
An Empirical Study of the Impact of Two
Antipatterns, Blob and Spaghetti Code,

On Program Comprehension

Marwen Abbes1,3, Foutse Khomh2, Yann-Gaël Guéhéneuc3, Giuliano Antoniol3
1 Dépt. d’Informatique et de Recherche Opérationnelle, Université de Montréal, Montréal, Canada

2 Dept. of Elec. and Comp. Engineering, Queen’s University, Kingston, Ontario, Canada
3 Ptidej Team, SOCCER Lab, DGIGL, École Polytechnique de Montréal, Canada

E-mails: marwen.abbes@umontreal.ca, foutse.khomh@queensu.ca
yann-gael.gueheneuc@polymtl.ca, antoniol@ieee.org

Abstract—Antipatterns are “poor” solutions to recurring
design problems which are conjectured in the literature to
make object-oriented systems harder to maintain. However,
little quantitative evidence exists to support this conjecture.
We performed an empirical study to investigate whether
the occurrence of antipatterns does indeed affect the under-
standability of systems by developers during comprehension
and maintenance tasks. We designed and conducted three
experiments, with 24 subjects each, to collect data on the
performance of developers on basic tasks related to program
comprehension and assessed the impact of two antipatterns
and of their combinations: Blob and Spaghetti Code. We
measured the developers’ performance with: (1) the NASA
task load index for their effort; (2) the time that they
spent performing their tasks; and, (3) their percentages of
correct answers. Collected data show that the occurrence of
one antipattern does not significantly decrease developers’
performance while the combination of two antipatterns im-
pedes significantly developers. We conclude that developers
can cope with one antipattern but that combinations of
antipatterns should be avoided possibly through detection
and refactorings.

Keywords-Antipatterns, Blob, Spaghetti Code, Program
Comprehension, Program Maintenance, Empirical Software
Engineering.

I. INTRODUCTION

Context: In theory, antipatterns are “poor” solutions
to recurring design problems; they stem from experienced
software developers’ expertise and describe common pit-
falls in object-oriented programming, e.g., Brown’s 40 an-
tipatterns [1]. Antipatterns are generally introduced in sys-
tems by developers not having sufficient knowledge and–
or experience in solving a particular problem or having
misapplied some design patterns. Coplien [2] described
an antipattern as “something that looks like a good idea,
but which back-fires badly when applied”. In practice,
antipatterns relate to and manifest themselves as code
smells in the source code, symptoms of implementation
and–or design problems [3].

An example of antipattern is the Blob, also called
God Class. The Blob is a large and complex class that
centralises the behavior of a portion of a system and
only uses other classes as data holders, i.e., data classes.
The main characteristic of a Blob class are: a large size,
a low cohesion, some method names recalling procedu-

ral programming, and its association with data classes,
which only provide fields and–or accessors to their fields.
Another example of antipattern is the Spaghetti Code,
which is characteristic of procedural thinking in object-
oriented programming. Spaghetti Code classes have little
structure, declare long methods with no parameters, and
use global variables; their names and their methods names
may suggest procedural programming. They do not exploit
and may prevent the use of object-orientation mechanisms:
polymorphism and inheritance.

Premise: Antipatterns are conjectured in the liter-
ature to decrease the quality of systems. Yet, despite the
many studies on antipatterns summarised in Section II, few
studies have empirically investigated the impact of antipat-
terns on program comprehension. Yet, program compre-
hension is central to an effective software maintenance and
evolution [4]: a good understanding of the source code of
a system is essential to allow its inspection, maintenance,
reuse, and extension. Therefore, a better understanding of
the factors affecting developers’s comprehension of source
code is an efficient and effective way to ease maintenance.

Goal: We want to gather quantitative evidence on
the relations between antipatterns and program compre-
hension. In this paper, we focus on the system understand-
ability, which is the degree to which the source code of a
system can be easily understood by developers [5]. Gath-
ering evidence on the relation between antipatterns and
understandability is one more step [6] towards (dis)proving
the conjecture in the literature about antipatterns and
increasing our knowledge about the factors impacting
program comprehension.

Study: We perform three experiments: we study
whether systems with the antipattern Blob, first, and the
Spaghetti Code, second, are more difficult to understand
than systems without any antipattern. Third, we study
whether systems with both Blob and Spaghetti Code are
more difficult to understand than systems without any an-
tipatterns. Each experiment is performed with 24 subjects
and on three different systems developed in Java. The
subjects are graduate students and professional developers
with experience in software development and maintenance.
We ask the subjects to perform three different program
comprehension tasks covering three out of four categories



of usual comprehension questions [7]. We measure the
subjects’ performance with: (1) the NASA task load index
for their effort; (2) the time that they spent performing
their tasks; and, (3) their percentages of correct answers.

Results: Collected data show that the occurrence of
one antipattern in the source code of a system does not
significantly reduce its understandability when compared
to a source code without any antipattern. However, the
combination of two antipatterns impacts negatively signif-
icantly subjects’ comprehension; hinting that developers
can cope with antipatterns in isolation but that combina-
tions thereof should be avoided during development and
maintenance.

Relevance: Understanding the impact of antipatterns
on program comprehension, especially the understandabil-
ity of systems, is important from the points of view of
both researchers and practitioners. For researchers, our
results bring further evidence to support the conjecture
in the literature on the negative impact of antipatterns
on the quality of systems. For practitioners, our results
provide concrete evidence that they should pay attention
to systems with a high number of classes participating in
antipatterns, because these antipatterns would reduce their
systems understandability and, consequently, increase their
systems’ aging [8]. Our results also support a posteriori
the removal of antipatterns as early as possible from
systems and, therefore, the importance and usefulness of
antipatterns detection techniques.

Organisation: Section II relates our study with previ-
ous work. Section III describes our empirical study defini-
tion and design. Section IV presents the study results while
Section V discusses them and threats to their validity.
Section VII concludes with future work.

