
Design Patterns: A Round-trip

Hervé Albin-Amiot∗, Yann-Gaël Guéhéneuc†

École des Mines de Nantes
4, rue Alfred Kastler – BP 20722

44307 Nantes Cedex 3
France

{albin|guehene}@emn.fr

Abstract

Design patterns are of major interest to
increase software quality and abstraction
level. However, design patterns are diffi-
cult to choose, to apply, and to recover.
We propose a set of tools to use design pat-
terns in a round-trip fashion. We define
a meta-model to describe design patterns.
This meta-model is specifically oriented to-
wards design patterns instantiation and de-
tection. We develop a source-to-source
transformation engine to modify the source
code to comply with design patterns descrip-
tions. Meanwhile, we use an explanation-
based constraint solver to detect design pat-
terns in source code from their descriptions.
With these tools, we hope to offer a mean to
apply and to recover design patterns with-
out overhead for the developers.

∗This work is partly funded by Soft-Maint – 4,
rue du Château de l’Éraudière – 44 324 Nantes –
France.

†This work is partly funded by Object Technol-
ogy International Inc. – 2670 Queensview Drive –
Ottawa, Ontario, K2B 8K1 – Canada.

1 Problems

Developing quality code is a major con-
cern for the software community. Pro-
ducing bug-free, extensible, and adaptable
[Tok99] code is a hard task that requires
skills, experience, and a deep understand-
ing of the structure and behavior [RD99] of
the software under development and of its
context.

The first problem encountered when de-
veloping quality code is in understand-
ing the legacy of previous developments.
As Enzo Torresi put it, in the Bits and
Bytes column of the San Jose Mercury
News (November the 15th, 1990; cited in
[Pot90]):

The reason God was able to cre-
ate the world in seven days is that
he did not have to worry about the
installed base.

An experienced programmer can often
reconstruct much of the hierarchy of a
program’s design by recognizing commonly
used data structures and algorithms, and
by knowing how they typically implement
high-level abstractions [RW90]. However,

This paper has been accepted at the ECOOP 2001 workshop for PhD Students in Object-Oriented Systems.

tools do not yet support automatic creation
of these high-level abstractions based on ex-
isting systems [PM99].

The second problem encountered when
developing quality code is in building a new
piece of software with the best available
methodologies and techniques, and in in-
tegrating this new piece of software within
the legacy code. An experienced program-
mer often follows idioms to solve low-level
code-related problems, and possesses a set
of solutions to recurring high-level architec-
tural problems. However, tools do not yet
support the description and the automatic
application of these high-level solutions on
under-development or existing systems.

These two problems are related to a
global process of software design known as
round-trip. As defined by Booch [Boo91],
p. 517 (emphasis ours), round-trip is:

A style of design that empha-
sizes the incremental and iter-
ative development of a system,
through the refinement of different
yet consistent logical and physical
views of the system as a whole;
The process of object-oriented de-
sign is guided by the concepts of
round-trip gestalt design; Round-
trip gestalt design is a recognition
of that fact that the big picture
of a design affects its details, and
that the details often affect the big
picture.

Finally, the third problem arising when
developing quality code is in forging a com-
mon vocabulary among developers. This
vocabulary is composed of recurring prob-
lems and their solutions, of design and cod-
ing choices, and of shared experiences. This
vocabulary eases the development and facil-
itates the relationships and the recognition
among developers [Cop99].

2 Solution

As many other authors, we advocate the
use of design patterns to address the three
previous problems.

The ultimate goal of design patterns is
to help in designing software in a new way
and with better quality [Sou95]. Already,
design patterns are being used as build-
ing blocks for software architecture [TC97].
Figure 1 shows frameworks, kits and ap-
plications development cycles: These three
technologies benefit from the use of design
patterns.

Figure 1: This topology, borrowed from
[TC97], shows the path for developing a
new framework (bold upper arch) and the
path for developing a new kit (bold lower
arch). Both frameworks and kits benefit
from design pattern guidance, even though
they start from different sectors of the
topology. Once design patterns are iden-
tified in the application, the dotted arrows
show that different sectors of the topology
can be reached using this knowledge about
design patterns.

However, the application of design pat-
terns is error-prone [PUT+00], and the de-
tection in legacy code of design pattern is
difficult [Ban98].

