
On the Automatic Detection and Correction
of Software Architectural Defects in Object-Oriented Designs

Naouel Moha and Yann-Gaël Guéhéneuc

GEODES - Group of Open and Distributed
Systems, Experimental Software Engineering

Department of Informatics and Operations Research
University of Montreal, Quebec, Canada

E-mail: {mohanaou, guehene}@iro.umontreal.ca

Abstract

Design defects, antipatterns, code smells are soft-
ware defects at the architectural level that must be
detected and corrected to improve software quality.
Automatic detection and correction of these software
architectural defects, which suffer of a lack of tools,
are important to ease the maintenance of object-
oriented architectures and thus to reduce the cost of
maintenance. A clear understanding of the different
types of software architectural defects defects and
a classification of these defects is necessary before
proposing any techniques related to their detection
or correction. We introduce a first classification and
summarise existing techniques. Then, we introduce
some challenges that our community must meet.

Keywords: Software Defects, Design Patterns,
Design Defects, Antipatterns, Detection, Correction,
Object-Oriented Architecture.

1. Introduction

We present a first study on automatic detection and
correction of software architectural defects in object-
oriented architectures in terms of techniques and tools.
We englobe in Software Architectural Defects (sad)
design defects and antipatterns. By architecture, we
mean the design level as defined in [8]. Automatic
detection and correction of software architectural de-
fects are important to ease the maintenance of object-
oriented architectures and thus to reduce the cost of
maintenance.

Indeed, maintenance of existing software represents
over 60 percent of all effort expended by a development

team [17]. Only about 20 percent of all maintenance
work is spent in fixing faults whereas the remaining 80
percent is spent in adapting existing systems to changes
in their external environment, making enhancements
requested by users, and reengineering an application
for future use [20].

However, software maintenance is a tedious task
and is sometimes quite impossible because of the huge
amount of code lines. Reengineering object-oriented
architectures to understand, to correct, and to main-
tain programs is one of the solutions to facilitate and
to improve software maintenance. Thus, we propose to
detect and to correct sad defects to improve the quality
of the code in terms of maintainability1 and usability2.

The contribution of this paper is to present issues
related to the automated detection and correction of
defects at design level and to discuss new perspectives
of research.

In the first section, we define what we englobe in
sad defects and propose a first classification of these
defects. The two following sections detail the detection
and the correction of sad defects in terms of techniques
and tools. We conclude with some challenges and per-
spectives related to this research.

2. Terminology

A clear understanding of the different types of sad
defects and a classification of those defects is neces-

1ISO/IEC 9126-1/2001: The capability of the software prod-
uct to be modified. Modifications may include corrections, im-
provements, or adaptation of the software to changes in environ-
ment, in requirements, and functional specifications.

2ISO/IEC 9126-1/2001: The capability of the software prod-
uct to be understood, learned, used, and attractive to the user,
when used under specified conditions.

1

sary before proposing any techniques related to their
detection or correction.

2.1. Taxonomy

There still is some confusion between the terms de-
sign defects, antipatterns, and code smells. To our best
knowledge, the taxonomy defined in this paper is the
first attempt to clarify and to classify these concepts.

By defects, we refer to the fault or errors in the
“fault/error/failure chain”. A fault is an adjudged
or hypothesized cause of an error. An error is a
system state that is liable to lead to a failure if not
corrected. As for a failure, it is the behavior of a
system differing from that which was intended. Thus,
a fault is a cause which can activate an error as an
internal manifestation of this cause, and the failure is
the potential propagation of this error as an external
manifestation in the system. We are situated at the
design level and we consider only programs without
compilation errors.

We englobe in sad defects design defects and
antipatterns mainly.

Antipatterns. An antipattern is a literary form that
describes a commonly occurring solution to a design
problem, solution which generates decidedly negative
consequences [5]. Antipatterns are bad solutions to re-
curring design problems. The idea of antipatterns is
to show what not to do: Isn’t it through errors that
people learn? The Blob, the Spaghetti, the Poltergeist,
the Lava Flow are among well-known antipatterns. For
example, the Blob corresponds to one single complex
controller class that monopolizes the processing and is
surrounded by simple data classes [5]. The Spaghetti
code, which is one of the most famous antipattern, de-
scribes a program or system with a software structure
that lacks clarity [5]. A Spaghetti code is hard to main-
tain or extend because of its complexity.

