
Automated Reverse-engineering
of UML v2.0 Dynamic Models

Yann-Gaël Guéhéneuc
GEODES

University of Montreal
guehene@iro.umontreal.ca

Tewfik Ziadi
Triskell

IRISA-IUT Lannion
tziadi@irisa.fr

Abstract

In this position paper, we advocate the automated
reverse-engineering of UML v2.0 dynamic models, i.e.,
sequence diagrams and statecharts, to perform high-
level analyses, such as conformance checking and pat-
tern identification. Several approaches exist to reverse-
engineer UML dynamic models; However, to our best
knowledge, none of these approaches consider reverse-
engineering UML v2.0 dynamic models and perform-
ing high-level analyses with these models. We present
our approach to UML v2.0 dynamic models reverse-
engineering and sketch some use of these models. We
conclude by a discussion on some issues related to the
models, their reverse-engineering, and their use.

1 Introduction

Maintenance amounts for 50% of the total cost of the
software development cycle. Maintainers spent more
than 50% of their time understanding the programs
before committing changes. To understand object-
oriented programs, maintainers must use reverse-
engineering techniques because documentation (text
and diagrams) is often incomplete and–or obsolete.

Many works investigate the reverse-engineering of
UML static models, such as class diagrams. How-
ever, there is little work on reverse-engineering dy-
namic models, although, in addition to static models,
the UML includes notations to specify the dynamic be-
haviour of programs, such as sequence diagrams and
statecharts.

Dynamic models of programs are as important as
static models because they allow maintainers to iden-
tify complex interactions among objects and to disam-
biguate message sends when inheritance, delegation,
polymorphism, dynamic binding, reflection are used

intensively (for example, when using design patterns
such as the Abstract Factory, Observer).

This position paper proposes to go beyond static
models by proposing an approach for reverse-
engineering UML sequence diagrams and statecharts
and for using such reverse-engineered dynamic mod-
els to perform high-level analyses. While existing
work [2, 14] focus on UML v1.x sequence diagrams,
our approach use UML v2.0 sequence diagrams, which
include interesting composition operators. Thus, we
can combine several sequence diagrams obtained from
different traces of a same program to describe the gen-
eral behaviour of the program. We obtain statecharts
for objects from sequence diagrams using an existing
method for statecharts synthesis [18].

Once we have generated sequence and statecharts,
we describe two high-level analyses: Conformance
checking and pattern identification. To our best knowl-
edge, no existing work on dynamic model reverse-
engineering perform such analyses. Also, the use of
dynamic models provide interesting data to perform
these analyses with respect to static models only.

The rest of the paper is organised as follows: Sec-
tion 2 describes related work briefly; Section 3 intro-
duces UML v2.0 dynamic models; Section 4 presents
our approach to UML v2.0 dynamic model reverse-
engineering, including building sequence diagrams and
statecharts; Section 5 describes two high-level analy-
ses that we can perform on dynamic models, i.e., con-
formance checking and pattern identification; Finally,
Section 6 concludes and introduces a discussion of dy-
namic model reverse-engineering.

2 Related Work

Several work exist on reverse-engineering sequence
diagrams. However, it is worthy to note that many
more work exist on static model reverse-engineering,

1



in particular class diagrams, and that dynamic model
reverse-engineering is often left aside in reverse-
engineering tools.

Briand et al. [2] propose a method to reverse engi-
neer UML sequence diagrams from program execution
traces. They execute a scenario of a program and re-
cover a trace of the dynamic execution of the program
when exercising this scenario. They use the recovered
trace and a meta-model to describe UML v1.x sequence
diagrams. They highlight that the amount of data re-
covered from executing a scenario might clutter the
sequence diagram. They do not attempt to perform
higher-level analyses using the reverse-engineered se-
quence diagrams.

Rountev et al. [13] describe a first algorithm
to reverse-engineer UML v2.0 sequence diagrams by
control-flow analysis of a program source code. They
map control-flow graphs to the control-flow primitives
of UML v2.0 sequence diagrams. They also intro-
duce behaviour-preserving transformations to reduce
the size (number of basic sequence diagrams, number of
message sends. . . ) of the reverse-engineering sequence
diagrams. Their approach do not consider data ob-
tained from dynamic analyses and thus is limited to
the accuracy of the control-flow analysis. Also, they
do not attempt to perform higher-level analyses on the
reverse-engineered diagrams.

