
ACRE: An Automated Aspect Creator for Testing C++ Applications

Etienne Duclos∗, Sébastien Le Digabel†, Yann-Gaël Guéhéneuc∗, and Bram Adams∗
∗Department of Computer and Software Engineering

†GERAD and Department of Mathematical and Industrial Engineering
École Polytechnique de Montréal, Québec, Canada

(etienne.duclos, yann-gael.gueheneuc, bram.adams)@polymtl.ca, sebastien.le.digabel@gerad.ca

Abstract—We present ACRE, an Automated aspeCt cREator,
to use aspect-oriented programming (AOP) to perform mem-
ory, invariant and interferences testing for software programs
written in C++. ACRE allows developers without knowledge in
AOP to use aspects to test their programs without modifying
the behavior of their source code. ACRE uses a domain-specific
language (DSL), which statements testers insert into the source
code like comments to describe the aspects to be used. The
presence of DSL statements in the code does not modify the
program’s compilation and behavior. ACRE parses the DSL
statements and automatically generates appropriate aspects
that are then weaved into the source code to identify bugs
due to memory leaks, incorrect algorithm implementation, or
interference among threads. Thanks to the use of aspects and
ACRE, testers can add or remove tests easily. Using an aspect
generated by ACRE, we find a memory leak in a complex
C++ software program, NOMAD, used in both industry and
research. We also verify a crucial mathematical point of the
algorithm behind NOMAD and collect data to find possible
interference bugs, in NOMAD.

Keywords-AOP, C++, NOMAD, interference bug pattern,
memory testing, invariant testing

I. INTRODUCTION

Software programs have become increasingly important,
with human lives depending on them. They must therefore
be as reliable as possible. Moreover, software maintenance,
which involves the correction of bugs, represents an impor-
tant part of the costs of the development cycle [1]. Testing
is a means to reduce these costs and the risk of failure.

Programs written in C++ present different challenges to
testers when compared to programs written in Java. The
absence of garbage collection and the use of pointers in C++,
although useful, increase the complexity of dealing with
memory and, therefore, the probability of bugs that involve
memory leaks [2]. Techniques have been developed to test
for null-pointer exceptions, buffer overflows, and memory
leaks [3], [4]. The use of pointers in C++ can also have an
impact on invariant testing. Testers may have to test classes
to verify that attributes are never nulls. Techniques have
been proposed for class invariant testing [5], [6]. However,
most of these techniques require developers to modify the
source code of their programs for memory and invariant
testing. Interference detection is another extra challenge for
C++ as interference bugs may occur where unprotected
shared variables are used. Many approaches exist to detect

interference bugs [7], [8], but none of them allow a complete
detection of every possible bug.

To avoid modifying the source code of programs under
test, researchers can use various technologies, including
aspect-oriented programming (AOP). AOP is based on the
concept of separation of concerns and its creators claim that
it may be useful for testers [9]. Researchers have been using
AOP for unit and integration testing, focusing on programs
written in Java or embedded programs. However, their use of
AOP required either to modify the programs under test and–
or to generate the aspects manually in an ad-hoc manner.

We propose a new approach to use AOP for testing: the
use of automatically-generated aspects to test C++ programs.
We develop ACRE, an Automated aspeCt cREator, that
automatically generates testing aspects from the source code
of programs under test. The generated aspects can be used
for memory, invariant, and interference testing. We build
ACRE atop a domain-specific language (DSL) that we use
to describe the testing aspects within the source code. An
important characteristic of our DSL is that, despite the
inclusion of DSL statements in the source code, the code
still compiles as before and its behavior does not change.
Moreover, thanks to the DSL, testers do not need expertise in
AOP. Indeed, we propose three types of pre-defined testing
aspects to be embedded in C++ source code. We show
that ACRE, thanks to the three types of aspects, allows
(1) finding a difficult memory leak in a C++ program,
NOMAD [10], (2) verifying a crucial mathematical point
inside NOMAD, and (3) finding possible interference bugs
in NOMAD.

The remaining of the paper is organised as follows: Sec-
tion II introduces aspect-oriented programming. Section III
reviews relevant work on testing AOP and using AOP codes,
and on memory management in C++, invariant testing,
and interference bugs. Section IV presents ACRE and our
DSL, used for the automatic creation of the testing aspects.
Section V describes our goals, perspectives, and research
questions, and also talks about NOMAD, the tested program.
Section VI reports and discussed our results. Section VII
reports the threats that affect our approach and study while
Section VIII concludes and sketches future work.

II. BACKGROUND

This section introduces aspect-oriented programming.
Aspect-oriented programming (AOP) is a technology

based on the concept of separation of concerns used with
object-oriented programming (OOP). Separation of concerns
aims to increase the modularity of a program: each module
should have its own specific task and should not address
the tasks of other modules. A basic example of concern
is the logging of method called in a program. With OOP,
developers must modify all methods to add logging code.
With AOP, developers write an aspect that essentially says
“log each time that we enter a method” and they do not need
to modify the original methods as illustrated in Listing 1.
The two major AOP languages1 are AspectJ for Java and
AspectC++ for C++.