II. RELATED WORK

We summarise previous works on the impact of antipat-
terns and on their relation to program comprehension.

Antipatterns Definition and Detection: The first
book related to antipatterns in object-oriented development
was written in 1995 by Webster [9]; his contribution in-
cludes conceptual, political, coding, and quality-assurance
problems. Riel [10] defined 61 heuristics characterising
good object-oriented programming to assess a system
quality manually and improve its design and implemen-
tation. Beck [3] defined 22 code smells, suggesting where
developers should apply refactorings. Mäntylä [11] and
Wake [12] proposed classifications for code smells. Brown
et al. [1] described 40 antipatterns, including the Blob and
Spaghetti Code. These books provide in-depth views on
heuristics, code smells, and antipatterns aimed at industrial
and academic audiences.

Several approaches to specify and detect code smells
and antipatterns exist in the literature. They range from
manual approaches, based on inspection techniques [13],
to metric-based heuristics [14], [15], [16], using rules
and thresholds on various metrics [17] or Bayesian belief
networks [18].

Antipatterns and Evolution: Olbrich et al. [19]
analysed the historical data of Lucene and Xerces over
several years and concluded that Blob classes and classes
subjected to Shotgun Surgery have a higher change fre-
quency than other classes; with Blob classes featuring
more changes. Similarly, Chatzigeorgiou and Manakos
[20] studied the evolution of Long Method, Feature Envy,
and State Checking throughout successive versions of two
open-source systems and concluded that a significant per-
centage of these smells are introduced during the addition
of new methods to the system. They also found that these
smells persist in systems and that their removal is often a
side effect of adaptive maintenance rather than the result of
targeted refactoring activities. Using Azureus and Eclipse,
Khomh et al. [6] studied the impact of classes with code
smells on change-proneness and the particular impact of
certain code smells. They showed that the likelihood for
classes with code smells to change is very high, except in
a few explainable cases.

Antipatterns and Developers: Deligiannis et al. [21],
[22] proposed the first quantitative study of the impact
of antipatterns on software development and maintenance
activities. They performed a controlled experiment with 20
students on two systems on the impact of Blob classes on
the understandability and maintainability of the systems.
The results of their study suggest that Blob classes affect
the evolution of design structures and the subjects’ use
of inheritance. However, Deligiannis et al. did not assess
the impact of God classes on the ease of their subjects to
understand the systems and the subjects’ ability to perform
successful comprehension tasks on these systems.

Du Bois et al. [23] showed through a controlled experi-
ment with graduate students that the decomposition of God
classes into a number of collaborating classes using well-
known refactorings can improve their understandability. In
their experiment, students were asked to perform simple
maintenance tasks on God classes and their decomposi-
tions. Du Bois et al. found that the students had more
difficulties understanding the original God class than cer-
tain decompositions. However, their study did not reveal
any objective notion of “optimal comprehensibility”.

Summary: These previous works raised the aware-
ness of the community towards the impact of code smells
and antipatterns on software development and maintenance
activities. We build on these previous works and pro-
pose experiments assessing the impact of the Blob and
Spaghetti Code on the understandability of systems.

III. EXPERIMENTAL DESIGN

We perform three experiments to assess the comprehen-
sion of source code by subjects in the presence of two an-
tipatterns. Experiment 1 deals with the Blob, Experiment
2 deals with the Spaghetti Code, and Experiment 3 deals
with both these antipatterns. We chose these antipatterns
because they are well-known and have been used in the
literature to perform other experiments, in particular in
the previous work by [6], [23], [24], [25], [26]. In each
experiment, we assign two systems to each subject: one



Numbers of Release
Experiments Systems Classes SLOCs dates

YAMM 0.9.1 64 11,272 1999
1 JVerFileSystem 167 38,480 2008

AURA 95 10,629 2008
GanttProject 2.0.6 527 68,545 2008

2 and 3 JFreeChart 1.0.13 989 302,844 2009
Xerces 2.7.0 740 233,331 2008

Table I
OBJECT SYSTEMS

containing one occurrence of one (or both) antipattern
and one without any occurrence. We then measure and
compare the subjects’ performances for both systems.
We follow Wohlin et al.’s template [27] to describe the
experimental design of Experiment 1, giving particulars
of the other two experiments when appropriate.

A. Research Question

Our research questions stem from our goal of under-
standing the impact of antipatterns on program compre-
hension and is: “what is the impact of an occurrence of
the Blob antipattern (respectively of the Spaghetti Code
antipattern and of the two antipatterns) on understandabil-
ity?”

B. Hypotheses

We want to assess the following null hypothesis when
subjects perform comprehension tasks with source code:

• H0Blob
: There is no statistically significant difference

between the subjects’ average performance when
executing comprehension tasks on the source code of
systems containing one occurrence of the antipattern
Blob and their average performance with source code
without any antipattern.

We have two identical null hypotheses H0SpaghettiCode

and H0Blob+SpaghettiCode
for the other antipattern and for

the combination of one occurrence of each antipattern.
If we reject the previous null hypotheses, then we

explain the rejection either as:

• either E1Blob
: the subjects’ average performance is

better when executing comprehension tasks on sys-
tems containing no occurrence of the Blob;

• or E2Blob
: the subjects’ average performance is bet-

ter when executing comprehension tasks on systems
containing one occurrence of the Blob;

and similarly for the Spaghetti Code and the combination
of the two antipatterns (E1SpaghettiCode

, E2SpaghettiCode
,

E1Blob+SpaghettiCode
, and E2Blob+SpaghettiCode).

We choose one explanation by comparing the subjects’s
average performance: E1Blob

if the average of developers’
performance is better with systems containing no occur-
rence of the Blob, else E2Blob

. We thus conclude on the
impact of antipattern on understandability within the limits
of the threats to the validity of our experiments in Section
VI.

