
Sub-graph Mining: Identifying Micro-architectures in Evolv ing
Object-oriented Software

Ahmed Belderrar, Segla Kpodjedo, Yann-Gaël Gúeh́eneuc, Giuliano Antoniol, Philippe Galinier
SOCCER Lab. & Ptidej Team

DGIGL, École Polytechnique de Montréal,
Montréal, Canada

{ahmed.belderrar,segla.kpodjedo,yann-gael.gueheneuc,giuliano.antoniol,philippe.galinier}@polymtl.ca

Abstract—Developers introduce novel and undocu-
mented micro-architectures when performing evolution
tasks on object-oriented applications. We are interested
in understanding whether those organizations of classes
and relations can bear, much like cataloged design and
anti-patterns, potential harm or benefit to an object-
oriented application. We present SGFinder, a sub-graph
mining approach and tool based on an efficient enumer-
ation technique to identify recurring micro-architectures
in object-oriented class diagrams. Once SGFinder has
detected instances of micro-architectures, we exploit
these instances to identify their desirable properties,
such as stability, or unwanted properties, such as change
or fault proneness. We perform a feasibility study of
our approach by applying SGFinder on the reverse-
engineered class diagrams of several releases of two Java
applications: ArgoUML and Rhino. We characterize
and highlight some of the most interesting micro-
architectures, e.g., the most fault prone and the most
stable, and conclude that SGFinder opens the way to
further interesting studies.

Keywords-Micro-architectures, software changes and
faults, software maintenance and evolution.

I. I NTRODUCTION

Maintenance and evolution are unavoidable activ-
ities impacting any long-lived software application.
Developers, prior to any such activities, must be aware
of previous design and implementation choices to
modify the software application appropriately. Design
choices include all decisions made by developers
when designing and implementing the application. In
an object-oriented (OO) application, design choices
include the structure of classes and the relations
among them. For example,design patterns[1] are
recurring inter-class patterns that describe solutions
to common, recurring design problems in the organi-
zation of classes; they are intended to make a design
more flexible, reusable, and robust, and thus improve
software quality.

On the contrary,design anti-patterns[2] have been
identified as embodying poor design choices. They
are opposite to design patterns [1],i.e., they identify
“poor” solutions to recurring design problems, for
example Brown’s 40 antipatterns describe the most
common pitfalls in the software industry [2]. They

negatively impact systems by making classes more
change-prone and–or fault-prone.

However, only few instances of micro-architectures
are usually documented in OO applications, most
stemming from implicit design choices. Indeed, there
may be many reasons explaining why a micro-
architecture is not documented in a catalog. It may
happen that it is domain or application specific or that
it is the unintended result of several years of evolution
leading to the presence of many of its instances. We
conjecture that these unknown and unplanned micro-
architectures may sometimes have useful properties,
such as high stability (i.e., low changing rate) or high
fault proneness.

Almost all existing approaches dealing with OO
patterns or anti-patterns, and more generally with
any micro-architectures, rely on a library of known
abstract micro-architectures (e.g., design motifs [3])
and a matching algorithm aimed at retrieving those
cataloged structures. Micro-architectures have been
described as plans and cliches [4], as sets of rules
expressed in a domain specific language [5], or as a
mix of lightweight code analysis and rules [6]. Few
approaches attempted to infer new recurring micro-
architectures [7].

We present a novel approach and a tool, SGFinder
(Sub Graph Finder) for the inference of OO micro-
architectures from class diagrams. In essence, we
model a class diagram as a directed graph and define
a micro-architecture as the connected1 subgraph
induced by a given subset of classes. Consequently,
our tool SGFinder includes a graph representation
of the class diagram and an effective and efficient
method of enumeration of induced sub-graphs of a
given size (i.e., number of nodes).

We apply SGFinder to detect micro-architectures of
order three, four, and five on several releases of two
Java OO applications: the JavaScript/ECMAScript
interpreter Rhino and the UML CASE tool ArgoUML.
We then report details on the number and frequency

1It is required that there is a chain between any two classes of
the subset.

of the detected micro-architectures and summarize
findings on their change and fault proneness. We
conclude that some micro-architectures have indeed
interesting properties.

This paper is organized as follows: Section II
summarizes related work; Section III describes the
proposed approach to inferring micro-architectures
and introduces our sub-graph mining technique along
with details of our enumeration strategy. Section IV
presents the objects, research questions, and method-
ology of our case study while Section V discusses its
results on several releases of Rhino and ArgoUML.
Finally, Section VI concludes with future work.

II. RELATED WORK

Several approaches have been proposed to identify
micro-architectures similar to design patterns and
anti-patterns. In general, these approaches rely on a
library of known motifs and use architectural recovery
techniques based on sub-graph matching or on motifs
properties.

Rich and Waters [8] proposed the use of constraint
programming to recognize plans in Cobol source
code. Cobol systems are modeled by their abstract
syntax trees. A plan is modeled as nodes of the
abstract syntax tree and constraints among nodes (e.g.,
control- and data-flow). Identification of a plan in
source code is converted to a constraint satisfaction
problem in which nodes of the plan are variables,
relations among nodes are constraints among vari-
ables, and the source code abstract syntax tree is the
domain of the variables. Recently, Guéh́eneuc and An-
toniol [3] described an explanation-based constraint
programming approach to detect micro-architectures
similar to design motifs while taking into account
variants semi-automatically.

Other approaches to design pattern identification
used clich́es recognition algorithms, such as uni-
fication, for example the pioneering work by and
Krämer and Prechelt [9]. An example is the SOUL
environment [10], a logic programming environment
based on Smalltalk that directly manipulates Smalltalk
constructs through predicates describing the micro-
architectures.

