Sub-graph Mining: Identifying Micro-architectures in Evolv ing
Object-oriented Software

Ahmed Belderrar, Segla Kpodjedo, Yann&&ueheneuc, Giuliano Antoniol, Philippe Galinier
SOCCER Lab. & Ptidej Team
DGIGL, Ecole Polytechnique de Moral,
Montréal, Canada
{ahmed.belderrar,segla.kpodjedo,yann-gael.guehegeiiano.antoniol,philippe.galinigr@polymtl.ca

Abstract—Developers introduce novel and undocu- hegatively impact systems by making classes more
mented micro-architectures when performing evolution change-prone and-or fault-prone.
tasks on object-oriented applications. We are interested However, only few instances of micro-architectures

in understanding whether those organizations of classes v d ted in OO licati t
and relations can bear, much like cataloged design and are usually documented in applications, mos

anti-patterns, potential harm or benefit to an object- Stemming from implicit design choices. Indeed, there
oriented application. We present SGFinder, a sub-graph may be many reasons explaining why a micro-
mining approach and tool based on an efficient enumer- grchitecture is not documented in a catalog. It may
ation technique to identify recurring micro-architectures happen that it is domain or application specific or that

in object-oriented class diagrams. Once SGFinder has . . - .
detected instances of micro-architectures, we exploit it is the unintended result of several years of evolution

these instances to identify their desirable properties, leading to the presence of many of its instances. We
such as stability, or unwanted properties, such as change conjecture that these unknown and unplanned micro-
or fault proneness. We perform a feasibility study of architectures may sometimes have useful properties,

our approach by applying SGFinder on the reverse- g ch g high stabilityi€., low changing rate) or high
engineered class diagrams of several releases of two Java
fault proneness.

applications: ArgoUML and Rhino. We characterize . . .
and highlight some of the most interesting micro- Almost all existing approaches dealing with OO
architectures, e.g., the most fault prone and the most patterns or anti-patterns, and more generally with
stable, and conclude that SGFinder opens the way to any micro-architectures, rely on a library of known
further interesting studies. abstract micro-architecturese(g, design motifs [3])

Keywords-Micro-architectures, software changes and and a matching algorithm aimed at retrieving those

faults, software maintenance and evolution. cataloged structures. Micro-architectures have been
described as plans and cliches [4], as sets of rules
|. INTRODUCTION expressed in a domain specific language [5], or as a

Maintenance and evolution are unavoidable activ-mix of lightweight code analysis and rules [6]. Few
ities impacting any long-lived software application. approaches attempted to infer new recurring micro-
Developers, prior to any such activities, must be awarearchitectures [7].
of previous design and implementation choices to We present a novel approach and a tool, SGFinder
modify the software application appropriately. Design (Sub Graph Finder) for the inference of OO micro-
choices include all decisions made by developersarchitectures from class diagrams. In essence, we
when designing and implementing the application. Inmodel a class diagram as a directed graph and define
an object-oriented (OO) application, design choicesa micro-architecture as the connectédsubgraph
include the structure of classes and the relationsnduced by a given subset of classes. Consequently,
among them. For examplalesign patternd1l] are our tool SGFinder includes a graph representation
recurring inter-class patterns that describe solution®f the class diagram and an effective and efficient
to common, recurring design problems in the organi-method of enumeration of induced sub-graphs of a
zation of classes; they are intended to make a desiggiven size (.e.,, number of nodes).
more flexible, reusable, and robust, and thus improve We apply SGFinder to detect micro-architectures of
software quality. order three, four, and five on several releases of two

On the contrarydesign anti-pattern§2] have been Java OO applications: the JavaScript/ECMAScript
identified as embodying poor design choices. Theyinterpreter Rhino and the UML CASE tool ArgoUML.
are opposite to design patterns [Lg., they identify =~ We then report details on the number and frequency
“poor” solutions to recurring design problems, for
example Brown’s 40 antipatterns describe the most Ut is required that there is a chain between any two classes of
common pitfalls in the software industry [2]. They the subset.