Figure 2: A taxonomy of software engineering terms and of our tools. Ovals represent
abstraction levels related to designing software with design patterns. Between each ab-
straction levels, arrows indicate software engineering processes and techniques or tools
that support these processes. The forward and reverse arrows illustrates the round-trip
between abstract levels.

We propose a set of methods and tools to
create, to apply, and to detect design pat-
terns. Figure 2 shows an overview of our re-
search. There are still some missing pieces,
this article presents the current state of our
research.

These methods and tools use proven
technologies: In section 3, we introduce
a meta-model specifically oriented towards
application and detection of design pat-
terns. In section 4, we present our source-
to-source transformation engine. This
transformation engine is driven by the
meta-model to apply automatically design
patterns on source code. In section 5, we
propose the use of an explanation-based
constraint solver to detect automatically
design patterns described using our meta-
model. The methods and tools we propose
cover the entire life-cycle of a software and
address the problem of round-trip. Finally,
in section 6, we give pointers to future di-
rections of research.

Appendix A presents a succinct example
of the previous technologies and tools on a
simple application. Appendix B gives the
declaration of the Composite pattern using
our meta-model.

3 A Meta-Model
(Creation)

Our meta-model provides a way to de-
scribe the structural and behavioral aspects
of design patterns (such as those proposed
in [GHJV94]).

There exist several meta-models for rep-
resenting design patterns but none are
specifically designed towards detection and
code transformation. [RF00] and [PW96]
introduces meta-models for design patterns
instantiation and validation but without
support for code generation. In the tool
PatternGen [SGJ00], the meta-model
does not support code generation (another

module handles it) and it offers no patterns
detection. In [FMW97], the fragments-
based system allows only representation
and composition of design patterns.

Our meta-model is inspired from the
work of [PW96]. We did not define it as an
extension of an existing meta-model (such
as UML). We built it from scratch using
the Java programming language and fol-
lowing the JavaBeans formalism (proper-
ties, idioms, and introspection). The meta-
model handles uniformly the instantiation
and the detection of design patterns. It
embodies a set of entities1 and the inter-
action rules among them. An abstract
model of a design pattern represents the
design pattern generic micro-architecture
and behavior. An abstract model of a
pattern is expressed using constituents of
the meta-model. The abstract model of a
pattern contains the design pattern micro-
architecture [AFC98] and behavior. An ab-
stract model of a pattern may be reified:
The design pattern abstract model is cloned
and adapted to the current context (names,
cardinalities, specificities of the code, . . .)
and becomes a concrete model: A first-class
object that we can manipulate and about
which we can reason. We use reified de-
sign patterns to generate source code and
to detect sets of entities with similar archi-
tecture and behavior in source code. We
instantiate and detect the design patterns
according to their abstract models, rather
than according to external specifications.

The detailed rules of operation and use of
the meta-model are out of the scope of this
paper and will not be further discussed.

Our meta-model suffers some limitations:
(1) It lacks expressiveness with respect to
the most dynamic aspect of the application
because it expresses relationships among
entities, not among instances; (2) It needs

1In Java, an entity may be either a class, an
abstract class, or an interface.

to be further specialized to allow a finer-
grain control over the constraints and the
transformation rules.

4 A Source-to-Source
transformation engine
(Application)

From the concrete and abstract models
of a design pattern, we deduce the trans-
formation needed to integrate this design
pattern in the source code.

A concrete model of a design pattern
is a reified abstract model. The con-
crete model is different from its abstract
model: Entities of the micro-architecture
are named, and, to a certain extent, the
overall design pattern micro-architecture
and behavior are different from the abstract
model. For example, an abstract model
may specify that a participant of its micro-
architecture is an interface. In the concrete
model, this participant may be an abstract
class: The difference between an interface
and an abstract class may be small enough
to be accepted. Differences between con-
crete and abstract models are defined and
enforced by the abstract model. The differ-
ences are tolerated by the abstract model as
long as the principle of the design pattern
is not compromised.

From the differences between an abstract
model and a concrete model, we deduce the
transformations needed to transform the
source code such that it complies with the
abstract model specification. For example,
if the abstract model requires one partic-
ipant to inherit from another participant,
and the concrete model contains the two
participants but without inheritance link,
then the adequate transformation is to add
an inheritance link between the two partic-
ipants.