Listing 1. Example of aspect
i n c l u d e <s t d i o . h>
i n c l u d e < s t d l i b . h>

a s p e c t l o g g i n g A s p e c t {
p u b l i c :

p o i n t c u t logMethods () =
c a l l (”% % : : % (. . .) ”) ;

ad v i ce logMethods () : b e f or e () {
p r i n t f (”> E n t e r : %s\n ” ,

J o i n P o i n t : : s i g n a t u r e ()) ;
}

} ;

ACRE uses AspectC++ to generates aspects for C++.
The main constructs provided by AspectC++ are aspect,
advice, pointcut, and join point [11]. These constructs allow
AspectC++ programs to access the underlying AspectC++
execution model, which is out of the scope of this paper1. An
aspect is the equivalent of a class. It may contain pointcuts
and advice declarations as well as attributes and methods. An
advice links join points with actions. For example, the advice
presented in Listing 1 prints a message before each call to
a method. An advice can also add a new attribute to all the
classes accessed by a join point. A pointcut is a set of join
points corresponding to the same expression. This expression
is a string containing a search pattern. In Listing 1, the
expression is call(“%% :: %(...)”) and the pointcut is
named logMethods. The advice runs before each call to
a method (%::%) containing any parameter (...). Finally, a
join point describes a point in the source code (depending
on execution model of the programming language) where
aspects can be woven. With the current implementation of
AspectC++, a join point may refer to a method entry/exit,
an attribute read/write, a type (class, struct, or union), or an
object instanciation/access. In Listing 1, the join point is a
call to a method. Advices can be executed before, after, or

1http://www.eclipse.org/aspectj/, http://www.aspectc.org/, http://www.
aosd-europe.net/deliverables/d12.pdf

in place of (around) a join point. In AspectC++, developers
can assign priorities to advices to order their execution.

Aspects are concretely declared in .ah files and woven
into the C++ source code using a weaver called ag++,
which weaves the aspects into the original source code
at compilation time, producing a new source code that
is immediately built into an executable file. Thus, ag++
replaces the regular compiler g++. Including the .ah file in
the C++ source code may be required by AspectC++, if a
static attribute of the aspect has to be initialised for example.
However this inclusion could be automated.

III. RELATED WORK

This section present relevant works on the use of aspect-
oriented programming in testing, on memory management
in C++, invariant testing, and interference bugs.

A. AOP in Testing

Li and Xie [12] claim that aspects make good stubs
and drivers. Another advantage of AOP for unit testing is
that testers do not have to modify the source code. This
advantage was also discussed by Metsä et al. [13], who
compared aspects with macros and test interfaces. However,
they concluded that AOP should not be the only technique
used for unit and integration tests. ACRE helps testers to
use aspects for unit and integration testing.

For unit testing Xu et al. [14] created JAOUT, a framework
and an aspect-oriented test description language to use AOP
with JUnit. Knauber and Schneider [15] used JUnit and
AspectJ to test variable cross-cutting concerns such as secu-
rity, transaction management, and error handling in software
product lines. D’Amorim et al. [16] proposed an approach
that allows to verify dynamically that the execution of a
program is correct. AOP is used for invariant testing during
the execution of the tested programs. These approaches
focused on Java programs. ACRE allows the use of AOP
to test C++ programs and their particularities, like explicit
use of pointers which may lead to null pointer exceptions,
memory leaks or buffer overflows.

Pesonen et al. [17], [18], and Metsä et al. [19], from Nokia
corporation, used aspects to test embedded C++ programs
in Symbian OS. They chose aspects because of the features
of embedded programs, such as limited resources. Similarly
to Li and Xie [12], they first used aspects as stubs and
drivers, building test harnesses for functions [17]. They
then enhanced integration testing using aspects. They also
tested the hardware components of their programs with
aspects [18]. They focused on the device-specific parts of
the code and checked, using aspects, that their programs
worked even when some devices were not present or not
activated. They highlighted five areas of functional testing
where aspects can be useful [19]: memory, performance,
robustness, reliability, and coverage. They concluded that
aspects increase the overall test coverage of their programs.

However, they focused only on embedded programs. With
ACRE, we show that aspects can also be useful to test non-
embedded C++ programs.

For Metsä et al. [19] and Mahrenholz et al. [20], there are
two main problems when using aspects for testing. The first
is the lack of tools, or interfaces for existing tools, that use
aspects. The second is that weaving aspects into the code
requires an extra step in the building process. ACRE can
overcome these two problems because we provide a DSL
and because the testing aspects are automatically generated
from the source code extended with DSL statements describ-
ing the tests.

Farhat et al. [21] claimed that one disadvantage of us-
ing aspects for testing non-functional requirements is that
AOP is a new technology that is not well known. ACRE
overcomes this disadvantage because developers and testers
can generate and use testing aspects even if they do not
know AspectC++. That is because the DSL “hides” from
the developers the use of AspectC++ and of its constructs.

Table I summarises and compares the different approaches
to using AOP for testing programs. It shows that only our
approach allows the automatic generation of aspects used
to test C++ programs with various kind of tests, including
memory, invariant and interference testing.

Who Language Generation Tests
Java emb. C++ auto. man. unit. all

C++ & int.
[12] X X X
[14] X X X
[15] X X X
[16] X X X
[13] X X X
[17] X X X
[18] X X X
[19] X X X
us X X X

Table I
COMPARISON OF THE DIFFERENT APPROACHES

As explained by Ceccato et al. [22], testing aspects
and their integration in object-oriented source code is also
challenging. Kumar et al. [23] analysed four approaches used
to detect different faults due to the presence of aspects, such
as incorrect changes in control flows, false postconditions
or false state invariants. They highlighted the difficulties
brought by the presence of aspects, and found that some
faults, as incorrect changes in polymorphic calls, can not
be found using the actual testing techniques. Xie and Zhao
[24] proposed an approach that allows the use of automatic
testing for aspects in AspectJ using existing testing tools
for Java code. They however concluded that there are still
some problems, concerning the evaluation of such tests as
no benchmark exists, or for the development of a systematic
approach for integration testing. Sokenou and Herrmann [25]
used aspects to test other aspects. They found that aspects-

oriented techniques are good to test aspect-oriented systems,
but they require specificities for the aspect language used for
the test that not all of aspect languages possess.

B. Memory in C++

Two major differences between Java and C++ are the
absence of a garbage collector and the use of pointers in the
latter, which force developers to be careful about memory
management [26] and increase the risk of memory leaks.
Gati [27] used AOP to log all the memory allocations and
de-allocations of a C++ program, but had some problems
dealing with templates. Mcheick et al. [28] tracked memory
under and overflows using AOP.