of the detected micro-architectures and summarizarchitectures similar to its implementation in source
findings on their change and fault proneness. Wecode.
conclude that some micro-architectures have indeed Graphs and graph-transformation techniques also
interesting properties. have been used to describe and identify design mo-
This paper is organized as follows: Section Il tifs in system source code [15]. A design motif is
summarizes related work; Section Il describes thedescribed as a graph whose nodes represent enti-
proposed approach to inferring micro-architecturesties (classes, interfaces) and whose edges represent
and introduces our sub-graph mining technique alongelationships among entities. The identification of
with details of our enumeration strategy. Section IV micro-architectures corresponds to a sub-graph iso-
presents the objects, research questions, and methodhorphism: the identification of a sub-graph similar to
ology of our case study while Section V discusses itsa given graph in a graph, which isdificult problem
results on several releases of Rhino and ArgoUML.[16].
Finally, Section VI concludes with future work. Pettersson and dwe [17] proposed to transform
graphs into planar graphs to improve performance
with interesting results. An approach based on graphs
Several approaches have been proposed to identifgnd similarity scoring has also been proposed [18].
micro-architectures similar to design patterns and All the previous works assume the presence of
anti-patterns. In general, these approaches rely on some library of design patterns, design motifs, plans,
library of known motifs and use architectural recovery or micro-architectures. SGFinder does not have a cata-
techniques based on sub-graph matching or on motiftog or a set of rules to detect instances of some micro-
properties. architectures. Thus, SGFinder is similar to Tonella
Rich and Waters [8] proposed the use of constraintand Antoniol's previous work [7], in which concept
programming to recognize plans in Cobol sourceanalysis was used to infer domain-specific design
code. Cobol systems are modeled by their abstragbatterns. Yet, SGFinder eliminates the problem of
syntax trees. A plan is modeled as nodes of themanually inspecting concept lattice by relying on
abstract syntax tree and constraints among naelgs (the notion of frequent sub-graphs. SGFinder also
control- and data-flow). Identification of a plan in improves on scalability via an efficient sub-graph
source code is converted to a constraint satisfactiomnumeration technique.
problem in which nodes of the plan are variables, We draw inspiration from graph and sub-graph
relations among nodes are constraints among varimining algorithms used to model and study social
ables, and the source code abstract syntax tree is th@ biological networks. In particular, the sub-graph
domain of the variables. Recently, E#&neuc and An- discovery problem divides in two sub-problems: dis-
toniol [3] described an explanation-based constraincovering all recurring sub-graphs, as SGFinder does,
programming approach to detect micro-architecturesr only the most frequent ones. Yet, previous works
similar to design motifs while taking into account addressing these two sub-problems have limitations:
variants semi-automatically. some are restricted to undirected graphs [19], [20],
Other approaches to design pattern identificationto sub-graphs of less than five nodes [21], to specific
used clicles recognition algorithms, such as uni- sub-graphs [22], or to sub-graphs with limited number
fication, for example the pioneering work by and of labels on their arcs [23].
Kramer and Prechelt [9]. An example is the SOUL
environment [10], a logic programming environment I1l. OUR APPROACH SGHNDER
based on Smalltalk that directly manipulates Smalltalk We now introduce the key concepts to formalize
constructs through predicates describing the microthe sub-graph matching problem and describe our
architectures. algorithm and tool, SGFinder.
Yet, other approaches introduced the use of queries .
to identify entities whose structure and organization®- Notation
are similar to design motifs [11], [12]. In particu- We model a class diagram as a labeled graph,
lar, Keller [12] introduced the SPOOL environment with nodes being classes (and interfaces) and arcs
for reverse engineering, which allows manual, semi-representing the relations among classes. A label on
automated, or automated identification of abstractan arc linking two nodes specifies the type of relation
design components using queries on source codbetween two classes.(, association, aggregation,
models. or inheritance). For example, Figure 1 displays the
Generic fuzzy reasoning nets have also been aplabeled graph representing part of the Rhino appli-
plied to the identification of design motifs [13], cation. In Figure 1, as well as in all other reported
[14]. A design motif is described as a generic fuzzyfigures, we denote association by 1, aggregation by
reasoning net representing rules to identify micro-2, and inheritance by 3.

Il. RELATED WORK

H%D POLRO,
L FN

@)s {/2 %ﬁ RG 0 @S : e
- @150

Figure 1. A sub-graptG(V, E) extracted from Rhlno‘ (release Figure 2. A sub-graptG(V, E) extracted from Rhino (release
1.7R1). Classes are represented by nodes and relationgdretw 1.7R1) with two embeddings of size thrég, 1,3} and {2,4,5}.
classes are represented by arcs. 7 »

setM. If ¢ is not already present if/, it means that
Gx represents a new sub-graph that has not been
discovered before. In this case, the sétis stored
into a setS (or simply printed into a file), along with

its canonical labeling.

Given a set of labeld., a labeled graph is defined
by a triplet G = (V, A,l) whereV represents the
vertex set of G, A C V x V the arc set, and :
A — L the labeling functionj.e., [(x,y) represents
the label of a given ar€z,y) € A. A sequence: =

(1}0, ey Up), such that(vi,viﬂ) e Aor ('Ui-i-lavi) S - -
A for everyi = 0..p — 1, is named a chain between Algorithm 1 SGFinder() procedure.
vy andw,. The length of this chain is. The distance procedure SGFinder(graphz = (V, A,1), inte-
dist(x,y) between two nodes andy is the length gerk)
of the shortest chain betweanandy, or oo if there 2: Choose a vertex € V
is no chain between: andy. A graph is said to be for i:=0.k — 1 do
(weakly) connected if there is a chain between any 4 ComputeL; = {y € V : dist(x,y) =i}
two vertices. end for
Two graphs Gy = (Vl, Al, ll) and G, = 6: CompletESGK} ,0,k, (LO--Lk:71>7 G)
(Va, Ay, ly) are isomorphic if there exists a one-to- SGFinderGy _ (4}, k)
one mappings : Vi — V5 such that, for any, y 8: end procedure

€ V1, we have: (1)(z,y) € Vi & (¢(x), d(y)) € Va,
and (2) (z,y) € Vi = li(z,y) = b((x), d(y))-
The canonical labeling [244/(G) of a graphG is

a string of labels with the following property: for
any two graphsG; and Gs, cl(G1) = cl(G2) if
and only if G; and G2 are isomorphic. Therefore,
we can determine if two graphs are isomorphic by
computing and comparing their canonical labellings.

Algorithm 2 CompleteSG() procedure.
procedure CompleteSG(, j, k, (Lo..Lx—-1),G)
if |X|=Fk then

Build graphH := Gx
if Connectedfl) then

(The canonical labeling of a graph can be computed if c & M then .
with tools such as the Mckay’s Nauty software [25].) Ins_ert(c, X) into 5

Given a subsefX C V' of vertices, the sub-graph end if .
of G induced byX, denotedG x, is the graph which Ingertc into M
vertex set isX and which arc set contains all the arcs ° elseend if
of G that link two vertices ofX. An embedding of
a sub-graphi of G is a setX of vertices such that T(;,n i” deog L; such thatlY'| > 1 and|.X| +
Gx is isomorphic toH. For example, in Figure 2, = .
{7,1,3} and{2,4,5} are two embeddings of a same 12 CompleteSGK UY, j+1,k, (Lo.-Li-1), G)
sub-graph. en.d for

end if

B. Algorithm 15: end procedure

Our algorithm takes as inputs a gragh and
the sizek of the sought sub-graphs (in number of It would be inefficient and time-consuming to gen-
nodes) to be identified and returns, for each differenterate allk-subsets of vertices before checking for each
subgraph, its embeddings. subset if the induced sub-graph is connected. Instead,

The principle of our algorithm is to generate all our algorithm generates only a limited numberkef
k-subsetsX of V such thatGx is connected. For subsets ofl”. The underlying idea is that, i’y is
each such subseX, our algorithm computes the a connected induced sub-graph®@fthenX can not
canonical labeling of Gx and inserts it into a multi- contain two vertices: andy such thatdist(z,y) > k.