C. Objects

We choose three systems for each experiment, all de-
veloped in Java, and briefly described in Table I. We per-
formed each experiment on 3 systems, because one system
could be intrinsically easier/more complex to understand.

For Experiment 1, we use YAMM (Yet Another Mail
Manager): an email client previously used in a similar
study by Du Bois et al. [23]; JVerFileSystem: a system to
model and analyse the content of version control systems,
like CVS or SVN [28]; and, Aura: a tool implementing
a hybrid approach to generate rules to upgrade a system
when its underlying framework evolves [29].

For Experiment 2 and 3, we use GanttProject1: a cross-
platform desktop tool for project scheduling and manage-
ment; JFreeChart1: a chart library for Java to generate
various kinds of charts, such as pie, bar, or time series
charts; and, Xerces1: a parser to analyze XML documents
written according to XML 1.1. It implements a number
of standard API for XML parsing, including DOM, SAX,
and SAX2.

We used the following criteria to select the systems.
First, we selected open-source systems; therefore other
researchers can replicate our experiment. Second, we
avoided to select small systems that do not represent the
ones that developers deal normally. We affected randomly
a set of three systems to each experiment. We also
chose these systems because they are typical examples of
systems having continuously evolved on periods of time
of different lengths. Hence, the occurrences of Blob and
Spaghetti Code in these systems are not coincidence but
are realistic. We use our antipattern detection technique,
DEX, which stems from our DECOR method [24], [26] to
ensure that each system has at least one occurrence of the
Blob and–or the Spaghetti Code antipattern. We validate
the detected occurrences manually. From each system,
we selected randomly a subset of classes responsible for
managing a specific task to limit the size of the displayed
source code. For example, in JFreeChart, we chose the
source code of the classes responsible for editing and
displaying the properties of a plot. Hence the subsets
used in our experiments have different sizes. However this
difference would not impact our results because, regardless
of the sizes, a subject concentrates his efforts only on a
small part of the subset in which a Blob and–or Spaghetti
Code class plays a central role, i.e., the Blob class and its
surrounding classes. Therefore, we ensure that all subjects
perform the comprehension tasks within, almost, the same
piece of code. Then, we refactor [30] each subset of
each system to remove all other occurrences of (other)
antipatterns to reduce possible bias by other antipatterns,
while keeping the system compilable and functional. We
performed manual refactorings following the guidelines
of Fowler’s book [30]. For example when dealing with
a Blob class, we replace it by multiple smaller classes or
just spread the methods to their right places. (In the course

1http://ganttproject.biz/index.php, http://www.jfree.org/jfreechart/, and
http://xerces.apache.org/



of the refactorings, we have removed and introduced new
classes, hence Aura with one occurrence of the Blob has
89 classes, see Table IV, while its original version has 95
classes, see Table I.)

Therefore, for Experiment 1, we obtain three subsets
of the three systems, each containing one and only one
occurrence of a Blob class. For Experiment 2, each subset
contains only one occurrence of the Spaghetti Code. For
Experiment 3, each subset contains one occurrence and
only one occurrence of both antipatterns co-occurring in
the same class.

We finally refactor each subset of the systems to obtain
new subsets in which no occurrence of the antipatterns
exist. We use these subsets as base line to compare the
subjects’ performance and test our null hypothesis.

D. Independent Variables

The independent variable in Experiment 1 is the pres-
ence of the occurrence of the Blob antipattern, which is a
Boolean value stating whether there is such an occurrence
or not. It is the value of this independent variable that
should influence the subjects’ performances. In Experi-
ment 2 the independent variable is the presence of one
occurrence of the Spaghetti Code while in Experiment
3 it is the presence of one occurrence of the Blob and
Spaghetti Code antipattern.

E. Dependent Variables

The dependent variables measure the subjects’ perfor-
mance, in terms of effort, time spent, and percentage of
correct answers. We measure the subjects’ effort using the
NASA Task Load Index (TLX) [31]. The TLX assesses the
subjective workload of subjects. It is a multi-dimensional
measure that provides an overall workload index based
on a weighted average of ratings on six sub-scales: men-
tal demands, physical demands, temporal demands, own
performance, effort, and frustration. NASA provides a
computer program to collect weights of six sub-scales and
ratings on these six sub-scales. We combine weights and
ratings provided by the subjects into an overall weighted
workload index by multiplying ratings and weights; the
sum of the weighted ratings divided by fifteen (sum of
the weights) represents the effort [32].

We measure the time using a timer developed in Java
that the subjects must start before performing their com-
prehension tasks to answer the questions and stop when
done.

We compute the percentage of correct answers for each
question by dividing the number of correct elements found
by the subject by the total number of correct elements
they should have found. For example, for a question on
the references to a given object, if there are ten references
but the subject find only four, the percentage would be
forty.

F. Mitigating Variables

We retain three mitigating variables possibly impacting
the measures of the dependent variables:
• Subject’s knowledge level in Java.

• Subject’s knowledge level of Eclipse.
• Subject’s knowledge level in software engineering.
We assess the subjects’ levels using a post-mortem

questionnaire administered to subjects at the end of their
participation to our study to avoid any bias, because some
questions pertain to antipatterns. This questionnaire uses
Likert scales for each of the mitigating variables and also
include open questions about antipatterns, refactorings,
and so on.

G. Subjects

Each experiment was performed by 24 anonymous
subjects, S1 to S24. Some subjects were enrolled in
the M.Sc. and Ph.D. programs in computer and soft-
ware engineering in École Polytechnique de Montréal or
in computer science in Université de Montréal. Others
were professionals working for software companies in the
Montréal area, recruited through the authors’ industrial
contacts. All subjects were volunteers and could withdraw
at any time, for any reason.

