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ABSTRACT: Design Patterns have been quickly
adopted by the object-oriented community, in
particular since the publication of “Design Patterns:
Elements of Reusable Object-Oriented Software”.
They offer elegant and reusable solutions to
recurring problems of design. Their use increases
productivity and development quality. However,
these solutions, at the boundary of programming
languages and design models, suffer from a lack of
formalism. For this reason, their application
remains empirical and manually performed. This
position paper presents how a meta-model can be
used to obtain a representation of design patterns
and how this representation allows both automatic
code generation and design patterns detection.
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1. Introduction

Since their emergence [1, 16], design patterns have
been widely accepted by software practitioners.
Their contribution covers definition, design, and
documentation of class libraries and frameworks.
Even if there is no consensus about the way to
support the application of design patterns (using
tools, languages, … [15]), we strongly believe that
this task should be automated or at least, be
assisted.  Moreover, manual application is tedious
and error prone [20]. In addition, as mentioned in
[12], the loss of traceability remains an essential
drawback of this by-hand (and sometimes hard)
coding task. In other words, when a pattern is
applied, the resulting implementation does not

provide a mean to go back to the pattern for which
it was required, the pattern code being mixed within
the user’s application code.

The application of a design pattern can be
decomposed in three distinct activities: 1) the
choice of the right pattern, which fulfils the user
requirements, 2) its adaptation to these
requirements (the term instantiation is commonly
used to identify this task), and, 3) the production of
the code required for its implementation.
Automating these two last tasks is a very
challenging issue for the Design Patterns
community and galvanizes a lot of research works.

Two kinds of works can be distinguished: those
using a pattern representation for a given
implementation language and those using a
representation dedicated to a given modeling
language [14]. In both cases, the first issue concerns
the necessary extension of an existing base
language or the definition of a new one. If patterns
are supported at the implementation language level
[7, 10], the traceability between the applied patterns
and the resulting code is de facto ensured [3].
However, this approach suffers from the use of a
non-standard implementation language that
impedes portability of the applications developed
with it. The second approach, based on a modeling
language, does not have this limitation but, in most
case, does not address either code generation or
traceability [4, 6, 11, 19]. In an iterative
development, where source code and model are not
synchronously manipulated, it is important to
provide a univocal link between them. Traceability
must absolutely be enforced.
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In this paper we present a solution based on a
modeling language where code generation and
traceability are addressed. Patterns are formalized
using a set of basic bricks called entities and
elements.  These bricks are defined in the core of a
meta-model dedicated to the representation of
patterns. In order to evaluate it more rapidly, we
have not defined it as an extension of an existing
one (like UML for example). The proposed meta-
model, experimented in Java, provides a mean to
describe structural and behavioral aspects of design
patterns. From this description, it gives the required
machinery to produce code and to detect
instantiated patterns in code.

The intended contribution of our approach is the
reification of design patterns as first-class modeling
entities.  We use such reified design patterns to
produce their associated code implementation,
according to the context of their application, and to
detect their occurrences in user’s code.  We deduce
the way to apply a design pattern solely from its
declaration, not from external hints or
specifications. The meta-model we use handles
uniformly instantiation and detection of design
patterns.

The rest of this paper is organized as follow:
Section 2 proposes a short introduction to the meta-
modeling technique applied to the patterns
representation. Section 3 introduces our meta-
model and illustrates, through the Composite
pattern example, how we use it to describe a
pattern, to instantiate it, to produce its associated
code, and to detect it. Section 4 discusses
limitations of our approach and finally, section 5
concludes on the use of the meta-modeling
technique.

2. Meta-modeling and patterns

Techniques based on meta-modeling consist in
defining a set of meta-entities from which a design
pattern description is obtained by composition of
these entities using an instanciation  (pseudo-) link.
This composition follows semantic rules, fixed by
the relations among meta-entities.  From this point
of view, meta-modeling is a mean to formalize
patterns.

A pattern meta-model does not capture what a
pattern is in general, but how it is used in one, or
several specific cases, for example, application,
validation, structural representation, etc.  Each kind
of use implies the definition of a dedicated meta-
model. For example, a fragment-based meta-model
for representing patterns structure [4], or a meta-
entity-based meta-model for patterns instantiation
and validation [19].