This idea is at the core of our efficient enumerationstandard, ECMA-262 v3 [27]. We downloaded 8
technique, because our algorithm builds (and storesRhino releases between 1.4R3 to 1.6R1 from the
only useful sub-graphs. Rhino Web site®. Defects were retrieved using data
The SGFinder tool implements our algorithm with from [26] and numbers of changes were mined from
two procedures hamed SGFinder() and CompleteSG(he Rhino CVS logs.
shown in Algorithms 1 and 2. A first vertex is ArgoUML is a UML CASE tool to design and
chosen inV (line 2 in procedure SGFinder()). Then, reverse-engineer various kinds of UML diagrams. It
we build £ disjoint subsets of vertices, denoted by is also able to generate source code from diagrams
Ly...L;_4 (line 3-5), where eacli; contains the ver- to ease the development of systems. ArgoUML is
tices which distance te equalsi (Lo = {z}). Then, written in Java. We use 8 development releases from
to build X (line 6, developed in the CompleteSG() 0.10 to 0.17.5. We extract defect data from the
procedure), we choose the unique vertex present iArgoUML customized Bugzilla repositoryi.e., we
Ly (namelyx), plus one or more vertices chosen in use the bug-tracking issues identified by the special
L+, plus one or more vertices chosenlip, and so on tag “DEFECT”. We then match the bug IDs of the
until Ly_; (we reach a total number of vertices). bug tracking issues with the SVN commit messages,
For each sei, we check ifGx is connected, on line as retrieved from the ArgoUML SVN server. Once
6 in CompleteSG(). At this point of the procedure, the file release matching the bug ID is retrieved, we
we have generated all sub-graphs that contain verteperform a context diff with the previous file release to
x. Then, we remover from the graph and do the assign the defect to the appropriate class. We similarly
same recursively on the residual graph (line 7 inextract change data from the SVN logs.
SGFinder()) to build all the other sub-graphs. We recovered the class diagrams of the releases
Let us consider again Figure 1, let us choése 4, of the systems using the Ptidej tool suite and its
and let us assume that the first chosen vertexsso0. PADL meta-model. PADL is a language-independent
We haveL, = {0}, L; = {3}, Ly = {1,2}, and meta-model to describe the static part and part of
L3 ={4,6,7}. There are now seven possibilities for the behavior of object-oriented systems similarly to
X: {0,3,1,2}, {0,3,1,4}, {0,3,1,6}, {0,3,1,7}, UML class diagrams [3]. It includes a Java parser
{0,3,2,4}, {0,3,2,6}, {0,3,2,7}. (Some of the in- and a dedicated graph exporter. Relations considered
duced sub-graphs are not connected), G314} in this study are: (i) associations, (ii) aggregations and
and are thus discarded.) (i) inheritances. It is worth mentioning that mapping
class diagrams into graphs generates multi-graphs as
it is possible to have more than one kind of relation
The goal of this empirical study is to identify, between two classes.
in OO systems, micro-architectures with desirable or We applied SGFinder on each release of both
harmful properties. Thguality focusis to verify ap- systems and extracted micro-architectures of 3, 4 and
plicability of SGFinder to small and medium size OO 5 nodes contained in their class diagrams.
programs to detect micro-architectures that are stabl®. Research Questions
or fault-prone. Theperspectiveis that of both re-
searchers, developers, and managers, who want to get
information about undocumented micro-architectures -
found in OO systems and possible related drawbacks. « RQ1 — Does SGFinder scale up to medium

IV. CASE STUuDY

We aim at answering the following three research
estions:

The contextof this study are two open-source sys- size programs and what kind of micro-
tems: the Rhino JavaScript/ECMAScript interpreter, ~ architectures are found in OO systems%Given
and the ArgoUML CASE tool. the different possible relations between classes in
a class diagram, the theoretical combinations for
A. Objects different micro-architectures are enormous and

thus it is first necessary to verify that SGFinder
can be effectively applied, plus it is of interest to
get insight about micro-architectures commonly
found in OO systems.

RQ2 — Are there micro-architectures partic-
ularly fault-prone or fault-free? Our second
RQ is devoted to investigating whether there are
some micro-architectures particularly fault-prone
or fault-free.

We selected Rhino and ArgoUML as systems for
our case study because defect and change data are
available either from previous authors [26] or from a
customized Bugzilla repository for ArgoUML. Table
| provides summary data about releases, defects and *
changes for the two systems.