Di Lucca et al. [10] propose an approach to ab-
stract business level UML diagrams from Web appli-
cations. They defined several heuristics to reverse-
engineer UML class, sequence, and use-case diagrams.
Their reverse-engineering techniques are based on man-
ual analyses and on several heuristics to abstract dia-
grams at a high-level. They do not attempt to auto-
mate the reverse-engineering processes nor to analyse
the resulting diagrams at a even higher-level.

3 UML v2.0 Dynamic Models

Dynamic models of programs are specified in the
UML using two main formalisms: sequence diagrams
(SDs) and statecharts (ST). While SDs capture inter-
actions in a set of objects, statecharts represent the
internal behaviours of single object. As underlined in
[6], sequence diagrams are more an inter-object view
of a program behaviour, while statecharts are an intra-
object view of the program. We focus on sequence di-
agrams and statecharts as defined in UML v2.0.

UML v2.0 [12] SDs greatly enhance the previous ver-
sions of scenarios proposed in UML v1.x by incorporat-
ing some ideas available from Message Sequence Charts
(MSCs) [7]. It is now possible to define and to compose
a set of basic sequence diagrams using composition op-

erators. Basic SDs describe a finite number of interac-
tions in a set of objects. Figure 1 shows examples of ba-
sic SDs: The SD SD1 describes the interactions of two
objects: a1 and b1. The vertical lines represent lifelines
for the given objects. Interactions between objects are
shown as horizontal messages, such as m1. Each mes-
sage is defined by two events: message emission and
message reception, which induce an ordering between
emission and reception. Events situated on the same
lifeline are ordered from top to bottom.

UML v2.0 basic SDs can be composed in composite
SDs called combined interaction using a set of opera-
tors, interaction operators [12]. The four fundamen-
tal operators are: seq, alt, loop, and par. The seq
operator specifies a weak1 sequence between the be-
haviour of the two operand SDs. The alt operator
defines a choice between a set of interaction operands,
while the loop operator specifies an iteration of an in-
teraction. The par operator defines a parallel com-
position. The combined SD CombinedSD in Figure 1
shows a combined interaction equivalent to the expres-
sion loop(SD1 seq (SD2 par SD3)).

4 Our Approach

Figure 2 illustrates our approach to the automated
reverse-engineering of UML dynamic diagrams. Our
method is defined in three mains steps: From traces to
basic sequence diagrams, sequence diagrams composi-
tion, and statecharts synthesis. The following subsec-
tion discuss each step.

4.1 Building Sequence Diagrams

4.1.1 Dynamic Approach

We build SDs diagrams using dynamic analyses, in op-
position to static analyses. For example, we use Caf-
feine [5], a tool for the dynamic analyses of Java pro-
grams, to generate traces of program executions de-
scribing the behaviours of each thread of a program.
Then, we translate the trace data in several basic SDs,
which we combine using the seq, alt, loop, and par
operators to obtain a SD describing the dynamic be-
haviour of the program.

The difficulty in this approach is to combine the
basic SDs appropriately as to reflect the general be-
haviour of the program. Also, dynamic analyses have

1UML v2.0 defines two sequence operators, “weak” and
“strict”, to define sequences. A strict sequence means that all
events in the first SD are executed before events in the second
diagram. A weak sequence means that only events on the same
lifeline in the first SD are executed before events on the same
lifeline in the second SD.

2



Figure 1. Examples of UML v2.0 Dynamic Models

well-known limitations, in particular accuracy with re-
spect to the set of inputs used to generate the traces.
We overcome this difficulty and the limitations by ex-
ecuting several time a same scenario, possibly using
slightly different inputs.

