the justify post feature
2 4/5/2014 4 Stats broken in last update
5 4/6/2014 2 It does not work
6 4/8/2014 3 It does not go through my self hosted blog

Table I: A few user reviews from WordPress App. v2.7.1

preprocesses, categorizes, and clusters reviews for him as

illustrated in Table II.

ID Review Category Cluster
0 I need the justify post feature Feature C1
1 More options, like text coloring Feature C1
2 Stats broken in last update Bug C10
3 Facebook shared posts show other photos Bug C11
4 Cannot log in Bug C12
7 slow and buggy Perf. C17
8 Unacceptably poor UI Usability C18
9 Wish it is easier to format text and images Usability C18

Table II: CLAP categories and clusters for some reviews

Matthew successfully produced preprocessed, categorized,

and clustered reviews but now he needs an approach to prior-

itize the clusters of reviews for an effective release planning.

When it comes to ranking reviews, there are different attributes

to consider. For example, Matthew could rank the clusters

based on the average rating, oldest review’s date, or categories

as illusrated in Table III.

Attribute Ranking
Average Rating: order by average
rating of each cluster ascendingly

[[C18],[C11,C17],[C10],[12],[C1]]

Oldest Date: order by the oldest
submission date of the reviews in
each cluster

[[C18,C1],[C10],[C12],[C11],[C17]]

Category: order by cluster cate-
gories: first bug, then performance,
usability, and finally feature

[[C10,C11,C12],[C17],[C18],[C1]]

Table III: Rankings of the clusters presented in Table II

Applying different attributes, prioritizes the clusters differ-

ently, making it problematic for Matthew to identify the most

pressing reviews as none of the rankings might optimally

provide the best order. Thus, we propose to apply a consensus

algorithm on these rankings to aggregate them into one optimal

ranking that will help Matthew identify the most important

reviews to address in his next releases.

In summary, the main contributions of our work are:
1) A novel approach to prioritize mobile app user reviews

considering a set of review attributes.

2) An evaluation of the approach on four Android apps with

four apps developers involved to prove the effectiveness

of our approach in providing a prioritized list of user

reviews.

3) Feature responses from an online questionnaire that

investigates if app developers prioritize user reviews

when working on new updates, how, and if they would

consider our approach.

IV. CONSENSUS ALGORITHMS

A. Context

Aggregating multiple rankings into one consensus ranking

is a two-century old problem [21] that gained an increasing

research interest in the last two decades. The problem was

first investigated in the context of voting [22]. Then, it has

been addressed in many domains like bioinformatics [23], Web

engines querying [24], AI [25] and others. To the best of our

knowledge, aggregating rankings into one consensus ranking

has not been applied in software engineering in general and

mobile app evolution in particular.

B. Definitions and Measures

Finding a consensus ranking is aggregating multiple rank-

ings, i.e., ranked lists of elements, into one ranking that

minimizes the pairwise disagreement between elements [26].

Rankings can be permutations, i.e., strictly ordered complete

rankings: the same set of elements are included in each ranking

and those elements are strictly ordered. However, rankings

from real-world applications might not be complete rankings,

i.e., might contain ties.

Many studies [23], [27] suggested the use of a generalized

version of the Kendall-τ distance [28] as a dissimilarity

measure when comparing two rankings with ties. G(r, s) [27]

computes the distance between two rankings with ties, r and

s, on n elements as follows:

G(r, s) = #{(i, j) : i < j∧
((r[i] < r[j]∧s[i] > s[j]) ∨ (r[i] > r[j] ∧ s[i] < s[j]) ∨ (1)
(r[i] �= r[j]∧s[i] = s[j]) ∨ (r[i] = r[j] ∧ s[i] �= s[j]))} (2)

which is the sum of (1) the number of times element i and j
disagree in their order in the two rankings, or (2) the number

of times the two elements are tied in one ranking, and not tied

in the other one.

Generating a consensus ranking from a given set of rankings

with ties R requires finding the ranking that has the smallest

generalized Kemeny score. This score, K, is defined as:

K(r,R) =
∑
s∈R

G(r, s).

An optimal consensus ranking of a set of rankings with ties

R with the generalized Kemeny score is r∗ such that:

K(r∗,R) ≤ K(r,R),

for all r ∈ Rn, where Rn is the set of all possible rankings

with ties over n elements.