Yet, other approaches introduced the use of queries
to identify entities whose structure and organization
are similar to design motifs [11], [12]. In particu-
lar, Keller [12] introduced the SPOOL environment
for reverse engineering, which allows manual, semi-
automated, or automated identification of abstract
design components using queries on source code
models.

Generic fuzzy reasoning nets have also been ap-
plied to the identification of design motifs [13],
[14]. A design motif is described as a generic fuzzy
reasoning net representing rules to identify micro-

architectures similar to its implementation in source
code.

Graphs and graph-transformation techniques also
have been used to describe and identify design mo-
tifs in system source code [15]. A design motif is
described as a graph whose nodes represent enti-
ties (classes, interfaces) and whose edges represent
relationships among entities. The identification of
micro-architectures corresponds to a sub-graph iso-
morphism: the identification of a sub-graph similar to
a given graph in a graph, which is adifficult problem
[16].

Pettersson and L̈owe [17] proposed to transform
graphs into planar graphs to improve performance
with interesting results. An approach based on graphs
and similarity scoring has also been proposed [18].

All the previous works assume the presence of
some library of design patterns, design motifs, plans,
or micro-architectures. SGFinder does not have a cata-
log or a set of rules to detect instances of some micro-
architectures. Thus, SGFinder is similar to Tonella
and Antoniol’s previous work [7], in which concept
analysis was used to infer domain-specific design
patterns. Yet, SGFinder eliminates the problem of
manually inspecting concept lattice by relying on
the notion of frequent sub-graphs. SGFinder also
improves on scalability via an efficient sub-graph
enumeration technique.

We draw inspiration from graph and sub-graph
mining algorithms used to model and study social
or biological networks. In particular, the sub-graph
discovery problem divides in two sub-problems: dis-
covering all recurring sub-graphs, as SGFinder does,
or only the most frequent ones. Yet, previous works
addressing these two sub-problems have limitations:
some are restricted to undirected graphs [19], [20],
to sub-graphs of less than five nodes [21], to specific
sub-graphs [22], or to sub-graphs with limited number
of labels on their arcs [23].

III. O UR APPROACH: SGFINDER

We now introduce the key concepts to formalize
the sub-graph matching problem and describe our
algorithm and tool, SGFinder.

A. Notation

We model a class diagram as a labeled graph,
with nodes being classes (and interfaces) and arcs
representing the relations among classes. A label on
an arc linking two nodes specifies the type of relation
between two classes (e.g., association, aggregation,
or inheritance). For example, Figure 1 displays the
labeled graph representing part of the Rhino appli-
cation. In Figure 1, as well as in all other reported
figures, we denote association by 1, aggregation by
2, and inheritance by 3.

2

Figure 1. A sub-graphG(V, E) extracted from Rhino (release
1.7R1). Classes are represented by nodes and relations between
classes are represented by arcs.

Given a set of labelsL, a labeled graph is defined
by a triplet G = (V,A, l) where V represents the
vertex set ofG, A ⊆ V × V the arc set, andl :
A → L the labeling function,i.e., l(x, y) represents
the label of a given arc(x, y) ∈ A. A sequenceµ =
(v0, . . . , vp), such that(vi, vi+1) ∈ A or (vi+1, vi) ∈
A for every i = 0...p − 1, is named a chain between
v0 andvp. The length of this chain isp. The distance
dist(x, y) between two nodesx and y is the length
of the shortest chain betweenx andy, or ∞ if there
is no chain betweenx and y. A graph is said to be
(weakly) connected if there is a chain between any
two vertices.

Two graphs G1 = (V1, A1, l1) and G2 =
(V2, A2, l2) are isomorphic if there exists a one-to-
one mappingφ : V1 → V2 such that, for anyx, y
∈ V1, we have: (1)(x, y) ∈ V1 ⇔ (φ(x), φ(y)) ∈ V2,
and (2) (x, y) ∈ V1 ⇒ l1(x, y) = l2(φ(x), φ(y)).
The canonical labeling [24]cl(G) of a graphG is
a string of labels with the following property: for
any two graphsG1 and G2, cl(G1) = cl(G2) if
and only if G1 and G2 are isomorphic. Therefore,
we can determine if two graphs are isomorphic by
computing and comparing their canonical labellings.
(The canonical labeling of a graph can be computed
with tools such as the Mckay’s Nauty software [25].)

Given a subsetX ⊆ V of vertices, the sub-graph
of G induced byX, denotedGX , is the graph which
vertex set isX and which arc set contains all the arcs
of G that link two vertices ofX. An embedding of
a sub-graphH of G is a setX of vertices such that
GX is isomorphic toH. For example, in Figure 2,
{7, 1, 3} and{2, 4, 5} are two embeddings of a same
sub-graph.

B. Algorithm

Our algorithm takes as inputs a graphG and
the sizek of the sought sub-graphs (in number of
nodes) to be identified and returns, for each different
subgraph, its embeddings.

The principle of our algorithm is to generate all
k-subsetsX of V such thatGX is connected. For
each such subsetX, our algorithm computes the
canonical labelingc of GX and inserts it into a multi-

Figure 2. A sub-graphG(V, E) extracted from Rhino (release
1.7R1) with two embeddings of size three{7, 1, 3} and{2, 4, 5}.

setM . If c is not already present inM , it means that
GX represents a new sub-graph that has not been
discovered before. In this case, the setX is stored
into a setS (or simply printed into a file), along with
its canonical labeling.