Sioud [29] is one of many researchers to have imple-
mented garbage collection for C++. He chose to use AOP
instead of classical OOP to implement a reference-counting
algorithm: one aspect increments a counter each time the
new function is called and another decreases the same
counter each time the delete function is called. At the end
of the program, the counter is analysed. If it is zero, then
all created objects have been deleted and all memory freed,
else there is a memory leak.

Let us consider a simple example to illustrate Sioud’s
implementation: a program with two classes A and B.
Listing 2 shows the code of this toy program. In the main
function, we instantiate one object of class A and two of
class B. At the end, we delete the object instantiated from
A and one of the two objects instantiated from B. We have
a memory leak because one object is not deleted and the
counter indicates 1. This basic example will be considered
throughout this paper.

However, a limitation of Sioud’s approach is that it
focuses only on the methods new and delete while objects
can be instantiated and freed without using these functions
(using functions free and malloc for example), so memory
leaks may be missed. To overcome this limitation, we focus
not only on the new and delete methods but directly on
constructors and destructors. This allows us to deal with
object-level memory.

C. Invariant Testing

Invariant testing allows to verify that a property of a
method, a class, or an algorithm is always true. To test
invariants, we can use assertions (in C++ or Java) or dedi-
cated methods. Class invariants concern fields. We can have
methods that verify that a field is never null or that each
time a field is modified, it stays within a given range. For
methods and algorithms, invariant testing can help verifying
that the result of a method or an algorithm is correct, for
example that a table is always sorted after a sort method,
no matter the order of the elements in the providing table.
Invariant testing can then be used to verify that the tested
program runs correctly: if at a certain point an invariant is
false, then there is an error in the program.

Listing 2. Source code of toy program
i n c l u d e <s t d i o . h>
i n c l u d e < s t d l i b . h>
i n c l u d e ”A. hpp ”
i n c l u d e ”B . hpp ”

i n t main (void) {
A∗ a = new A () ;
B∗ b = new B () ;
B∗ c = new B () ;
a−>foo () ;
a−>moo () ;
c−>zoo () ;
d e l e t e (a) ;
b−>roo () ;
b−>koo () ;
d e l e t e (b) ;
c−>j o o () ;
re turn 0 ;

}

Invariant testing can be executed dynamically, using pro-
grams like Daikon [6]. They can also be used to detect buffer
overflows [5], using program instrumentation and mutation.
However, these methods require behavior modifications in
the source code of the tested programs. Our approach allows
invariant testing without modifying the source code behavior
of the tested programs.

D. Interference Bug

Interference bugs happen when at least two threads of a
same program try to write in the same unprotected variable
in a very close time. It is a very common bug, but it
is also one of the most difficult to remove [30]. Many
approaches exist to test multi-threaded programs and try
to find interference bugs, e.g. [7], [31], [32], [33]. Among
them, CHESS [8] can detect the most bugs. However, it
requires a complete enumeration of all possible schedules.
Bhattacharya et al. [34] proposed a mathematical approach
to help these tools find interference bugs. Their approach
relies on the exact times when threads write in a variable
and we show in Subsection VI-C that ACRE can provide
these times.

Figures 1 represents the expected behavior of a multi-
threaded program: a master thread has three slaves and each
one access sequentially a shared variable, reading its value
and then writing a new value. Figure 2 represents the same
program with an unexpected behavior: a delay has been
injected in Slave 1 just before the writing event. Write events
of both Slave 1 and Slave 2 happen in a very closed time:
there is a risk of having an interference bug.

IV. APPROACH

Our goal is to generate aspects that can be used for
memory, invariant, and interference testing directly from the
source code of a C++ program. We thus create a DSL,
detailed below, to describe the tests. The DSL does not

Figure 1. Normal behavior of a program, from [34]

Figure 2. Behavior of a program with an injected delay, from [34]

change the compilation or behavior of the program under
test. We then create ACRE, a program that reads the DSL
statements and generates the corresponding aspects.

A. Domain Specific Language

As there are no annotations in C++ in opposition to Java,
we create our own DSL to describe the tests to be woven
into C++ source code at compile time. We choose to embed
the DSL statements into the C++ source code to ease the
development of tests: developers/testers would write tests
using this DSL as they would write comments for their code.
We ensure that the source code compiles despite the addition
of the DSL code while the DSL statements must also be
identifiable. We therefore require the DSL lines describing
a test aspect to start with the “////” symbol. All the DSL
lines defining one test aspect must be consecutive and at
least one non-DSL line must separate two aspect definitions.
The first DSL line for a definition contains the name of
the aspect and is defined via: //// name: AspectName. The
second line contains the type of the aspect in the form: ////
type: AspectType. ACRE currently supports four types of
aspects: counter, logging, timing, and checking. Each type
has its own characteristics, detailed below.

A counter aspect is used for memory testing. It first adds
a static attribute to the class under test, indicated in the
aspect definition. It then instruments the constructor and
destructor of this class to increment the attribute when the
constructor is called and to decrement it when the destructor
is called. Finally, after the execution of the main method of

the program, it prints the value of this attribute. In addition
to the first two mandatory lines, the definition of a counter
may include two optional lines. The first contains the name
of the class to count: //// className: ClassName. If this line
does not appear in the definition, ACRE uses the name of
the file where the aspect definition appears as the class name.
The second optional line contains the namespace to which
the chosen class belongs: //// namespace: NamespaceName,
which is used by AspectC++ to identify the classes that are
in a given namespace. If this line is not present ACRE will
search in the file for a namespace definition. If none is found,
the namespace is left undefined. Listing 3 shows an example
of the DSL code to create a counter. This code helps to find
memory leaks in real programs as discussed in Section VI.

