
Noname manuscript No.
(will be inserted by the editor)

An Empirical Study on the Efficiency of Different Design
Pattern Representations in UML Class Diagrams

Gerardo Cepeda Porras

Yann-Gaël Guéhéneuc

Received: date / Accepted: date

Abstract Design patterns are recognized in the software engineering community as

useful solutions to recurring design problems that improve the quality of programs.

They are more and more used by developers in the design and implementation of their

programs. Therefore, the visualization of the design patterns used in a program could

be useful to efficiently understand how it works. Currently, a common representation

to visualize design patterns is the UML collaboration notation. Previous work noticed

some limitations in the UML representation and proposed new representations to tackle

these limitations. However, none of these pieces of work conducted empirical studies

to compare their new representations with the UML representation. We designed and

conducted an empirical study to collect data on the performance of developers on basic

tasks related to design pattern comprehension (i.e., identifying composition, role, par-

ticipation) to evaluate the impact of three visual representations and to compare them

with the UML one. We used eye-trackers to measure the developers’ effort during the

execution of the study. Collected data and their analyses show that stereotype-enhanced

UML diagrams are more efficient for identifying composition and role than the UML

collaboration notation. The UML representation and the pattern-enhanced class dia-

grams are more efficient for locating the classes participating in a design pattern (i.e.,

identifying participation).

Keywords Eye-tracking · Design Patterns · Visualization · Empirical study · UML

Class Diagrams

This work has been partly funded by the Canada Research Chair on Software Patterns and
Patterns of Software, a NSERC Discovery Grant, and a CFI Infrastructure Grant.

Gerardo Cepeda Porras
Ptidej Team
Département d’informatique et de recherche opérationnelle
Université de Montréal
E-mail: cepedapg@iro.umontreal.ca

Yann-Gaël Guéhéneuc
Ptidej Team
Département de génie informatique et génie logiciel
École Polytechnique de Montréal
E-mail: yann-gael.gueheneuc@polymtl.ca

2

1 Introduction

Program comprehension is needed to construct a mental representation of the archi-

tecture of programs and to develop and maintain programs efficiently [KKB+98]. Dia-

grams are essential visual tools to construct these mental representations, highlighting

useful information about objects and their relations [CK05]. In object-oriented soft-

ware engineering, where objects are represented by classes, UML class diagrams are

the facto standard to represent programs [Gro97]. These class diagrams are thought to

facilitate program comprehension by reducing developers’ effort in building their men-

tal representation. They have been extensively studied in the program comprehension

literature [PCA02,EvG03,SW05] and there exist many tools to build or generate UML

class diagrams.

Design Patterns [GHJV98] are solutions to recurring problems when designing

object-oriented programs. They summarize and make explicit good design practices.

The software engineering community pointed out that the knowledge and good use of

design patterns is useful to improve program comprehension and quality, for exam-

ple [GHJV98,ST02,ACC+07]. Currently, a common representation to visualize design

patterns is the UML collaboration notation [Gro97], noted UML in the following and

exemplified in Figure 1. This representation is common since its first use in the GoF’s

book “Design Patterns” [GHJV98] and its use has been advocated by respected de-

signers/architects, including Rebecca Wirfs-Brock1. Previous work pointed out some

limitations of this representation (as discussed in Section 2) and proposed alternative

representations. These representations vary from strongly visual [SK98] to strongly tex-

tual [DYZ07]. We can divide these representations in two groups: non-UML based rep-

resentations [EYG97,MHG02] and UML based representations [Gam96,LK98,SK98,

FKGS04,TT07,DYZ07]. These two groups can be divided in two sub-groups: mono-

diagram representations [Gam96,SK98,TT07,DYZ07] and multi-diagram representa-

tions [LK98,FKGS04].

subject

children

getName()

getProtection()

streamIn(istream)

streamOut(ostream)

getChild(int)

adopt(Node)

orphan(Node)

Node

streamIn(istream)

streamOut(ostream)

getChild(int)

adopt(Node)

orphan(Node)

Directory

streamIn(istream)

streamOut(ostream)

File

streamIn(istream)

streamOut(ostream)

getSubject()

Link

Proxy CompositeSubject

RealSubject

Proxy

Component

Leaf
Composite

Fig. 1 UML collaboration notation UML, reproduced from [Vli98], on a simple file system
model

However, none of the previous pieces of work perform an empirical study to compare

their proposed representations with the common one. Thus, conducting an empirical

study to evaluate the efficiency of representations to visualize design patterns in UML

1 http://www.objectsbydesign.com/books/RebeccaWirfs-Brock.html

3

diagrams is important: first, it gives a framework for comparing current and future

notations; second, it shows that notations have advantages and weaknesses; and, third,

its results could be use to motivate tool builders to include different notations for

different tasks. In particular, it could help developers to choose the right representation

for their tasks at hand and researchers by providing ground for future research in

program comprehension to further improve existing representations.