Algorithm 1 SGFinder() procedure.

procedure SGFinder(graphG = (V,A, l), inte-
ger k)

2: Choose a vertexx ∈ V
for i:=0..k − 1 do

4: ComputeLi =
{

y ∈ V : dist(x, y) = i
}

end for
6: CompleteSG({} , 0, k, (L0..Lk−1), G)

SGFinder(GV −{x}, k)
8: end procedure

Algorithm 2 CompleteSG() procedure.

procedure CompleteSG(X, j, k, (L0..Lk−1), G)
if |X| = k then

3: Build graphH := GX

if Connected(H) then
if c /∈ M then

6: Insert (c,X) into S
end if
Insertc into M

9: end if
else

for all Y ⊆ Li such that|Y | ≥ 1 and |X| +
|Y | ≤ k do

12: CompleteSG(X ∪Y, j +1, k, (L0..Lk−1), G)
end for

end if
15: end procedure

It would be inefficient and time-consuming to gen-
erate allk-subsets of vertices before checking for each
subset if the induced sub-graph is connected. Instead,
our algorithm generates only a limited number ofk-
subsets ofV . The underlying idea is that, ifGX is
a connected induced sub-graph ofG, thenX can not
contain two verticesx andy such thatdist(x, y) ≥ k.

3

This idea is at the core of our efficient enumeration
technique, because our algorithm builds (and stores)
only useful sub-graphs.

The SGFinder tool implements our algorithm with
two procedures named SGFinder() and CompleteSG()
shown in Algorithms 1 and 2. A first vertexx is
chosen inV (line 2 in procedure SGFinder()). Then,
we build k disjoint subsets of vertices, denoted by
L0...Lk−1 (line 3-5), where eachLi contains the ver-
tices which distance tox equalsi (L0 = {x}). Then,
to build X (line 6, developed in the CompleteSG()
procedure), we choose the unique vertex present in
L0 (namelyx), plus one or more vertices chosen in
L1, plus one or more vertices chosen inL2, and so on
until Lk−1 (we reach a total numberk of vertices).
For each setX, we check ifGX is connected, on line
6 in CompleteSG(). At this point of the procedure,
we have generated all sub-graphs that contain vertex
x. Then, we removex from the graph and do the
same recursively on the residual graph (line 7 in
SGFinder()) to build all the other sub-graphs.

Let us consider again Figure 1, let us choosek = 4,
and let us assume that the first chosen vertex isx = 0.
We haveL0 = {0}, L1 = {3}, L2 = {1, 2}, and
L3 = {4, 6, 7}. There are now seven possibilities for
X: {0, 3, 1, 2}, {0, 3, 1, 4}, {0, 3, 1, 6}, {0, 3, 1, 7},
{0, 3, 2, 4}, {0, 3, 2, 6}, {0, 3, 2, 7}. (Some of the in-
duced sub-graphs are not connected,e.g., G{0,3,1,4}

and are thus discarded.)

IV. CASE STUDY

The goal of this empirical study is to identify,
in OO systems, micro-architectures with desirable or
harmful properties. Thequality focusis to verify ap-
plicability of SGFinder to small and medium size OO
programs to detect micro-architectures that are stable
or fault-prone. Theperspectiveis that of both re-
searchers, developers, and managers, who want to get
information about undocumented micro-architectures
found in OO systems and possible related drawbacks.
The contextof this study are two open-source sys-
tems: the Rhino JavaScript/ECMAScript interpreter,
and the ArgoUML CASE tool.

A. Objects

We selected Rhino and ArgoUML as systems for
our case study because defect and change data are
available either from previous authors [26] or from a
customized Bugzilla repository for ArgoUML. Table
I provides summary data about releases, defects and
changes for the two systems.

Rhino2, the smallest system, is a
JavaScript/ECMAScript interpreter and compiler
that implements the ECMAScript international

2http://www.mozilla.org/rhino/

standard, ECMA-262 v3 [27]. We downloaded 8
Rhino releases between 1.4R3 to 1.6R1 from the
Rhino Web site3. Defects were retrieved using data
from [26] and numbers of changes were mined from
the Rhino CVS logs.

ArgoUML is a UML CASE tool to design and
reverse-engineer various kinds of UML diagrams. It
is also able to generate source code from diagrams
to ease the development of systems. ArgoUML is
written in Java. We use 8 development releases from
0.10 to 0.17.5. We extract defect data from the
ArgoUML customized Bugzilla repository,i.e., we
use the bug-tracking issues identified by the special
tag “DEFECT”. We then match the bug IDs of the
bug tracking issues with the SVN commit messages,
as retrieved from the ArgoUML SVN server. Once
the file release matching the bug ID is retrieved, we
perform a context diff with the previous file release to
assign the defect to the appropriate class. We similarly
extract change data from the SVN logs.

We recovered the class diagrams of the releases
of the systems using the Ptidej tool suite and its
PADL meta-model. PADL is a language-independent
meta-model to describe the static part and part of
the behavior of object-oriented systems similarly to
UML class diagrams [3]. It includes a Java parser
and a dedicated graph exporter. Relations considered
in this study are: (i) associations, (ii) aggregations and
(iii) inheritances. It is worth mentioning that mapping
class diagrams into graphs generates multi-graphs as
it is possible to have more than one kind of relation
between two classes.

We applied SGFinder on each release of both
systems and extracted micro-architectures of 3, 4 and
5 nodes contained in their class diagrams.
B. Research Questions

We aim at answering the following three research
questions:

• RQ1 – Does SGFinder scale up to medium
size programs and what kind of micro-
architectures are found in OO systems?Given
the different possible relations between classes in
a class diagram, the theoretical combinations for
different micro-architectures are enormous and
thus it is first necessary to verify that SGFinder
can be effectively applied, plus it is of interest to
get insight about micro-architectures commonly
found in OO systems.

• RQ2 – Are there micro-architectures partic-
ularly fault-prone or fault-free? Our second
RQ is devoted to investigating whether there are
some micro-architectures particularly fault-prone
or fault-free.