Rhind?, the smallest system, is a
JavaScript/ECMAScript interpreter and compiler
that implements the ECMAScript international

2http://www.mozilla.org/rhino/ 3We targeted subsequent releases with at least ten defects

Releases Number of
Systems (Number Thereof) [Classes LOCs Defects | Changes
Rhino 14R3-1.6R1 (8)] 99-194 | 21K-75K 12-114 | 217-1476
ArgoUML 0.10-0.17.5 (8)| 876-1243| 86K-123K | 102-664 | 541-5048

Table T
SUMMARY OF THE OBJECT SYSTEMS

« RQ3 — Are there micro-architectures par- are two ways to quantify the presence of a micro-
ticularly stable or change-prone? Similarly architecturemA,;. The most obvious one consists in
to RQ2, we analyze the change proneness ofncrementing a variablenp Embeddings) each time
the micro-architectures. Empirical and a priori our algorithm finds a sub-graph isomorphicrioA;.
information about the changeability of a micro- However, due to the high connectivity of some nodes,
architecture could help designers, developers and¢ounting frequencies in this way can produce some
maintainers. extremely high and meaningless numbers. To circum-
Identifying fault or change-prone micro- vent this, following recommendations in sub-graph
architectures could prove valuable in conception,mining literature, we impose that newly discovered
development and maintenance tasks onceembeddings of a micro-architecture are counted only
qualitative analysis support the conjecture thatwhen they have no common edges with any of the
it is the micro-architecture structure (classespreviously found embeddings. In this way, we only
and relations) responsible for such an unwantecconsider distinct graph regions referred to as zones
behavior. The qualitative analysis requiresand we report for each micro-architecture its number
a deep understanding of the project history,of zones f©bZones). Finally, we consider the set of
a thorough analysis of program evolution classes appearing at least oncerinl; and report its
and the interaction with developers and, for cardinality @bClasses)
these reasons, it is left as part of the future

WichT:k. Itn iilssn?inci% mmtihlrs prrelrl1ri1:|nat1r¥ Wo:ilf(vlve research questions we resort on descriptive statis-
a at 1de fying cro-architectures kely < and more precisely on quartiles augmented with
responsible for unwanted characteristics but We inimum and maximum computed over the set of
do not seek to prove any causal relation. features - presented above - to characterize the micro-
C. Analysis Method archltec_tures. These descrlptlv_e statistics are often
]]) ~cumulatively referred to as the five-number summary
In the following, we first present the information statistic. For RQ1, we characterize micro-architectures
associated to micro-architectures and then how we usgyynd in Rhino, ArgoUML or both, plus we recorded
such information to answer our research questions. execution times. To answer RQ2 and RQ3, we con-
1) Characterizing the micro-architecturesThe sider for each micro-architecture, its set of classes and

first set of features we use to characterize a microgompute the percentage of its classes that are fault-
architecture contains information about its ConneC'prone (i_e_’ with one or more documented fau|t) or

tivity. To keep things simple, we only consider in changed classes.
our analysié the total number of relationmbR@l)S, More precise'y, as our goa| is to locate

the number of associationsf{Assoc), the number of fauity(change)- prone micro-architectures we adapted
aggregations or compositionat{Aggr), the number precision and recall definition as follows. Consider,
of inheritances{bInher), and the number of "cyclic faylt-proneness; for a given micro-architecture,
relations” (bCycl). Cycles are typically generated precision is defined as the ratio of micro-architectures
by pairs of associations, often due to delegation viagayty classes over the microarchitecture size averaged
method calls.e. a class A calls or uses a class B gyer all micro-architecture instances. Thus a 100 %
and vice-versa. precision means all classes were documented being
The second set of information is related to thefaylty, while 0 % means fault-free. On the other hand,
presence and repartition of the micro-architecturegor a given micro-architecture, recall is computed as
in the studied systems. First we use a variablethe number of classes being faulty and participating
(nbReleases) to count the number of releases in jn one instance of the micro-architecture over the
which the considered micro-architecture can be foundnymber of classes in the class diagram.
For a given releaseg., in a given class diagram, there For a fixed number of classes (e.g., four), we then
considered the precision (i.e., average of the number
“More connectivity measures were investigated but are notot tq s (changes) over the number of its nodes) and
presented in this paper due both to space issues and thelr wea . . .
relevance in RQ2 or RQ3. use this index to rank micro-architectures from the
5Loops are not counted. fault(change)-prone to the fault(change)-free. We then

2) Answering the Research Question® answer

MICRO-ARCHITECTURES INRHINO; EACH LINE REPORTS THE

three-nodes| four-nodes five-nodes

(373) (9203) (190061)

nbRel 2,456,11| 3,6,7,9,20| 4,8,10,11,27
nbAssoc 0,2,34,6| 04,5,6,12 0,6,7,9,18
nbAggr 0,0,1,2,4 0,1,1,2,7 0,1,1,2,9
nblnher 0,0,1,1,3 0,0,1,2,5 0,0,1,2,6
nbCycl 0,0,1,1,3 0,0,1,2,6 0,0,1,2,8
nbZones 111,268 1,1,1,1,33 1,1,1,1,20
nbClasses | 3,3,5,10,140| 4,4,5,9,147| 5,5,6,10,156
nbReleases 1,2,5,8,8 1,1,3,6,8 1,1,2,4,8

Table Il

FIVE-NUMBER SUMMARY: MIN, Q1, MEDIAN, Q3, MAX

MICRO-ARCHITECTURES INARGO; EACH LINE REPORTS THE

three-nodes| four-nodes five-nodes

(349) (8224) (180295)

nbRel 2,4,5,6,10 3,6,7,8,17| 4,8,9,10,23
nbAssoc 0,2,3,4,6 0,3,4,6,11 0,5,6,8,15
nbAggr 0,0,1,2,4 0,1,1,2,6 0,1,2,2,8
nbinher 0,0,1,1,3 0,0,1,15 0,0,1,2,7
nbCycl 0,0,1,1,3 0,0,1,15 0,0,1,2,7
nbZones 1,1,1,3,583| 1,1,1,2,315| 1,1,1,1,171
nbClasses | 3,3,6,19,944| 4,4,7,16,940| 5,5,8,19,944
nbReleases 1,4,7,8,8 1,2,4,7,8 1,1,3,5,8

