
A Heuristic-based Approach to Identify Concepts in Execution Traces

Fatemeh Asadi∗, Massimiliano di Penta∗∗, Giuliano Antoniol∗, and Yann-Gaël Guéhéneuc∗∗∗

fatemeh.asadi@polymtl.ca dipenta@unisannio.it antoniol@ieee.org yann-gael.gueheneuc@polymtl.ca

∗ SOCCER Lab. – DGIGL, École Polytechnique de Montréal, Québec, Canada
∗∗ Department of Engineering, University of Sannio, Benevento, Italy

∗∗∗ Ptidej Team – DGIGL, École Polytechnique de Montréal, Québec, Canada

Abstract—Concept or feature identification, i.e., the identifi-
cation of the source code fragments implementing a particular
feature, is a crucial task during software understanding and
maintenance. This paper proposes an approach to identify
concepts in execution traces by finding cohesive and decoupled
fragments of the traces. The approach relies on search-based
optimization techniques, textual analysis of the system source
code using latent semantic indexing, and trace compression
techniques. It is evaluated to identify features from execution
traces of two open source systems from different domains,
JHotDraw and ArgoUML. Results show that the approach is
always able to identify trace segments implementing concepts
with a high precision and, for highly cohesive concepts, with a
high overlap with the manually-built oracle.

Keywords—Concept location, dynamic analysis, information
retrieval.

I. INTRODUCTION

Software systems often lack an adequate and up-to-date
documentation. Therefore, developers must resort to reading
the system source code, without specific tool support but
code browsers, to understand the systems and perform
their maintenance and evolution tasks. In some cases, code
understanding is supported by static analysis and–or vi-
sualizations built upon static information. In other case,
debugging can be used to understand the behavior of a
system in a particular context and–or to locate a fault.
However, manually browsing of source code, inspecting an
execution trace or debugging long sequences of instructions
are time consuming and daunting tasks.

Concept or feature location and identification aim at help-
ing developers to perform their maintenance and evolution
tasks, by identifying abstractions (i.e., features) and the loca-
tion of the implementation of these abstractions. Specifically,
they aim at identifying code fragments, i.e., set of method
calls in traces and the related method declarations in the
source code, responsible for the implementation of domain
concepts and–or user-observable features [1], [2], [3], [4],
[5]. The literature reports approaches built upon static [6]
and dynamic [7], [5] analyses; Information Retrieval (IR)
[4] and hybrid (static and dynamic) [8] techniques.

This paper proposes a novel approach to identify cohesive
and decoupled fragments in execution traces, which likely

participate in implementing concepts related to some fea-
tures. A typical problem for which the proposed approach
can be beneficial is the following. Suppose a failure has been
observed when executing a particular scenario of a software
system; unfortunately the likelihood to reproduce the exe-
cution conditions for that failure are very low. Maintainers
are then faced with the problem of analyzing the execution
trace produced by that scenario and identifying high level
abstractions that likely participate in the feature producing
the unwanted behavior.

To deal with the above described problem, the proposed
approach identifies concepts composing an execution sce-
nario by grouping together methods that are (i) sequentially
invoked together/in sequence and (ii) cohesive and decou-
pled from a conceptual point of view. The underlying as-
sumption is that, if a specific feature is being executed within
a complex scenario (e.g., “Open a Web page from a browser”
or “Save an image in a paint application”), then the set of
methods being invoked is likely to be conceptually cohesive,
decoupled from those of other features, and sequentially
invoked. We use conceptual cohesion and coupling from
Marcus et al. [9] and Poshyvanyk et al. [10].

The approach works as follows. First, we index the
source code of each method of a system textually. Then,
we instrument and exercise the system to collect execution
traces for some scenarios related to different features and,
therefore, containing sets of different concepts. We compress
the traces to remove utility and cross-cutting concepts and to
abstract repetitions of the same sub-sequences of methods.
Finally, we apply a search-based optimization technique,
i.e., a genetic algorithm, to split the compressed traces into
cohesive and decoupled fragments. We ensure performances
by parallelizing the algorithm over multiple computers.

Overall, the contributions of this paper are:
1) A novel approach combining IR techniques, dynamic

analysis, and search-based optimization techniques to
identify concepts into execution traces;

2) An empirical study that shows the applicability and
the performances of the proposed approach in identi-
fying concepts into execution traces of two systems,
JHotDraw and ArgoUML. Results indicate that the

approach is able to identify concepts (with a precision
in most cases greater than 80%), while the overlap
with a manually-built oracle varies depending on the
cohesiveness of the concepts to be identified.

The remainder of the paper is organized as follows.
Section II presents related work. Section III describes the
approach. Section IV presents an empirical study and Sec-
tion V report its results and some discussions. Section VI
concludes the paper and outlines future work.

II. RELATED WORK

Although, many feature and concept identification ap-
proaches exist, none of these approaches attempts to identify
concepts in a system trace automatically.

In their pioneering work, Wilde and Scully [7] presented
the first approach to identify features by analyzing execution
traces. They used two sets of test cases to build two exe-
cution traces, one where a feature is exercised and another
where the feature is not. They compared the execution traces
to identify the feature in the system. Similarly, Wong et
al. [11] analyzed execution slices of test cases to identify
features in source code. Wilde’s original idea was later
extended in several works [1], [4], [12], [13] to improve its
accuracy by introducing new criteria on selecting execution
scenarios and by analyzing the execution traces differently.

Chen and Rajlich [14] developed an approach to iden-
tify features using Abstract System Dependencies Graphs
(ASDG). In C, an ASDG models functions and global
variables as well as function calls and data flow in a system
source code. Chen and Rajlich identified features using the
ASDG following a precise manual process. In contrast to
Wilde and Scully’s work, Chen and Rajlich used only static
data to identify features and a manual process.

Eisenbarth et al. [15] combined previous approaches by
using both static and dynamic data to identify features.
In a following work, Eisenbarth et al. [13] introduced an
approach to feature identification using test cases.