In this study, we only consider UML-based mono-diagram representations because

this group of representations is the most used now by the software engineering commu-

nity. Thus, we retain three representations to analyze and compare the performance of

developers with Representation UML. We choose these representations because they

are the main representatives of the few attempts to propose an alternative to UML

collaboration notation using UML-based mono-diagrams. These representations are:

– pattern-enhanced class diagrams, noted Schauer2 in the following (strongly visual,

see Figure 2) [SK98];

– stereotype-enhanced UML diagrams, noted Dong in the following (strongly textual,

see Figure 3) [DYZ,DYZ07];

– “pattern:role” notation, noted Gamma in the following (visual and textual, see

Figure 4) [Gam96].

Composite

Proxy

subject

children

getName()

getProtection()

streamIn(istream)

streamOut(ostream)

getChild(int)

adopt(Node)

orphan(Node)

Node

streamIn(istream)

streamOut(ostream)

getChild(int)

adopt(Node)

orphan(Node)

Directory

streamIn(istream)

streamOut(ostream)

File

streamIn(istream)

streamOut(ostream)

getSubject()

Link

Fig. 2 Pattern-enhanced class diagrams, Schauer, on the same file system model used in
Figure 1

In our study, we design experiments to collect data to compare developers’ perfor-

mance while performing three basic tasks in design pattern comprehension:

– class participation, noted Participation in the following: identifying all the classes

that participate in a design pattern;

– roles play, noted Role in the following: identifying the role a class plays in a given

pattern;

– pattern composition, noted Composition in the following: identifying all design

patterns in which a class participates.

2 In the following, for the sake of simplicity, we use the last name of the first author of a
notation to denote its representation.

4

subject children

<<PatternOperation{Request@Proxy[1]}>>getName()

<<PatternOperation{Request@Proxy[1]}>>getProtection()

<<PatternOperation{AbstractOperationt@Composite[1]}>> streamIn(istream)

<<PatternOperation{AbstractOperationt@Composite[1]}>> streamOut(ostream)

getChild(int)

adopt(Node)

orphan(Node)

<<PatternClass{Subject@Proxy[1]}{RealSubject@Proxy[1]}{Component@Composite[1]}>>

Node

<<PatternOperation{Operationt@Composite[1]}>> streamIn(istream)

<<PatternOperation{Operationt@Composite[1]}>> streamOut(ostream

getChild(int)

adopt(Node)

orphan(Node)

<<PatternClass{Composite@Composite[1]}>>

Directory

<<PatternOperation{Operationt@Composite[1]}>> streamIn(istream)

<<PatternOperation{Operationt@Composite[1]}>> streamOut(ostream)

<<PatternClass{Leaf@Composite[1]}>>

File

<<PatternOperation{Operationt@Composite[1]}>> streamIn(istream)

<<PatternOperation{Operationt@Composite[1]}>> streamOut(ostream)

<<PatternOperation{Request@Proxy[1]}>> getSubject()

<<PatternClass{Proxy@Proxy[1]}}>>

Link

Fig. 3 Stereotype-enhanced UML diagrams, Dong, on the file system model used in Figure 1

subject

children

getName()

getProtection()

streamIn(istream)

streamOut(ostream)

getChild(int)

adopt(Node)

orphan(Node)

Node

streamIn(istream)

streamOut(ostream)

getChild(int)

adopt(Node)

orphan(Node)

Directory

streamIn(istream)

streamOut(ostream)

File

streamIn(istream)

streamOut(ostream)

getSubject()

Link

Proxy:Subject

Proxy:RealSubject

Composite:Component

Composite:Leaf

Proxy

Composite

Fig. 4 Pattern:role notation, Gamma, reproduced from [Vli98], on the same file system model
used in Figure 1

We measure performance in terms of the percentage of correct answers and of

the developers’ effort spend to perform the given tasks from data collected using eye-

trackers: the less effort and the better percentage of correct answers, the greater the

subject’s performance. For each representation used in the study, we use the same

UML class diagram to which we add the representations to visualize pattern-related

information. Design patterns used in this study are: Composite, Prototype, Template

Method, State, and Singleton. We also compare the effectiveness of each representation

for diagrams with a small density of classes (15 classes) and with a larger density of

classes (40 classes).