Table Il

FIVE-NUMBER SUMMARY: MIN, Q1, MEDIAN, Q3, MAX

in the headers. Five-number summary are provided for
each feature in the format Min,Q1,Median,Q2,Max.
Considering the three basic relations (association,
aggregation and inheritance), the four derived mixed
cases €.9, two classes can be linked by both aggre-
gation and inheritance, or aggregation and association
and so on), and the absence of relations, there are
eight possible connections between two graphs. This
means that if we considen x n pairs of nodes
(including loops), we can have, if we do not take
into account symmetry, at mogt®*"—(n=1)) x 7n—1
connected subgraphs of nodes. For instance, one
can get aboup2 x 102! different micro-architectures
of five nodes. If we consider the union of five-nodes
micro-architectures from Rhino and Argo, we only
get about32 x 10* different micro-architectures; this
seems to be a very high number but it is just a fraction
of the overall number of possible combinations.
Computation times of SGFinder on the studied
systems range from a few seconds to two days and
half. Extracting 3-nodes micro-architectures takes 20
seconds at most while 4-nodes micro-architectures
require less than 30 minutes. The longest computa-
tion times occur while extracting five-nodes micro-
architectures on the biggest ArgoUML releases we
used for this study. In particular, the algorithm took

inspected the top 10% and bottom 10%, of rankedmore than 60 hours to retrieve the 82,877 different

microarchitectures, seeking for hints of what makess-nodes micro-architectures in ArgoUMLO0.17.5 and
those micro-architectures outstanding.

V. RESULTS

their 13,741,073,588 embeddings. The computation
times depended mostly on the edge density of the
considered class diagrams. More specifically, the sin-

In this section, we present results and answer ougle most time-costly factor is the presence of highly
three research questions, aiming at verifying applicaconnected nodes which lead to a near-combinatorial

bility and obtaining hints on possible usefulness inexplosion of the number of embeddings. Neverthe-
identifying change or fault-prone classes.

A. RQ1: SGFinder Applicability and Description of

the micro-architectures found.

Tables I, 1ll and IV present summary data about

less, SGFinder was able to retrieve all the micro-
architectures (up to 5 nodes) present in the studied
releases and we can thus answer positively to the
applicability research question sub-part.

As for the number of different micro-architectures,

the micro-architectures found respectively in Rhino,we notice on Tables Il and IIl that it is not strictly
Argo or both systems. Numbers of different micro- |inked to the class diagrams’ size. Rhino, despite hav-
architectures of three, four, or five nodes are iﬂdicatEQng almost ten times less classes than Argo, presents

3-nodes 4-nodes 5-nodes

(250) (3993) (52862)

nbRel 2,4,45,8 3,5,6,7,11 4,7,8,9,15
nbAssoc 0,2,3,4,6 0,3,4,5,10 0,5,6,7,14
nbAggr 0,0,1,2,4 0,0,1,2,4 0,0,1,2,6
nbinher 0,0,1,1,3 0,0,1,1,4 0,0,1,1,6
nbCycl 0,0,0,1,3 0,0,1,1,4 0,0,1,1,5
nbZones 1,1,2,5,326 1,1,1,2,174 1,1,1,2,95
nbClasses | 3,5,8,26,542| 4,6,11,24,544| 5,8,14,31,540
nbReleases 1,5,7,8,8 1,3,5,7,8 1,3,4,6,8

Table IV

MICRO-ARCHITECTURES IN BOTHRHINO AND ARGO; EACH
LINE REPORTS THE FIVENUMBER SUMMARY: MIN, Q1,
MEDIAN, Q3 AND MAX

more combinations of connected graphs for all sizes
of micro-architectures. Also, as shown in Table IV,
there are many class organizations common to both
Rhino and Argo as well as many others (more numer-
ous) specific to each system.

With respect to the connectivity information, the
micro-architectures in Rhino seem to have slightly
more relations than their counterparts in Argo. Look-
ing at the maximum number of relations, we can
notice that some very dense micro-architectures can
be found in both OO systems. Figure 3 presents
the five-nodes micro-architectures with the highest
number of relations in Rhino (27), Argo (23) and their

} l"'\.‘_n 2\ l")

|
Iy \ 4
4“ 4" (‘ ,K 4'
' [z f2 (s JOn2 f I
| ‘

| ! '\.‘ \ AN ri

!

1 \

\ finy

\ 1231y
\ {

18 Lorg.mozillajavascrptaanlimpl Mamespace 65, arg.argouml.cognitive.critics. Critic .sequence.ui.Fig* (Argo)
184 org.mozlla javascnptoanhimpl XML 83, org.argouml.cognitive. Designer _javascriptScript*(Rhina)
186, org.mozilla javascnptaamlimpl XMLLibImpl §7,org.argouml.cognitive Poster

187, org-mozilla javascriptoanlimpl XMLList 90,arg.argouml.cagnitive ToDaltem

189, org.mozillajavascnptomhimpl XMLObjectimpl 9} arg.argouml.cognitive. ToDoList
{c) Rhinol.4R3
{a) Rhinol.6R1 {b) Argo0.14-0.17.5 Argo0.10-0.14