A pattern meta-model never “produces”
patterns.  Instead of, it produces models of patterns.
These resulting models are approximations of
patterns in the considered use-case. A pattern meta-
model ensures that patterns exist as first-class
entities.  However, it does not guarantee the
traceability per-se.  Nevertheless, it is possible to
propose a mechanism of detection that solves the
traceability problem.

There exists several meta-models for
representing design patterns but none is specifically
designed toward code generation and detection. [6]
introduces meta-model for design patterns
instantiation and validation but without support for
code generation. In the PatternGen tool [19], the
meta-model does not support source code
production (another module handles this feature)
and it offers no patterns detection.  In [4], the
fragment-based system allows only design patterns
representation and composition.

3. Presentation of the meta-
model using a toy example

Throughout this section, we will focus on the
Composite pattern. This pattern is relatively simple
and is often used as example [14] either for code
production [2] or for detection [8, 9]. It composes
objects into tree structures to represent part-whole
hierarchies.  Composite lets clients treat individual
objects and compositions of object uniformly [1].
We follow the description presented in the
“Implementation” section of [1], in paragraph
“declaring the child management operations”.  This
is the most common use of this pattern (for
instance, see classes Component and Container of
the JAVA AWT1).

3.1. The meta-model in a nutshell

The meta-model embodies a set of entities
and the interaction rules between them.  All the
entities needed to describe structure and behavior of
design patterns introduced in [1] are present.
Figure 1 shows a fragment of the meta-model.

A model of pattern is reified as an instance
of a subclass of class Pattern. It consists in a
collection of entities (instances of PEntity),
 representing the notion of participants as defined in
[1].  Each entity contains a collection of elements
(instances of PElement), representing the different
relationships among entities.  If needed, new
entities or elements can be added by specialization
of the PEntity or PElement classes.

                                                          
1 Abstract Window Toolkit
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The meta-model defines the semantic of
patterns.  A pattern is composed of one or more
classes or interfaces, instances of PClass and
PInterface and subclasses of PEntity.  An
instance of PEntity contains methods and fields,
instances of PMethod and PField.  The association
and delegation relationships are expressed as
elements of PEntity.

An association (class PAssoc) belongs to
PEntity and references another PEntity (this is a
simplification that represents only simple
relationships like binary and mono-directional
associations found in [1]). For example, an
association that links a class B to a class A is defined
using two instances of class PClass, A and B, and
one instance of class PAssoc.  The instance of class
PAssoc belongs to A and references B.

Delegation is expressed in a similar way
using the class PDelegatingMethod.  For example,
the delegation of the behavior of a method foo of A
to a method bar of B is realized using an instance of
class PDelegatingMethod.  The instance of class
PDelegatinMethod belongs to A and references the
method bar of B.  The PDelegatinMethod object
also references the association between A and B to
deduce from its cardinality nature of the message
sent: simple or “multicast”.

3.2. Instantiation of the
Composite pattern

We now further present the meta-model
and its use through the Composite pattern example.
Figure 2 presents the general procedure to
instantiate a pattern.

� The first step consists in specializing the meta-
model to add all the structural and behavioral
needed constituents.  In the case of the
Composite pattern, the meta-model previously
presented is sufficient.  However, it would be
necessary, for example, to add a new PEntity,
called ImmutablePClass, to implement a
Composite pattern which leaves are immutable.
(In this case, a new subclass ImmutablePClass
to the class PClass would be added.)

� The second step consists in the instantiation of
the Composite pattern meta-model, built
according to the generic meta-model semantic.
We call the resulting model as an abstract
model because it retains no information about
the user’s application context. This abstract
model corresponds to a reification of the
Composite pattern and holds all the needed
information related to the pattern.

Fig 1: Simplified UML class-diagram of the meta-model
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Thus, the Composite pattern “takes reality” and
becomes a first-class object.  This differs from
[2, 7, 11] and is an important gain of our
approach.  Because pattern abstract models are
first-class objects, it becomes possible to
reason and act on them as regular objects.
Thus, it is possible to introspect them and
modify their structure and behavior both
statically and dynamically.