H. Questions

We used comprehension questions to elicit comprehen-
sion tasks and collect data on the subjects’ performances.

We consider questions in three of the four categories
of questions regularly asked and answered by developers
[7]: (1) finding a focus point in some subset of the
classes and interfaces of some source code, relevant to
a comprehension task; (2) focusing on a particular class
believed to be related to some task and on directly-related
classes; (3) understanding a number of classes and their
relations in some subset of the source code; and, (4)
understanding the relations between different subsets of
the source code. Each category contains several questions
of the same type [7].

We choose questions only in the first three categories,
because the last category pertains to different subsets
of the source code and, in our experiments, we focus
only on one subset containing the occurrence(s) of the
antipattern(s). In each chosen category, we select the two
most relevant questions through votes among the first three
authors, which were validated by the last author. Selecting
two questions in each category allows us to have, for each
subject, a different question from the same category on
the system with and without antipattern, hence reducing
the possibility of a learning bias for the second system.

The six questions are the followings. The text in bold
is a placeholder that we replace by appropriate behaviors,
concepts, elements, methods, and types depending on the
systems on which the subjects were performing their tasks.
• Category 1: Finding focus points:

– Question 1: Where is the code involved in the
implementation of this behavior?

– Question 2: Which type represents this domain
concept or this UI element or action?

• Category 2: Expanding focus points:
– Question 1: Where is this method called or this

type referenced?



– Question 2: What data can we access from this
object?

• Category 3: Understanding a subset:
– Question 1: How are these types or objects

related?
– Question 2: What is the behavior that these types

provide together and how is it distributed over
these types?

For example, with AURA, we replace “this behavior”
in Question 1, Category 1, by “differentiating callees” and
the question reads: “Where is the code involved in the
implementation of differentiating callees?”

For category 2, it may seem that the questions could be
simply answered by subjects using Eclipse. Yet subjects
still must identify and understand the classes or methods
that they believe to be related to the task. Moreover, dis-
covering classes and relationships that capture incoming
connections prepare the subject for the questions of the
third category.

I. Design

Our design is a 2×3 factorial design [27], presented
in Table II. We have three different systems, each with
two possibilities: containing or not the occurrence(s) of
the antipattern(s). Hence, six combinations are possible.
For each combination, we prepare a set of comprehension
questions, which together form a treatment. We have six
different groups of subjects, each one affected by each one
treatment.

This design is a between-subject design [33] with a
set of different groups of subjects, which allows us to
avoid repetition by using a different group of subjects for
each treatment. We take care of the groups to ensure their
homogeneity and avoid bias in the results, for example we
ensure that no group entirely contains male or female sub-
jects. The use of balanced groups simplifies and enhances
the statistical analysis of the collected data [27].

J. Procedure

We received the agreement from the Ethical Review
Board of Université de Montréal to perform and publish
this study. The collected data is anonymous. The subjects
could leave any experiment at any time, for any reason,
and without penalty of any kind. No subject left the study
and took more than 45 minutes to perform the experiment.
The subjects knew that they would perform comprehension
tasks, but did know neither the goal of the experiment nor
whether the system that they were studying contained or
did not contain antipatterns. We informed them of the goal
of the study after collecting their data, before they finished
the experiment.

For each experiment, we prepare an Eclipse workspace
packaging the target classes, on which the subjects must
perform their comprehension tasks to answer the selected
questions. The workspace contains compilable and func-
tional subsets, linked to JAR files with the rest of the
system compiled code. It also includes the timer, the TLX
program, a brief tutorial on the use of Eclipse, a brief

explanation about the system at hand, and the post-mortem
questionnaire. We conduct the experiments in the same
lab, with the same computer and software environments
to avoid any kind of environmental bias. No subjects knew
the systems on which they perform comprehension tasks,
thus we eliminate the mitigating variable relative to the
subject’s knowledge of the system.

K. Analysis Method

We use the (non-parametric) Mann-Whitney test to
compare two sets of dependent variables and assess
whether their difference is statistically significant. The two
sets are the subjects’ data collected when they answer the
comprehension questions on the system with antipattern(s)
and without. For example, we compute the Mann-Whitney
test to compare the set of times measured for each subject
on the system with antipattern(s) with the set of times mea-
sured for each subject on the system without antipattern(s).
Non-parametric tests do not require any assumption on the
underlying distributions.

We also test the hypothesis with the (parametric) t-test.
Other than testing the hypothesis, performing the t-test
is of practical interest to estimate the magnitude of the
differences, for example in the time spent by subjects
on systems with and without antipattern(s): we use the
Cohen d effect size [34], which indicates the magnitude
of the effect of a treatment on the dependent variables.
The effect size is considered small for 0.2 ≤ d < 0.5,
medium for 0.5 ≤ d < 0.8 and large for d ≥ 0.8. For
independent samples and un-paired analysis, as in our
study, it is defined as the difference between the means
(M1 and M2), divided by the pooled standard deviation
(σ =

√
(σ2

1 + σ2
2)/2) of both sets: d = (M1 −M2)/σ.

We use Analysis Of Variance (ANOVA) to test if the
means of the subjects’ groups are identical. ANOVA
generalises the t-test to more than two groups. We use
ANOVA to assess the dependence between the six sets
of dependent variables, as we have six different groups
affected to the different treatments. We investigate if there
is significant difference between groups for each of our
dependent variables. For example, we compute ANOVA to
compare the efforts of the six different groups and assess
whether there is statistical significant difference due to the
treatments.