C. Implementations

In [27], 14 different consensus algorithms are studied and

categorized into three approaches: algorithms that (1) handle

ties and focus on the disagreements of the order of elements;

(2) focus on disagreements of the order of elements, cannot

handle ties, but can be modified to handle ties, (3) focus on

the position of elements in the rankings, cannot deal with ties

but could be modified to deal with ties.
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Brancotte et al. [27] studied several consensus ranking

algorithms, with experiments on real and synthetic, small

and large, datasets. They concluded that BioConcert [23]

and ExactAlgorithm [27] provide the best quality results.

KwikSort algorithm [29] came second after BioConcert when

the dataset is extremely large (n > 30, 000). If execution

time is a concern and the rankings do not contain many

ties, then BordaCount [30] and MEDRank [31] are usable.

In our datasets, the number of elements and rankings are

< 100, therefore execution time is not a concern and we used

BioConcert, ExactAlgorithm, and KwikSort.

V. APPROACH

Our approach generates a consensus ranking of a set of

user reviews to help apps maintenance and evolution. We now

discuss (1) the input data of our approach and the steps to

prepare and process user reviews; (2) the possible attributes

that can be used for ranking user reviews; and, (3) how we

apply a consensus algorithm to a set of rankings to produce

one consensus ranking.

A. Input

Our approach takes as input a set of user reviews. Reviews

usually contain the following information: (1) title, (2) free

unstructured text, (3) star rating (between 1 and 5), (4)

reviewer’s username, (5) date of the review, and (6) version

of the reviewed app. Our approach can be applied to any size

of dataset, reviews from any year, and other platforms (such

as Apple App Store or BlackBerry World).

Running Example. We use the publicly-available dataset of

user reviews by Scalabrino et al. [13], which contains 725

user reviews from Google Play for 14 Android apps. The

reviews roughly cover the period from October 2010 to May

2014 and covers different app categories. The diversity of the

categories ensures the variety of the reviews that are submitted

by different users with different interests, which helps achieve

a higher level of generalizability when evaluating our approach

in the following section. Table IV provides information about

the apps: (1) name, (2) category, (3) number of reviews. We

decided to eliminate the data of Harvest Moon BTN app from

the dataset because the app does not exist anymore.

App Name Category Number of Reviews
BOINC Eduaction 30

Lightning Web Browser Communication 27
Harvest moon BTN Game 34

Timeriffic Tools 25
iFixit: Repair Manual Lifestyle 5

DuckDuckGo Tools 17
eBay Shopping 260

Barcode Scanner Shopping 21
Ringdroid Music 23

2048 Puzzle 11
Viber Communication 108

Dolphin Emulator Arcade 107
LinePhone Communication 28
WordPress Productivity 29

Table IV: List of Android apps contained in dataset

B. Preprocessing

User reviews contain useful information for app developers

to maintain and evolve their apps. Yet, they come with

challenges: (1) some apps receive high volume of reviews

daily, (2) a single review can report more than one issue, (3)

reviews include unstructured text [8], and (4) low quality, non-

informative reviews are numerous [5]. As a result, preprocess-

ing the reviews before prioritization becomes mandatory.

We performed a comparison study of five automated re-

view analysis tools: (1) ARdoc (App Reviews Development

Oriented Classier) [7], (2) URR (User Request Referencer)

[14], (3) SUR-Miner (Software User Review Miner) [2], (4)

AR-Miner (App Review Mining) [5], and (5) CLAP (Crowd

Listener for releAse Planning) [13]. To help decide which tool

we can employ to preprocess our dataset, we defined a set of

questions: (1) is the tool automated? (2) does the tool apply

NLP techniques (e.g., tokenizing and stemming)?, (3) are non-

informative reviews filtered out?, (4) does the tool categorize

reviews? (5) does the tool cluster related reviews? and, (6)

how accurate are the results of the tool?

We applied each tool on the dataset by Scalabrino et al.
[13], which we use as running example. Two of the authors

compared the tools results and concluded that CLAP is the

only tool that answers positively all the questions. CLAP pre-

processes, categorizes the reviews into eight categories (bug,

feature request, performance, security, energy, usability, and

other), and clusters related ones together with high accuracy.

Running Example. Table V presents a sample of the results

of applying CLAP to the WordPress app reviews. Full results

are available in our replication package [32].