3We targeted subsequent releases with at least ten defects

4

Systems
Releases Number of

(Number Thereof) Classes LOCs Defects Changes
Rhino 1.4R3–1.6R1 (8) 99–194 21K–75K 12–114 217–1476
ArgoUML 0.10–0.17.5 (8) 876–1243 86K–123K 102–664 541–5048

Table I
SUMMARY OF THE OBJECT SYSTEMS

• RQ3 – Are there micro-architectures par-
ticularly stable or change-prone? Similarly
to RQ2, we analyze the change proneness of
the micro-architectures. Empirical and a priori
information about the changeability of a micro-
architecture could help designers, developers and
maintainers.
Identifying fault or change-prone micro-
architectures could prove valuable in conception,
development and maintenance tasks once
qualitative analysis support the conjecture that
it is the micro-architecture structure (classes
and relations) responsible for such an unwanted
behavior. The qualitative analysis requires
a deep understanding of the project history,
a thorough analysis of program evolution
and the interaction with developers and, for
these reasons, it is left as part of the future
work. In essence, in this preliminary work we
aim at identifying micro-architectures likely
responsible for unwanted characteristics but we
do not seek to prove any causal relation.

C. Analysis Method

In the following, we first present the information
associated to micro-architectures and then how we use
such information to answer our research questions.

1) Characterizing the micro-architectures:The
first set of features we use to characterize a micro-
architecture contains information about its connec-
tivity. To keep things simple, we only consider in
our analysis4 the total number of relations (nbRel)5,
the number of associations (nbAssoc), the number of
aggregations or compositions (nbAggr), the number
of inheritances (nbInher), and the number of ”cyclic
relations” (nbCycl). Cycles are typically generated
by pairs of associations, often due to delegation via
method calls,i.e., a class A calls or uses a class B
and vice-versa.

The second set of information is related to the
presence and repartition of the micro-architectures
in the studied systems. First we use a variable
(nbReleases) to count the number of releases in
which the considered micro-architecture can be found.
For a given release,i.e., in a given class diagram, there

4More connectivity measures were investigated but are not
presented in this paper due both to space issues and their weak
relevance in RQ2 or RQ3.

5Loops are not counted.

are two ways to quantify the presence of a micro-
architecturemAi. The most obvious one consists in
incrementing a variable (nbEmbeddings) each time
our algorithm finds a sub-graph isomorphic tomAi.
However, due to the high connectivity of some nodes,
counting frequencies in this way can produce some
extremely high and meaningless numbers. To circum-
vent this, following recommendations in sub-graph
mining literature, we impose that newly discovered
embeddings of a micro-architecture are counted only
when they have no common edges with any of the
previously found embeddings. In this way, we only
consider distinct graph regions referred to as zones
and we report for each micro-architecture its number
of zones (nbZones). Finally, we consider the set of
classes appearing at least once inmAi and report its
cardinality (nbClasses)

2) Answering the Research Questions:To answer
research questions we resort on descriptive statis-
tics and more precisely on quartiles augmented with
minimum and maximum computed over the set of
features - presented above - to characterize the micro-
architectures. These descriptive statistics are often
cumulatively referred to as the five-number summary
statistic. For RQ1, we characterize micro-architectures
found in Rhino, ArgoUML or both, plus we recorded
execution times. To answer RQ2 and RQ3, we con-
sider for each micro-architecture, its set of classes and
compute the percentage of its classes that are fault-
prone (i.e., with one or more documented fault) or
changed classes.

More precisely, as our goal is to locate
faulty(change)- prone micro-architectures we adapted
precision and recall definition as follows. Consider,
fault-proneness; for a given micro-architecture,
precision is defined as the ratio of micro-architectures
faulty classes over the microarchitecture size averaged
over all micro-architecture instances. Thus a 100 %
precision means all classes were documented being
faulty, while 0 % means fault-free. On the other hand,
for a given micro-architecture, recall is computed as
the number of classes being faulty and participating
in one instance of the micro-architecture over the
number of classes in the class diagram.

For a fixed number of classes (e.g., four), we then
considered the precision (i.e., average of the number
of faults (changes) over the number of its nodes) and
use this index to rank micro-architectures from the
fault(change)-prone to the fault(change)-free. We then

5

three-nodes four-nodes five-nodes
(373) (9203) (190061)

nbRel 2,4,5,6,11 3,6,7,9,20 4,8,10,11,27
nbAssoc 0,2,3,4,6 0,4,5,6,12 0,6,7,9,18
nbAggr 0,0,1,2,4 0,1,1,2,7 0,1,1,2,9
nbInher 0,0,1,1,3 0,0,1,2,5 0,0,1,2,6
nbCycl 0,0,1,1,3 0,0,1,2,6 0,0,1,2,8

nbZones 1,1,1,2,68 1,1,1,1,33 1,1,1,1,20
nbClasses 3,3,5,10,140 4,4,5,9,147 5,5,6,10,156
nbReleases 1,2,5,8,8 1,1,3,6,8 1,1,2,4,8

Table II
M ICRO-ARCHITECTURES INRHINO; EACH LINE REPORTS THE

FIVE-NUMBER SUMMARY: M IN , Q1, MEDIAN , Q3, MAX

three-nodes four-nodes five-nodes
(349) (8224) (180295)

nbRel 2,4,5,6,10 3,6,7,8,17 4,8,9,10,23
nbAssoc 0,2,3,4,6 0,3,4,6,11 0,5,6,8,15
nbAggr 0,0,1,2,4 0,1,1,2,6 0,1,2,2,8
nbInher 0,0,1,1,3 0,0,1,1,5 0,0,1,2,7
nbCycl 0,0,1,1,3 0,0,1,1,5 0,0,1,2,7

nbZones 1,1,1,3,583 1,1,1,2,315 1,1,1,1,171
nbClasses 3,3,6,19,944 4,4,7,16,940 5,5,8,19,944
nbReleases 1,4,7,8,8 1,2,4,7,8 1,1,3,5,8

Table III
M ICRO-ARCHITECTURES INARGO; EACH LINE REPORTS THE

FIVE-NUMBER SUMMARY: M IN , Q1, MEDIAN , Q3, MAX

inspected the top 10% and bottom 10%, of ranked
microarchitectures, seeking for hints of what makes
those micro-architectures outstanding.