Listing 3. DSL used to generate counter aspect
/ / / / name : EVPCG
/ / / / t y p e : c o u n t e r

A checking aspect can be used for invariant testing.
It contains just one advice declaration. After the first
two mandatory lines, the third line must contain the
name of a method and when the aspect must be exe-
cuted (before, after, or instead of the method). The for-
mat of this line is: //// before / after / around: [return-
Type][className::]MethodName[(arguments)]. The class
name may contain the namespace and the class name,
separated by “::”. After these three lines, the developer
describes the aspect. Five descriptions lines are available
and can be combined.

The first line allows the creation of a variable: //// create:
type && VariableName. If developers want to use the con-
structor, for example A a(x), then the attribute VariableName
must be the name of the variable followed by parentheses
containing the required arguments. In the previous example,
the DSL line is //// create: A && a(x). For initialisation,
VariableName must contain the complete line required to
initialise the variable, in addition to its name. For example,
for int i = 0, the line is //// create: int && i=0. The
second description is used to give a value to a variable
using a method: //// store: type && howToGet. The attribute
howToGet must have the form a.b() or a → b(), where
b() is a method returning the variable. The next lines are:
//// do: if(condition) and//// do: endIf. These lines allow the
developers to create if statements. The final possibility is: ////
do: line, which contains the lines that the developer wants to
use without modification. Listing 4 shows an example of the
DSL code required to create a checking aspect, as discussed
in Section VI.

A timing aspect is used for interference testing. It gives the
access times in read and–or write of the selected attribute.
The third line must be //// time : second / nanosecond, to
indicate if the obtained times are in seconds or nanoseconds.
Then, the description must contain at least one of the three

Listing 4. DSL used to generate checking aspect
/ / / / name : D e l t a s
/ / / / t y p e : c h e c k i n g
/ / / / a f t e r : i t e r a t i o n
/ / / / s t o r e : NOMAD: : S i g n a t u r e ∗ &&

t h i s−> p . g e t s i g n a t u r e ()
/ / / / s t o r e : i n t && s i g n a t u r e−>g e t n ()
/ / / / s t o r e : NOMAD: : Mesh &&

s i g n a t u r e−>mesh ()
/ / / / s t o r e : i n t && mesh . g e t m e s h i n d e x ()
/ / / / c r e a t e : NOMAD: : P o i n t && de l ta m (n)
/ / / / c r e a t e : NOMAD: : P o i n t && d e l t a p (n)
/ / / / do : mesh . g e t d e l t a p (d e l t a p ,

mesh index)
/ / / / do : mesh . g e t d e l t a m (del ta m ,

mesh index)
/ / / / do : f o r−i−0−n
/ / / / do : i f (de l t a m [i] > d e l t a p [i])
/ / / / do : p r i n t f (” Error ”)
/ / / / do : e n d I f
/ / / / do : endFor

following lines: //// attribute : AttributeName [&& set &&
get], //// set : SetterSignature et //// get : GetterSignature.
They precise which attribute is concerned by the aspect. Set-
terSignature and GetterSignature are the complete signature
of the setter/getter method. AttributeName is the name of the
field. If this line is used, ACRE considers that the attribute
belongs to the class where the description is found, and if
the attributes set and get are provided, ACRE considers
that the setter is set AttributeName(...) while the getter is
get AttributeName(...). If the concerned methods signatures
are not these ones then the line //// attribute : AttributeName
[&& set && get] must not be used. Listing 5 shows an
example of the DSL code required to create a timing aspect,
as discussed in Section VI.

Listing 5. DSL used to generate timing aspect
/ / / / name : T i m i n g A s p e c t
/ / / / t y p e : t i m i n g
/ / / / t i m e : nanosecond
/ / / / a t t r i b u t e : mesh index && s e t && g e t

A logging aspect is used to obtain a trace of the program
and allows developers to print a statement each time the
program enters or leaves a method. After the first two
mandatory lines, a third mandatory line specifies when the
aspect should be called (when the method is called or
executed) and the name of the associated method: //// method
&& call / execution && MethodName. MethodName must
contain the complete signature of a method if the developer
uses the aspect for a single method or a search pattern
similar to a signature, i.e. a return type, a class name, a
method name, and two parentheses containing the types of
the arguments separated by commas (if any). After this line,
there must be one or more lines of the form: //// when:
before / after, which indicate when to print the statement:

before or after the method. Listing 6 shows an example of
the DSL code required to create the logging aspect shown
in Listing 1.

Listing 6. DSL lines to generate logging aspect
/ / / / name : l o g g i n g A s p e c t
/ / / / t y p e : l o g g i n g
/ / / / methods && c a l l && % % : : % (. . .)
/ / / / when : b e f o r e

Table II proposes a synthesis of the DSL syntax.

Table II
DSL SYNTHESIS.

Type Line Description

All
//// name : AspectName Name of the generated

aspect

//// type : AspectType Type of the generated
aspect

Counter
//// className : ClassName Class concerned by the

aspect
//// namespace : Name Namespace of the class

Logging

//// method && call / Method concerned by the
execution && MethodName aspect

//// when : before / after Aspect executes before or
after the method

Timming

//// time : second / Time unit
nanosecond
//// attribute : AttributeName Attribute concerned by
[&& set && get] the aspect
//// set : SetterSignature Setter of the attribute
//// get : GetterSignature Getter of the attribute

Checking

//// before / after /around : The aspect is executed
[return type][className::] before or after the
MethodName[(arguments)] concerned method
//// create : type Create a type variable
&& VariableName
//// store : type && howToGet Give a value to a variable
//// do : if(condition) Create an if bloc
//// do : endIf
//// do : while(condition) Create a while bloc
//// do : endWhile
//// do : for-variableName-

Create a for bloc-begin-end
//// do : endFor
//// do : line Write line in the aspect