Review Category Cluster
I need the justify post feature Feature C1

Stats broken in last update Bug C10
It is slow and buggy. Performance C17

Wish it is easier to format text and images. Usability C18
Some error is coming and it does not install. Bug C15

Table V: Results of applying CLAP to WordPress reviews

C. Rankings

In this step, we rank the clusters of reviews that are pro-

duced by CLAP according to a set of defined review attributes

independently. We performed an iterative reviews analysis to

identify attributes that app developers could use for ranking

reviews when deciding what change requests to address in the

next release. We identified four attributes: cardinality, oldest

date, average rating, and category.

• Cardinality: clusters of reviews are ranked according

to the number of reviews in each cluster decreasingly.

Clusters with higher number of reviews indicate that the

same issue has been reported by many users.

• Oldest Date: clusters of reviews are ordered chronolog-

ically (from oldest to most recent) based on the oldest

date of review included in the cluster.
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• Average Rating: we compute the average rating of all

reviews in a cluster and rank clusters with lower average

rating first.

• Category: we sent a survey to some app developers and

Ph.D. students with app development experience to un-

derstand how they would rank categories. 17 developers

answered as follows: bug, security, performance, energy,

usability, and feature. We rank the clusters according to

their ordering of the categories.

Running Example. We order the clusters of reviews from

CLAP based on the four chosen attributes to generate a set

of rankings. Table VI shows the results of ranking WordPress

clusters of reviews and Table VII summaries the reviews in

each clusters. Ties in rankings indicate that tied clusters have

the same value, hence, they have an equal rank.

Attribute Ranked Clusters
CD [[9],[8,12],[1,4,14,18],[2,5,6,7,10,11,17,3,13,15,16]]
D [[2],[9,1,4,14,18,5],[6,10],[12],[8,15],[11,3,13,16],[7,17]]

AR [[16],[12],[9],[18,15,3,13],[14,11,17],[4],[5,6,10,8,7],[2,1]]
C [[16,12,9,15,13,14,11,10,8],[17],[18],[3,4,5,6,7,2,1]]

Table VI: Ranked clusters of WordPress reviews

(CD=Cardinality; D=Date; AV=Average Rating, C=Category)

Cluster Summary Cluster Summary
C1 Text justify feature C10 Stats is broken
C2 Ability to add fea-

tured image to posts
C11 Posts tab not showing

posts
C3 Ability to modify

multiple posts
C12 App log in issue

C4 Ability to format text C13 Update are removing
websites

C5 Ability to edit profile C14 html tags appear
when editing post

C6 Unable to upload me-
dia to posts

C15 Posts getting
published

C7 Black background
theme option

C16 Installing app issue

C8 Website log in issue C17 Slow and buggy
C9 Image upload error C18 Poor UI and naviga-

tion difficulty

Table VII: Summary of reviews in each cluster of WordPress

D. Consensus Ranking

We finally apply the consensus algorithms on the four differ-

ent rankings of reviews from the previous step to produce one

ranking that help developers choosing the reviews to consider

for their next release. We produce one optimal consensus

ranking (CR) that best agrees with all the four rankings.

We use the Rank Aggregation with Ties Web site [27] to

generate the consensus rankings. As discussed in section IV,

we selected the top three consensus algorithms (ExactAlgo-

rithm, BioConcert, and Kwiksort) to generate the CR.

Table VIII presents the consensus rankings produced by

each algorithm when applying them to the four rankings in Ta-

ble VI for WordPress app along with the generalized Kemeny

score of this consensus. The consensus rankings obtained by

these methods are quite close to each other, partly due to

the small number of clusters in each ranking. Consequently,

we decided to adapt the results of the ExactAlgorithm in

this study, since it guarantees an optimal CR, despite its

complexity. We would choose BioConsert and Kwiksort for

larger datasets.

Running Example. For each of the 13 Android app, we apply

the ExactAlgorithm to the set of four rankings. The consensus

rankings of the remaining apps are available in the replication

package [32].