Salah and Mancoridis [16] used both static and dynamic
data to identify features in Java systems. They went beyond
feature identification by creating feature-interaction views,
which highlight dependencies among features. Their work
was extended to allow feature identification and evolution
analysis in large-scale systems, e.g., Mozilla [17].

More recent pieces of work focused on a combination of
static and dynamic data [8], [4], in which, essentially, the
problem of features location from multiple execution traces
is modeled as an IR problem, which has the advantage to
simplify the location process and, often, improves accuracy
[4]. Yet, Liu et al. [18] showed that a single trace suffices to
build an IR system and locate useful data. Execution traces
were also used to mine aspects by Tonella and Ceccato [5].

We share with previous work the use of dynamic data
and IR techniques to identify features. However, instead
of querying traces using an IR technique, e.g., similar to

Poshyvanyk et al. [4], we determine cohesive and decoupled
fragments likely being relevant to a concept automatically.
Our approach is based on two conjectures not yet fully
investigated: (1) methods helping to implement a concept
are likely to share some linguistic information; (2) meth-
ods responsible to implement a feature are likely to be
called close each other in an execution trace. Therefore, the
conceptual coupling of methods participating in a concept
should be high and these methods should appear relatively
close together in the execution trace. The first conjecture is
grounded on the findings published in [4] and other publica-
tions based on IR to locate features and concepts. IR-inspired
works assume some form of commonalities between a query
and linguistic information of entities. Locality of concept
manifestation in traces is more questionable, however we
believe unlikely that a user-observable feature or concept,
not constituting a crosscutting concern, will be uniformly
spread in a trace.

III. THE APPROACH

This section describes the proposed approach to identify
concepts by analyzing execution traces. The approach con-
sists in five steps. First, the system is instrumented. Second,
the system is exercised to collect execution traces. Third, the
collected traces are compressed to reduce the search space
that must be explored to identify concepts. Fourth, each
method of the system is represented by means of the text
that it contains. Fifth, a search-based optimization technique
is used to identify, within execution traces, sequences of
method invocations that are related to a concept.

A. Steps 1 and 2 – System Instrumentation and Trace
Collection

First, the software system is instrumented using the instru-
mentor of MoDeC. MoDeC is a tool to extract and model
sequence diagrams from Java systems [19]. The MoDeC
instrumentor is a dedicated Java bytecode modification tool
implemented on top of the Apache BCEL bytecode transfor-
mation library1. It inserts appropriate and dedicated method
invocations in the system to trace method/constructor en-
tries/exits, taking care of exceptions and system exits
(System.exit(int)). It also allows the user to add to the
traces tags containing meta-information e.g., delimiting and
labeling sequences of method calls related to some specific
features being exercised.

Following the user manual (or use-case documents, if
available) of the system to be analyzed, an execution sce-
nario is composed of a sequence of cohesive steps. For
example, exercising a Web browser could consist in a
sequence of the following steps (i) open the browser; (ii)
insert a URL and access a Web page; and (iii) save the Web
page into a local HTML file. We exercise the instrumented

1http://jakarta.apache.org/bcel/

2

system to collect execution traces by following execution
scenarios. Resulting traces are text files listing method calls
and including the class of the object caller, the unique ID
of the caller, the class of the receiver, its unique ID, and the
complete signature of the method.

B. Step 3 – Pruning and Compressing Traces

Usually, execution traces contain methods invoked in
most scenarios, e.g., methods related to logging. Even in a
single execution trace of an application with graphical user
interface, mouse tracking methods will largely exceed all
other method invocations. It is likely that such methods are
not related to any particular concept, i.e., they are utility
methods. These methods do not provide useful informa-
tion for developers when locating a concept, because they
are common in many concepts. They are similar to low-
discriminating terms occurring in many documents when
applying a IR technique. Such terms are penalized by
indexing measures like tf-idf [20].

Similarly, we built the distributions of the frequencies of
method occurrences to remove too-frequent methods. We
then prune out the methods having a frequency greater
than Q3 + 2 ⋅ IQR, where Q3 is the third quartile (75%
percentile) of the distribution and IQR is the inter-quartile
range. An alternative approach to deal with these methods is
aspect mining [5], [21], because such methods can constitute
crosscutting concerns. We do not use aspect mining because
we are interested in pruning these methods to identify
concepts, not in crosscutting concerns.

Traces often contain repetitions of one or more method in-
vocations, for example m1(); m1(); m1(); or m1();
m2(); m1(); m2();. A repetition does not introduce a
new concept, thus we compress traces using the Run Length
Encoding (RLE) algorithm to remove repetitions and keep
one occurrence of any repetition only. The two previous
examples would become m1() and m1(); m2(), respec-
tively. Compression is performed for any sub-sequences
of method invocations having an arbitrary length. Other
encoding schema such as suffix trees or LZH algorithm are
likely to produce even better results in a future work.

C. Step 4 – Textual Analysis of Method Source Code

To determine the conceptual cohesion of methods, our
approach uses the Conceptual Cohesion metric defined by
Marcus et al. [9]. We extract a set of terms from each method
by tokenizing the method source code and comments, prun-
ing out special characters, programming language keywords,
and terms belonging to a stop-word list for the English
language. (We assume that comments appearing on top of
the method declaration belong to the following method.)

We split compound terms following the Camel Case
naming convention at each capitalized letter, e.g., getBook
is split into get and book. Then, we stem the obtained
simple terms using a Porter stemmer [22].

Once terms belonging to each method have been ex-
tracted, we index these terms using the tf-idf indexing
mechanisms [20]. We obtain a term–document matrix, where
documents are all methods of all classes belonging to the
system under study and where terms are all the terms
extracted (and split) from the method source code.

Finally, we apply Latent Semantic Indexing (LSI) [23] to
reduce the term–document matrix into a concept–document
matrix. The meaning of “concept” in LSI is different from
that of “concept” in concept location. In LSI, a concept
is one of the orthonormal dimensions of the LSI space.
Following Marcus et al. [9], we compute the conceptual
cohesion of methods in a class in the LSI subspace to deal
with synonymy, polysemy, and term dependency. The chosen
size of the LSI subspace is 50.