We collect data for 24 developers. We report that, for the diagrams of 15 classes,

developers performed significantly better on Representation UML when compared to

Representation Dong for Task Participation. However, for Tasks Composition and Role,

RepresentationDong performed significantly better than Representation UML. The

other two representations did not show statistically significant differences when com-

pared with Representation UML. However, Representation Schauer provides similar

performance to Representation UML for Tasks Participation and Composition. Ad-

ditionally, we report that the level of knowledge of design patterns could influence

significantly the performance of users when performing Task Composition with repre-

sentations UML and Gamma.

5

For the diagrams of 40 classes, we report that developers performed significantly

better on Representation UML when compared toDong for Task Participation similarly

to the results of 15 classes diagrams. For the other two representations, we cannot

report any statically significant differences. For the other two tasks, we cannot report

any statically significant differences. We also point out the influence of readability on

the results for the diagrams of 40 classes.

The remainder of this paper is organized as follows. In the following Section 2, we

present related work. In Section 3, we present the experimental design and the running

of our experiments. We analyze the collected data and present results in Section 4. We

assess the validity of our study in Section 5 and conclude in Section 6.

2 Related Work

This paper relates to three fields of study: program comprehension, design pattern

visualization on UML class diagrams, and eye-tracking studies.

2.1 Program Comprehension

Program comprehension is subject of several research works.

Several authors proposed and evaluated models to form and abstract a mental

representation of a program to achieve program comprehension. For example, Soloway

et al. [SPL+88] suggested that developers use plans [RW88] when comprehending a

program. Von Mayrhauser [vMV95] described the process of program comprehension

as a combination of top-down and bottom-up tasks, based on existing knowledge.

All developers use diagrams as a means to convey information to other developers

or to better understand programs. Diagrams reduce the comprehension and learning

effort by omitting irrelevant details and highlighting pertinent information about ob-

jects and their relations. The closer the information presented on diagrams is to the

developer’s mental representation, the easier it is to understand [CK05]. Several stud-

ies have been conducted about program comprehension using UML class diagrams.

For example, Purchase et al. [PCA02] conducted a study on the preference of de-

velopers on aesthetics of UML class diagrams. They concluded on aesthetic criteria

for UML class diagrams, including joined inheritance arcs and directional indicators.

Eichelberger [Eic03] studied the relations between semantics in UML class diagrams,

principles of human-computer interactions, and principles of object-oriented modelling.

He presented aesthetic criteria to layout UML class diagrams to improve readability.

Sun and Wong [SW05] classified selected criteria from previous work, using laws

from the Gestalt theory of visual perception, the organizational perception theory, and

the segregative perception theory [MF93]. They retained 14 criteria to assess the quality

of UML class diagram layouts. They used these criteria to evaluate the efficiency of

layout algorithms of two commercial tools, Rational Rose and Borland Together. They

concluded on the good quality of both tools, the difficulty of both tools to satisfy all

criteria. They suggested characteristics to be improved in these two tools in the future.

We use these criteria to layout our diagrams.

Previous work provides a good basis for building empirical studies on program

comprehension and important criteria to layout our UML class diagrams.

6

2.2 Design Pattern Visualization

Expressing design decisions by highlighting the design patterns used in an existing

architecture leads to a better understanding of how a program works. Conversely, the

lack of pattern-related information could impede the program comprehension process.

A common representation to visualize design patterns is the UML collaboration

notation, UML [Gro97] (as illustrated in Figure 1, also called parameterized collabo-

ration diagrams). This representation uses dashed ellipses (with the patterns names)

and lines (with the role names that classes play) to associate the patterns to their par-

ticipating classes. However, too many dashed lines lead to reading problems because

information is being mixed (and sometimes cluttered) with other diagram elements.