Consensus Algorithm Consensus Ranking
ExactAlgorithm Distance = 240

[[9],[12],[14,18],[8],[1,4],
[10,11,3,13,15,16],[17],[2,5,6,7]]

BioConcert Distance = 240
[[9],[12],[14,18],[8],[1,4],
[10,11,3,13,15,16],[17],[2,5,6,7]]

Kwiksort Distance = 241
[[9],[12,8],[1,4,14,18],
[16,10,11,3,13,15],[17],[5,2,6,7]]

Table VIII: Consensus Rankings for WordPress, where dis-

tance represents the generalized Kemeny score between each

consensus ranking and the set of 4 rankings of Table VI

VI. VALIDATION AND RESULTS

We now evaluate the usefulness of our approach and the

efficiency of the consensus ranking in prioritizing bugs and

new features. We perform the evaluation on the user reviews of

four android apps to answer the following research questions:

RQ1: (Performance) How effective is the consensus
algorithm in prioritizing user reviews? We evaluate the

performance of the consensus algorithm in prioritizing review

clusters (1) quantitatively by computing the correlation be-

tween the consensus ranking and a gold ranking (GR) i.e.,
a set of clusters manually-ranked by app developers and (2)

qualitatively by asking app developers to evaluate the results

of our approach.

RQ2: (Interest) Do mobile app developers prioritize user
reviews and would they consider our approach when plan-
ning new releases? We address this question by conducting

an online questionnaire of apps developers to understand how

developers perform prioritization activity and how interested

they are in our approach.

A. Quantitative Evaluation

We compare the CR with a gold ranking, i.e., a ranking

manually defined by app developers, quantitatively by comput-

ing their generalized Kendall-τ distance and the Kendall rank

correlation coefficient; a correlation that statistically measures

the association between two rankings [33].

We communicated with developers of the 13 apps to create

the GR. We manually extracted developers’ email addresses

from the app’s Google Play Web pages. We sent each devel-

oper a description of our research, a link to a Web site hosting

the clusters of reviews of their apps, and a guide on how to

rank the clusters as they see fit. We did not provide them

with the CR to avoid any bias. Developers of only four apps

916



responded to our invitation (BOINC, DuckDuckGo, Viber, and

WordPress).

Running Example. The GR of WordPress is as follows while

Table VII define the clusters. The gold rankings of the other

apps are available in the replication package [32].

GRWP = [[12], [16], [13], [8], [14], [15], [11], [10],
[9], [18], [19], [6], [4], [1], [2], [3], [5], [7]].

We answer RQ1 through two methods. In the first method,

we compute the worst possible distance between any ranking

and the gold ranking by computing the generalized Kendall-τ
distance between the GR and its reversed ranking. Then, we

compute the distance between the CR and GR using the same

measure. Finally, we compare those two distances.

Running Example. Table IX shows the worst possible dis-

tances and the generalized Kendall-τ distances between the

CRs and the GRs for each app. The results suggest that the

distance between the CR and GR is fairly small and far from

reaching the worst distance. Despite that WordPress reports a

relatively large distance, it is still 61.4% away from the worst

distance.

App Worst Distance Actual Distance Correlation
Coefficient

WordPress 153 59 0.411
Viber 28 8 0.557
DuckDuckGo 21 7 0.514
BOINC 55 14 0.585

Table IX: Worst VS. actual distance and correlation coefficient

between CR and GR.

In the second method, we compute the Kendall rank correla-

tion coefficient for tied ranks between the two rankings of each

app to measure if there is a statistically significant association

between the CR and GR. The correlation is defined as [33]:

C −D√
( 12n(n− 1)− U)( 12n(n− 1)− V )

where C = number of concordant pairs, D = number of

discordant pairs, n = number of elements, U = number of

tied pairs in the first ranking, and V = number of tied pairs in

the other ranking. The correlation coefficient is in the interval

[−1,+1] in which, according to Cohen et al. [34], values of

0.5 or greater indicate a large correlation, values between 0.5

and 0.3 a medium one, values between 0.3 and 0.1 a small

one, and values below 0.1 indicate no correlation.

Running Example. Table IX shows a positively strong co-

efficient for BOINC, DuckDuckGo, and Viber (0.557, 0,514,

0.585, respectively). WordPress achieves a medium correlation

coefficient (0.411).

RQ1: Quantitative Validation

There is a strong, positive correlation between the

consensus rankings generated by our approach and the

gold rankings from developers for the four apps.