D. Step 5 – Search-based Concept Location

We now segment execution traces into conceptually-
cohesive segments related to the feature being exercised (and
thus to a specific concept). Determining a (near) optimal
splitting of a trace into segments is NP-hard. Therefore,
we use a genetic algorithm to perform the splitting and
parallelize its computations.

1) Choice of the Optimization Technique: We experi-
mented different techniques: hill climbing, simulated an-
nealing, and genetic algorithms (GAs). We chose to use
GAs because they outperformed other techniques due to the
characteristics of the search space.

A GA may be defined as an iterative procedure that
searches for the best solution to a given problem among
a constant-size population [24]. The search starts from an
initial population of individuals, represented by finite strings
of symbols (the genome), often randomly generated. At
each evolution step, individuals are evaluated using a fitness
function and selected using a selection mechanism. High-
fitness individuals have the highest reproduction probability.
The evolution (i.e., the generation of a new population) is
affected by two genetic operators: the crossover operator
and the mutation operator. The crossover operator takes two
individuals (the parents) of one generation and exchanges
parts of their genomes, producing one or more new individ-
uals (the offspring) in the new generation. The mutation op-
erator prevents the convergence to local optima: it randomly
modifies an individual’s genome (e.g., by flipping some of
its symbols).

2) Use of the Optimization Technique: Our representation
of an individual is a bit-string as long as the execution trace
in which we want to identify some feature-related concepts.
Each method invocation is represented as a “0”, except the
last method invocation in a segment, which is represented
as a “1”. For example, the bit-string

00010010001︸ ︷︷ ︸
11

3

SegmentCoℎesionk =

∑end(k)−1
i=begin(k)

∑end(k)
j=i+1 similarity(metℎodi,metℎodj)

(end(k)− begin(k) + 1) ⋅ (end(k)− begin(k))/2
(1)

SegmentCouplingk =

∑end(k)
i=begin(k)

∑l
j=1,j<begin(k) or j>end(k)similarity(metℎodi,metℎodj)

(l − (end(k)− begin(k) + 1)) ⋅ (end(k)− begin(k) + 1)
(2)

fitness(individual) =
1

n
⋅

n∑

k=1

SegmentCoℎesionk

SegmentCouplingk
(3)

Table I
EXAMPLE OF GA INDIVIDUAL REPRESENTATION (SECOND COLUMN).

Method Invocations Repr. Segments
TextTool.deactivate() 0

1

TextTool.endEdit() 0
FloatingTextField.getText() 0
TextFigure.setText-String() 0
TextFigure.willChange() 0
TextFigure.invalidate() 0
TextFigure.markDirty() 1
TextFigure.changed() 0

2
TextFigure.invalidate() 0
TextFigure.updateLocation() 0
FloatingTextField.endOverlay() 0
CreationTool.activate() 1
JavaDrawApp.setSelectedToolButton() 0

3

ToolButton.reset() 0
ToolButton.select() 0
ToolButton.mouseClickedMouseEvent() 0
ToolButton.updateGraphics() 0
ToolButton.paintSelectedGraphics() 0
TextFigure.drawGraphics() 0
TextFigure.getAttributeString() 1

means that the trace, containing 11 method invocations, is
split into three segments decomposed into the first four
method invocations, the next three, and the last four. An
real example of segment splitting2 is shown in Table I.

The mutation operator randomly chooses one bit in the
representation and flips it over. Flipping a “0” into a “1”
means splitting an existing segment into two segments, while
flipping a “1” into a “0” means merging two consecutive
segments. The crossover operator is the standard 2-points
crossover. Given two individuals, two random positions x, y
with x < y are chosen in one individual’s bit-string and the
bits from x to y are swapped between the two individuals to
create a new offspring. The selection operator is the roulette-
wheel selection. We use a simple GA with no elitism,
i.e., it does not guarantee to retain best individuals across
subsequent generations. We set the population size to 200
individuals and a number of generations of 2,000 for shorter
traces (those of JHotDraw) and 3,000 for longer ones (those
of ArgoUML). The crossover probability was set to 70%
and the mutation to 5%, which are widely used values in
many GA applications.

A fitness function drives the GA to produce individu-

2The segment splitting shown in Table I has been obtained randomly and
does not correspond to an actual “good” solution.

als that represent (near) optimal splittings of a trace into
segments likely to relate to some concepts. In our fitness
function, we use the software design principles of cohesion
and coupling, already adopted in the past to identify modules
in software systems [25], although we use conceptual (i.e.,
textual) cohesion and coupling measures [9], [10], rather
than structural cohesion and coupling measures.

Segment cohesion is the average (textual) similarity be-
tween any pair of methods in a segment k and is computed
using the formulas in Equation 1 where begin(k) is the
position (in the individual’s bit-string) of the first method
invocation of the ktℎ segment and end(k) the position of
the last method invocation in that segment. The similarity
between two methods is computed using the cosine similar-
ity measure over the LSI matrix extracted in the previous
step. Thus, it is the average of the similarity defined by [9],
[10] to all pairs of methods in a given segment.

Segment coupling is the average similarity between a
segment and all other segments in the trace, computed using
Equation 2, where l is the trace length. As our conjecture
is that a concept should be implemented by method calls
locally close each other, on the one hand the algorithm
favors the merging of consecutive segments containing meth-
ods with high average conceptual similarity. On the other
hand, the algorithm penalizes solutions where consecutive
segments are highly coupled together. The segment coupling
represents, for a given segment, the average similarity be-
tween methods in that segment and those in different ones.

Finally, for a trace split into n segments, the fitness
function is shown in Equation 3.

3) Parallelization of the Optimization Technique: One
of the main advantages of GAs with respect to other
optimization techniques is the possibility of parallelizing
their computations, e.g., the evaluations of the fitness of
different individuals. In our approach, we use parallelization
to reduce computation time. (However, a detailed study of
the performances is out of scope of this paper and will be
treated in a future work).