With the goal of removing the cluttering dashed lines in UML, Vlissides [Vli98]

proposed Representation Gamma, where all pattern-related information is contained

in shaded boxes which are placed close to the classes participating in patterns (see

Figure 4). This representation first appears in the GoF’s book [Gam96], before being

described in [Vli98], hence its name. This representation is highly readable because it

puts the pattern-related information in another plan with the diagram. However, this

representation could increase significantly the size of the original diagram. Also, the

combination of gray boxes with white typography could lead to reading problems on

printed media.

Schauer and Keller [SK98] implemented a prototype to ease program comprehension

based on design pattern recognition and visualization techniques. To visualize design

patterns, the prototype offers three views:

– the pattern-enhanced class diagrams, Representation Schauer, a mono-diagram

UML-based representation that uses different colored borders to identify pattern

participation and also uses the canonical representation [GHJV98] to help users

infer the roles each class plays on that pattern, see Figure 2;

– the pattern-analysis view, a multiple view composed of the first view and a catalog

of design patterns showing their intents, applications, and consequences;

– a dynamic view called pattern collaboration diagrams, which shows collaborations

between implemented design patterns on a pattern-level and also in the class-level

dynamically.

Trese and Tilley [TT07], to improve readability and comprehension of programs,

proposed the class participation diagrams, as illustrated in Figure 5. In this represen-

tation, classes are clustered by design pattern (showed in their canonical representa-

tion) and grouped by categories: creational, behavioral, and structural (as defined in

[GHJV98]). They also apply some aesthetics criteria in spacing and shading to ease

readability. However, this representations lacks some important information, such as

the name of the design patterns or the role a class play, that can lead to confusion.

Dong et al. [DYZ07] proposed a UML profile with new stereotypes, tagged values,

and constraints to visualize pattern-related information in UML class diagrams. Their

Representation, Dong, uses tagged values to hold information about the roles that a

class, a method, or an attribute plays in a design pattern and also deals with multiple

instances of design patterns, as shown in Figure 3. This representation has the advan-

tage of expressing clearly pattern-related information. However, the text overload could

increase considerably the size of classes as well as make the diagrams harder to read.

To address this issue, they developed a Web service, VisDP, to dynamically visualize

design pattern information on demand.

7

Previous work provides us with several representations for our study on design pat-

tern visualization using UML class diagrams. These representations vary from mostly

graphical to mostly textual. To the best of our knowledge, none of this previous work

conducted empirical studies to evaluate the efficiency of their representations with the

common representation.

subject

getName()

getProtection()

streamIn(istream)

streamOut(ostream)

getChild(int)

adopt(Node)

orphan(Node)

Node

streamIn(istream)

streamOut(ostream)

getSubject()

Link

children

getName()

getProtection()

streamIn(istream)

streamOut(ostream)

getChild(int)

adopt(Node)

orphan(Node)

Node

streamIn(istream)

streamOut(ostream)

getChild(int)

adopt(Node)

orphan(Node)

Directory

streamIn(istream)

streamOut(ostream)

File

B
e
h
a
v
io
ra
l

C
re
a
ti
o
n
a
l

S
tr
u
c
tu
ra
l

N
o
n
-P
a
tt
e
rn

Fig. 5 Class participation diagrams, on the same file system model used in Figure 1

2.3 Eye-tracking Studies

Eye tracking systems collect eye movement data to provide an insight into a subject’s

focus of attention, making it possible to draw conclusions about the underlying cog-

nitive processes [Ray98]. These systems are based on the physiology of human visual

capabilities and cognitive theories, like the theories on visual attention and visual per-

ception [Duc03].

Eye trackers have been traditionally used in cognitive psychology [Ray98]. These

systems are also increasingly used in other domains, such as marketing, industrial

design, and computer science. In computer science, eye-trackers have been used in

studies on graphic data processing, human-computer interfaces, and virtual reality

[Duc03]. The software engineering community started only recently to show an interest

in using eye-tracking systems to study program comprehension.