B. Phase 2: Qualitative Evaluation
We consulted the same developers of the four apps to

assess the performance of the CR generated by the consensus

algorithm to answer RQ1 qualitatively. We shared with each

developer the CR of the clusters of reviews of their apps and

asked them “if your app reviews were prioritized in such a

consensus ranking, do you believe this ranking would help

you plan a successful release and would you plan your next

release according to this ranking?” We provided developers

with five options from which to choose (strongly agree, agree,

neutral, disagree, and strongly disagree).
Except for WordPress, developers reported that they

“strongly agree” with the question. WordPress developer an-

swered “neither”, and he stated that he has his own approach

of prioritizing new update requests. However, he fully agreed

to follow the consensus ranking with minor changes to adapt

to his approach. Thus, the answer to RQ1 is that applying

the consensus algorithm can generate effective user reviews

prioritization.

RQ1: Qualitative Validation

Developers of the four apps agree that our approach

generates consensus rankings that they would follow

in planning their next releases.

C. Phase 3: Developer Questionnaire
We collect and analyze answers from Android apps devel-

opers via an online questionnaire to answer RQ2. We mined

300 apps from Google Play to collect developers’ contact

information. The mined apps varied between open source,

free, and paid apps. We removed apps from the dataset if they

either did not have an email address in their Developer field

or the email address was a generic one, e.g., support@...,

help@.... We obtained 248 email addresses.
We used Google Form to design and administer the ques-

tionnaire. We sent invitations to the 248 email addresses

explaining our project, the purpose of the questionnaire, in-

structions to participate, and a link to the Google Form. We

gave developers two months to answer the questionnaire. We

received a few bounce-back emails from very popular apps,

e.g., Facebook and Google. After two months, we received

seven complete questionnaires.
The questionnaire consisted of four main parts. The first part

gathered developers’ background information (i.e., app name,

role, years of experience, education, gender, and age). The

second part investigated the importance of user reviews. The

third part asked developers if they categorize and cluster their

apps’ reviews and, if so, what techniques they used. The fourth

part focused on any review prioritization approaches as well

as important attributes (e.g., frequency, average rating, number

of devices, severity, category, date). (We used these answers

to choose relevant attributes in Section V-C). We further

explain our approach, and ask explicitly if developers would be

interested in considering the approach when improving their

apps.

917



Developers had mobile development experiences from 2 to 8

years and ages between 20 and 39 from different geographical

locations (Europe, Mexico, and USA). 85% (6 out of 7) said

that they strongly rely on user-submitted reviews for their

next release. 57% (4/7) reported doing review categorization,

clustering, and prioritization before planning their next release.

42% (3/7) reported to consider urgent and most frequent

reviews by determining them through a manual analysis. 57%

(4/7) mentioned using the attributes: cardinality, oldest date,

average rating, and category. 86% (6/7) reported great interest

in using our approach.

RQ2: Qualitative Validation

Developers’ feedback positively answers RQ2 and

supports the importance of our approach.

VII. DISCUSSION

A. Discussion

We explain the results of the study in answer to the

research questions described in Section VI and discuss their

implications.

The quantitative results reported by the two validation

methods are promising. When using the Kendall-τ distance

to measure how close or far is the CR from the GR, there is

no fixed threshold that the distance between the two rankings

should reach. However, we could compute the worst possible

distance between two rankings. The further and smaller the

distance between the CR and GR from the worst possible

distance, the closer and similar are the rankings. As demon-

strated in our results, the distance between the CR and GR

are far from reaching the worst distance, which indicates

that the approach is able to produce reliable results close

to the manual prioritization. It is also worth noting that it

is expected not to have a very small generalized Kendall-τ
distance between the CR and GR. That is due to the fact

that we are measuring the distance between two different

rankings, where the CR contains ties, while the GR contains

no ties. Besides, we assume that the greater the statistical

correlation coefficient between the rankings, the better the

result of the consensus algorithm. Our results showed a very

strong correlation coefficient between the CR and GR for three

of the apps.

To further explain the medium correlation achieved by

WordPress, we compared the CR of the ExactAlgorithm in

Table VIII and the GR. We can notice a medium variation

in the order of the clusters. To further analyze this variation,

we contacted the app developer who generated the GR asking

him if he believes that his approach of prioritizing the clusters

of reviews is the best approach. He stated in his email that

whenever there is a new update planning, there is a continuous

discussion between the app developers on what should be

included in the new update. Each developer has a different

opinion and in some situations they never reach a consensual

decision. As a result, the medium coefficient between the CR

and GR does not doubt the performance of our approach but

rather the personal judgment of the developer.