Figure 3. Most Connected 5-nodes micro-architectures

intersection (15). be more connected than the least faulty ones, in
particular, they generally contain more associations.
Actually, both Spearman and Pearson correlations
Table V is based on micro-architectures presenigive values above 0.4 with a confidence level of more
in both Rhino and Argo and report characteristicsthan 99% when one evaluates the correlation of the
6 of the top 10% most faulty (using the precision number of associations in the micro-architecture to
measure) micro-architectures, as well as the bottonthe precision computed as described in the previous
10% (least faulty micro-architectures). While there aresection (Similar correlation values are obtained with
some interesting micro-architectures present either ircyclic relations). The inverse seems to be true for
Rhino or Argo separately, we chose to focus on micro-aggregations and inheritances which tend to be less
architectures present in both systems in order to imnumerous in most faulty micro-architectures. How-
prove the odds of generalization of our findings. Tableever, correlation values were only abouf.15.
V support the presence of some micro-architectures The information about the presence and reparti-
particularly fault-prone, as well as other class organi-tion of the most or least faulty micro-architectures
zations consistently fault-free. As we analyzed eightindicate that most of them are not very common or
Rhino and ArgoUML releases, it is clear that there well spread (generally only one zone), but the maxi-
are micro-architectures constantly present in all Rhinamal values indicate notable exceptions up to seven.
and ArgoUML realsesrbReleases in Table V) and This is partially explained by the low percentage
always fault-prone. of fault-prone classes in both systems. Considering
Considering five-nodes micro-architectures, preci-the relatively small numbers of bugged classes in
sion is as high as 84%; plus the F1 measure is as higRhino and Argo the obtained precision numbers are
as 54%. In other words, some micro-architecturesvery promising. In particular, we highlight the micro-
are consistently faulty and/or contain the majority of architecture presented in Figure 4 as an example of a
faulty classes for both systems. At the same timeparticularly faulty micro-architecture. This structure,
there are also micro-architectures consistently faultpresent in Rhino (1.5R4, 1.5R4.1) and ArgoUML
free (0% precision). (0.14-0.16.1), displays an average precision value of
Analyzing connectivity information, we can no- 81.25. It represents a category of organizations where
tice that the most faulty micro-architectures tend to(almost) every class "talks” to every other class. In
fact, when we retrieve the set of micro-architectures

B. RQ2: Fault-proneness of micro-architectures

SNumbers presented are averages over the two systems.

Figure 4. Example of a particularly faulty (precision=81hddes

micro-architecture

three-nodes four-nodes five-nodes
(250) (3994) (52862)
Precision
—topl0% | 41,44,47,52,67| 42,45,48,54,83| 41,43,46,52,84
—bot10% 0, 5,9,11,13 0, 8,10,13,14 0,2,5,722
F1
—top10% 5,8,13,17,30 2,10,12,15,40| 4,11,14,18,54
—bot10% 0,1,1,2,5 0,1, 3,516 0,2,5,7722
nbRel
—top10% 3,4,6,6,8 4,7,8,8,10 4,8,9,10,14
—bot10% 2,4,45,6 3,6,6,7,09 4,7,8,09,13
nbAssoc
—top10% 2,3,45,6 2,5,6,7,10 2,7,8,9,14
—bot10% 0,2,2,3,4 0,3,4,5,08 0,4,5,6,11
nbAggr
—top10% 011,24 4,7,8,8,10 4,8,9,10,14
—bot10% 0,1,1,2,2 3,6,6,7,09 4,7,8,09,13
nbinher
—top10% 0,0,0,1,2 0,0,0,1,3 0,0,0,1,4
—bot10% 0,1,1,2,2 0,0,1,1,3 0,0,1,2,5
nbCycl
—top10% 0,1,1,2,3 0,1,1,2,4 0,1,2,2,5
—bot10% 0,0,0,1,1 0,0,0,1,4 0,0,0,1,5
nbZones
—top10% 1,1,2,2,9 1,1,1,1,6 1,111, 7
—bot10% 1,1,1,2,5 1,1,1,1,7 1,1,1,1,14
nbClasses
—top10% 3,4,5,7,33 45,6, 9, 59 11,11, 7
—bot10% 3,4,5,7,18 4,5,7,12,133 1,1,1,1,14
nbReleases
—top10% 1,4,5,6,8 1,3,4,5,8 1,2,3,5,8
—bot10% 1,3,4,5,8 1,2,3,5,8 1,2,3,4,8
Table V

MOST AND LEAST FAULTY MICRO-ARCHITECTURES PRESENT

IN BOTH RHINO AND ARGO; EACH LINE REPORTS THE

FIVE-NUMBER SUMMARY: MIN, Q1, MEDIAN, Q3 AND MAX

Figure 5. Example of a particularly stable (precision=30)otles
micro-architecture

least changed micro-architectures. Again, we focus
on micro-architectures present in both systems. Data
reported provides evidence that there are indeed some
micro-architecture particularly stable (as few as 10%
of changed classes). However, given that changes
were very common in the studied systems, our data
(with numbers as high as 100%) is less conclusive for
most frequently changed micro-architectures.

The analysis of connectivity information points to
findings similar to those oRQ2: the most changed
micro-architectures also tend to have more associa-
tions, less aggregations and inheritances.

Considering the high numbers of changed classes
in Rhino and Argo some micro-architectures with
low precision numbers are worth investigating. In
particular, we highlight the micro-architecture pre-
sented in Figure 5 as an example of a particularly
stable micro-architecture. Present in Rhino (1.6R1)
and ArgoUML (0.17.5), this micro-architecture has an
average precision value 860. It presents a "cascade”-
like pattern and we were able to retrieve many other
similar organizations with mostly low changeability.

D. Threats to Validity

We demonstrated, in previous sections, the applica-
bility of SGFinder to small-to-medium size programs.
Scalability to large programs such as Eclipse or bigger
micro-architectures may be problematic and require

with three cyclic relations and where every classpartitioning large class diagrams into components (e.g
is connected to every other class, we obtain a Ssubsystems) or the adoption of pruning heuristics.
number summary (28,44,56,67,81) with values mostly Threats toconstruct validityconcern the relation
higher to those from the top 10% most faulty micro- between the theory and the observation. Here, this
architectures (42,45,48,54,83).
Overall, we can answer positively to the researchand qualitative analysis. Indeed, we cannot claim
question as it was possible to find micro-architecturesany causation effect nor provide any specific inter-
highly fault prone and responsible for a large fraction pretation to fault-prone or change(fault)-free micro-
of faults in both systems.