For instance, Bednarik and Tukiainen [BT06] proposed an approach to study trends

on repeated measures of sparse data over a small data set of program comprehension

activities captured with eye-trackers. Using this approach, they characterized program

comprehension strategies using different program representations (code lecture and

8

program execution). The second author of this paper also conducted an experiment

with eye-trackers to study how software engineers acquire and use information from

UML class diagrams [Gu06]. He concluded on the importance of classes and interfaces

and reported that developers seem to barely use binary class relationships, such as

heritage or composition. Yusuf et al. [YKM07] conducted a similar study to analyze

the utilization of specific characteristics of UML class diagrams (e.g., layout, color,

and stereotypes) during program comprehension. They concluded on the efficiency

of layouts with additional information as colors or stereotypes to improve program

comprehension.

We follow this previous work in this study of the efficiency of representations for

design pattern visualization on program comprehension.

3 Experimental Design

The design of our study aims at testing whether or not developers’ performance im-

proves when performing design pattern comprehension tasks using Representations

Dong, Gamma, and Schauer, when compared to Representation UML. We measure

performance in terms of the percentage of correct answers and developers’ effort spend

to perform the given tasks. To assess the developers’ effort while executing the study, we

use eye trackers to collect relevant data as in previous studies ([Gu06] and [YKM07]).

Therefore, our design is directed by the use of eye-trackers. We first present and jus-

tify our choice for the three representations and three tasks used in this study. Then,

we detail our hypotheses, objects, dependent and independent variables, and subjects.

Finally, we present briefly our eye-tracking system and the procedure followed to carry

out this study.

3.1 Representations

An analysis of the representations proposed in the literature leads us to choose: Repre-

sentation Schauer proposed by Schauer et al. [SK98] for its simplicity, its ease for visu-

ally identify design patterns, and its use of the canonical representation to identify key

information about design patterns (see also Trese and Tilley’s approach [TT07]). Rep-

resentation Dong proposed by Dong et al. [DYZ07] was selected because it is strongly

textual. We retained Representation Gamma [Gam96,Vli98] because it is both a visual

and a textual notation. In addition, Representation Gamma shows the information rel-

ative to design patterns on a different plan (because of the shading effect) that could

also reduce the developers’ effort and ease the reading of diagrams. We reject Trese

and Tilley’s approach because it lacks some important information as explained in the

previous section and also because it changes the original UML class diagram and we

would not be able to compare it fairly to the other representations.

3.2 Tasks

In the cognitive approach of systems [Hut95], the goal is to find a means to facilitate

data acquisition [War]. Following this approach, our tasks were designed to measure

the cognitive charge, in terms of developers’ effort, related to pattern comprehension

9

activities. We choose 3 tasks for which a representation of design patterns could be

useful, that are recurring in program comprehension, and that keep experimental trials

short in time, ensuring the highest accuracy of recorded data [GLCR06]:

– class participation, Participation: i.e., to identify all classes participating in a

design pattern.

– pattern composition, Composition: i.e., to identify all design patterns a class

participates in.

– roles played, Role: i.e., to identify the roles a class play in a design pattern.

We will use these three tasks (which are key for pattern comprehension) to compare

the different representations with UML. We rejected other tasks, for example the tasks

of identifying multiple instances of the same design pattern, because it cannot be

performed by developers satisfactorily using all the representations.

3.3 Hypotheses

We want to assess the following three null hypotheses when performing the Tasks

Participation, Composition, and Role:

– H01 : There is no difference in the average effort and accuracy of subjects using

Representation UML and subjects using Representation Dong.

– H02 : There is no difference in the average effort and accuracy of subjects using

Representation UML and subjects using Representation Gamma.

– H03 : There is no difference in the average effort and accuracy of subjects using

Representation UML and subjects using Representation Schauer.

If the previous null hypotheses are rejected, we could assume (with respect to the

threats to the validity assessed in Section 5) that either one of each of the following

alternative hypotheses are verified:

– Hα3.1 : The average effort and accuracy is superior for subjects using Representation

Dong than for subjects using Representation UML.

– Hα3.2 : The average effort and accuracy is inferior for subjects using Representation

Dong than for subjects using Representation UML.

– Hα2.1 : The average effort and accuracy is superior for subjects using Representation

Gamma than for subjects using Representation UML.

– Hα2.2 : The average effort and accuracy is inferior for subjects using Representation

Gamma than for subjects using Representation UML.

– Hα1.1 : The average effort and accuracy is superior for subjects using Representation

Schauer than for subjects using Representation UML.