B. ACRE

When the aspect definitions are embedded in the source
code by the testers, we use ACRE to read them and to
generate the corresponding aspects. ACRE is written in Java
and is available on-line2 under the GPL license. ACRE takes
as input a folder containing C++ source code files (.hpp
or .cpp), compilable or not. ACRE then goes through the

2http://web.soccerlab.polymtl.ca/∼ducloset/ACRE

folder and parses every .hpp and .cpp file. If ACRE finds the
definition of a testing aspect, then, depending on the type of
the aspect, it calls the corresponding sub-parser, analyses the
definition, and generates the appropriate AspectC++ code.
If a problem is found in an aspect definition, ACRE does
not create this aspect but still parses the remaining files
for other definitions. ACRE then creates a .ah file whose
name comes from the aspect definition and then writes the
relevant aspect code. It also automatically translates some
C++ keywords into AspectC++ keywords when needed. For
example, this does not exist in AspectC++ and must be
replaced by tjp → that().

For the checking type, we saw in the previous subsection
that a store action is used to give a value to a variable using
a method. However, the name of the variable is not given
in the DSL lines. ACRE checks whether or not the method
obtained by the store action is a getter. If it is (i.e. if the
method starts with get), then the variable is given the name
of the used attribute. For example, if the provided line is ////
store: int && this → get size() the generated line is int
size = tjp → that() → get size();. If the method is not a
getter, then the variable is given the method name, e.g. ////
store: int && a.size() generates int size = a.size();.

For the logging type, the generated aspect prints the
complete signature of a method each time the program
enters or leaves it. We use the AspectC++ keyword Joint-
Point::signature() to get this signature. We also create one
advice for each when line in the description. Thus, for
an aspect that writes before and after each call to each
method of the program, the DSL contains two when lines
and the generated aspect contains two advices. We also use
an attribute inside the aspect to take care of indentation.

For a counter aspect, a change to the OO source code
is required: we must initialise the attribute representing the
counter. ACRE reminds the testers of this initialisation by
providing them with the piece of code to be inserted in their
source code. We could have automatically added these two
lines, but we prefer to let the developers choose how to
modify their code so that they know where these lines are
if they want to remove them. Listing 7 gives an example of
such an aspect.

V. EMPIRICAL STUDY

The goal of our study is first to see if AOP can be used
to test C++ programs. If this is possible, we aim to provide
a tool that automatically generates testing aspects from the
source code. Different types of aspects can be created, which
allow memory, invariant, and interference testing.

The quality focus of our study is to use our tool to
automatically generate aspects and to detect at least one
bug of each type in a C++ program, NOMAD, using these
aspects. We use ACRE to test NOMAD because it is a C++
program used in both industry and research, which promotes
the generalisation of our results.

The perspective of our study is that of developers and
testers interested in testing C++ programs without having to
modify their source code. Our approach can also be useful
for developers who want to test programs without knowledge
of testing techniques and of AOP.

We investigate three research questions:
• RQ1: Can generated aspects be used to do memory

testing for C++ programs ?
• RQ2: Can generated aspects be used to do invariant

testing for C++ programs ?
• RQ3: Can generated aspects be used to find interfer-

ence bugs in C++ programs ?

A. Analyses

To answer RQ1 and convince ourselves that AOP can be
used to test C++ programs, we first try to find a memory leak
in a toy program, described in Section III-B. We then find a
memory leak in a real program, NOMAD, with a generated
aspect. To answer RQ2, we verify a crucial mathematical
point of the algorithm implemented in NOMAD. We mutate
the source code of NOMAD and use a generated aspect to
detect a wrong algorithm implementation. Finally, to answer
RQ3, we use generated aspects to get access times for both
reads and writes to a shared variable in NOMAD. These
times are then provided to another approach, [34], to help
finding possible interference bugs.

For RQ1, our oracles are a memory leak introduced
on purpose in the toy program and a user bug report
concerning a memory leak in NOMAD. For RQ2, our oracle
is the source code mutated independently by a developer of
NOMAD. For RQ3, our oracle are the developers validating
the interference bugs.

B. NOMAD

NOMAD [10] is a C++ program that can be used with
any operating system. It is designed to solve difficult black-
box optimization problems, using the mesh adaptive direct
search (MADS) algorithm [35], which involves minimizing
a constrained objective function. A black-box is a function
that may be noisy, could be expensive to compute, and may
fail to evaluate even at feasible points. Such functions are
often encountered in engineering applications, for example
the computation of the shape of a wing. NOMAD is used
both by researchers and in industry. It is available on-line3

under the LGPL license and has been downloaded more than
3,000 times since 2008. It is composed of 59 classes for
around 48k LOCs, and is thus representative of industrial
C++ programs.

VI. RESULTS

We explain how we answer our research questions and
show the generated aspects used for that.

3http://www.gerad.ca/nomad

A. RQ1

We first embed an aspect into the source code of the toy
program described in Section III-B to detect a memory leak.
This aspect behaves as follows: each time a constructor of
the class specified in the pointcut (i.e. A or B) is called,
a counter is incremented. Each time a destructor of these
classes is called, the same counter is decremented. Then,
after the execution of any main method (% main(...)), we
print the counter. The only modification to the source code
of our toy program is the initialisation of the counter in
one of the .cpp files. This modification is not specific to
our approach, it comes from AspectC++: we must initialise
static attributes of aspects in a .cpp file. We then use ag++,
the AspectC++ weaver, to compile our program with this
aspect woven into its source code. We then run our program
and, as expected, the line Final count of A or B: 1 appears.
The memory leak has been successfully detected using AOP.

We then investigate NOMAD. A user reported a bug
concerning a memory leak when running NOMAD on
Windows (report available upon request). We generated one
aspect per class, i.e. one counter per class. We then add
the counter initialisations to the source code, modify the
makefile to use ag++ instead of g++, and compile NOMAD.
We run NOMAD on the problem instance reported in the
bug report and find that 74 objects of the class Eval Point
are instantiated but never freed. This result is given by the
aspect shown in Listing 7, which is produced by the two
DSL lines presented in Listing 3.
This result allows us to answer RQ1: yes, ACRE can
be used to perform memory testing for C++ programs.