IV. STUDY RESULTS

A. Descriptive Statistics

We now describe the collected data and present the
results of our measured dependent variables as well as
explain our hypotheses. Table IV summarises the averages
of collected data. It presents, for all the systems, the
average of each dependent variable: efforts, times, and per-
centages of correct answers. For example, for Experiment
1 and System 1, the subjects took on average 261 seconds
to answer one comprehension question on the subset of
the source code containing one occurrence of the Blob
while they took on average 149 seconds to answer the



With Antipattern(s) Without Antipattern(s)
System 1 S3, S7, S9, S11, S12, S18, S21, S24 S1, S5, S8, S10, S15, S16, S20, S22

System 2 S1, S2, S6, S14, S15, S17, S20, S22 S4, S7, S9, S11, S13, S18, S19, S23

System 3 S4, S5, S8, S10, S13, S16, S19, S23 S2, S3, S6, S12, S14, S17, S21, S24

Table II
EXPERIMENTAL DESIGN

Experiment 1 Experiment 2 Experiment 3

Figure 1. Graphical representations of the collected data

Times Answers Efforts
M.-W. t-Test ANOVA Cohen M.-W. t-Test ANOVA Cohen M.-W. t-Test ANOVA Cohen
p p p d p p p d p p p d

Experiment 1 0.46 0.30 0.02 0.18 0.41 0.21 0.58 0.27 0.25 0.17 0.29 0.24
Experiment 2 0.89 0.97 0.87 0.01 0.26 0.24 0.60 0.35 0.64 0.57 0.41 0.09
Experiment 3 <0.01 <0.01 <0.01 1.54 <0.01 <0.01 <0.01 1.61 <0.01 <0.01 0.01 1.20

Table III
p-VALUES AND COHEN’S d EFFECT SIZE RESULTS FOR EACH EXPERIMENT

Experiments Systems Characteristics Average Times (s.) Average Efforts Average % of Correct Answers # of Classes # of SLOCs
System 1: With Blob 261 43.42 71% 65 11,241

YAMM 0.9.1 Without Blob 149 27.99 71% 62 10,923
Experiment 1: System 2: With Blob 251 43.30 67% 83 8,971

Blob JVerFileSystem Without Blob 206 33.68 79% 85 8,750
System 3: With Blob 189 33.31 58% 89 10,629

Aura Without Blob 271 42.55 66% 99 11,836
System 1: With Spaghetti 190 47.31 67% 69 6,171

GanttProject 2.0.6 Without Spaghetti 194 53.44 51% 69 4,441
Experiment 2: System 2: With Spaghetti 215 39.27 52% 63 4,370
Spaghetti Code Xerces 2.7.0 Without Spaghetti 182 34.48 52% 63 4,393

System 3: With Spaghetti 195 42.37 52% 76 36,949
JFreeChart 1.0.13 Without Spaghetti 218 45.84 45% 76 36,976

System 1: With both APs 187 45.36 44% 72 4,628
GanttProject 2.0.6 Without any APs 107 27.32 83% 69 4,441

Experiment 3: System 2: With both APs 184 42.83 73% 64 11,634
Both APs Xerces 2.7.0 Without any APs 140 29.33 86% 63 4,393

System 3: With both APs 208 48.68 43% 78 37820
JFreeChart 1.0.13 Without any APs 138 31.27 78% 76 36,976

Table IV
SUMMARY OF THE COLLECTED DATA FOR EACH EXPERIMENT (AP = ANTIPATTERN)

other question in the same category on the system without
antipattern.

For Experiment 1, including one occurrence of the
Blob, and Experiment 3, including both antipatterns Blob
and Spaghetti Code, collected data show that the means
of the three dependent variables, between systems with
the antipattern(s) and systems without, show meaningful
and consistent differences, in particular in Experiment
3. We notice that systems with antipatterns are more
time consuming, need more effort, and lead subjects to
answer less correctly. The subjects’ performances for their
comprehension tasks are better when the system does not
contain any antipattern. For Experiment 2, including one
occurrence of the Spaghetti Code, results show varying
differences with no directly-explainable reasons. For ex-
ample, for Xerces, on average, subjects took less time and
effort performing comprehension tasks in the subset of
the source code without Spaghetti Code than in the subset
with this antipattern, while in GanttProject, we observe

the opposite difference.

B. Hypothesis Testing

Table III report the p-values obtained by comparing
the differences between the data collected for each ex-
periment. We use the Mann-Whitney test to compare
our dependent variables between the systems with and
without antipattern(s) and the ANOVA test to compare
data between the different groups assigned to the different
treatments.

For Experiment 1, systems with one occurrence of
the Blob seem to be more time consuming, to need
more effort, and to lead to more incorrect answers, but
there are no statistically significant differences between
the subjects’ efforts, times, and percentages of correct
answers when comparing systems with and without the
Blob antipattern, as shown by high p-values in Table III:
we cannot reject H0Blob

and therefore must disapprove
both explanations E1Blob

and E2Blob
.



For Experiment 2, p-values are also high and, for some
systems, we observe better performances when subjects
performed their comprehension tasks on systems with
one occurrence of the Spaghetti Code. Again, we cannot
reject H0SpaghettiCode

and therefore must disapprove both
explanations E1SpaghettiCode

and E2SpaghettiCode
.

We explain the lack of statistically significant differ-
ence, in Experiment 1 and 2, by the fact that one antipat-
tern, in a system of about 75 classes, is not enough to
impede the subjects’ comprehension of the system. Figure
1 illustrates these results: it shows that the shapes of the
two curves (one representing the system with antipatterns,
blue solid lines, and one without, red dash lines) for each
dependent variable (effort, time, and percentage of correct
answers) are almost the same in the two first columns
(representing Experiment 1 and 2), which show that all
subjects are performing similarly on both systems and are
not disturbed by one antipattern.