4.1.2 Static Approach

Then, we complement the dynamic approach with
static analyses of the programs source code. We are
currently devising analyses to generate models of a pro-
gram behaviour from its source code. In particular, we
investigate extending and using SSA intermediate rep-
resentation (such as the one produce with SOOT [15])
to built basic SDs from source code. Essentially, this
approach consists in combining the work of Briand et
al. [2] and the work of Rountev et al. [13], which, to
our best knowledge, has never been attempted. Thus,
we would get the best of static and dynamic analyses.

4.2 Building Statecharts

Once SDs have been generated, we produce stat-
echarts automatically. SDs and STs differ by their
nature: SDs capture interactions in a set of objects,
STs represent the internal behaviour of a single object.
Statecharts synthesis out of a collection of scenarios
has received a lot of attention in the context of UML
1.x [8, 9, 11, 16]. In [18], one of the author proposed
an algebraic approach to revisit the problem of state-
charts synthesis in the context of UML v2.0. We pro-
pose to reuse this approach to generate UML ST from
the reverse-engineered SDs in Section 4.1.

5 High-level Analyses

5.1 Conformance Checking

The first use of automatically generated SD is con-
formance checking. Using the models of the SD built
during the design of a program and the models of SD
generated automatically (by either static or dynamic
analyses), we could assess their differences and high-
light discrepancies.

Discrepancies can arise because the developers did
not follow the design-level SD or because maintainers
modified the program behaviour without updating the
design-level SD. In either case, discrepancies identifi-
cation would help in assessing the adequation of the
current program with respect to its foreseen behaviour
and either adjust its implementation or identify un-
forseen expected behaviours during design and update
the design-level SD.

5.2 Pattern Identification

In parallel to conformance checking, we can use au-
tomatically generated SD to improve pattern identi-
fication. Patterns, either design patterns [4] or anti-
patterns [3], are becoming increasingly important as
people recognise their impact on quality characteris-
tics such a maintainability and understandability.

However, pattern identification is difficult because
patterns involve both structural and behavioural (in-
cluding creational) elements and, so far, only the struc-
ture of programs has been used to identify patterns, for
examples [1, 17].

3



Figure 2. Our Approach: From Program Traces to UML v2.0 Dynamic Models

The use of automatically generated SD would
improve pattern identification greatly by using be-
havioural data in addition to structural data. We can
use SD either to identify “purely” behavioural patterns
(and anti-patterns) or to enhance structural pattern
identification by improving the speed and by reducing
the number of false positives.

Structural-based search of patterns returns many
false positives and is inefficient because of the many
micro-architectures which structures are similar to
those of patterns. The use of sequence diagrams would
help in reducing the search space by removing classes
which obviously cannot participate in a pattern because
of the dynamic interactions of their instances.

Thus, the combination of class diagrams and se-
quence diagrams to identify patterns would lead to less
false positives and decrease computation times. How-
ever, the concrete use of sequence diagrams in addition
to class diagrams must be carefully studied, in particu-
lar with respect to the sequence diagrams accuracy and
representation and to the exchange of data among iden-
tification algorithms based on class diagrams and those
based on sequence diagrams. Also, the representation
of patterns in terms of sequence diagrams constituents

for the search has not yet been studied in the literature,
to our best knowledge.

6 Conclusion and Discussion

We propose to reverse-engineer sequence diagrams
and statecharts automatically from a program execu-
tion traces (possibly complemented by static analyses).
The objective of reverse-engineering dynamic models of
a program is to perform high-level analyses, in partic-
ular conformance checking and pattern identification.

We would like to discuss with the participants the
difficulty and limitations of reverse-engineering dy-
namic models of programs as well as the opportuni-
ties for higher-level analyses provided by such reverse-
engineered dynamic models.

Acknowledgement

The authors are grateful to Janice Ka-Yee Ng,
Benoit Baudry, and Yves Le Traon for their support
and the many fruitful discussions.

4



References

[1] Hervé Albin-Amiot, Pierre Cointe, Yann-Gaël
Guéhéneuc, and Narendra Jussien. Instantiat-
ing and detecting design patterns: Putting bits
and pieces together. In Debra Richardson, Martin
Feather, and Michael Goedicke, editors, proceed-
ings of the 16th conference on Automated Software
Engineering, pages 166–173. IEEE Computer So-
ciety Press, November 2001.