C. RQ3: Change-proneness of micro-architectures

threat is mainly due to the need of a manual validation

architectures. This problem is somehow related to
guessing the developers’ intent when they planned to
implement the micro-architecture under study and the

Similarly to RQ2, Table VI reports data about possible drift over time. We can only conjecture that,
the top 10% most changed and the bottom 10%given the application domain, the classes, methods,

three-nodes four-nodes five-nodes . l | h f |
(250) (3994) (52862) |S' app icable to any other System O. Cpmparabe
Precision size. However, we cannot claim that similar results
—top10% 83,86,88,91,97| 85,88,90,93,100| 84,86,89,92,100 H H H _
potlos | 20.35.38.30.44| 17364345, 50| 10.42.47.50, 53 woul_d be obtained with other systems and that micro
F1 architectures common across systems and releases
—top10% 3,5,6,9,27 4,5,6,8,22 5,8,9,12,37 i
o RN P 0561158 will always be dgtected. Howeyer, the two ;yst_ems
T Ral correspond to different domains and applications,
—top10% 3,5,6,6,7 4,6,7,8,10 4,89,10,15 have different sizes, are developed by different teams.
— 0, . . . age
nbl/’fstslgf 24467 3.56.7.10 4.7.8. 9,13 We believe this choice mitigates the threats to the
—top10% 1,3,4,5,6 2,5,6,7,10 1,6,8,9,13 external validity of our study.
—bot10% 0,1,2,3,4 0,3,4,5,08 1,4,5,7,11
nbAggr
—top10% 0,0,0,1,3 0,0,1,2,4 0,0,1,1,5 VI. CONCLUSION
—bot10% 0,1,2,2,3 0,1,2,2,4 0,1,2,2,6
nbinher
—top10% 00112 00014 00,015 _ In OO software, mlcro_-archltectures, IlkeW|s_e de-
—bbcotllo"/o 01122 00113 00114 sign patterns, are recurring classes and relations or-
n_mf,clo% 01123 01124 00125 ganizations. We pre;ented SQFinder, an algorithm and
—bot10% 0,012 01,123 00114 a tool to support micro-architecture discovery based
nbZones .] L
N op10% 11225 11115 111110 on a reformulation as a ;ub graph mining problgm.
—bot10% 1,1,1,2,5 1,1,1,1,11 1,1,1,1,10 SGFinder uses an effective enumeration technique
nbClasses that allows us to infer instances of micro-architectures
—top10% 3,4,5,7,26 45,6, 8, 90 5,6, 8,11,158 . . .
—_bhot10% 3.4.5.7.69 45814321| 58,1329,404 in small to medium size programs and to study
nbReleases micro-architecture properties such as stability or fault
—top10% 1,4,5,7,8 1,2,4,5,8 1,2,3,4,8
—_hot10% 24577 13458 12358 proneness. To the best of our knowledge only a few
Table VI works addresses the same or similar problem [7].
MOST AND LEAST CHANGEDMICRO-ARCHITECTURES We wused SGFinder on eight releases of
PRESENT IN BOTHRHINO ANl\;l| ARG]C.); I;AACH LINE gEPOR'\'I;IS THE two We“ known Java app“cations: the Rhino
FIVE-NUMBER SUMMARY: MIN, Q1, MEDIAN, Q3AND MAX JavaScript/ECMAScript interpreter and ArgoUML,

a UML CASE tool to design and reverse-engineer
various kinds of UML diagrams. After providing
insight about the kind of micro-architectures (of
and relations (and the general information that can béhree, four or five nodes) found in OO systems,
extracted from the source code and documentation)ve focused on fault-proneness and changeability.
it will be possible to infer the developerkikely intent ~ We characterize the most and least faulty/changed
and understand the drift toward a micro-architecturemicro-architectures and report some of the most
with unwanted features. interesting micro-architectures with respect to their
Threats tointernal validity concern any confound- connectivity and frequency.
ing factor that could influence our results. In particu- Despite the encouraging results, more work is
lar, these threats can be due to subjectiveness in digeeded to (i) further optimize the proposed algorithm
tinguishing between associations or aggregations anénd gain in scalability, (i) define heuristics and rules
the number of faults assigned to classes. We attempteable to classify micro-architectures discovered in a
to avoid any bias by using well consolidated tools, System under development, and (iii) go beyond the
reusing defect data provided by other researchers anahicro-architectures and analyze, similarly to design
extracting facts from source code and bug trackingpatterns, the roles played by participant classes, and
repositories. (iv) provide qualitative analysis and validation of the
Threats toconclusion validityconcern the rela- findings. For generalization purposes, our plan for
tionship between the treatment and the outcomefuture work also include replication of the study on
We do not claim any relation between the micro- different systems.
architectures and unwanted features and the existence
of possible relations is left to the developers’ judg- REFERENCES
ment and experience. In essence, SGFinder, reports
micro-architectures but no claim is made and, in this [1] E. Gamma, R. Helm, R. Johnson, and J. Vlissid®ss,
preliminary work, we limit ourselves to highlight sign Pattersnts—EIemer_ns of Reusable Object-Oriented
micro-architectures with high precision and recall Software 1** ed. Addison-Wesley, 1994.
with respect to fault-proneness or stability.
Threart)s toexternal ?/alidityconcern the gossibility [2] W. J. Brown, R. C. Malveau, W. H. Brown, H. W
et Rt McCormick Ill, and T. J. MowbrayAnti Patterns:
of generalizing our results. The study is limited to Refactoring Software, Architectures, and Projects in
two systems: Rhino and ArgoUML. Yet, our approach Crisis, 1°* ed. John Wiley and Sons, March 1998.