For Experiment 3, results show statistically significant
differences between subjects’ efforts, times, and percent-
ages of correct answers between source code with and
without the combination of Blob and Spaghetti Code,
as shown in Table III. Figure 1 illustrates the statistical
differences of the dependent variables: (1) the subjects’
efforts are higher in the system with the combination
of antipatterns; (2) the times spent by the subjects to
perform the comprehension tasks are higher; and, (3)
the percentages of correct answers are lower. Moreover,
Cohen’s d effect size values are large (1.45 in average).
Therefore, a combination of the Blob and Spaghetti Code
antipatterns has a strong impact on subjects’ efforts, times,
and percentages of correct answers. We thus can reject
H0Blob+SpaghettiCode

. A possible explanation is that the
occurrences of both antipatterns (Blob and Spaghetti
Code) impedes the subjects’ comprehension of the system.
We thus approve E1Blob+SpaghettiCode

.

V. DISCUSSION

We now discuss the results of our study.

A. Results

The results of Experiment 1 presented in Table IV show
an increase in subjects’ average time and effort on systems
with Blob and a decrease in their average percentage of
correct answers. Therefore, systems with an occurrence of
the Blob seem to be more time consuming, to need more
effort, and to lead to more incorrect answers. These results
confirm the finding by Du Bois et al. [23] that students
have more difficulties comprehending Blob classes than
other classes. However, we did not find a statistically
significant difference. Nevertheless, the results of ANOVA
suggest a significant difference in the amount of times
spent by subjects between the systems with and without
the Blob.

Experiment 2 reveals no significant difference between
subject’s efforts, times, and percentages of correct answers
on systems with and without the Spaghetti Code. Surpris-
ingly, subjects appear to perform better on JFreeChart and

GanttProject, when there is an occurrence of the Spaghetti
Code. Future work includes explaining this observation.

Experiment 3, which studies the combination of the two
antipatterns Blob and Spaghetti Code, shows strong sta-
tistically significant differences between subjects’ efforts,
times, and percentages of correct answers. ANOVA results
confirm that these differences are significant across our six
groups of subjects, in Table II. Moreover, Cohen’s d effect
size values of the magnitude of the relation between, on
the one hand, the presence of the Blob and Spaghetti Code
antipattern and, on the other hand, these differences in ef-
forts, times, and percentages of correct answers are large;
suggesting the strong relation. Subjects spent more time
and effort on systems with the combination of antipatterns
and their percentages of correct answers is significantly
lower.

In future work, we will investigate whether this sta-
tistically significant differences are due to the density of
antipatterns in the system and–or to the occurrences of
specific antipatterns together.

B. Impact of the Mitigating Variables

We investigated if the three mitigating variables: Java
knowledge, Eclipse knowledge, and software engineering
knowledge, impacted our results. We set 5 levels, using
Lickert scales, corresponding to the subjects’ respective
levels (bad, neutral, good, excellent, expert).

Table V presents some descriptive statistics of the
data collected for these three mitigating variables. As the
groups are non-equivalent in terms of size, we used Mann-
Whitney Test, which deals with the problem of un-equal
sample sizes [35]. We found no significant differences
between the different levels; p-values are high, expressing
a null influence of the levels of the subjects on the data,
the systems too did not affect our results.

We performed an ANOVA test to assess the impact of
the mitigating variables on the three measured variables
(time, effort, and % of correct answers), which shows
that the mitigating variables do not impact our results, as
shown by the high p-values in Table V. The lack of impact
of these mitigating variables is consistent with previous
findings [36], in which the authors assessed the impact
of some subjects’ knowledge on design patterns on the
understandability of various representations of software
systems.

VI. THREATS TO VALIDITY

Some threats limit the validity of our study. We now
discuss these threats and how we alleviate or accept them
following common guidelines provided in [27].

A. Construct Validity

Construct validity threats concern the relation between
theory and observations. In this study, they could be due
to measurement errors. We use times and percentages of
correct answer to measure the subjects’ performances.
These measures are objective, even if small variations
due to external factors, such as fatigue, could impact
their values. However, the observed impact on time and



Systems Efforts: p-values Time: p-values % of Correct Answers: p-values
Java Knowledge With Blob 0.39 0.10 0.09

Without Blob 0.93 0.79 0.60
Eclipse Knowledge With Spaghetti 0.78 0.23 0.47

Without Spaghetti 0.84 0.67 0.40
Software Engineering Knowledge With both APs 0.76 0.83 0.17

Without any APs 0.78 0.88 0.07

Table V
p-VALUES OF THE IMPACT OF KNOWLEDGE LEVELS (AP = ANTIPATTERN)

correctness for the Blob antipattern may be just caused by
its size. Further experiments should be done to test wether
the impact is really due to the Blob antipattern or simply
to the large amount of code within the class. We also use
the TLX to measure the subjects’ effort. The TLX is by
its very nature subjective and, thus, it is possible that our
subjects provided us with particular effort values.

The degree of seriousness of the antipatterns is also
a threat to construct validity. The Blob and Spaghetti
Code, in each system, were validated through a voting
process for decisions. The two first authors and two other
Ph.D. students voted for the antipatterns, the third author
validated them. We follow the definitions provided in the
book of Brown et al. [1] to deal with antipatterns. Yet the
occurrences used could have been more or less serious
than in other systems. Future work should mitigate this
threat.

Construct validity threats could also be due to a mis-
taken relation between antipatterns and program compre-
hension. We believe that this threat is mitigated by the
facts that many authors discussed this relation, that this
relation seems rational, and that the results of our analysis
tend to show that, indeed, antipatterns impact program
comprehension.

B. Internal Validity

We identify four threats to the internal validity of our
study: learning, selection, instrumentation, and diffusion.

Learning: Learning threats do not affect our study for
a specific experiment because we used a between-subject
design. A between-subject design uses different groups of
subjects, to whom different treatments are assigned. We
also took care to randomize the subjects to avoid bias
(e.g., gender bias). Each subject performed comprehension
tasks on two different systems with different questions
for each system. However, the same subjects performed
Experiment 1 and Experiment 3. The learning effect is
minimal because Experiment 3 was performed 5 months
after Experiment 1 and used different systems and differ-
ent questions.