In our experiments, we distributed computations over a
network of five servers and nine workstations. Servers are
connected in a Gigabit Ethernet LAN while workstations
are connected to a LAN segment at 100 MBit/s and talk to
servers at 100 Mbit/s. Servers and workstations run CentOS

4

Table II
STATISTICS FOR THE TWO SYSTEMS.

Systems N
O

C

K
L

O
C

R
el

ea
se

D
at

es

ArgoUML v0.18.1 1,267 203 30/04/05
JHotDraw v5.4b2 413 45 1/02/04

5, 64 bits; memory varies between four and 16 Gbytes.
Workstations are based on Athlon X2 Dual Core Processor
4400; the five servers are either single or dual Opteron. The
distributed architecture comprises one workstation taking
charge of distributing the GA individuals to other computers
by means of socket connections. On the slave computers, a
server receives the computation requests and the individuals,
computes the value of the fitness function and returns the
value back to the central computer. Only the fitness of new
individuals, with respect to previous generations, are com-
puted. The fitness values of individuals already evaluated are
not recomputed but retrieved from a hash table storing the
previous values.

Distribution over several computers is crucial to ensure
acceptable computation time. With the described configura-
tion, a single run takes about one hour. Scalability on very
large traces will require different computation architectures
(e.g., sharing information between slaves) and possibly di-
viding a large trace into chunks with approaches inspired
by overlapping time windows as in digital signal processing.
This possibility will be studied in a future work.

IV. EMPIRICAL STUDY DESCRIPTION

We report an empirical study evaluating the proposed con-
cept location approach. The goal of this study is to analyze
the novel concept location approach based on dynamic data,
with the purpose of evaluating its capability of identifying
meaningful concepts. The quality focus is the accuracy and
completeness of the identified concepts. The perspective is
that of researchers who want to evaluate how the proposed
approach can be used during maintenance and evolution.
The context consists of an implementation of our approach
and of the execution traces extracted from two open source
systems, JHotDraw and ArgoUML.

A. Context

The context of our study are execution traces from Ar-
goUML and JHotDraw. Figure IV highlights main character-
istics of the two systems. ArgoUML3 is an open source UML
modeling tool with advanced software design features, such
as reverse engineering and code generation. The ArgoUML
project started in September 2000 and is still active. We
analyzed release 0.19.8. JHotDraw4 is a Java framework for

3http://argouml.tigris.org
4http://www.jhotdraw.org

Table III
STATISTICS FOR THE COLLECTED TRACES.

Systems Scenarios O
ri

gi
na

l
Si

ze

C
le

an
ed

Si
ze

s

C
om

pr
es

se
d

Si
ze

s

ArgoUML Start, Create note, Stop 34,746 821 588
Start, Create class, Create note, Stop 64,947 1066 764

JHotDraw

Start, Draw rectangle, Stop 6,668 447 240
Start, Add text, Draw rectangle, Stop 13,841 753 361
Start, Draw rectangle, Cut rectangle, Stop 11,215 1206 414
Start, Spawn window, Draw circle, Stop 16,366 670 433

drawing 2D graphics. JHotDraw started in October 2000
with the main purpose of illustrating the use of design
patterns in a real context. We analyzed release 5.1.

We generate traces by exercising various scenarios in
the two systems. Table IV-A summarizes the scenarios and
shows that the generated traces include from 6,000 up to
almost 65,000 method invocations. The compressed traces
include from 240 up to more than 750 method invocations.
By exercising these scenarios, we do not want to identify
concepts related to the systems’ startup, Start, and closing,
Stop. Therefore, in the following, when naming the scenarios
and their associated features, we no longer include the Start
and Stop concepts.

The GA was implemented using the Java GA Lib5 library.

B. Building the Oracle

We need an oracle to assess the accuracy and complete-
ness of the identified concepts. We build such an oracle
by manually tagging the execution traces. Two “Start” and
“Stop” tags enclose the method invocations related to a
particular concept. While executing the instrumented system,
before and after a step in the execution scenario (e.g., Draw
rectangle), the user, through a command in the instrumentor
interface, inserts the appropriate tags in the execution trace
and then continues to exercise the instrumented system with
the next steps of the scenario. Consequently, the collected
traces are composed of a sequence of method invocations
interleaved with tags separating the invocations belonging
to different steps.

C. Research Questions

This study aims at answering the three following research
questions:

∙ RQ1: How stable is the GA, through multiple runs,
when identifying concepts into execution traces? Ap-
proaches based on GAs could suffer from the random-
ness of the search: the initial individuals are randomly
generated and the crossover, mutation, and selection
operators are influenced by random choices. However,
it is desirable that the representation, operators, fitness,

5http://sourceforge.net/projects/javagalib/

5

and other settings (e.g., population size and stopping
criteria) be chosen so that multiple runs of the GA
yields to similar solutions.

∙ RQ2: To what extent the identified concepts match the
ones in the oracle? We are interested to evaluate the
extent to which the identified segments overlaps with
the ones in our oracle, obtained by manually tagging
the traces.

∙ RQ3: How accurate is the identification of concepts in
execution traces? Finally, we are interested to evaluate
the extent to which the identified segments are accurate,
i.e., how many of the method invocations that they
contain are also in the oracle and how many are not.

D. Study Settings and Analysis Method
To answer RQ1, we evaluate the extent to which the seg-

ments identified in multiple runs of the GA, and occurring
in the same position of the trace, overlap each other. Let
us consider a compressed trace composed of N method
invocations T ≡ m1, . . .mN and partitioned at run i of
the GA in ki segments s1,i . . . sk,i. For each segment sx,i
obtained at run i, and for all the segmentations obtained at
run j ∕= i, we compute the maximum overlap between sx,i
and the segments obtained at run j as follows:

max(Jaccard(sx,i, sy,j)), y = 1 . . . kj

where:
Jaccard(sx,i, sy,j) =

∣sx,i ∩ sy,j ∣
∣sx,i ∪ sy,j ∣

and where union and intersection are computed considering
method invocations occurring at a given position in the
trace. Stability is evaluated by means of descriptive statistics
computed across the above obtained overlap values.