Figure 3a shows the structure of the Composite
pattern as defined in [1].  From the structure
and the notes, we obtain a new class diagram
where all informal indications (UML Notes) are
explicit.  This class-diagram, shown on Figure
3b, is the abstract model of the Composite
pattern.

The abstract model is expressed in a
declarative manner in the Java class
Composite, subclass of the class Pattern.
The next table shows a fragment of this
declaration dual of the diagram Fig 3b.

Composite pattern abstract model definition
class Composite extends Pattern {
Declaration takes place in the Composite class constructor
Composite(…) {
…
Declaration of the “Component” actor
component = new PInterface("Component")
operation = new Pmethod("operation")
component.addPElement(operation)
this.addPEntity(component)

Declaration of  the association “children” targeting
“Component” actor  with cardinality n

children = new PAssoc("children",
component, n)

Declaration of the “Component” actor
composite = new PClass("Composite")
composite.addShouldImplement(component)
composite.addPElement(children)

The method “operation” defined into “Composite” actor
implements the method operation of “Component” actor
and is linked to its  through the association “children”

aMethod = new PdelegatingMethod(
"operation", children)

aMethod.attachTo(operation)
composite.addPElement(aMethod)
this.addPEntity(composite)
Declaration of the “Leaf” actor
leaf = new PClass("Leaf")
leaf.addShouldImplement(component)
leaf.assumeAllInterfaces()
this.addPEntity(leaf)
}
Declaration of specific services dedicated to the Composite
pattern

…

For example, the service “addLeaf” to dynamically adds
“Leaf” actor to the current instance of the Composite
pattern

void addLeaf(String leafName) {

PClass newPClass = new PClass(leafName)
newPClass.addShouldImplement(
(PInterface)getActor("Component"))
newPClass.assumeAllInterfaces()
newPClass.setName(leafName)
this.addPEntity(newPCclass)

}

We can relate such a declarative description of
design patterns to the work on tricks by Eden,
Yehudai, and Gil [18].  With the purpose of
automating design patterns application in mind,
they define the notion of tricks, language
independent constructs that can be seen as links
among programming language idioms and
design patterns. In our approach, a design
pattern is described using low-level design
constructs (such as association, delegation…)
that are close to tricks.

Abstract models are stored inside a pattern
repository (class PatternsRepository,
Figure 1). This repository helps to access easily
to the previously defined design patterns and to
assess the relevance of the solution they
represent.

� The third step consists in the instantiation of
the abstract model into a concrete model. The
concrete model represents the pattern applied
to fit user application requirements. To
illustrate the instantiation procedure we use an
example that has been introduced in [1] and
reused in [6]. This example defines a hierarchy
of graphical components as shown Figure 4.

for all child in children

    child.operation()

Component

operation()

Composite
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remove(Component )

Leaf

operation()

children

*

Fig 3a: Structure of the Composite pattern

Fig 3b: Composite pattern abstract model
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Rounded squares represent instances of PClass,
oval, instance of PInterface and boxed method,
instance of PDelegetingMethod. Instance of
PAssoc and realization link use the UML notation.
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The abstract model instanciation is realized by
instantiating the class Composite defined in �.
Then, this instance is parameterized (each
participant or actor of the pattern is named for
example) to match the concrete application
(Figure 4). An alternative (�' on Figure 2) to
this parameterization is a cloning operation.
Cloning allows modifications of the
manipulated model (abstract or concrete) that
shortcuts its normal behavior, while ensuring
its integrity by providing a mean to come back
to a coherent model.

The following source code is given as an
example. We deduce it from the pattern
abstract model and the context.  A visual
manipulation tool (such as PatternsBox2 not
further described therein) dynamically produce
this code using user inputs.