V. RESULTS

In this section, we present results and answer our
three research questions, aiming at verifying applica-
bility and obtaining hints on possible usefulness in
identifying change or fault-prone classes.

A. RQ1: SGFinder Applicability and Description of
the micro-architectures found.

Tables II, III and IV present summary data about
the micro-architectures found respectively in Rhino,
Argo or both systems. Numbers of different micro-
architectures of three, four, or five nodes are indicated

3-nodes 4-nodes 5-nodes
(250) (3993) (52862)

nbRel 2,4,4,5,8 3,5,6,7,11 4,7,8,9,15
nbAssoc 0,2,3,4,6 0,3,4,5,10 0,5,6,7,14
nbAggr 0,0,1,2,4 0,0,1,2,4 0,0,1,2,6
nbInher 0,0,1,1,3 0,0,1,1,4 0,0,1,1,6
nbCycl 0,0,0,1,3 0,0,1,1,4 0,0,1,1,5

nbZones 1,1,2,5,326 1,1,1,2,174 1,1,1,2,95
nbClasses 3,5,8,26,542 4,6,11,24,544 5,8,14,31,540
nbReleases 1,5,7,8,8 1,3,5,7,8 1,3,4,6,8

Table IV
M ICRO-ARCHITECTURES IN BOTHRHINO AND ARGO; EACH

LINE REPORTS THE FIVE-NUMBER SUMMARY: M IN , Q1,
MEDIAN , Q3 AND MAX

in the headers. Five-number summary are provided for
each feature in the format Min,Q1,Median,Q2,Max.

Considering the three basic relations (association,
aggregation and inheritance), the four derived mixed
cases (e.g., two classes can be linked by both aggre-
gation and inheritance, or aggregation and association
and so on), and the absence of relations, there are
eight possible connections between two graphs. This
means that if we considern × n pairs of nodes
(including loops), we can have, if we do not take
into account symmetry, at most8(n×n−(n−1)) ×7n−1

connected subgraphs ofn nodes. For instance, one
can get about22× 1021 different micro-architectures
of five nodes. If we consider the union of five-nodes
micro-architectures from Rhino and Argo, we only
get about32 × 104 different micro-architectures; this
seems to be a very high number but it is just a fraction
of the overall number of possible combinations.

Computation times of SGFinder on the studied
systems range from a few seconds to two days and
half. Extracting 3-nodes micro-architectures takes 20
seconds at most while 4-nodes micro-architectures
require less than 30 minutes. The longest computa-
tion times occur while extracting five-nodes micro-
architectures on the biggest ArgoUML releases we
used for this study. In particular, the algorithm took
more than 60 hours to retrieve the 82,877 different
5-nodes micro-architectures in ArgoUML0.17.5 and
their 13,741,073,588 embeddings. The computation
times depended mostly on the edge density of the
considered class diagrams. More specifically, the sin-
gle most time-costly factor is the presence of highly
connected nodes which lead to a near-combinatorial
explosion of the number of embeddings. Neverthe-
less, SGFinder was able to retrieve all the micro-
architectures (up to 5 nodes) present in the studied
releases and we can thus answer positively to the
applicability research question sub-part.

As for the number of different micro-architectures,
we notice on Tables II and III that it is not strictly
linked to the class diagrams’ size. Rhino, despite hav-
ing almost ten times less classes than Argo, presents
more combinations of connected graphs for all sizes
of micro-architectures. Also, as shown in Table IV,
there are many class organizations common to both
Rhino and Argo as well as many others (more numer-
ous) specific to each system.

With respect to the connectivity information, the
micro-architectures in Rhino seem to have slightly
more relations than their counterparts in Argo. Look-
ing at the maximum number of relations, we can
notice that some very dense micro-architectures can
be found in both OO systems. Figure 3 presents
the five-nodes micro-architectures with the highest
number of relations in Rhino (27), Argo (23) and their

6

Figure 3. Most Connected 5-nodes micro-architectures

intersection (15).

B. RQ2: Fault-proneness of micro-architectures

Table V is based on micro-architectures present
in both Rhino and Argo and report characteristics
6 of the top 10% most faulty (using the precision
measure) micro-architectures, as well as the bottom
10% (least faulty micro-architectures). While there are
some interesting micro-architectures present either in
Rhino or Argo separately, we chose to focus on micro-
architectures present in both systems in order to im-
prove the odds of generalization of our findings. Table
V support the presence of some micro-architectures
particularly fault-prone, as well as other class organi-
zations consistently fault-free. As we analyzed eight
Rhino and ArgoUML releases, it is clear that there
are micro-architectures constantly present in all Rhino
and ArgoUML realses (nbReleases in Table V) and
always fault-prone.

Considering five-nodes micro-architectures, preci-
sion is as high as 84%; plus the F1 measure is as high
as 54%. In other words, some micro-architectures
are consistently faulty and/or contain the majority of
faulty classes for both systems. At the same time,
there are also micro-architectures consistently fault-
free (0% precision).