Selection: Selection threats could impact our study
due to the natural difference among the subjects’ abilities.
We tried to mitigate this threat by asking only volunteers,
therefore with a clear willingness to participate. We also
studied the possible impact of their levels of knowledge
in Java, of Eclipse, and in Software engineering, through
three mitigating variables without obtaining any statisti-
cally significant results.

Instrumentation: Instrumentation threats were mini-
mized by using objective measures like times and percent-
ages of correct answers. We observed some subjectivity
in measuring the subjects’ effort via TLX because, for
instance, one subject 100% effort could correspond to an-
other’s 50% of effort. However, this subjectivity illustrates
the concrete feeling of effort of the subjects.

Diffusion: Diffusion threats do not impact our study
because we asked subjects not to talk about the study
among themselves and the systems and questions among
experiments were different. However, it is possible that a
few subjects exchanged some information.

C. Conclusion Validity

Conclusion validity threats concern the relation between
the treatment and the outcome. We paid attention not to
violate assumptions of the performed statistical tests. Also,
we mainly used non-parametric tests that do not require
to make assumption about the data set distribution.

D. Reliability Validity

Reliability validity threats concern the possibility of
replicating this study. We attempted to provide all the
necessary details to replicate our study. The systems,
questionnaires, and raw data to compute the statistics are
on-line2.

E. External Validity

We performed our study on six different real systems
belonging to different domains and with different sizes,
see Table I. Our design, i.e., providing only on average
75 classes of each system to each subject, is reasonable
because, in real maintenance projects, developers perform
their tasks on small parts of whole systems and probably
would limit themselves as much as possible to avoid
getting “lost” in large code base. However, we cannot
assert that our results can be generalised to other Java
systems, systems in other programming languages, and to
other subjects; future work includes replicating this study
in other contexts, with other subjects, other questions,
other antipatterns, and other systems.

VII. CONCLUSION AND FUTURE WORK

Antipatterns are conjectured in the literature to nega-
tively impact the quality of systems. We performed three
experiments to gather quantitative evidences on the rela-
tions between antipatterns and program comprehension.

2http://www.ptidej.net/downloads/experiments/csmr11a/



We studied whether systems with the antipattern Blob,
first, and the Spaghetti Code, second, are more difficult to
understand than systems without any antipattern. Third, we
studied whether systems with both the Blob and Spaghetti
Code antipatterns are more difficult to understand than
systems without any antipatterns. Each experiment was
performed with 24 subjects and on three different Java
systems.

We measured the subjects’ performance with: (1) the
NASA task load index for their efforts; (2) the times
that they spent performing their tasks; and, (3) their
percentages of correct answers. Collected data showed
that the occurrence of one antipattern in the source code
of a system does not significantly make its comprehen-
sion harder for subjects when compared to a source
code without any antipattern. However, the combination
of two antipatterns impacted negatively and significantly
the system understandability; hinting that developers can
cope with antipatterns in isolation but that combinations
thereof should be avoided, possibly through detection and
refactorings.

Consequently, developers and quality assurance person-
nel should be wary with growing numbers of antipatterns
in their systems as they could reduce their system un-
derstandability and, therefore, increase the risks of the
systems aging and also the introduction of faults. Indeed,
D’Ambros et al. [37] found that an increase in the number
of antipatterns in a system is likely to generate faults.

Future work includes investigating whether these sta-
tistically significant differences are due to the density of
antipatterns in the system and–or to the occurrences of
specific antipatterns together. We also plan to replicates
this study in other contexts, with other subjects, other
questions, other antipatterns, and other systems.

Acknowledgement

This work has been partly funded by the Canada
Research Chairs on Software Patterns and Patterns of
Software and on Software Change and Evolution.

REFERENCES

[1] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick III, and
T. J. Mowbray, Anti Patterns: Refactoring Software, Architectures, and
Projects in Crisis, 1st ed. John Wiley and Sons, March 1998. [Online].
Available: www.amazon.com/exec/obidos/tg/detail/-/0471197130/ref=ase\
theantipatterngr/103-4749445-6141457

[2] J. O. Coplien and N. B. Harrison, Organizational Patterns of Agile Software
Development, 1st ed. Prentice-Hall, Upper Saddle River, NJ (2005), 2005.

[3] M. Fowler, Refactoring – Improving the Design of Existing Code, 1st ed.
Addison-Wesley, June 1999.

[4] A. von Mayrhauser and A. M. Vans, “Program comprehension during
software maintenance and evolution,” Computer, vol. 28, no. 8, pp. 44–55,
1995.

[5] F. Khomh and Y.-G. Guéhéneuc, “Do design patterns impact software
quality positively?” in Proceedings of the 12th Conference on Software
Maintenance and Reengineering, C. Tjortjis and A. Winter, Eds. IEEE
Computer Society Press, April 2008.

[6] Foutse Khomh, M. Di Penta, and Y.-G. Guéhéneuc, “An exploratory study of
the impact of code smells on software change-proneness,” in Proceedings of
the 16th Working Conference on Reverse Engineering (WCRE). IEEE CS
Press, October 2009. [Online]. Available: http://www-etud.iro.umontreal.
ca/∼ptidej/Publications/Documents/WCRE09a.doc.pdf

[7] J. Sillito, “Asking and answering questions during a programming change
task,” Ph.D. dissertation, Vancouver, BC, Canada, Canada, 2007.

[8] D. L. Parnas, “Software aging,” in ICSE ’94: Proceedings of the 16th
international conference on Software engineering. Los Alamitos, CA, USA:
IEEE Computer Society Press, 1994, pp. 279–287.