– Hα1.2 : The average effort and accuracy is inferior for subjects using Representation

Schauer than for subjects using Representation UML.

We choose to compare the three representations Schauer,Gamma, andDong against

UML and not against one another for two reasons. First, a study of the different no-

tations against one another would have required much more subjects. Second, we do

not compare the aggregated results of diagrams of 15 and 40 classes because we do not

assess and ensure that they have the same complexity.

10

<<Interface>>

DrawingView

+ tool() : Tool

+ drawing() : Drawing

+ edition() : DrawingEditor

<<Implementation>>

+ tool() : Tool

+ drawing() : Drawing

+ edition() : DrawingEditor

+ mousePressed(MouseEvent) : void

+ mouseDragged(MouseEvent) : void

+ mouseReleased(MouseEvent) : void

+ getInstance() : StandardDrawingView

- StandardDrawingView() : void

- fDrawing : Drawing

- fEditor : DrawingEditor

- fSelection : Vector

StandardDrawingView

+state

<<Implementation>>

fView : DrawingView

+ AbstractTool(itsView : DrawingView) :

+ drawing() : Drawing

+ edition() : DrawingEditor

+ view() : DrawingView

+ activate() : void

+ deactivate() : void

+ mouseDown(MouseEvent, x : int, y : int) : void

+ mouseDrag(MouseEvent, x : int, y : int) : void

+ mouseUp(MouseEvent, x : int, y : int) : void

AbstractTool
<<Interface>>

+ activate() : void

+ deactivate() : void

+ mouseDown(MouseEvent, x : int, y : int) : void

+ mouseDrag(MouseEvent, x : int, y : int) : void

+ mouseUp(MouseEvent, x : int, y : int) : void

Tool

+ SelectionTool(DrawingView) :

+ mouseDown(MouseEvent, x : int, y : int) : void

+ mouseDrag(MouseEvent, x : int, y : int) : void

+ mouseUp(MouseEvent, x : int, y : int) : void

createAreaTracker(DrawingView) : Tool

createDragTracker(DrawingView, Figure) : Tool

SelectionTool

<<Interface>>

+ clone() : Object

+ draw(Graphics) : void

+ moveBy(x : int, y : int) : void

+ addFigureChangeListener(FigureChangeListener) : void

+ removeFigureChangeListener(FigureChangeListener) : void

Figure

- fCreatedFigure : Figure

- fPrototype : Figure

+ CreationTool(DrawingView, prototype : Figure) :

+ activate() : void

+ mouseDown(MouseEvent, x : int, y : int) : void

+ mouseDrag(MouseEvent, x : int, y : int) : void

+ mouseUp(MouseEvent, x : int, y : int) : void

createFigure() : Figure

CreationTool

+prototype

AbstractFigure

+ clone() : Object

+ moveBy(x : int, y : int) : void

+void draw(Graphics) {

...

drawBackground(Graphics)

drawFrame(Graphics)

...

}

AttributeFigure

+ draw(Graphics) : void

drawBackground(Graphics) : void

drawFrame(Graphics) : void

CompositeFigure

+ draw(Graphics) : void

+ add(Figure) : Figure

CompositeFigure() :

fFigures[0..*] : Figure

+consists of

0..*

RectangleFigure

+ drawBackground(Graphics) : void

+ drawFrame(Graphics) : void

- fDisplayBox : Rectangle

TextFigure

+ drawBackground(Graphics) : void

+ drawFrame(Graphics) : void

- fOriginX : int

- fOriginY : int

EllipseFigure

+ drawBackground(Graphics) : void

+ drawFrame(Graphics) : void

- fDisplayBox : Rectangle

<<Implementation>>

StandardDrawing

+ StandardDrawing() : void

- readObject(ObjectInputStream) : void

Fig. 6 JHotDraw diagram of 15 classes used in the study

3.4 Objects

We choose the open-source program JHotDraw for our study. JHotDraw [JHo] is a

framework to implement technical and structured drawings. It was designed by Gamma

and Eggenschwiler as a show case for the use of design patterns.