Design Defects. Design defects are similar to design
patterns which are today used and studied in the indus-
try and academia. Design patterns propose “good” so-
lutions to recurring design problems in object-oriented
architectures, whereas design defects are occurring er-
rors in the design of the software that come from the
absence or the bad use of design patterns. Thus,
Guéhéneuc et al. define design defects as distorted
forms of design patterns, i.e., micro-architectures simi-
lar but not equal to those proposed by design patterns
[12].

Code smells. A code smell is a term that refers to
a symptom or a problem at the code level. Beck and
Fowler describe code smells as “certain structures in
code that suggest the possibility of refactoring” [10].
Duplicated code, long method, large class, long param-
eter list, data class are some examples of code smells.
The presence of code smells suggests the possible pres-
ence of an antipattern as well as of a design defect.

Code smells are generally related to the inner work-
ings of classes while design defects include the rela-
tionships among classes and are more situated on a
micro-architectural level. Thus, we qualify code smells
as intra-class defects while design defects as inter-class
defects. Antipatterns are in both classes of defects.

2.2. Classifications

Software defects are usually classified by priority and
this classification is composed of the following criteria:
Minor, major, severe, and critical. Such a simple clas-
sification is used for assigning priorities in repairing
defects. Other more complex classifications have been
defined [3] but all these classifications are related to
software defects at the code level. There exist only few
classifications of defects at the design level.

Brown classifies antipatterns in three main cate-
gories: Development, architecture, and project man-
agement antipatterns. In our case, we study only de-
velopment and architectural antipatterns because they
represent respectively coding practices and system-
level structure, and thus could be detected and cor-
rected in programs automatically. Moreover, each an-
tipattern defined in [5] proposes formal or informal
refactored corrective guidelines.

Among sad defects, we distinguish three important
categories [12]:

• Intra-classes: sad defects related to the internal
structure of a class.

• Inter-classes: sad defects related to the external
structure of the classes (public interface) and their
relations (inheritance, association, etc.)

• Behavioral : the sad defects related to the seman-
tics of the program.

Also, sad defects can be classified according to their
nature:

1. Antipatterns, as described in [5].

2. Distorted design patterns or design defects: Dis-
torted forms of design patterns.

2

3. Distorted form of antipatterns: A distorted form
of an antipattern could be a good form.

Figure 1 describes the different categories of soft-
ware defects that we are considering for automated
detection and correction in object-oriented architec-
tures. Antipatterns and design defects are the main
sub-categories of sad defects. Code smells are small
defects that surround antipatterns and design defects
and that suggest the possible presence of one or the
other.

SAD Defects

Code
smell

Code
smell

Code
smell Code

smell

Code
smell

Code
smell

Code
smell

Code
smell

Code
smell

Code
smell

Code
smell

Design Defects

Antipatterns
 - Blob

 - Spaghetti
 - Poltergeist
 - Lava Flow

Design
patterns

Figure 1. Categories of Software Architectural
Defects

An exhaustive study on the definitions and classifi-
cations of the software defects found in the literature
will enable us to refine and to verify the completeness
and correctness of this classification. Such classifica-
tion is important to target concretely which defects to
address.

2.3. Formalization

In parallel to this classification, there is a need to
formalize sad defects. So far, there is only textual de-
scriptions of software defects but no formal description
of sad defects. For example, the descriptions of an-
tipatterns are purely textual and provide no specific
detection methods: Detection of antipatterns is left to
the intuition of programmers. The specification of de-
sign patterns described in [11] is more formal: It gives
not only the solutions of the different design patterns
but also implementation guidelines of these solutions
called design motifs. Design defects, which are de-
graded forms of design patterns, are so more “formal”
than antipatterns. Thus, it is easier to detect approxi-
mative forms of design patterns. Code smells are also
“formal” indications that enable to detect that there is
trouble in the code and that can be solved by a refac-
toring [10].

Metamodel. An abstract model, named PADL, has
been defined to formalize design motifs [2]. This model
shall be extended to take into account design defects.
With this metamodel, we shall be able to identify ap-
proximative motifs of design defects.