[2] Lionel C. Briand, Yvan Labiche, and Y. Miao. To-
wards the reverse engineering of UML sequence di-
agrams. In Eleni Stroulia and Arie van Deursen,
editors, proceedings of the 10th Working Confer-
ence on Reverse Engineering, pages 57–66. IEEE
Computer Society Press, November 2003.

[3] William J. Brown, Raphael C. Malveau,
William H. Brown, Hays W. McCormick III,
and Thomas J. Mowbray. Anti Patterns: Refac-
toring Software, Architectures, and Projects in
Crisis. John Wiley and Sons, 1st edition, March
1998.

[4] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns – Elements
of Reusable Object-Oriented Software. Addison-
Wesley, 1st edition, 1994.

[5] Yann-Gaël Guéhéneuc, Rémi Douence, and
Narendra Jussien. No Java without Caffeine – A
tool for dynamic analysis of Java programs. In
Wolfgang Emmerich and Dave Wile, editors, pro-
ceedings of the 17th conference on Automated Soft-
ware Engineering, pages 117–126. IEEE Computer
Society Press, September 2002.

[6] D. Harel and R. Marelly. Come, Let’s Play,
Come, Let’s Play Scenario-Based Programming
Using LSCs and the Play-Engine. 2003.

[7] ITU-T. Z.120 : Message sequence charts (MSC),
november 1999.

[8] I. Khriss, M. Elkoutbi, and R. Keller. Automating
the synthesis of uml statechart diagrams from mul-
tiple collaboration diagrams. In Proc. of UML’98:
Beyond the Notation, pages 115–126, 1998.

[9] K. Koskimies, T. Syst, J. Tuomi, and T. Mn-
nist. Automated support for modeling oo software.
IEEE Software, 15:87–94, Janu 1998.

[10] Giuseppe Antonio Di Lucca, Anna Rita Fasolino,
Porfirio Tramontana, and Ugo De Carlini. Ab-
stracting business level UML diagrams from web

applications. In Kenny Wong, editor, proceedings
of the 5th International Workshop on Web Site
Evolution, pages 12–19. IEEE Computer Society
Press, September 2003.

[11] Erkki Mäkinen and Tarja Systä. MAS – An in-
teractive synthesizer to support behavioral mod-
elling in UML. In Mary Jean Harrold and Wilhelm
Schäfer, editors, proceedings of the 23rd Interna-
tional Conference on Software Engineering, pages
15–24. IEEE Computer Society Press, May 2001.

[12] Object Management Group OMG. Uinified mod-
eling language specification version 2.0: Super-
structure. Technical Report pct/03-08-02, OMG,
2003.

[13] Atanas Rountev, Olga Volgin, and Miriam Red-
doch. Control flow analysis for reverse engineer-
ing of sequence diagrams. Technical Report OSU-
CISRC-3/04-TR12, Ohio State University, March
2004.

[14] Tarja Systa. Static and Dynamic Reverse En-
gineering Techniques for Java Software Systems.
PhD thesis, University of Tampere, 2000.

[15] Raja Vallée-Rai, Laurie Hendren, Vijay Sundare-
san, Patrick Lam, Etienne Gagnon, and Phong
Co. Soot – A Java optimization framework. In
proceedings of the 9th IBM Centers for Advanced
Studies Conference, pages 125–135. ACM Press,
September 1999.

[16] J. Whittle and J. Schumann. Generating stat-
echart designs from scenarios. In Proceeding of
International Conference on Software Engineering
(ICSE 2000), 2000.

[17] Roel Wuyts. Declarative reasoning about the
structure of object-oriented systems. In Joseph
Gil, editor, proceedings of the 26th conference on
the Technology of Object-Oriented Languages and
Systems, pages 112–124. IEEE Computer Society
Press, August 1998.

[18] T. Ziadi, L. Hélouët, and J-M. Jézéquel. Re-
visiting statecharts synthesis with an algebraic
approach. In International Conference on Soft-
ware Engineering, ICSE’26, Edinburgh, Scotland,
United Kingdom, May 2004.

5