Because full documentation was not available, partial reverse engineering was per-

formed on JHotDraw to obtain its design as a UML class diagram. We obtained one

diagram from JHotDraw by reverse engineering and then we created two diagrams (of

15 and 40 classes) by selecting a set of consistent classes the use the following design

patterns: Composite, Prototype, Template Method, State, and Singleton, as imple-

mented in JHotDraw. We chose these six patterns among other patterns implemented

in JHotDraw, for example Strategy, because they are representatives of creational, be-

havioural, and structural design patterns and because they are clearly distinguishable

among themselves. Also, a previous study [KG08] showed that these patterns have

mostly a positive subjective impact of software quality characteristics (expendability,

understandability, and reusability). It is therefore interesting to study if they also have

a positive impact on effort and accuracy.

We follow the canonical representation of the chosen design patterns (i.e., as de-

scribed in [GHJV98] as much as possible). However, there are slight differences mainly

due to language implementation issues (e.g., the use of interfaces and abstract classes

in Java). Both diagrams of 15 classes (see Figure 6) and diagrams of 40 classes (available

on-line at http://www.ptidej.net/downloads/experiments/emse08/ due to space con-

straints), have the same classes participating in design patterns. There is only a slight

change in the layout of the diagrams of 40 classes because of the relationship between

the new classes added to the diagram. All representations are superposed on the same

two UML class diagrams. All the diagrams used for the study are available on the

companion web site.

11

3.5 Independent Variables

From the hypotheses, we identify the following independent variables:

– Representations: UML, Schauer, Gamma, Dong are the possible values for this

variable, these values represent the four representations chosen in our study. We

use the indexes 15 and 40 to distinguish between diagrams with small class density

from diagrams with larger class density. We chose to analyze separately diagrams

with different class density because the graph complexities are different.

– Tasks: Participation, Composition, Role are the values for this variable. these val-

ues represent the three tasks chosen in our study.

We retain two mitigating variables to study and better understand the results of

our study:

– JHotDraw Knowledge: The subjects’ knowledge of JHotDraw. The level is es-

tablished using a questionnaire. Values are taken from [0,1,2] where 2 means that a

subject has a good knowledge of JHotDraw, 1 that the subject has a basic knowl-

edge of JHotDraw, and 0 that the subject has no knowledge of JHotDraw.

– DP Knowledge: The subjects’ knowledge of design patterns. The level is also

established using a questionnaire following the same method as for the previous

variable.

3.6 Dependent Variables

The dependent variables are chosen according to our hypotheses and independent vari-

ables based on the capabilities of eye-tracking systems. We measure performance in

terms of correct answer percentage (CAP) and the developers’ effort spend to perform

given tasks. We establish for each diagram (Dong15/Dong40, Gamma15/Gamma40
Schauer15/Schauer40, and UML15/UML40) a set of area of interest (AOI) and a set

of area of glance (AOG). An area of glance is any class or notation element part of

the diagrams. An area of interest is a relevant class or notation element in a diagram

that should be the focus of the subjects’ attention to perform a particular task Par-

ticipation, Composition, or Role. Both sets vary with the task to perform. We collect

data about fixations on AOI and AOG to compute developers’ effort. From fixations

collected (see Section 3.9), we use the following metrics:

– Average Fixation Duration (AFD): This measure is correlated with cognitive

functions [GK99,Duc03]. It is computed as follows:

AFD =

∑n
i=1 (ET (Fi)− ST (Fi)) in AOG

n

where ET (Fi) and ST (Fi) represent the end time and start time for fixation Fi

and n represent the total number of fixations in AOG . Longer fixations mean that

users are spending more time interpreting or assembling the representation ele-

ments to build their internal mental representation. Representations that require

shorter fixations are thus more efficient.

12

15 40
Dong S9, S11, S12, S21, S23, S24 S3, S5, S6, S15, S17, S18

Gamma S6, S8, S10, S18, S20, S22 S2, S4, S12, S14, S16, S24

Schauer S4, S5, S7, S16, S17, S19 S1, S10, S11, S13, S22, S23

UML S1, S2, S3, S13, S14, S15 S7, S8, S9, S19, S20, S21

Table 1 Subjects’s distribution for the study

– Ratio of “On target:All target” Fixation Time (ROAFT) [GK99]: The

ratio of the time passed in the AOI divided by the time passed in the AOG sets.