[9] B. F. Webster, Pitfalls of Object Oriented Development, 1st ed. M & T
Books, February 1995. [Online]. Available: www.amazon.com/exec/obidos/
ASIN/1558513973

[10] A. J. Riel, Object-Oriented Design Heuristics. Addison-Wesley, 1996.

[11] M. Mantyla, “Bad smells in software - a taxonomy and an empirical study.”
Ph.D. dissertation, Helsinki University of Technology, 2003.

[12] W. C. Wake, Refactoring Workbook. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2003.

[13] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili, “Detecting defects
in object-oriented designs: using reading techniques to increase software
quality,” in Proceedings of the 14th Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications. ACM Press, 1999, pp.
47–56.

[14] R. Marinescu, “Detection strategies: Metrics-based rules for detecting design
flaws,” in Proceedings of the 20th International Conference on Software
Maintenance. IEEE CS Press, 2004, pp. 350–359.

[15] M. J. Munro, “Product metrics for automatic identification of “bad
smell” design problems in java source-code,” in Proceedings of the 11th

International Software Metrics Symposium. IEEE Computer Society Press,
September 2005. [Online]. Available: http://doi.ieeecomputersociety.org/10.
1109/METRICS.2005.38

[16] R. Oliveto, F. Khomh, G. Antoniol, and Y.-G. Guéhéneuc, “Numerical
signatures of antipatterns: An approach based on b-splines,” in Proceedings
of the 14th Conference on Software Maintenance and Reengineering, R. F.
Rafael Capilla and J. C. Dueas, Eds. IEEE Computer Society Press, March
2010.

[17] Naouel Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur,
“DECOR: A method for the specification and detection of code and
design smells,” Transactions on Software Engineering (TSE), 2009.
[Online]. Available: http://www-etud.iro.umontreal.ca/∼ptidej/Publications/
Documents/TSE09.doc.pdf

[18] Foutse Khomh, Stéphane Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui,
“A bayesian approach for the detection of code and design
smells,” in Proceedings of the 9th International Conference on
Quality Software (QSIC). IEEE CS Press, August 2009, 10 pages.
[Online]. Available: http://www-etud.iro.umontreal.ca/∼ptidej/Publications/
Documents/QSIC09.doc.pdf

[19] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The evolution
and impact of code smells: A case study of two open source systems,”
in Third International Symposium on Empirical Software Engineering and
Measurement, 2009.

[20] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of bad
smells in object-oriented code,” in QUATIC ’10: Proceedings of the 7th
International Conference on the Quality of Information and Communications
Technology. IEEE Computer Society Press, 2010.

[21] D. Ignatios, S. Ioannis, A. Lefteris, R. Manos, and S. Martin, “A controlled
experiment investigation of an object oriented design heuristic for maintain-
ability,” Journal of Systems and Software, vol. 65, no. 2, February 2003.

[22] D. Ignatios, S. Martin, R. Manos, and S. Ioannis, “An empirical investigation
of an object-oriented design heuristic for maintainability,” Journal of Systems
and Software, vol. 72, no. 2, 2004.

[23] B. D. Bois, S. Demeyer, J. Verelst, T. Mens, and M. Temmerman, “Does
god class decomposition affect comprehensibility?” in Proceedings of
the IASTED International Conference on Software Engineering. IAST-
ED/ACTA Press, 2006, pp. 346–355.

[24] N. Moha and Y.-G. Guéhéneuc, “On the automatic detection and correction
of software architectural defects in object-oriented designs,” in In Pro-
ceedings of the 6 th ECOOP Workshop on Object-Oriented Reengineering.
Universities of Glasgow and Strathclyde, 2005.



[25] S. Vaucher, F. Khomh, N. Moha, and Y.-G. Gueheneuc, “Tracking design
smells: Lessons from a study of god classes,” Reverse Engineering, Working
Conference on, vol. 0, pp. 145–154, 2009.

[26] N. Moha, Y. G. Guéhéneuc, L. Duchien, and A. F. Le Meur, “Decor: A
method for the specification and detection of code and design smells,” IEEE
Transactions on Software Engineering, vol. 36, no. 1, pp. 20–36, 2010.

[27] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in software engineering: an introduction. Norwell, MA,
USA: Kluwer Academic Publishers, 2000.

[28] J. Tantéri, “Eyes of darwin : une fenêtre ouverte sur l’évolution du logiciel,”
Master’s thesis, Université de Montréal, septembre 2009, master’s thesis.

[29] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, “Aura: a hybrid
approach to identify framework evolution,” in ICSE ’10: Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering. New
York, NY, USA: ACM, 2010, pp. 325–334.

[30] M. Fowler, Refactoring: Improving the Design of Existing Code. Boston,
MA, USA: Addison-Wesley, 1999.

[31] S. G. Hart and L. E. Stavenland, “Development of NASA-TLX (Task Load
Index): Results of empirical and theoretical research,” pp. 139–183, 1988.

[32] “Nasa task load index (tlx) v. 1.0,” p. 1.

[33] A. T. Duchowski, Eye Tracking Methodology: Theory and Practice. Se-
caucus, NJ, USA: Springer-Verlag New York, Inc., 2007.

[34] S. D.J., Handbook of Parametric and Nonparametric Statistical Procedures
(fourth edition). Chapman & All, 2007.

[35] D. W. Zimmerman, “Comparative power of student t test and mann-whitney
u test for unequal sample sizes and variances,” IEEE Trans. Softw. Eng.,
vol. 55, 1987.

[36] G. Cepeda Porras and Y.-G. Guéhéneuc, “An empirical study on the
efficiency of different design pattern representations in uml class diagrams,”
Empirical Softw. Engg., vol. 15, no. 5, pp. 493–522, 2010.

[37] M. D’Ambros, A. Bacchelli, and M. Lanza, “On the impact of design
flaws on software defects,” in QSIC ’10: Proceedings of the 2010 10th
International Conference on Quality Software. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 23–31.