We express these transformation as
source-to-source transformations using

JavaXL, our source-to-source transforma-
tion engine. JavaXL differs from work
such like [TC98] or [Chi98] because our
major concern is to modify as little as pos-
sible the source file. When a user applies a
design pattern on her source code, JavaXL
performs only the few needed changes.
Thus, after applying a design pattern,
the user may continue her development
without any loss of comments, layout, or
specific coding conventions.

The major problem we face is the lack
of formalism in deducing transformations
from a concrete model according to its ab-
stract model. Right now, the transforma-
tions are included into the abstract model
by hand. We lack a tool and the under-
lying techniques to go automatically from
an abstract model to the source-to-source
transformations and then to transform the
source code.

5 An Explanations-
Based Constraints
Solver
(Detection)

We deduce a constraint satisfaction prob-
lem (csp) from an abstract model of a
design pattern. This csp represents the
problem our explanation-based constraint
solver, PaLM [JB00], solves to identify, in
a given set of classes, a sub-set of classes
which structure is identical or similar to
the micro-architecture defined by the de-
sign pattern abstract model (the problem of
identifying design patterns is similar to the
problem of searching sub-graphs in a graph
and thus is NP-complete). The solutions of
the csp are concrete models: Instances of
the corresponding design pattern abstract
model.

The problems of detecting design pat-
terns in source code to help documenting

or understanding legacy systems is sub-
ject of many works [Bro96, KP96, Wuy98,
MMCG98, RD99]. Among those studies,
the use of logic programming is the tech-
nique with the greatest interest [Wuy98]: A
design pattern is described as a set of log-
ical rules. The logical rules unify with the
facts representing the source code to iden-
tify design patterns.

But this technique is limited. It only
detects classes whose relationships are de-
scribed by the logical rules. It does not
directly allow to detect similar rather than
identical architectures of a design pattern.
The rules must be extended to introduce
the missing distorted cases and to obtain
more solutions. Consequently, the rules be-
come quickly impossible to manage. The
addition of new distorted solution requires
thinking about all the possible distortions
when conceiving the system of rules.

We propose the use of explanations-
based constraint programming to alleviate
the limitations of logic programming.

First, non-distorted – complete – solu-
tions are computed. This computation ends
by a contradiction (there is no more com-
plete solution). Explanation-based con-
straint programming provides a contradic-
tion explanation for this failure: The set
of constraints justifying that other combi-
nations of entities do not verify the con-
straints describing the wanted design pat-
tern. We do not need to relax other con-
straints than the constraints provided by
the contradiction explanation: We would
find no other distorted solutions. Expla-
nation contradiction provides insights on
what distorted solutions are available. This
information about possible distorted solu-
tions allows the user to lead the search to-
wards interesting distorted solution (from
her point of view) by pointing out constraint
to relax. Removing a constraint suggested
by the contradiction explanation does not
necessarily lead to new distorted solutions

but the process is applied recursively.
To facilitate user’s interaction, prefer-

ences are assigned to the constraints of
the problem reflecting a priori a hierarchy
among constraints, but this is not manda-
tory in our system. A metric is derived
from the preference system and measures
the quality. This metric allows an automa-
tion of our solver to find, sorted by quality,
all the distorted solutions.

The set of constraints to detect a given
design pattern is so far written by hand ac-
cording to the abstract model of the pat-
tern. It is one of our objectives to generate
automatically the set of constraints needed
to detect a design pattern from the abstract
model of this design pattern. Furthermore,
we want to use the weights associated with
each constraints as a mean to differenti-
ate distorted solutions. However, setting
weights automatically may not be possible
and may impede further the automation.

6 Future work

We plan to further investigate the possi-
bilities of including domain-specific knowl-
edge and mechanisms to measure the de-
gree of improvement – using design met-
rics. Another direction of research con-
sists in tightly integrating constraints and
transformation rules in the meta-model. It
will imply a finer-grain definition of the
meta-model that may impede its robust-
ness and conciseness. Two distinct meta-
models may be a solution: One (high-level)
for the specification of design patterns; One
(low-level) for the descriptions of the source
code, with the constraints and the transfor-
mation rules linking the two levels. We will
also test our tools on larger real-life appli-
cations to evaluate precisely their efficiency
and scalability. For example, JHotDraw
[Gam98] contains more than 125 classes
and identifies several design patterns.

A Example of the proto-
type

First, we declare the abstract model
of the Composite pattern using the con-
stituents of the meta-model. Then, we gen-
erate the constraints used to detect groups
of entities similar to the Composite pattern
into a given source code modeled with the
same meta-model.