Another interesting metamodel to describe de-
sign defects is FAMIX [7]. This metamodel pro-
vides a language-independent representation of object-
oriented source code and supports refactorings.

Mens et al. proposes to use a declarative meta-
language for expressing and reasoning about program-
ming patterns in object-oriented programs [18]. Be-
sides checking and searching for patterns, this language
allows to write queries that check the source code for
violations or defects of patterns. This language could
be efficient for the detection of the design defects.

We are investigating on the choice of the right meta-
model that will enable us to detect the sad defects in
object-oriented architectures.

3. Detection of Software Defects

This section presents some techniques and tools re-
lated to the detection of sad defects in object-oriented
architectures.

3.1. Techniques

Several techniques have been studied and validated
for detecting defects in object-oriented designs, but
most of them are “reading techniques” such as soft-
ware inspections [22] and–or at the code level such as
functional or structural testing [23]. We survey differ-
ent techniques and algorithms to detect automatically
the software defects at the design level:

• Information extraction of the code comments [21];

• Behavioral analysis based on the sequence dia-
grams: The analysis of the dynamic communica-
tion among objects of the system by reengineering
the sequence diagrams from the code source;

• Dynamic detection during the execution of the
program by expressing assertions, pre- and post-
conditions [16].

We do not focus on model checking or refinement
techniques because it is quite tedious to apply these
techniques in millions lines of code. Model checking is
an automatic technique for verifying finite state concur-
rent systems, which deals with the state space explo-
sion problem [9]. Refinement is a systematic top-down
methodology that consists in decomposing a software

3

component into subcomponents and specializing com-
ponents under certain compatibility conditions [6].

Metrics. We believe that the detection of sad de-
fects could use metrics. For example, in the case of the
Blob antipattern, it would be interesting to identify
classes of sizes superior to L LOC, classes with more
than M methods and N attributes. It is necessary to
define for each antipattern the methods and metrics
that enable their identification and also the thresholds
related to these metrics.

3.2. Tools

The detection of sad defects must be fully auto-
mated via tools. Several tools for the assessment of
the code quality have been developed to identify and
visualize the structure of object-oriented programs:

• OptimalAdvisor is a static code analysis and refac-
toring tool, which shows packages and classes de-
pendencies with UML class diagrams and which
provides detailed analysis related to the classes,
methods, and fields [15].

• IBM Structural Analysis for Java (SA4J) claims
to detect antipatterns but in fact detects 7 pre-
defined bad design examples based on structural
dependencies among objects [13].

• SmallLint, a tool for Smalltalk programs, auto-
matically checks for over 60 common types of bugs
in the code level such as identification of long
methods or inutile code[4].

These tools have some benefits : They help in under-
standing and in visualizing the structure of the code,
provide some basic measures (size, inheritance), and
highlight some problems. However, these tools are
limited because they do not support the detection of
software defects at the design level. For example, Op-
timalAdvisor detects only dependency structures and
suggests to fix them.

4. Correction of Software Defects

This section presents techniques and tools related to
the correction of sad defects in object-oriented archi-
tectures.

4.1. Techniques

We investigate techniques that help in correcting
sad defects. Refactoring is a key technique [19]. Refac-
toring is defined as “a change made to the internal

structure of software to make it easier to understand
and cheaper to modify without changing its observable
behavior” [10]. We distinguish between behavior pre-
serving and non-behavior preserving refactoring tech-
niques.

We must precise, develop, or extend refactoring
techniques to correct any kind of defects easily. These
techniques must be generic to be uniformly applicable
on any sad defects. Thus, we shall be able to add any
other sad defect and detect it without modifying the
algorithms of these techniques.

Unlike detection, the correction shall be semi-
automatic. We shall detect sad defects but it is up
to the maintainers to refactor or not the code. In the
long term, we plan to develop fully automatic correc-
tions. The detection and the correction of sad defect
can generate new sad defects, which must then be de-
tected and corrected.

4.2. Tools

The tools mentioned previously perform some basic
refactorings such as renaming classes, extracting meth-
ods, introducing constants, etc.