RQ2 is answered similarly to RQ1 but, in this question,
we compare the overlap between manually-tagged segments
in the execution traces with segments identified by our
approach. Specifically, given the segments determined by
the tags in the trace (our oracle) and given the segments
obtained by an execution of the system, we compute the
overlap between each manually-tagged segment in the trace
and the most similar automatically-identified segment.

Finally, RQ3 is addressed like RQ2, with the only dif-
ference that we use precision instead of the Jaccard score,
because we are interested in evaluating the accuracy of our
approach. Precision is defined as follows:

Precision(sx,i, sy,o) =
∣sx,i ∩ sy,o∣

∣sy,o∣
where sx,i are segments obtained by our approach and sy,o
are segments in the corresponding trace in the oracle.

V. RESULTS AND DISCUSSION

This section reports the results of our experimental eval-
uation: the collected data and their analyses to address the
previous research questions.

A. RQ1: How Stable is the GA across Multiple Runs?

We assess the stability of the GA by computing the
average similarity of the segments identified in ten different
runs of the approach. Table IV shows the similarity results.
Overall, the similarity averages for JHotDraw range between
55% and 95%, with median values ranging between 70% and
84% . They are slightly higher for ArgoUML, between 80%
and 83%. Thus, we conclude that, despite the potentially
large size of the search space, our approach is able to
generate stable segments across multiple runs. In addition,
increasing the number of generations and the population size
would potentially further increase the approach stability.

B. RQ2: To What Extent the Identified Concepts Match the
Ones in the Oracle?

To address RQ2, we evaluate the extent to which the
segments actually reflect features as they were manually
tagged when executing the instrumented system to generate
the execution traces.

For some features, e.g., drawing a rectangle or a circle,
the average (and median) Jaccard overlap is very high,
suggesting that the features are implemented through se-
quences of very cohesive methods. Yet, other features exhibit
lower overlaps. These lower overlaps do not mean that our
approach was unable to successfully identify the features.
Indeed, in some cases, for example the scenarios Add text
in JHotDraw and Create note in ArgoUML, the features are
realized by adapting a textual-editing feature as a shape-
drawing feature, using the Adapter design pattern. The
feature adaptation produces sequences of methods with a
low cohesion, which our algorithm tend to split. As a
consequence, the resulting overlaps are appropriately low.

In other cases, in particular with traces from ArgoUML,
a large trace segment corresponding to a feature is split
into two or more segments by our approach. Thus, the
overlap between the (larger) manually-tagged segment and
the corresponding automatically-identified segment is low.
A manual study of such cases revealed that the manually-
tagged segment is indeed composed of several smaller and
cohesive sub-concepts that our algorithm tend to split, as
illustrated and discussed in the following subsection.

C. RQ3: How Accurate is the Identification of Concepts in
Execution Traces?

The right side of Table V reports the precision of the
identified segments with respect to the manually-tagged
ones. Precision is often very high, with median values in
most cases above 85% and very often equal to 100%.

Lower precision values sometimes occur with explainable
reasons. For example, in the scenario (2) of JHotDraw,
composed of Add text and Draw rectangle, the two features
are implemented using a very similar sequence of method
invocations, making them hard to distinguish. Because these
features are executed one after the other, our search-based

6

Table IV
DESCRIPTIVE STATISTICS OF SIMILARITY AMONG SEGMENTS OBTAINED IN TEN DIFFERENT RUNS .

Systems Scenarios/Features Similarity Averages
Min. Max. Mean Median ¾

ArgoUML (1) Add note 0.69 0.95 0.84 0.83 0.07
(2) Add class, Add note 0.65 0.98 0.80 0.80 0.06

JHotDraw

(1) Draw rectangle 0.55 0.96 0.76 0.76 0.12
(2) Add text, Draw rectangle 0.54 0.93 0.72 0.70 0.10
(3) Draw rectangle, Cut rectangle 0.73 0.93 0.85 0.84 0.05
(4) Spawn window, Draw circle 0.67 0.86 0.76 0.76 0.04

Table V
SIMILARITY (JACCARD OVERLAP AND PRECISION) BETWEEN SEGMENTS IDENTIFIED BY THE APPROACH AND FEATURES TAGGED IN THE TRACE .

Systems Scenarios Features Jaccard Precision
Min. Max. Mean Median ¾ Min. Max. Mean Median ¾

ArgoUML
(1) Add note 0.15 0.39 0.28 0.27 0.08 0.91 1.00 0.97 1.00 0.04
(2) Create class 0.11 0.28 0.22 0.25 0.05 1.00 1.00 1.00 1.00 0.00
(2) Create note 0.22 0.56 0.35 0.31 0.14 1.00 1.00 1.00 1.00 0.00

JHotDraw

(1) Draw rectangle 0.63 0.93 0.84 0.89 0.13 0.89 1.00 0.96 1.00 0.06
(2) Add text 0.21 0.31 0.26 0.27 0.05 0.27 0.36 0.32 0.34 0.04
(2) Draw rectangle 0.53 0.70 0.63 0.61 0.06 0.61 1.00 0.69 0.66 0.13
(3) Draw rectangle 0.42 0.76 0.64 0.72 0.14 0.73 1.00 0.94 1.00 0.11
(3) Cut rectangle 0.16 0.23 0.22 0.23 0.02 1.00 1.00 1.00 1.00 0.00
(4) Draw circle 0.54 0.96 0.85 0.88 0.14 0.81 1.00 0.91 0.95 0.09
(4) Spawn window 0.07 0.41 0.20 0.16 0.11 1.00 1.00 1.00 1.00 0.00

optimization technique is unable to split the trace into
segment similar to the ones from the oracle. Consequently,
the precision of Add text drops to a median value of 34% and
that of Draw rectangle, usually very high in other scenarios,
is only 66%.