When addressing the qualitative validation, we tried in our

study to contact more than a developers for each app to

obtain a larger evaluation from different software experience

perspectives. For WordPress app, we reached out to many

developers, however, we received responses from only two.

One of the developers had less than a year of development

experience, and he was not fully knowledgeable about the

prioritization process, therefore, his answer was eliminated.

We received responses from only one developer for each

BOINC and Viber. DuckDuckGo on the other hand, is an

app owned by only one developer. The consensus agreement

of all developers on the quality of the consensus rankings

establishes a good evidence that our approach is useful for

prioritizing user reviews, and could help developers achieve

app maintenance and evolution tasks.

Answers from the questionnaire support the importance of

considering user reviews during day to day app’s improvement

activities. More interestingly, most developers confirmed the

necessity of analyzing, categorizing, clustering and prioritiz-

ing for a more efficient release planning. In addition, they

expressed how having an automated tool that can perform

these tasks would reduce the amount of manual work. The

high interest shown in our approach through the questionnaire

answers, highlights the potential of the success of the approach

in real-world environment.

B. Threats to Validity

Threats to construct validity: Building gold rankings to be

compared with the consensus rankings requires high level of

accuracy and app development knowledge. To mitigate this

threat, we involved app developers in the creation of the gold

rankings. These app developers certainly provided the most

accurate gold rankings, however, there is a level of subjectivity

in deciding what cluster to address first. More developers for

each app are to be involved in building the GR in future work.

The authors are not mobile app developers and thus the

defined ranking attributes might not cover all attributes used

during review prioritization. To alleviate this threat, we in-

volved app developers in the selection of attributes through an

online questionnaire. Although these attributes are inclusive,

other attributes would provide other rankings that could in-

crease the quality of our results. We will systematically study

all possible attributes and their impact on our results in future

work.

We favored the use of ExactAlgorithm over BioConcert

and Kwiksort algorithms since it is the only exact algorithm

that provides the most optimal ranking on smaller dataset. In

future work, we plan to use BioConcert and Kwiksort on larger

datasets since they were proven to provide high quality results

in such cases [27].

Threats to internal validity: This could involve the tool

selection to process, categorize and cluster the reviews as there

could be a risk of producing low accuracy results. To mitigate

this threat, we compared the results of the most outperforming
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review analysis tools, and adapted CLAP as it was proven

to provide the most accurate results. Despite that, CLAP

could have its own threat in the employed machine learning

and clustering techniques. Therefore, we plan to implement a

complete review analysis tool that merges the use of machine

learning along with deep learning for higher accuracy.

Threats to external validity: We are confident that our

approach can be generalized and applied to user reviews of any

app store and different size of dataset. However, the approach

could provide different results when the dataset is extremely

large. In addition, we mitigate external validity of our work by

providing a replication package [32] that provide all the data

used in our approach and its study. From the original user

reviews to the consensus rankings as well as the clustered

reviews, attribute rankings, and gold rankings. Thus, others

can confirm and reproduce our results.

VIII. CONCLUSION AND FUTURE WORK

Mobile apps became a fundamental part of everyone’s

daily lives. They must adapt to their users’ needs and, thus,

considering user reviews during app evolution is essential.

However, prioritizing user reviews to decide what to address

in the next release is a complex task.

We presented an approach to provide apps developers with a

set of user reviews prioritized based on a consensus ranking.

Our approach first clusters related reviews together using a

previous work, CLAP. Then, it ranks these clusters of reviews

using four developer-approved attributes: cardinality, date,

average rating, and category. Finally, it applies a consensus

algorithm to the set of rankings to generate a consensus

ranking that can be followed by developers.

We evaluated our approach on user reviews of four Android

apps by comparing the results of our approach to gold rankings

defined by apps developers. Our results showed that there is a

strong correlation (average Kendall rank correlation coefficient

of 0.516) between the consensus rankings and the manually-

prioritized rankings. Also, apps developers confirmed the

efficiency of our approach and showed interest in using it.

While the results are promising, we will explore the fol-

lowing ideas. The generalized Kendall-τ distance is used as

a distance measure for finding a consensus of rankings with

ties. We intend to experiment with other distance measures to

investigate whether they are a better fit to our kind of data.

We also plan to study the effect of breaking ties to obtain

completely-ordered solutions. We also want to enhance the

accuracy of the categorization and clustering approach using

other approach than CLAP. We will also perform a validation

on a larger number of apps from different marketplaces.
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