• OptimalAdvisor: This tool enables developers
to refactor automatically their code based on
the code analysis. OptimalAdvisor supports
class/package rename/move, remove unused im-
port, and the dependency inversion refactoring.

• IBM Structural Analysis for Java (SA4J) does not
refactor the code but gives a detailed map of de-
pendencies for assistance in refactoring.

• The Refactory Browser supports also like
OptimalAdvisor class insert/move/remove,
variable insert/remove/rename, method re-
name/move/remove refactoring [14].

5. Challenges

The aim of our research is to formalize sad defects
including antipatterns and design defects for their de-
tection and correction in object-oriented architectures
and to correct them. The techniques of detection and
correction shall be generic and thus shall work for any
sad defect.

Our aim is to develop a system similar to Ptidej
[1] to detect automatically sad defects based on their
formalization and to propose corrections with explana-
tions to maintainers. There shall be no fully automatic
correction. We first plan to detect the sad defects by
hand and then try to verify them through our system

4

of detection. A usability evaluation will be required to
validate the comprehensiveness and the ease of use of
the detection and correction system.

6. Conclusion

This paper clarifies the confusion in the terminol-
ogy related to design defects and antipatterns. It also
introduces a new term “sad defect” for software archi-
tectural defects. Some techniques and tools necessary
for the detection and correction of code defects have
been surveyed.

Future work includes:

• Classifying sad defects.

• Formalizing sad defects.

• Defining techniques, tools, and metrics for the au-
tomatic detection and the semi-automatic correc-
tion of sad defects.

• Implementing and validating these techniques and
tools.

We would be glad to discuss the challenges of sad
defects detection and correction with the participants
of the workshop.

5

References

[1] Hervé Albin-Amiot, Pierre Cointe, Yann-Gaël Guéhéneuc, and Narendra Jussien. Instantiating and detecting
design patterns: Putting bits and pieces together. In Debra Richardson, Martin Feather, and Michael Goedicke,
editors, proceedings of the 16th conference on Automated Software Engineering, pages 166–173. IEEE Computer
Society Press, November 2001.

Available at: www.yann-gael.gueheneuc.net/Work/Publications/.

[2] Hervé Albin-Amiot and Yann-Gaël Guéhéneuc. Meta-modeling design patterns: Application to pattern de-
tection and code synthesis. In Bedir Tekinerdogan, Pim Van Den Broek, Motoshi Saeki, Pavel Hruby, and
Gerson Sunyé, editors, proceedings of the 1st ECOOP workshop on Automating Object-Oriented Software De-
velopment Methods. Centre for Telematics and Information Technology, University of Twente, October 2001.
TR-CTIT-01-35.

Available at: www.yann-gael.gueheneuc.net/Work/Publications/.

[3] Boris Beizer. Software Testing Techniques. van Nostrand Reinhold, 2nd edition, 1990. isbn: 0442206720.

[4] John Brant. Smalllint, April 1997. The Smalllint tool checks for over 60 common types of bugs.

Available at: http://st-www.cs.uiuc.edu/users/brant/Refactory/Lint.html.

[5] William J. Brown, Raphael C. Malveau, William H. Brown, Hays W. McCormick III, and Thomas J. Mowbray.
Anti Patterns: Refactoring Software, Architectures, and Projects in Crisis. John Wiley and Sons, 1st edition,
March 1998. isbn: 0-471-19713-0.

Available at: www.amazon.com/exec/obidos/tg/detail/-/0471197130/ref=ase theanti

patterngr/103-4749445-6141457.

[6] Carlos Canal, Ernesto Pimentel, and José M. Troya. Specification and refinement of dynamic software ar-
chitectures. In proceedings of the TC2 First Working IFIP Conference on Software Architecture (WICSA1),
pages 107–126, Deventer, The Netherlands, The Netherlands, 1999. Kluwer, B.V. isbn: 0-7923-8453-9.

[7] Serge Demeyer, Stéphane Ducasse, and Sander Tichelaar. Why FAMIX and not UML? Technical report,
Software Composition Group, University of Bern, 1999.

Available at: iamwww.unibe.ch/∼famoos/FAMIX/whyFAMIX/whyFAMIX.html.