Analyzing connectivity information, we can no-
tice that the most faulty micro-architectures tend to

6Numbers presented are averages over the two systems.

be more connected than the least faulty ones, in
particular, they generally contain more associations.
Actually, both Spearman and Pearson correlations
give values above 0.4 with a confidence level of more
than 99% when one evaluates the correlation of the
number of associations in the micro-architecture to
the precision computed as described in the previous
section (Similar correlation values are obtained with
cyclic relations). The inverse seems to be true for
aggregations and inheritances which tend to be less
numerous in most faulty micro-architectures. How-
ever, correlation values were only about−0.15.

The information about the presence and reparti-
tion of the most or least faulty micro-architectures
indicate that most of them are not very common or
well spread (generally only one zone), but the maxi-
mal values indicate notable exceptions up to seven.
This is partially explained by the low percentage
of fault-prone classes in both systems. Considering
the relatively small numbers of bugged classes in
Rhino and Argo the obtained precision numbers are
very promising. In particular, we highlight the micro-
architecture presented in Figure 4 as an example of a
particularly faulty micro-architecture. This structure,
present in Rhino (1.5R4, 1.5R4.1) and ArgoUML
(0.14-0.16.1), displays an average precision value of
81.25. It represents a category of organizations where
(almost) every class ”‘talks”’ to every other class. In
fact, when we retrieve the set of micro-architectures

7

Figure 4. Example of a particularly faulty (precision=81) 4-nodes
micro-architecture

three-nodes four-nodes five-nodes
(250) (3994) (52862)

Precision
—top10% 41,44,47,52,67 42,45,48,54,83 41,43,46,52,84
—bot10% 0, 5, 9,11,13 0, 8,10,13,14 0, 2, 5, 7,22
F1
—top10% 5,8,13,17,30 2,10,12,15,40 4,11,14,18,54
—bot10% 0,1, 1, 2, 5 0, 1, 3, 5,16 0, 2, 5, 7,22

nbRel
—top10% 3,4,6,6,8 4,7,8,8,10 4,8,9,10,14
—bot10% 2,4,4,5,6 3,6,6,7,09 4,7,8,09,13
nbAssoc
—top10% 2,3,4,5,6 2,5,6,7,10 2,7,8,9,14
—bot10% 0,2,2,3,4 0,3,4,5,08 0,4,5,6,11
nbAggr
—top10% 0,1,1,2,4 4,7,8,8,10 4,8,9,10,14
—bot10% 0,1,1,2,2 3,6,6,7,09 4,7,8,09,13
nbInher
—top10% 0,0,0,1,2 0,0,0,1,3 0,0,0,1,4
—bot10% 0,1,1,2,2 0,0,1,1,3 0,0,1,2,5
nbCycl
—top10% 0,1,1,2,3 0,1,1,2,4 0,1,2,2,5
—bot10% 0,0,0,1,1 0,0,0,1,4 0,0,0,1,5

nbZones
—top10% 1,1,2,2,9 1,1,1,1,6 1,1,1,1, 7
—bot10% 1,1,1,2,5 1,1,1,1,7 1,1,1,1,14
nbClasses
—top10% 3,4,5,7,33 4,5,6, 9, 59 1,1,1,1, 7
—bot10% 3,4,5,7,18 4,5,7,12,133 1,1,1,1,14
nbReleases
—top10% 1,4,5,6,8 1,3,4,5,8 1,2,3,5,8
—bot10% 1,3,4,5,8 1,2,3,5,8 1,2,3,4,8

Table V
MOST AND LEAST FAULTY M ICRO-ARCHITECTURES PRESENT

IN BOTH RHINO AND ARGO; EACH LINE REPORTS THE

FIVE-NUMBER SUMMARY: M IN , Q1, MEDIAN , Q3 AND MAX

with three cyclic relations and where every class
is connected to every other class, we obtain a 5-
number summary (28,44,56,67,81) with values mostly
higher to those from the top 10% most faulty micro-
architectures (42,45,48,54,83).

Overall, we can answer positively to the research
question as it was possible to find micro-architectures
highly fault prone and responsible for a large fraction
of faults in both systems.

C. RQ3: Change-proneness of micro-architectures

Similarly to RQ2, Table VI reports data about
the top 10% most changed and the bottom 10%

Figure 5. Example of a particularly stable (precision=30) 4-nodes
micro-architecture

least changed micro-architectures. Again, we focus
on micro-architectures present in both systems. Data
reported provides evidence that there are indeed some
micro-architecture particularly stable (as few as 10%
of changed classes). However, given that changes
were very common in the studied systems, our data
(with numbers as high as 100%) is less conclusive for
most frequently changed micro-architectures.

The analysis of connectivity information points to
findings similar to those ofRQ2: the most changed
micro-architectures also tend to have more associa-
tions, less aggregations and inheritances.

Considering the high numbers of changed classes
in Rhino and Argo some micro-architectures with
low precision numbers are worth investigating. In
particular, we highlight the micro-architecture pre-
sented in Figure 5 as an example of a particularly
stable micro-architecture. Present in Rhino (1.6R1)
and ArgoUML (0.17.5), this micro-architecture has an
average precision value of30. It presents a ”cascade”-
like pattern and we were able to retrieve many other
similar organizations with mostly low changeability.

D. Threats to Validity

We demonstrated, in previous sections, the applica-
bility of SGFinder to small-to-medium size programs.
Scalability to large programs such as Eclipse or bigger
micro-architectures may be problematic and require
partitioning large class diagrams into components (e.g
subsystems) or the adoption of pruning heuristics.