Figure 3: The architecture of the example
application. This application produces rep-
resentations of documents.

The input source code in which we
want to detect the Composite pattern is a
simple application of text documents de-
scription, see in Figure 3 for a graphical
UML-like representation. A Document con-
tains elements (class Element), which can
be Title, Paragraph or indented para-
graph, ParaIndent. The Main class cre-
ates an instance of Document and fills it up
with titles, paragraphs, and indented para-
graphs. The relationships among classes
Element, Document, Title, Paragraph and
ParaIndent are typical of a Composite pat-
tern. However, class Document should be
subclass of Element, because we want a
uniform interface between the composition
of objects and individual objects.

Figure 4: A suggestion of modification. The tool suggests that the class Document be made
sub-class of Element to conform to the micro-architecture advocated by the Composite
pattern.

We apply the constraints defined for the
Composite pattern on the source code cor-
responding to the application modelled us-
ing the same meta-model. The constraint
solver generates the set of all the groups
of entities similar to the Composite pattern
abstract model. These groups are visible
on Figure 4 as the grey boxes outlining
the classes. The group of entities Element,
Paragraph and Document is one example.
The greater the number of constraints re-
laxed, the less similar to the Composite pat-
tern is the solution group and the lighter
are the outlining boxes.

The grey-shaded boxes represent the en-
tities belonging to (at least) one group of
entities similar to the Composite pattern.
When a box is selected, it highlights all the
entities belonging to this particular group
and presents related information: The de-
gree of similarity of the group with the
original abstract model, the constituents of
this group, their values, and the associated
transformation rules (XCommand field). Fig-
ure 4 shows these pieces of information for
a particular group.

The group composed of classes Element,
Document and Paragraph is similar to the
Composite pattern at 50 percent. The
transformation to apply is given by the
XCommand field:

Composite, Component
| javaXL.XClass c1,

javaXL.XClass c2
| c1.setSuperclass(c2.getName());

The class playing the role of Composite
must be subclass of the class playing the
role of Component. In our example, the
class Document must be subclass of class
Element. The transformation engine per-
forms automatically the modifications on
the application by executing the XCommand
on the source code. Figure 5 illustrates the
resulting architecture of the application.

Figure 5: The modified architecture of the
application as suggested by the Composite
pattern: Class Document is now a sub-class
of class Element.

B Example of the Composite pattern abstract model

Figure 6: (On the left) The UML-like diagram of the Composite pattern, from [GHJV94].

Figure 7: (On the right) A representation of the Composite pattern abstract model.
Rounded squares represent instances of PClass; ovals, instances of PInterface; and
boxed method, instances of PDelegetingMethod. Instances of PAssoc and realization
links use the UML notation. PClass, PInterface, PDelegetingMethod and PAssoc

are elements of our meta-model, not described here.

Composite pattern abstract model definition
class Composite extends Pattern {
Declaration takes place in the Composite class constructor
Composite(. . .) {
. . .
Declaration of the “Component” actor
component = new PInterface(”Component”)
operation = new Pmethod(”operation”)
component.addPElement(operation)
this.addPEntity(component)
Declaration of the association “children” targeting “Component” actor with cardinality n
children = new PAssoc(”children”, component, n)
Declaration of the “Component” actor
composite = new PClass(”Composite”)
composite.addShouldImplement(component)
composite.addPElement(children)
The method “operation” defined into “Composite” actor implements the method operation of “Component”
actor and is linked to its through the association “children”
aMethod = new PdelegatingMethod(”operation”, children)
aMethod.attachTo(operation)
composite.addPElement(aMethod)
this.addPEntity(composite)
Declaration of the “Leaf” actor
leaf = new PClass(”Leaf”)
leaf.addShouldImplement(component)
leaf.assumeAllInterfaces()
this.addPEntity(leaf)
}
Declaration of specific services dedicated to the Composite pattern
. . .
For example, the service “ addLeaf” to dynamically adds “Leaf” actor to the current instance of the Com-
posite pattern
void addLeaf(String leafName) {
PClass newPClass = new PClass(leafName)
newPClass.addShouldImplement((PInterface)getActor(”Component”))
newPClass.assumeAllInterfaces()
newPClass.setName(leafName)
this.addPEntity(newPCclass)
}

References

[AFC98] Giuliano Antoniol, Roberto Fiutem, and L. Cristoforetti. Design pattern recovery
in object-oriented software. Proceedings of the 6 th Workshop on Program Compre-
hension, pages 153–160, 1998.