[8] Amnon H. Eden and Rick Kazman. Architecture, design, implementation. In Laurie Dillon and Walter Tichy,
editors, proceedings of the 25th International Conference on Software Engineering, pages 149–159. ACM Press,
May 2003.

Available at: www.eden-study.org/publications.html.

[9] Jr. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press, 1999.

[10] Martin Fowler. Refactoring – Improving the Design of Existing Code. Addison-Wesley, 1st edition, June 1999.
isbn: 0-201-48567-2.

[11] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns – Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1st edition, 1994. isbn: 0-201-63361-2.

[12] Yann-Gaël Guéhéneuc and Hervé Albin-Amiot. Using design patterns and constraints to automate the de-
tection and correction of inter-class design defects. In Quioyun Li, Richard Riehle, Gilda Pour, and Bertrand
Meyer, editors, proceedings of the 39th conference on the Technology of Object-Oriented Languages and Sys-
tems, pages 296–305. IEEE Computer Society Press, July 2001.

Available at: www.yann-gael.gueheneuc.net/Work/Publications/.

6

[13] IBM. Structural analysis for java, March 2004. Structural Analysis for JavaTM (SA4J) is a technology that
analyzes structural dependencies of Java applications in order to measure their stability. It detects structural
”anti-patterns” (suspicious design elements) and provides dependency web browsing for detailed exploration
of anti-patterns in the dependency web. SA4J also enables ”what if” analysis in order to assess the impact of
change on the functionality of the application; and it offers guidelines for package re-factoring.

Available at: http://www.alphaworks.ibm.com/tech/sa4j.

[14] The Refactory Inc. Refactoring browser, October 1999. The Refactoring Browser is an advanced browser for
VisualWorks, VisualWorks/ENVY, and IBM Smalltalk. It includes all the features of the standard browsers
plus several enhancements.

Available at: http://st-www.cs.uiuc.edu/users/brant/Refactory/, http://www.refactory.com/RefactoringBrowser/.

[15] Compuware JavaCentral. Optimaladvisor, May 2005. OptimalAdvisor is a package and code analysis tool
that delivers insight and advice into the code structure and effectiveness of Java applications.

Available at: http://javacentral.compuware.com/products/optimaladvisor/.

[16] Yves Ledru, Lydie du Bousquet, Olivier Maury, and Pierre Bontron. Filtering tobias combinatorial test
suites. In Tiziana Margaria-Steffen Michel Wermelinger, editor, proceedings of ETAPS/FASE04 - Fundamental
Approaches to Software Engineering, volume 2984. LNCS, Springer-Verlag, April 2004.

[17] M. Manna. Maintenance burden begging for a remedy. Datamation, pages 53–63, April 1993.

[18] Kim Mens, Isabel Michiels, and Roel Wuyts. Supporting software development through declaratively codi-
fied programming patterns. Elsevier Journal on Expert Systems with Applications, 23(4). Lecture Notes in
Computer Science (LNCS), November 2002.

[19] William F. Opdyke. Refactoring Object-Oriented Frameworks. Ph.D. thesis, Department of Computer Science,
University of Illinois at Urbana-Champaign, 1997.

[20] Roger S. Pressman. Software Engineering – A Practitioner’s Approach. McGraw-Hill Higher Education, 5th

edition, November 2001. isbn: 0-07-249668-1.

Available at: www.accu.org/bookreviews/public/reviews/s/s000005.htm.

[21] Ellen Riloff and Wendy Lehnert. Information extraction as a basis for high-precision text classification. ACM
Transactions on Information Systems (TOIS), 12(3). ACM Press, July 1994.

[22] Guilherme Travassos, Forrest Shull, Michael Fredericks, and Victor R. Basili. Detecting defects in object-
oriented designs: using reading techniques to increase software quality. In Conference on Object Oriented
Programming Systems Languages and Applications, proceedings of the 14th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages 47–56. ACM Press, New York, NY,
USA, 1999.

[23] Murray Wood, Marc Roper, Andrew Brooks, and James Miller. Comparing and combining software defect
detection techniques: a replicated empirical study. In proceedings of the 6th European conference held jointly
with the 5th ACM SIGSOFT international symposium on Foundations of software engineering, pages 262–277.
Springer-Verlag New York, Inc., 1997.

7