D. Discussion

We analyze in detail some results to understand how the
approach split the traces into segments. We focus on cases
where the Jaccard score is low. In other cases, we know
that the segments are meaningful because they are consistent
with the oracle. Table VI shows excerpts of three segments.
(Due to lack of space, we cannot report complete segments.)

The Add class feature of ArgoUML was matched with a
very low Jaccard score. The manual tags in the trace delim-
ited a sequence of 199 method invocations. The approach
split this sequence into 5 segments comprising in a total
of 172 method invocations, out of which 16 invocations
occurred before the tag and, thus, do not belong to the
oracle. The remaining 199 − 172 + 16 = 43 invocations
were grouped in small segments mainly related to GUI-
event handling. In details, the five segments are related
to (1) creation of the objects responsible for handling the
class diagram through an instance of the Factory design
pattern; (2) adding the class to the project; (3) adding the
class to the current name-space; (4) setting properties of the
class through a Façade design pattern; and, (5) handling the
persistence of the diagram in the XMI file representing the
UML diagram.

For the Create note feature of ArgoUML, the tagged
segment is composed of 88 method invocations while the
best matching segment identified by our approach is com-

posed of 50 methods. The identified segment deals with
the creation of a note, i.e., creation of the object through a
Factory, addition to the project, setting of its property. When
compared to the Add class feature, only one segment was
identified instead of five because the segment for creating a
note is shorter than that of adding a class (50 invocations vs.
172) and because this smaller number of method invocations
has a higher cohesion than that of the Add class feature. In
addition, 32 of the remaining 88− 50 = 38 methods belong
to the end of the trace and were not put in the same segment,
while the sequence of these a methods continued after the tag
with 24 other invocations. The continuation of the sequence
after the tags means that the oracle is not precise enough.
We explain this lack of precision by the extensive use of
multi-threading in ArgoUML.

All methods related to setting properties through the
Façade design pattern were not put in a same segment by
our approach because these methods were invoked in a loop,
in which each iteration of the loop contained a slightly
different sequence of invocations. Consequently, (1) the RLE
compression algorithm was not able to group together the
various loop iterations and (2) the various iterations were
not cohesive and thus the trace was split in several segments.
We will explore in future work more complex compression
techniques to deal with such cases.

The Cut rectangle feature of JHotDraw has been tagged
as a sequence of 172 method invocations. However, in the
best case shown in Table V, only 39 of these methods
were grouped together by our approach, i.e., the methods
belonging to the last part of the tagged segment. We in-
spected this sequence and discovered that it is related to
(1) add the rectangle content to the clipboard, (2) modify

7

Table VI
EXCERPT OF SEGMENTS IDENTIFIED BY THE APPROACH.

Create note (ArgoUML) Spawn window (JHotDraw) Cut rectangle (JHotDraw)
FacadeMDRImpl.isSingleton(. . .) JavaDrawApp.createTools(. . .) StorableOutput.close()
FacadeMDRImpl.isUtility(. . .) MySelectionTool.MySelectionTool(. . .) Clipboard.Clipboard()
CoreFactory.getCoreFactory() TextFigure.TextFigure() Clipboard.getClipboard()
CoreFactoryMDRImpl.buildComment(. . .) TextFigure.setAttribute(. . .) Clipboard.setContents(. . .)
CoreFactoryMDRImpl.createComment() FigureAttributes.FigureAttributes() CutCommand.deleteSelection()
CoreFactoryMDRImpl.initialize(. . .) FigureAttributes.set(. . .) BouncingDrawing.removeAll(. . .)
ModelEventPumpMDRImpl.flushModelEvents() TextFigure.changed() BouncingDrawing.figureRequestRemove(. . .)
UndoCoreHelperDecorator.addAnnotatedElement(. . .) TextFigure.invalidate() AnimationDecorator.removeFromContainer(. . .)
ModelEventPumpMDRImpl.flushModelEvents() TextFigure.updateLocation() AnimationDecorator.invalidate()
ClassDiagramGraphModel.addNode(. . .) TextTool.TextTool(. . .) AnimationDecorator.removeFigureChangeListener(. . .)
ClassDiagramGraphModel.canAddNode(. . .) TextTool.TextTool(. . .) AnimationDecorator.changed()
FacadeMDRImpl.isAInterface(. . .) TextFigure.TextFigure() AnimationDecorator.invalidate()
FacadeMDRImpl.isASubsystem(. . .) TextFigure.setAttribute(. . .) AnimationDecorator.release()
Project.getRoot() FigureAttributes.FigureAttributes() RectangleFigure.removeFromContainer(. . .)
ModelManagementFactory.getModelManagementFactory() FigureAttributes.set(. . .) RectangleFigure.removeFigureChangeListener(. . .)
ModelManagementFactoryMDRImpl.getRootModel() TextFigure.changed() RectangleFigure.changed()
CoreHelperMDRImpl.isValidNamespace(. . .) TextFigure.invalidate() RectangleFigure.release()
FacadeMDRImpl.getModel(. . .) TextFigure.updateLocation() RectangleFigure.removeFromContainer(. . .)
FacadeMDRImpl.isAModel(. . .) ConnectedTextTool.ConnectedTextTool(. . .) RectangleFigure.removeFigureChangeListener(. . .)
FacadeMDRImpl.isAFeature(. . .) ConnectedTextTool.ConnectedTextTool(. . .) RectangleFigure.changed()
.

the properties of the drawn rectangle so that it appears as
“cut” in the painter, and (3) update the menu commands
(e.g., the command “Paste” is now enabled). The preceding
sequence of 172 − 39 = 133 methods was split in many
small segments in which GUI events and actions performed
by clicking the mouse button are interleaved, resulting in a
sequence of loosely cohesive invocations.

The Spawn window feature of JHotDraw includes, in
the manually-tagged segment, 197 method invocations; the
segment with the highest overlap only included, however, 72
of these invocations. This sequence of 72 method invocations
is actually related to re-sizing and re-adjusting figures in the
panel while spawning the window. The remaining invoca-
tions (at the end of the trace) keep out by our approach are
mainly related to restoring and setting-up the status of the
menu commands.