Declaration of  a new Composite concrete model
Composite p = new Composite()
p.getActor("Component").setName("Graphic")
p.getActor("Component").

getActor("operation").setName("draw")
p.getActor("Leaf").setName("Text")
p.getActor("Composite").setName("Picture")
p.addLeaf("Line")
p.addLeaf("Rectangle")

� The final step consists in code generation. It is
automatically performed once the concrete
model currently manipulated receives the
“build()” message (see Figure 1). The Java
source code obtained from the concrete model
diagram Figure 4 is presented below:

/* Graphic.java */
public interface Graphic {
  public abstract void draw();
}

/* Picture.java */
public class Picture implements Graphic {
 // Association: children
 private Vector cildren = new Vector();

 public void addGraphic(Graphic aGraphic)
 {children.addElement(aGraphic);}

 public void removeGraphic(Graphic
                     aGraphic)

 {children.removeElement(aGraphic);}

                                                          
2 Available at http://www.emn.fr/albin

  // Method linked to: children
  public void draw()
  {for(Enumeration enum =

  children.elements();
        enum.hasMoreElements();
   ((Graphic)enum.nextElement()).draw());
  }
}

/* Text.java */
public class Text implements Graphic {
  public void draw(){}
}

/* Line.java */
public class Line implements Graphic {
  public void draw(){}
}

/* Rectangle.java */
public class Rectangle implements Graphic
{
  public void draw(){}
}

3.3. Detection of the Composite
pattern

The detection system is designed to work
on code produced by instantiation of abstract
models and on design patterns implemented by
hand.  It does not use any marking system and does
not require any detection-specific information to be
present in the code. The detection is based
principally on structural information and may be
extended to include other information The detection
system uses a repository of all the constituents of a
pattern (i.e. elements and entities). This repository,
instance of class TypesRepository (Figure 1)
contains all the PEntities and PElements currently
defined in the meta-model.

Detection is decomposed in two steps:

� The class PatternIntrospector, in charge of
the detection, submits all the syntactic elements
(classes, interfaces, methods…) found in the
user's source code to the types in the
TypesRepository.

Each type through its recognize method
detects which constituents match it. Then it
passes the remaining not recognized
constituents to the following type. The general
algorithm is depicted in the table presented on
the next page.

Then, the PatternIntrospector builds a
concrete model that represents the given user’s
code using only constituents defined into the
meta-model. Finally, it solicits each abstract
model found in the PatternsRepository to
determine which pattern(s) has been detected.

Rectangle

draw( )

Line

draw( )

Text

+draw( )

Picture

draw( )
addGraphic(Graphic)
removeGraphic( )
listGraphic( )

Graphic

draw( )

*
children

Fig 4: UML diagram of the concrete model
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Reconstruction algorithm, class PatternIntrospector
Let C: list of the user's classes
Let P: pattern being recognized
Let E: list of  existing entities (Pentity)
Let L: list of existing elements (PElement)
Let S: list of the syntactic elements (classes, interfaces…) found on the user code.
Let T: list of instanced of Pelement
Let U: class being examined

S = C
T = ∅
For each e of E, while size(S) > 0

S = e.recognize(S, P)
T = P.listPEntities()
For each t of T

U = Class.forName(t.getName())
S = U.getDeclaredConstructors() + U.getDeclaredMethods() + U.getDeclaredFields()
For each l of L, while size(S) > 0

S = l.recognize(S, P)
Method recognize of Pentity (e.recognize(S,P)) Method recognize of Pelement (l.recognize(S,P))

Let N: list of non-recognized entities

N = S
For each s of S
    If s = e Then
        P.addPEntity(new(s))
        N = N – {s}
Return N

Let N: list of non-recognized elements

N = S
For each s de S
    If s = l Then
        P.getActor(s.getDeclaringClass().
                getName()).addPElement(new(s))
        N = N – {s}
Return N

� Each abstract model examines and determines
which entities (instances of PEntity) of the
submitted model can be associated to its
different roles. The following criteria are
applied:
� A role of the abstract model must be

fulfilled by a constituent of same type in
the model built from the user's code.

� The model built from the user's code must
contain (at least) as many entities as the
abstract model.

� For each role attributed from the abstract
model, the corresponding entities in the
model being built must contain (at least) as
many elements as the entity from the
abstract model.

� Inheritance links must be present.
� Realization links must be present.
� Association links must be present.

The concrete model we submit to the Composite
abstract model is presented Figure 6.