Threats toconstruct validityconcern the relation
between the theory and the observation. Here, this
threat is mainly due to the need of a manual validation
and qualitative analysis. Indeed, we cannot claim
any causation effect nor provide any specific inter-
pretation to fault-prone or change(fault)-free micro-
architectures. This problem is somehow related to
guessing the developers’ intent when they planned to
implement the micro-architecture under study and the
possible drift over time. We can only conjecture that,
given the application domain, the classes, methods,

8

three-nodes four-nodes five-nodes
(250) (3994) (52862)

Precision
—top10% 83,86,88,91,97 85,88,90,93,100 84,86,89,92,100
—bot10% 20,35,38,39,44 17,38,43,48, 50 10,42,47,50, 53
F1
—top10% 3,5,6,9,27 4,5,6,8,22 5,8,9,12,37
—bot10% 0,1,1,2,13 0,2,3,5,33 0,3,6,11,55

nbRel
—top10% 3,5,6,6,7 4,6,7,8,10 4,8,9,10,15
—bot10% 2,4,4,6,7 3,5,6,7,10 4,7,8, 9,13
nbAssoc
—top10% 1,3,4,5,6 2,5,6,7,10 1,6,8,9,13
—bot10% 0,1,2,3,4 0,3,4,5,08 1,4,5,7,11
nbAggr
—top10% 0,0,0,1,3 0,0,1,2,4 0,0,1,1,5
—bot10% 0,1,2,2,3 0,1,2,2,4 0,1,2,2,6
nbInher
—top10% 0,0,1,1,2 0,0,0,1,4 0,0,0,1,5
—bot10% 0,1,1,2,2 0,0,1,1,3 0,0,1,1,4
nbCycl
—top10% 0,1,1,2,3 0,1,1,2,4 0,0,1,2,5
—bot10% 0,0,1,1,2 0,1,1,2,3 0,0,1,1,4

nbZones
—top10% 1,1,2,2,5 1,1,1,1, 5 1,1,1,1,10
—bot10% 1,1,1,2,5 1,1,1,1,11 1,1,1,1,10
nbClasses
—top10% 3,4,5,7,26 4,5,6, 8, 90 5,6, 8,11,158
—bot10% 3,4,5,7,69 4,5,8,14,321 5,8,13,29,404
nbReleases
—top10% 1,4,5,7,8 1,2,4,5,8 1,2,3,4,8
—bot10% 2,4,5,7,7 1,3,4,5,8 1,2,3,5,8

Table VI
MOST AND LEAST CHANGEDM ICRO-ARCHITECTURES

PRESENT IN BOTHRHINO AND ARGO; EACH LINE REPORTS THE

FIVE-NUMBER SUMMARY: M IN , Q1, MEDIAN , Q3 AND MAX

and relations (and the general information that can be
extracted from the source code and documentation),
it will be possible to infer the developers’likely intent
and understand the drift toward a micro-architecture
with unwanted features.

Threats tointernal validity concern any confound-
ing factor that could influence our results. In particu-
lar, these threats can be due to subjectiveness in dis-
tinguishing between associations or aggregations and
the number of faults assigned to classes. We attempted
to avoid any bias by using well consolidated tools,
reusing defect data provided by other researchers and
extracting facts from source code and bug tracking
repositories.

Threats toconclusion validityconcern the rela-
tionship between the treatment and the outcome.
We do not claim any relation between the micro-
architectures and unwanted features and the existence
of possible relations is left to the developers’ judg-
ment and experience. In essence, SGFinder, reports
micro-architectures but no claim is made and, in this
preliminary work, we limit ourselves to highlight
micro-architectures with high precision and recall
with respect to fault-proneness or stability.

Threats toexternal validityconcern the possibility
of generalizing our results. The study is limited to
two systems: Rhino and ArgoUML. Yet, our approach

is applicable to any other system of comparable
size. However, we cannot claim that similar results
would be obtained with other systems and that micro-
architectures common across systems and releases
will always be detected. However, the two systems
correspond to different domains and applications,
have different sizes, are developed by different teams.
We believe this choice mitigates the threats to the
external validity of our study.

VI. CONCLUSION

In OO software, micro-architectures, likewise de-
sign patterns, are recurring classes and relations or-
ganizations. We presented SGFinder, an algorithm and
a tool to support micro-architecture discovery based
on a reformulation as a sub-graph mining problem.
SGFinder uses an effective enumeration technique
that allows us to infer instances of micro-architectures
in small to medium size programs and to study
micro-architecture properties such as stability or fault
proneness. To the best of our knowledge only a few
works addresses the same or similar problem [7].

We used SGFinder on eight releases of
two well known Java applications: the Rhino
JavaScript/ECMAScript interpreter and ArgoUML,
a UML CASE tool to design and reverse-engineer
various kinds of UML diagrams. After providing
insight about the kind of micro-architectures (of
three, four or five nodes) found in OO systems,
we focused on fault-proneness and changeability.
We characterize the most and least faulty/changed
micro-architectures and report some of the most
interesting micro-architectures with respect to their
connectivity and frequency.

Despite the encouraging results, more work is
needed to (i) further optimize the proposed algorithm
and gain in scalability, (ii) define heuristics and rules
able to classify micro-architectures discovered in a
system under development, and (iii) go beyond the
micro-architectures and analyze, similarly to design
patterns, the roles played by participant classes, and
(iv) provide qualitative analysis and validation of the
findings. For generalization purposes, our plan for
future work also include replication of the study on
different systems.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,De-
sign Patterns – Elements of Reusable Object-Oriented
Software, 1

st ed. Addison-Wesley, 1994.

[2] W. J. Brown, R. C. Malveau, W. H. Brown, H. W.
McCormick III, and T. J. Mowbray,Anti Patterns:
Refactoring Software, Architectures, and Projects in
Crisis, 1

st ed. John Wiley and Sons, March 1998.