Finally, as previously explained for the Add text feature of
JHotDraw, the low Jaccard score and low precision are due
to the high similarity between the sequences of methods of
the Add text and Draw rectangle features, which leads our
approach to put together both features in a segment of 168
method invocations.

On the one hand, the previous discussion highlights the
capability of our approach to split execution traces into
conceptually cohesive segments, despite the low Jaccard
overlap with respect to manually-tagged segments. On the
other hand, it shows some difficulties in identifying concepts
in execution traces, due to:

∙ design patterns and, in general, object-orientation
mechanisms (e.g., polymorphism, dynamic binding),
which make traces for different features almost iden-
tical (e.g., Add text and Draw rectangle in JHotDraw);

∙ imprecision when generating and tagging traces due to
multi-threading;

∙ the compression algorithm that is unable to group loop
iterations consisting of slightly different sequences of
method invocations.

In particular, despite the good results obtained by our
approach when analyzing traces from JHotDraw (both with
the Jaccard score and in precision), the extensive use of in-
heritance and design patterns in JHotDraw explain the lower
results when compared to those obtained with ArgoUML.
Inheritance and design patterns lead to the generation of
many method invocations not directly related to a feature,
but supporting and–or enabling the implementation of this
feature. Consequently, these method invocations can appear
in many different segments related to different features and
thus can be a confounding factor for our approach.

Another difficulty of trace-based concept location ap-
proaches is to deal with method invocations related to GUI
and system events. For example, hundreds of method invo-
cations in both ArgoUML and JHotDraw execution traces
correspond to GUI events, such as mousePressed(...).
These methods are not feature-specific and can appear
almost anywhere in a trace and could lead to different
segmentation across different runs. We deal with these meth-
ods by compressing the traces, removing sub-sequences of
such methods, and using conceptual cohesion and coupling
measures [9], [10], which lead to the creation of small
segments containing only such method invocations.

E. Threats to validity

We now discuss the threats to validity that can have
affected our empirical study.

Construct validity threats concern the relation between
theory and observation. In this study, they are mainly due
to measurement errors. The traces are automatically pro-
duced by executing the instrumented systems against some
scenarios. Thus, the information contained in the traces is

8

reliable. However, multi-threading could change the ordering
of method calls in different traces exercising the same sub-
scenarios. The performances of the proposed approach are
evaluated by using the Jaccard overlap, already used in the
past to evaluate concept location approaches [17] and by
using the standard IR precision measure, because we are also
interested to split the trace into segments that only contain
methods related to the feature of interest.

We only performed a preliminary assessment of the
meaning of the identified concepts, by manually analyzing
sequences of method invocations belonging to different seg-
ments. In future work, we plan to use automated techniques
to label segments and thus better help the maintainer by
assigning meanings to segments automatically.

Threats to internal validity concern confounding factors
that could affect our results. The manually-tagged traces that
we use as oracle pose such a threat. Indeed, it is possible that
tags would appear in slightly different positions in the traces
obtained by exercising the same scenarios in different runs.
The slight different positions result from multi-threading,
as well as from method invocations related to mouse and
other GUI events. In particular, extra method calls related
to GUI events or other uncontrollable system events could
be interleaved in the traces.

Methods declared in class libraries could also introduce
“noise” in our approach. For example, calls to methods from
the Java class libraries frequently occur in the traces obtained
in our experiments. They do not occur frequently enough to
be discarded as “utility” method calls yet are not related
to interesting concepts. Therefore, in future work, we will
consider adding these methods in our list of stop-words.

A last threat to internal validity relates to the intrinsic
randomness of GAs. However, in RQ1, we showed that,
overall, results are quite stable across different GA runs.

Reliability validity threats concern the possibility of repli-
cating this study. We attempted to provide all the necessary
details to replicate our study.

Threats to external validity concern the possibility to
generalize our results. We studied two systems having dif-
ferent size and belonging to different domains. However, we
are aware that this is a first study aimed at validating the
proposed approach and that we only split traces on a small
sample of scenarios for the two software systems. Other
traces could possibly lead to different results. Also, further
validation on a larger set of different systems is desirable.
Yet, within its limits, our results confirm the stability and
precision of our approach for concept location.

A final remark concerns the complexity of our approach
and computation times. Although this is a proof of concept,
we are aware that excessive computation times or complexity
may prevent further studies and practical application. On
average, identifying concepts in a compressed trace of about
400 methods on a single high end PC (i.e., with at least
4GB RAM) took about one day; when GA was mapped

on multiple serves as described, the time went down to 20
minutes. Clearly, to make the approach appealing, we need
to improve scalability both in time and space as well as in
the possibility to handle longer traces.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented an approach to locate automatically
concepts in execution traces by splitting traces into cohesive
segments representing concepts related to a software system
features. The approach relies on definitions of conceptual
cohesion and coupling from the literature [9], [10] and on
a search-based optimization technique, based on a genetic
algorithm, to find (near) optimal splittings of traces into
segments.

The approach has been applied and evaluated on two
open source systems, ArgoUML and JHotDraw. Results
showed that the approach is stable, and, overall, locates
concepts with a high precision. Precision tend to drop for
features realized using very similar sequences of methods,
as sometimes happens in JHotDraw, where different kinds of
shapes are drawn essentially in a same way. The overlaps be-
tween a manually-built oracle and the automatically-located
segments vary depending on the cohesion of the features
being analyzed, as the approach tends to split traces related
to large features into smaller segments related to cohesive
sub-concepts.

Future work will follow different directions. First, we are
improving the proposed approach to increase its performance
by better tuning the search-based optimization and the text
indexing techniques. Also, we want to assign automati-
cally meaningful labels to trace segments identified by the
approach to help maintainers understand their meanings.
Finally, we will carry other empirical studies to evaluate
the approach on traces obtained from different systems.