B. RQ2

The checking aspect showed in Listing 8 aims to verify
that a crucial mathematical point of the MADS algorithm
is always satisfied by invariant testing. This point concerns
the step size of the algorithm, which is essential for the
convergence of the solving method. We can investigate this
invariant by generating an aspect without modifying the
NOMAD’s behavior. To generate the aspect we use the
DSL statements in Listing 4. We do not find any bugs,
so this part of the algorithm works as expected for all the
37 problems that the NOMAD team of developers and us
tried. However, to verify that we can find a bug if any,
the NOMAD developers team mutated the NOMAD code to
have a wrong implementation of this algorithm, by changing
an operator (an addition becomes a subtraction). After this
mutation, the invariant that the aspect checks is false as
expected.
This result allows us to answer RQ2: yes, ACRE can
be used to perform invariant testing for C++ programs.

C. RQ3

For interference testing, as explained in Section III-D,
aspects are used to get access times for both read and write

Listing 7. Generated aspect for memory testing
i n c l u d e <s t d i o . h>
i n c l u d e < s t d l i b . h>

a s p e c t EVPCG{
p u b l i c : s t a t i c i n t E v a l P o i n t C o u n t ;
/ / Do n o t f o r g e t t o i n i t i a l i z e t h i s
/ / v a r i a b l e i n t h e s o u r c e code ! !
/ / J u s t copy t h e s e l i n e s i n t o t h e
/ / a p p r o p r i a t e . cpp f i l e
/ / # i n c l u d e ”EVPCG . ah”
/ / i n t EVPCG : : E v a l P o i n t C o u n t = 0;

p o i n t c u t E v a l P o i n t C o u n t e d () =
”NOMAD: : E v a l P o i n t ” ;

ad v i ce E v a l P o i n t C o u n t e d () : s l i c e s t r u c t {
c l a s s E v a l P o i n t C o u n t {

p u b l i c : E v a l P o i n t C o u n t (){
EVPCG : : E v a l P o i n t C o u n t ++;}

p u b l i c : ˜ E v a l P o i n t C o u n t (){
EVPCG : : Eva l Po in tCoun t−−;}

} E v a l P o i n t c o u n t e r ;
} ;

ad v i ce e x e c u t i o n (”% main (. . .) ”) : a f t e r (){
p r i n t f (” F i n a l c o u n t o f E v a l P o i n t :

%d\n ” , E v a l P o i n t C o u n t) ;
i f (E v a l P o i n t C o u n t > 0)

p r i n t f (”Memory l e a k ! !\ n ”) ;
}

} ;

Listing 8. Generated aspect for invariant testing
i n c l u d e <s t d i o . h>
i n c l u d e < s t d l i b . h>
i n c l u d e ”Mads . hpp ”

a s p e c t D e l t a s {
ad v i ce e x e c u t i o n (”% . . . : : i t e r a t i o n (. . .) ”)

: a f t e r (){
NOMAD: : S i g n a t u r e ∗ s =

t jp−>t h a t ()−> p . g e t s i g n a t u r e () ;
i n t n = s−>g e t n () ;

NOMAD: : Mesh mesh = s−>get mesh () ;
i n t l = mesh . ge t mesh index () ;

NOMAD: : P o i n t de l t a m (n) , d e l t a p (n) ;
mesh . g e t d e l t a p (d e l t a p , l) ;
mesh . g e t d e l t a m (del ta m , l) ;
f o r (i n t i = 0 ; i < n ; ++ i){

i f (de l t a m [i] > d e l t a p [i]){
p r i n t f (” E r r o r :

de l t a m [% i] > d e l t a p [% i]\ n ” , i , i) ;
e x i t (0) ;

}
}

}
} ;

events. To automatically generate a testing aspect to collect
timings, we use the DSL statements shown in Listing 5. The
corresponding aspect, shown in Listing 9, gives us all the
access times for the attribute Mesh index, which is used in
the MPI version of NOMAD. MPI4, for Message Passing

4http://www.mcs.anl.gov/research/projects/mpi/

Interface, is a communication protocol used in parallel
programming.

Once these times are recorded, we provide them as an
input to the approach proposed by Bhattacharya et al. [34],
which gives us the optimal place to inject a delay (and
its duration) in the source code so that we maximize the
possibility of having an interference bug pattern. After
injecting the given delay in the NOMAD source code, we
found that indeed an interference bug may occurs for the
attribute Mesh index.
This result allows us to answer RQ3: yes, ACRE can be
used to perform interference testing for C++ programs.

Listing 9. Generated aspect for interference testing
i n c l u d e <s t d i o . h>
i n c l u d e < s t d l i b . h>
i n c l u d e <s y s / t ime . h>
us ing namespace s t d ;

a s p e c t t imingMeshIndex {
p u b l i c :

s t r u c t t i m e v a l c o u r a n t ;
long t i m e C o u r a n t ;

ad v i ce e x e c u t i o n (”% NOMAD: : Mesh : :
s e t m e s h i n d e x (. . .) ”) : a f t e r () {

g e t t i m e o f d a y (& c o u r a n t , NULL) ;
t i m e C o u r a n t = c o u r a n t . t v u s e c ;
p r i n t f (” E c r i t u r e de mesh index :

%l d \n ” , t i m e C o u r a n t) ;
}
ad v i ce e x e c u t i o n (”% NOMAD: : Mesh : :

ge t mesh index (. . .) ”) : a f t e r () {
g e t t i m e o f d a y (& c o u r a n t , NULL) ;
t i m e C o u r a n t = c o u r a n t . t v u s e c ;
p r i n t f (” L e c t u r e de mesh index :