9

[3] Y.-G. Guéh́eneuc and G. Antoniol, “DeMIMA: A
multi-layered framework for design pattern identifi-
cation,” Transactions on Software Engineering (TSE),
vol. 34, no. 5, pp. 667–684, September 2008.

[4] V. Kozaczynski, J. Q. Ning, and A. Engberts, “Pro-
gram concept recognition and transformation,”IEEE
Trans. on Software Engineering, vol. 18, no. 12, pp.
1065–1075, Dec 1992.

[5] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. L.
Meur, “Decor: A method for the specification and de-
tection of code and design smells,”IEEE Transactions
on Software Engineering, vol. 36, pp. 20–36, 2010.

[6] N. Shi and R. A. Olsson, “Reverse engineering of
design patterns from java source code,”Automated
Software Engineering, International Conference on,
vol. 0, pp. 123–134, 2006.

[7] P. Tonella and G. Antoniol, “Inference of object ori-
ented design patterns,”Journal of Software Mainte-
nance - Research and Practice, vol. 13, no. 5, pp.
309–330, September-October 2001.

[8] C. Rich and R. C. Waters,The Programmer’s Appren-
tice, 1

st ed. ACM Press Frontier Series and Addison-
Wesley, January 1990.

[9] C. Krämer and L. Prechelt, “Design recovery by
automated search for structural design patterns in
object-oriented software,” inProceedings of the3rd

Working Conference on Reverse Engineering, L. M.
Wills and I. Baxter, Eds. IEEE Computer Society
Press, November 1996, pp. 208–215.

[10] R. Wuyts, “Declarative reasoning about the structure
of object-oriented systems,” inProceedings of the26

th

Conference on the Technology of Object-Oriented
Languages and Systems, J. Gil, Ed. IEEE Computer
Society Press, August 1998, pp. 112–124.

[11] B. Kullbach and A. Winter, “Querying as an enabling
technology in software reengineering,” inProceedings
of the 3

rd Conference on Software Maintenance and
Reengineering, P. Nesi and C. Verhoef, Eds. IEEE
Computer Society Press, March 1999, pp. 42–50.

[12] R. K. Keller, R. Schauer, S. Robitaille, and P. Pagé,
“Pattern-based reverse-engineering of design com-
ponents,” in Proceedings of the21

st International
Conference on Software Engineering, D. Garlan and
J. Kramer, Eds. ACM Press, May 1999, pp. 226–235.

[13] J. Niere, W. Scḧafer, J. P. Wadsack, L. Wendehals, and
J. Welsh, “Towards pattern-based design recovery,” in
Proceedings of the24

th International Conference on
Software Engineering, M. Young and J. Magee, Eds.
ACM Press, May 2002, pp. 338–348.

[14] J. H. Jahnke and A. Z̈undorf, “Rewriting poor de-
sign patterns by good design patterns,” inProceed-
ings the1

st ESEC/FSE workshop on Object-Oriented
Reengineering, S. Demeyer and H. C. Gall, Eds.
Distributed Systems Group, Technical University of
Vienna, September 1997.

[15] J. Seemann and J. W. von Gudenberg, “Pattern-based
design recovery of Java software,” inProceedings
of 5

th international symposium on Foundations of
Software Engineering, B. Scherlis, Ed. ACM Press,
November 1998, pp. 10–16.

[16] D. Eppstein, “Subgraph isomorphism in planar graphs
and related problems,” inProceedings of the6th an-
nual Symposium On Discrete Algorithms, K. Clarkson,
Ed. ACM Press, January 1995, pp. 632–640.

[17] N. Pettersson and W. Löwe, “Efficient and accurate
software pattern detection,” inProceedings of the
13

th Asia Pacific Software Engineering Conference,
P. Jalote, Ed. IEEE Computer Society Press, Decem-
ber 2006, pp. 317–326.

[18] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and
S. Halkidis, “Design pattern detection using similar-
ity scoring,” Transactions on Software Engineering,
vol. 32, no. 11, November 2006.

[19] J. Chen, W. Hsu, M. Lee, and S. Ng, “Nemofinder:
Dissecting genome-wide protein-protein interactions
with meso-scale network motifs,”Proceedings of
the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 106–115,
2006.

[20] Z. Razaghi and M. Kashani, “Kavosh: a new algorithm
for finding network motifs,”Bioinformatics, vol. 10,
pp. 0–0, 2009.

[21] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan,
D. Chklovskii, and U. Alon, “Network motifs: simple
building blocks of complex networks,”Science, vol.
298, no. 5594, pp. 824–827, 2002.

[22] V. Batagelj and A. Mrvar, “Pajek-analysis and visual-
ization of large networks,”Springer-Verlag, no. 2265,
pp. 77–103, 2003.

[23] S. Wernicke and F. Rasche, “A tool for fast network
motif detection,” Bioinformatics, vol. 22, pp. 1152–
1153, 2006.

[24] J. Huan, W. Wang, and J. Prins, “Efficient mining of
frequent subgraphs in the presence of isomorphism,”
Third IEEE International Conference on Data Mining
(ICDM’03), p. 549, 2003.

[25] B. Mckay, “Practical graph isomorphism,”Congressus
Numerantium, vol. 30, pp. 45–87, 1981.

[26] M. Eaddy, T. Zimmermann, K. D. Sherwood, V. Garg,
G. C. Murphy, N. Nagappan, and A. V. Aho, “Do
crosscutting concerns cause defects?”IEEE Transac-
tion on Software Engineering, vol. 34, no. 4, pp. 497–
515, 2008.

[27] ECMA, ECMAScript Standard - ECMA-262 v3.
ISO/IEC 16262, 2007.

10