The abstract model finds the following (partial)
results after having applied the three first criteria:

« Component » « Composite » « Leaf »
MyInterface
Component1
Component2

MyClass
Composite1
Composite2

MyClass
Composite1
Composite2
Leaf1
Leaf2

Once the three first criteria have been applied to
reduce the search space, the algorithm verifies for
each remaining criterion (binary constraint) which
entity (value), for a given role (variable), has a
supporting entity verifying this constraint.

This is similar to the arc-consistency problem in
CSP. In our case, if we obtain, after filtering, arc-
consistency, at least one valid instance of the
pattern represented by the abstract model used for
examination has been detected.

We use for filtering the AC-1 algorithm
proposed by Waltz in 1972. Its complexity
is O(n × e × d3) with n the number of roles,
e the number of criteria and d the maximum
number of potential PEntity for a role. This
algorithm is very costly but very easy to
implement and sufficient for evaluation
purposes.

Fig 6: Simplified UML class-diagram of the given user code
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After computations, as expected, the algorithm
found two instances of the Composite pattern:

* Pattern: Composite: 2 instance(s)
Component: Component1
Composite: Composite1, Composite2
Leaf: Leaf1
---
Component: Component2
Composite: Composite2
Leaf: Leaf2, Composite1

4. Limitations and future

4.1. Instantiation

The main limitation of our approach
concerns the integration of the generated code with
the user’s code. A solution would be to transform
the wanted implementation to fit the user’s code.
Instantiation would include the generation of the
strict implementation of the pattern, and then this
implementation would be integrated into the user’s
source code using source to source transformation.
We are currently investigating the definition of a
transformation engine (JavaXL) able to
automatically transform user’s source code
according to a pattern declaration.

4.2. Detection

Another problem of this approach
concerns the integration of the user's code
specificity into the detection mechanism.  How to
distinguish variants of a design pattern? The current
approach (based on a constraint programming AC3-
like algorithm) should be able to make such
distinctions.  However, we experienced limitations
with such a strict constraint system.  The solution
we are currently investigating (Ptidej) is based on
an explanation-based constraint system, with
dynamic constraint relaxation capabilities.  From a
strict design pattern declaration and according to
some priorities, the constraint system is able to
automatically relax unsatisfied constraints to find
more solutions.

5. Conclusion

As stated Section 2, several approaches
have been proposed to instantiate or to detect
design patterns.  Those approaches are either at the
implementation level or at the design level.

                                                          
3 Arc consistency

At the implementation level, design
patterns are represented through syntactic
constructions. Therefore, instantiation and detection
are straightforward.  The traceability is de facto
ensured.  However, this approach requires the use
of a dedicated implementation language, which
may be too much a constraint.

At the design level, design patterns are
represented through high-level constructs (such as
classes, methods…) independently from a specific
implementation language.  However, instantiation
(code generation) is not always supported and there
is no insurance for a 1-to-1 correspondence
between design constituents and implementation
constructs (a unique pattern, at design level, may be
spread out into several classes at the
implementation level).  Thus, there is a need for a
mechanism ensuring the traceability.

In this paper, we described a meta-model
that offers a way to define patterns at the design
level.  The structure and properties of a design
pattern are defined using the constituents defined in
the meta-model.  The same abstract model can be
used both for instantiation and detection.  There is
no dissemination of design pattern-related
information over the design or the implementation.
An abstract model contains all the information
related to its instantiation and detection, thus
ensuring its traceability.

However, techniques we have presented
are valuable for representing patterns essentially
from structure-based elements.  The main reason is
that each meta-entity needs to have code
equivalence and ability to detect in code its
corresponding syntactic construct. To reach this
goal, each description must be structure-based in
order to generate code (generation always provides
structure and not behaviour) and prevent us from an
uncertain dynamical source analysis.

 The problem of describing behaviour
using structural elements can be addressed using a
strict separation between patterns representation
and the code producer-detector system using two
meta-models.  A first meta-model could be used to
instantiate pattern using structural and behavioural
bricks without code equivalence and a second one
would provide bricks to produce and detect
architecture parcels.  Moreover, this separation
would allow us to represent patterns using
formalisms such as contracts [17] or constraints
applied on role and actor, even if this formalism
does not retain sufficient information to produce
code.  The main drawback of this solution is its
complexity: it requires definition of several
interacting meta-models.
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