%l d \n ” , t i m e C o u r a n t) ;
}

} ;

D. Discussion

As shown in previous Section, we can detect a memory
leak in NOMAD using an aspect automatically generated by
ACRE. However, we could argue that this bug was actually
introduced by the aspect and that it is not the one mentioned
in the bug report and is not present in the not-tested version
of NOMAD. To verify if the found bug was not introduced
by ACRE and the underlying AspectC++ code, we searched
for the leak without using any aspects. We modified the
source code of NOMAD, adding a static integer counter as
an attribute in the class Eval Point, initialising it to 0. We
then increment this counter in the constructor and decrease
its value in the destructor of Eval Point. Finally, we printed
this counter at the end of the main method (we thus manually
accomplish the task previously performed by the aspect). We
then compiled this code as any NOMAD developer would
do and ran NOMAD on the memory-leak problem. We find
the same leak as before: 74 objects of type Eval Point are

created but not deleted. This analysis shows that the leak
found was not introduced by the aspect but is a real bug. We
communicated the bug to the NOMAD team of developers
and they were able to fix it.

The presented memory leak was also found by the NO-
MAD team using Valgrind. However, Valgrind indicated only
that a leak was there, but not which class was concerned.
On this point, our approach is more precise than Valgrind, in
addition of being faster because an injected aspect does not
change in a significant way the execution time of NOMAD,
compared to the use of Valgrind.

We showed in Section IV that timing aspects concern only
attributes that are available using getters and setters. This
is a limitation of our approach, due to internal limitation
of AspectC++. With the current version of AspectC++
execution model, we cannot declare pointcut on variables
and we cannot declare advice on other code elements than
classes and methods.

Counter aspects may be subjects to interference problems.
We showed in Section IV that these aspects increment and
decrement a static attribute each time a constructor or a
destructor of a class is called. However, we could not find a
case where two instances of the same class tried to access
the attribute at the same time and so we do not know yet
what could happen in such a case. A part of future work
will be to test this point and see if our results are still valid
in such cases.

With the current version of the DSL, counter aspects
cannot be used on other types than classes. Allocation and
deallocation of arrays could have been done, using the
malloc and free functions, however there is no possibility
to distinguish two different arrays. Counter aspect could
then only say that there exist some arrays that are non-
deallocated, but could not say exactly which ones.

It is easy to add a new type of aspect to the DSL: apart
from the first two lines, the aspect definition is treated by
the parser that corresponds to its type. Adding a new type of
aspect means adding a new parser. We provide an API in the
source code of ACRE to help developers who want to create
a parser for a new type. Using this API involves adding a
few lines to the source code of ACRE and implementing
few well-defined methods.

VII. VALIDITY THREATS

An internal validity threat is that the bugs found may be
caused by the aspects added to the source code. The user
must ensure that the test to be performed does not introduce
new bugs. We report that the memory leak detected by our
AOP approach can also be found without using aspects.

An external validity threat is that ACRE has been used
only under Linux. However, it is written in Java and can
therefore be used on any operating program with the appro-
priate Java virtual machine (v1.6). Furthermore, AspectC++

is available for every operating systems, which suggests that
our approach can be used on any platform.

Another external validity threat is that ACRE has only be
applied on NOMAD, a large C++ program used in industry
and research. Yet, future work includes applying ACRE on
other programs, such as ffmpeg of firefox.

Regarding reliability validity, the toy program, the source
code of ACRE (under the GPL license)2, and the source
code of NOMAD (under the LGPL license)3 are publicly
available on the Internet.

VIII. CONCLUSION AND FUTURE WORK

We used AspectC++ to perform memory, invariant, and
interference testing in non-embedded C++ programs. To the
best of our knowledge, using AOP to generate tests has
previously been tried only with Java programs and embedded
C++ programs. Moreover, AOP was mainly used for unit
and integration testing in conjunction with other non-AOP
techniques.

We proposed ACRE, an Automated aspeCt cREator,
that automatically generates testing aspects from the source
code of tested programs. We build ACRE atop a domain-
specific language (DSL) that we use to describe the testing
aspects and whose statements are embedded into the C++
source code without impacting its compilation and behavior.
ACRE implements a parser for this DSL and automatically
generates testing aspects from the DSL statements embedded
in the source code. Developers who use our approach do not
need expertise in AOP development. We applied ACRE to
an industrial program, NOMAD. We showed that ACRE
can be used to find real bugs in NOMAD: we were able
to find a memory leak, to verify a mathematical invariant,
and to show that interference bug may occur under certain
condition in NOMAD.

In future work, we will extend ACRE to generate a wider
range of aspect types, for example to test pre- and post-
conditions. We will also extend ACRE to generate aspects
in AspectJ, to use our approach on Java programs. We also
plan to add a graphical user interface to ACRE to ease
the use of its DSL, and to make usability test of ACRE
with developers. Finally, we would like to avoid placing
the aspect definitions in the source code (for example, by
adding them into external files), which could allow ACRE
to be used without extra definitions in the source-code files.
Acknowledgment. This work has been partly funded by the
NSERC Research Chairs in Software Patterns and Patterns
of Software.

REFERENCES

[1] B. P. Lienz and E. F. Swanson, Software Maintenance Man-
agement. Addison-Wesley Longman Publishing Co., Inc.,
1980.

[2] H. Schildt, The Art of C++. McGraw-Hill Osborne Media,
2004.

[3] D. L. Heine and M. S. Lam, “A practical flow-sensitive and
context-sensitive C and C++ memory leak detector,” in PLDI,
2003.

[4] R.-G. Xu, P. Godefroid, and R. Majumdar, “Testing for buffer
overflows with length abstraction,” in ISSTA, 2008.