VII. ACKNOWLEDGEMENTS

This research was partially supported by the Natural
Sciences and Engineering Research Council of Canada (Re-
search Chair in Software Evolution and in Software Patterns
and Patterns of Software) and by G. Antoniol’s Individual
Discovery Grant.

REFERENCES

[1] G. Antoniol and Y.-G. Guéhéneuc, “Feature identification:
An epidemiological metaphor,” Transactions on Software
Engineering (TSE), vol. 32, no. 9, pp. 627–641, September
2006.

[2] T. J. Biggerstaff, B. G. Mitbander, and D. E. Webster, “The
concept assignment problem in program understanding,”
in Proceedings of the 15tℎ International Conference on
Software Engineering, IEEE Computer Society Press / ACM
Press, May 1993, pp. 482–498.

9

[3] V. Kozaczynski, J. Q. Ning, and A. Engberts, “Program
concept recognition and transformation,” IEEE Transactions
on Software Engineering, vol. 18, no. 12, pp. 1065–1075, Dec
1992.

[4] D. Poshyvanyk, Y.-G. Guéhéneuc, A. Marcus, G. Antoniol,
and V. Rajlich, “Feature location using probabilistic ranking
of methods based on execution scenarios and information
retrieval,” Transactions on Software Engineering (TSE),
vol. 33, no. 6, pp. 420–432, June 2007.

[5] P. Tonella and M. Ceccato, “Aspect mining through the formal
concept analysis of execution traces,” in Proceedings of IEEE
Working Conference on Reverse Engineering, 2004, pp. 112–
121.

[6] N. Anquetil and T. Lethbridge, “Extracting concepts from
file names: A new file clustering criterion,” in Proceedings of
the 20tℎ International Conference on Software Engineering,
IEEE Computer Society Press, May 1998, pp. 84–93.

[7] N. Wilde and M. C. Scully, “Software reconnaissance:
Mapping program features to code,” in Journal of Software
Maintenance: Research and Practice, John Wiley & Sons,
January-February 1995, pp. 49–62.

[8] M. Eaddy, A. V. Aho, G. Antoniol, and Y.-G. Guéhéneuc,
“CERBERUS: Tracing requirements to source code using
information retrieval, dynamic analysis, and program
analysis,” in Proceedings of the 16tℎ International
Conference on Program Comprehension (ICPC), IEEE
Computer Society Press, June 2008.

[9] A. Marcus, D. Poshyvanyk, and R. Ferenc, “Using the con-
ceptual cohesion of classes for fault prediction in object-
oriented systems,” IEEE Transactions on Software Engineer-
ing, vol. 34, no. 2, pp. 287–300, 2008.

[10] D. Poshyvanyk and A. Marcus, “The conceptual coupling
metrics for object-oriented systems,” in Proceedings of 22nd
IEEE International Conference on Software Maintenance.
Philadelphia, Pennsylvania, USA: IEEE CS Press, 2006, pp.
469 – 478.

[11] W. E. Wong, S. S. Gokhale, and J. R. Horgan, “Quantifying
the closeness between program components and features,”
Journal of Systems and Software, vol. 54, no. 2, pp. 87 –
98, 2000, special Issue on Software Maintenance.

[12] D. Edwards, S. Simmons, and N. Wilde, “An approach to
feature location in distributed systems,” Software Engineering
Research Center, Tech. Rep., 2004.

[13] A. D. Eisenberg and K. D. Volder, “Dynamic feature traces:
Finding features in unfamiliar code,” in proceedings of the
21st International Conference on Software Maintenance.
IEEE Press, September 2005, pp. 337–346.

[14] K. Chen and V. Rajlich, “Case study of feature location using
dependence graph,” in Proceedings of the 8tℎ International
Workshop on Program Comprehension, IEEE Computer
Society Press, June 2000, pp. 241–252.

[15] T. Eisenbarth, R. Koschke, and D. Simon, “Locating features
in source code,” IEEE Transactions on Software Engineering,
vol. 29, no. 3, pp. 210–224, March 2003.

[16] M. Salah and S. Mancoridis, “A hierarchy of dynamic
software views: From object-interactions to feature-
interactions,” in Proceedings of the 20tℎ International
Conference on Software Maintenance, IEEE Computer
Society Press, September 2004, pp. 72–81.

[17] M. Salah, S. Mancordis, G. Antoniol, and M. Di Penta,
“Towards employing use-cases and dynamic analysis to com-
prehend Mozilla,” in proceedings of the 21st International
Conference on Software Maintenance. IEEE Press, Septem-
ber 2005, pp. 639–642.

[18] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, “Feature
location via information retrieval based filtering of a single
scenario execution trace,” in ASE ’07: Proceedings of the
twenty-second IEEE/ACM international conference on Auto-
mated software engineering. New York NY USA: ACM,
2007, pp. 234–243.

[19] J. Ka-Yee Ng, Y.-G. Guéhéneuc, and G. Antoniol, “Identi-
fication of behavioral and creational design motifs through
dynamic analysis,” Journal of Software Maintenance and
Evolution: Research and Practice (JSME), December 2009.

[20] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information
Retrieval. Addison-Wesley, 1999.

[21] M. Marin, A. van Deursen, and L. Moonen, “Identifying
crosscutting concerns using fan-in analysis,” ACM Trans.
Softw. Eng. Methodol., vol. 17, no. 1, 2007.

[22] M. F. Porter, “An algorithm for suffix stripping,” Program,
vol. 14, no. 3, pp. 130–137, 1980.

[23] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,
and R. Harshman, “Indexing by latent semantic analysis,”
Journal of the American Society for Information Science,
vol. 41, no. 6, pp. 391–407, 1990.

[24] D. E. Goldberg, Genetic Algorithms in Search Optimization
and Machine Learning. Addison-Wesley Pub Co, Jan 1989.

[25] B. S. Mitchell and S. Mancoridis, “On the automatic modu-
larization of software systems using the Bunch Tool.” IEEE
Trans. Software Eng., vol. 32, no. 3, pp. 193–208, 2006.

10