[Ban98] Jagdish Bansiya. Automating design-pattern identification. Dr. Dobb’s Journal,
June 1998.

[Boo91] Grady Booch. Object-Oriented Design with Applications. Number 0-805-30091-0.
The Benjamin/Cummings Publishing Company, Inc., 390 Bridge Parkway - Red-
wood City, California 94005 - USA, 1991.

[Bro96] Kyle Brown. Design reverse-engineering and automated design pattern detection in
Smalltalk. Technical Report TR-96-07, University of Illinois at Urbana-Champaign,
1996.

[Chi98] Shigeru Chiba. Javassist a reflection-based programming wizard for Java. Proceed-
ings of the Workshop on Reflective Programming in C++ and Java at OOPSLA’98,
1998.

[Cop99] James O. Coplien. Reevaluating the architectural metaphor: Toward piecemeal
growth. IEEE Software, 16(5):40–44, September/October 1999.

[FMW97] Gert Florijn, Marco Meijers, and Pieter Van Winsen. Tool support for object-
oriented patterns. Proceedings of ECOOP, 1997.

[Gam98] Erich Gamma. JHotDraw, 1998. Available at
http://members.pingnet.ch/gamma/JHD-5.1.zip.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns
- Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[JB00] Narendra Jussien and Vincent Barichard. The palm system: explanation-based
constraint programming. In Proceedings of TRICS: Techniques foR Implementing
Constraint programming Systems, a post-conference workshop of CP 2000, pages
118–133, Singapore, September 2000.

[KP96] Christian Krämer and Lutz Prechelt. Design recovery by automated search for
structural design patterns in object-oriented software. Proceedings of the Working
Conference on Reverse Engineering, pages 208–215, 1996.

[MMCG98] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner. Bunch: A clustering
tool for the recovery and maintenance of software system structures. Proceedings
of ICSM, 1998.

[PM99] Louis Perrochon and Walter Mann. Inferred designs. IEEE Software, 16(5):46–51,
September/October 1999.

[Pot90] Kathleen Potosnak. Human factors – pruning your programs’ unused functions.
IEEE Software, 7(1):122–124, January 1990.

[PUT+00] Lutz Prechelt, Barbara Unger, Walter F. Tichy, Peter Brössler, and Lawrence G.
Votta. A controlled experiment in maintenance comparing design patterns to sim-
pler solutions. IEEE Transactions on Software Engineering, 2000.

[PW96] Bernd-Uwe Pagel and Mario Winter. Towards pattern-based tools. Proceedings of
EuropLop, 1996.

[RD99] Tamar Richner and Stéphane Ducasse. Recovering high-level views of object-
oriented applications from static and dynamic information. Proceedings of ICSM,
1999.

[RF00] Pascal Rapicault and Mireille Fornarino. Instanciation et vérification de patterns
de conception : Un méta-protocole. Proceedings of LMO, in French, pages 43–58,
2000.

[RW90] Charles Rich and Linda M. Wills. Recognizing a program’s design: A graph-parsing
approach. IEEE Software, 7(1):82–89, January 1990.

[SGJ00] Gerson Sunyé, Alain Le Guennec, and Jean-Marc Jézéquel. Design patterns appli-
cation in UML. Proceedings of ECOOP, 2000.

[Sou95] Jiri Soukup. Implementing Patterns, chapter 20. Addison-Wesley, 1995.

[TC97] William Tepfenhart and James Cusick. A unified object topology. IEEE Software
Special Issue on Objects, Patterns, and Architectures, 14(1):31–35, January 1997.

[TC98] Michiaki Tatsubori and Shigeru Chiba. Programming support of design patterns
with compile-time reflection. Proceedings of the Workshop on Reflective Program-
ming in C++ and Java at OOPSLA’98, ISSN 1344-3135, Vancouver, Canada,
pages 56–60, October 1998.

[Tok99] Lance Aiji Tokuda. Evolving Object-Oriented Designs with Refactorings. PhD thesis,
University of Texas at Austin, December 1999.

[Wuy98] Roel Wuyts. Declarative reasoning about the structure of object-oriented systems.
Proceedings of TOOLS USA, pages 112–124, 1998.