[3] Y.-G. Guékeneuc and G. Antoniol, “DeMIMA: A
multi-layered framework for design pattern identifi-
cation,” Transactions on Software Engineering (TSE)
vol. 34, no. 5, pp. 667-684, September 2008.

[4] V. Kozaczynski, J. Q. Ning, and A. Engberts, “Pro-
gram concept recognition and transformatiolEEE
Trans. on Software Engineeringol. 18, no. 12, pp.
1065-1075, Dec 1992.

N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. L.
Meur, “Decor: A method for the specification and de-
tection of code and design smell$#£EE Transactions
on Software Engineeringrol. 36, pp. 20-36, 2010.

(5]

(6]
design patterns from java source codé{itomated
Software Engineering, International Conference, on
vol. 0, pp. 123-134, 2006.

[7] P. Tonella and G. Antoniol, “Inference of object ori-

ented design patternsJournal of Software Mainte-

nance - Research and Practicgol. 13, no. 5, pp.

309-330, September-October 2001.

[8] C. Rich and R. C. Water§ he Programmer’s Appren-

tice, 1°* ed. ACM Press Frontier Series and Addison-

Wesley, January 1990.

&)

C. Kramer and L. Prechelt, “Design recovery by

N. Shi and R. A. Olsson, “Reverse engineering of

(15]

(16]

(17]

(18]

(19]

(20]

automated search for structural design patterns in

object-oriented software,” ifProceedings of theg™
Working Conference on Reverse Engineerihg M.
Wills and |. Baxter, Eds. |EEE Computer Society
Press, November 1996, pp. 208-215.

(10]
of object-oriented systems,” ifroceedings of the6*"

Conference on the Technology of Object-Oriented

Languages and Systemk Gil, Ed. |IEEE Computer
Society Press, August 1998, pp. 112-124.

[11]
technology in software reengineering,” froceedings

of the 3¢ Conference on Software Maintenance and

ReengineeringP. Nesi and C. Verhoef, Eds. |IEEE
Computer Society Press, March 1999, pp. 42-50.

[12] R. K. Keller, R. Schauer, S. Robitaille, and P. Bag

R. Wuyts, “Declarative reasoning about the structure

B. Kullbach and A. Winter, “Querying as an enabling [

(21]

[22]

23]

(24]

“Pattern-based reverse-engineering of design com-

ponents,” in Proceedings of the21** International
Conference on Software Engineerjng. Garlan and

J. Kramer, Eds. ACM Press, May 1999, pp. 226-235.

[13]

Proceedings of th@4'" International Conference on

Software EngineeringM. Young and J. Magee, Eds.

ACM Press, May 2002, pp. 338-348.
[14] J. H. Jahnke and A. ihdorf, “Rewriting poor de-
sign patterns by good design patterns,” Rmoceed-
ings the1®* ESEC/FSE workshop on Object-Oriented
Reengineering S. Demeyer and H. C. Gall, Eds.
Distributed Systems Group, Technical University of
Vienna, September 1997.

10

J. Niere, W. Scéfer, J. P. Wadsack, L. Wendehals, and
J. Welsh, “Towards pattern-based design recovery,” in

(25]

(26]

(27]

J. Seemann and J. W. von Gudenberg, “Pattern-based
design recovery of Java software,” iRroceedings

of 5" international symposium on Foundations of
Software EngineeringB. Scherlis, Ed. ACM Press,
November 1998, pp. 10-16.

D. Eppstein, “Subgraph isomorphism in planar graphs
and related problems,” iRroceedings of th&'™ an-
nual Symposium On Discrete Algorithnks Clarkson,
Ed. ACM Press, January 1995, pp. 632—-640.

N. Pettersson and W.dwe, “Efficient and accurate
software pattern detection,” ifProceedings of the
13'" Asia Pacific Software Engineering Conference
P. Jalote, Ed. IEEE Computer Society Press, Decem-
ber 2006, pp. 317-326.

N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and
S. Halkidis, “Design pattern detection using similar-
ity scoring,” Transactions on Software Engineerjng
vol. 32, no. 11, November 2006.

J. Chen, W. Hsu, M. Lee, and S. Ng, “Nemofinder:
Dissecting genome-wide protein-protein interactions
with meso-scale network motifs,Proceedings of
the 12th ACM SIGKDD international conference on
Knowledge discovery and data miningp. 106-115,
2006.

Z. Razaghi and M. Kashani, “Kavosh: a new algorithm
for finding network motifs,”Bioinformatics vol. 10,
pp. 0-0, 2009.

R. Milo, S. Shen-Orr, S. ltzkovitz, N. Kashtan,
D. Chklovskii, and U. Alon, “Network motifs: simple
building blocks of complex networks Science vol.
298, no. 5594, pp. 824-827, 2002.

V. Batagelj and A. Mrvar, “Pajek-analysis and visual-
ization of large networks,Springer-Verlag no. 2265,
pp. 77-103, 2003.

S. Wernicke and F. Rasche, “A tool for fast network
motif detection,” Bioinformatics vol. 22, pp. 1152—
1153, 2006.

J. Huan, W. Wang, and J. Prins, “Efficient mining of
frequent subgraphs in the presence of isomorphism,”
Third IEEE International Conference on Data Mining
(ICDM’'03), p. 549, 2003.

B. Mckay, “Practical graph isomorphisntCongressus
Numerantiumvol. 30, pp. 45-87, 1981.

M. Eaddy, T. Zimmermann, K. D. Sherwood, V. Garg,
G. C. Murphy, N. Nagappan, and A. V. Aho, “Do
crosscutting concerns cause defectd=EE Transac-
tion on Software Engineeringol. 34, no. 4, pp. 497-
515, 2008.

ECMA, ECMAScript Standard - ECMA-262 v3
ISO/IEC 16262, 2007.