[5] F. Zeng, M. Chen, K. Yin, and X. Wang, “Research on buffer
overflow test based on invariant,” in 9th IEEE Int. Conf. on
Computer and Information Technology, 2009.

[6] M. D. Ernst, J. H. Perkins, P. J. Guo, S. Mccamant,
C. Pacheco, M. S. Tschantz, and C. Xiao, “The daikon system
for dynamic detection of likely invariants,” in Science of
Computer Programming, 2006.

[7] S. Park, S. Lu, and Y. Zhou, “Ctrigger: exposing atomicity
violation bugs from their hiding places,” SIGPLAN Not.,
vol. 44, no. 3, pp. 25–36, 2009.

[8] M. Musuvathi, S. Qadeer, and T. Ball, “Chess: A systematic
testing tool for concurrent software,” 2007.

[9] T. Elrad, M. Aksit, G. Kiczales, K. Lieberherr, and H. Ossher,
“Discussing aspects of AOP,” Commun. ACM, vol. 44, no. 10,
pp. 33–38, 2001.

[10] S. Le Digabel, “Algorithm 909: NOMAD: Nonlinear opti-
mization with the MADS algorithm,” ACM Transactions on
Mathematical Software, vol. 37, no. 4, pp. 44:1–44:15, 2011.

[11] O. Spinczyk, D. Lohmann, and M. Urban, “AspectC++:
Extension de la programmation orienté aspect pour C++,”
Software Developer’s Journal, no. 6, 2005.

[12] X. Li and X. Xie, “Research of software testing based on
AOP,” in 3rd International Conference on Intelligent Infor-
mation Technology Application, 2009.

[13] J. Metsä, M. Katara, and T. Mikkonen, “Comparing aspects
with conventional techniques for increasing testability,” in Int.
Conf. on Software Testing, Verification, and Validation, 2008.

[14] G. Xu, Z. Yang, H. Huang, Q. Chen, L. Chen, and F. Xu,
“Jaout: Automated generation of aspect-oriented unit test,” in
11th Asia-Pacific Software Engineering Conference, 2004.

[15] P. Knauber and J. Schneider, “Tracing variability from imple-
mentation to test using AOP,” in International Workshop on
Software Product Line Testing, 2004.

[16] M. d’Amorim and K. Havelund, “Event-based runtime veri-
fication of java programs,” in 3rd int. workshop on Dynamic
analysis, 2005.

[17] J. Pesonen, “Extending software integration testing using
aspects in Symbian OS,” in Testing: Academic & Industrial
Conference on Practice and Research Techniques, 2006.

[18] J. Pesonen, M. Katara, and T. Mikkonen, “Production-testing
of embedded systems with aspects,” in Haifa Verification
Conference, 2005.

[19] J. Metsä, M. Katara, and T. Mikkonen, “Testing non-
functional requirements with aspects: An industrial case
study,” in ICQS, 2007.

[20] D. Mahrenholz, O. Spinczyk, and W. Schrder-Preikschat,
“Program instrumentation for debugging and monitoring with
aspectc++,” in Int. Symp. on Object-Oriented Real-Time Dis-
tributed Computing, 2002.

[21] S. Farhat, G. Simco, and F. J. Mitropoulos, “Using aspects
for testing nonfunctional requirements in object-oriented sys-
tems,” in IEEE SoutheastCon, 2010.

[22] M. Ceccato, P. Tonella, and F. Ricca, “Is AOP code easier or
harder to test than OOP code?” in AOSD, 2005.

[23] M. Kumar, A. Sharma, and S. Garg, “A study of aspect
oriented testing techniques,” in ISIEA, 2009.

[24] T. Xie and J. Zhao, “Perspectives on automated testing
of aspect-oriented programs,” in 3rd workshop on Testing
aspect-oriented programs, 2007.

[25] D. Sokenou and S. Herrmann, “Aspects for testing aspects?”
in 1st workshop on Testing aspect-oriented programs, 2005.

[26] H.-J. Boehm, “Advantages and disadvantages of conservative
garbage collection,” 2012, http://www.hpl.hp.com/personal/
Hans Boehm/gc/issues.html.

[27] M. Gati, “Analyzing run-time component memory consump-
tion with aspect-oriented techniques,” Stan Ackermans Insti-
tute, Tech. Rep., 2004.

[28] H. Mcheick, H. Dhiab, M. Dbouk, and R. Mcheik, “Detecting
type errors and secure coding in C/C++ applications,” in
ACS/IEEE Int. Conf. on Computer Systems and Applications,
2010.

[29] A. Sioud, “Gestion de cycle de vie des objets par aspects pour
C++,” Master’s thesis, UQaC, 2006.

[30] U. Software Quality Research Group, Faculty of Science,
“Concurrency anti-pattern catalog for java,” 2012, http://
faculty.uoit.ca/bradbury/concurr-catalog/.

[31] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and
S. Ur, “Framework for testing multi-threaded java programs.”
Concurrency and Computation: Practice and Experience, pp.
485–499, 2003.

[32] Y. Ben-Asher, E. Farchi, and Y. Eytani, “Heuristics for
finding concurrent bugs,” in 17th Int. Symp. on Parallel and
Distributed Processing, 2003.

[33] P. Joshi, M. Naik, C.-s. Park, and K. Sen, “Calfuzzer: An
extensible active testing framework for concurrent programs,”
in 21st Int. Conf. on Computer Aided Verification, 2009.

[34] N. Bhattacharya, O. El-Mahi, E. Duclos, G. Beltrame, G. An-
toniol, S. Le Digabel, and Y.-G. Guéhéneuc, “Optimizing
threads schedule alignments to expose the interference bug
pattern,” in 4th SSBSE, 2012.

[35] C. Audet and J. Dennis, Jr., “Mesh adaptive direct search
algorithms for constrained optimization,” SIAM Journal on
Optimization, vol. 17, pp. 188–217, 2006.