It is computed as follows:

ROAFT =

∑n
i=1 (ET (Fi)− ST (Fi)) in AOI∑m
j=1 (ET (Fj)− ST (Fj)) in AOG

where ET (Fi), ET (Fj) and ST (Fi), ST (Fj) represent the end time and start time

for fixation Fi or Fj respectively, n and m represent the total number of fixations

in AOI and AOG respectively. Smaller ratios indicate lower efficiency.

– Ratio of “On targer:All target” Fixations (ROAF) [GK99]: This ratio is

a content-dependent efficiency measure of visual search [Duc03]. It is computed as

follows:

ROAF =
Total Number of F ixations in AOI

Total Number of F ixations in AOG

Smaller ratios indicate lower efficiency caused by a greater effort needed to find the

pertinent elements required to perform the task.

3.7 Subjects

The study was performed by 24 subjects doing their Ph.D. or M.Sc. studies at the

Department of Informatics and Operations Research at University of Montreal. All

subjects were volunteers. They have designed software architecture and used UML

class diagrams and design patterns during their studies for at least two years.

We design our experiment as two between-subjects experiments on diagrams of 15

and 40 classes. The subjects are placed into balanced groups. Using balanced groups

simplifies and strengthens the statistical analysis of collected data [WRH+00]. Each

subject performs the experience for the three different Tasks Composition, Participa-

tion, and Role over two different representations with different class densities. Table 1

show the subjects’s distribution for the study.

3.8 Questions and Stimulus

Choosing the appropriate question is particularly important for eye-tracking studies

[Duc03] because eye movements are dependent on the nature of the task at hand.

Therefore, we choose questions that allow the subjects to answer in a short delay

(one to two minutes) using only the information given by the different representations.

We defined two questions for each task, one for each class density. Table 2 shows the

questions used for the experiment and Figure 7 shows the questions’ distribution in

13

Pattern composition task
Q1. Mention all design patterns the class CreationTool participates in.
Q2. Mention all design patterns the class AttributeFigure participates in.

Class participation task
Q3. Mention all classes participating in the Composite design pattern.
Q4. Mention all classes participating in the State design pattern.

Roles played by a class task
Q5. Mention all roles played by the class AbstractFigure.
Q6. Mention all roles played by the class StandardDrawingView.

Table 2 Questions for tasks Composition, Participation and Role

S1 D15,UML Q1 Q4 Q6 S7 D40,UML Q1 Q4 Q6

D40,Schauer Q3 Q2 Q5 D15,Schauer Q3 Q2 Q5

S2 D15,UML Q3 Q2 Q5 S8 D40,UML Q6 Q1 Q3

D40,Gamma Q1 Q4 Q6 D15,Gamma Q2 Q4 Q5

S3 D15,UML Q4 Q2 Q5 S9 D40,UML Q5 Q3 Q2

D40,Dong Q6 Q3 Q1 D15,Dong Q4 Q1 Q6

S4 D15,Schauer Q6 Q1 Q4 S10 D40,Schauer Q3 Q2 Q5

D40,Gamma Q2 Q5 Q3 D15,Gamma Q1 Q4 Q6

S5 D15,Schauer Q5 Q3 Q2 S11 D40,Schauer Q4 Q2 Q5

D40,Dong Q4 Q1 Q6 D15,Dong Q6 Q3 Q1

S6 D15,Gamma Q6 Q1 Q3 S12 D40,Gamma Q5 Q3 Q2S6 D15,Gamma Q6 Q1 Q3 S12 D40,Gamma Q5 Q3 Q2

D40,Dong Q2 Q4 Q5 D15,Dong Q4 Q1 Q6

S13 D15,UML Q6 Q2 Q4 S19 D40,UML Q4 Q1 Q6

D40,Schauer Q3 Q5 Q1 D15,Schauer Q5 Q3 Q2

S14 D15,UML Q5 Q4 Q2 S20 D40,UML Q1 Q4 Q6

D40,Gamma Q1 Q3 Q6 D15,Gamma Q3 Q2 Q5

S15 D15,UML Q4 Q2 Q5 S21 D40,UML Q3 Q2 Q5

D40,Dong Q3 Q6 Q1 D15,Dong Q6 Q4 Q1

S16 D15,Schauer Q6 Q1 Q4 S22 D40,Schauer Q5 Q1 Q3

D40,Gamma Q2 Q5 Q3 D15,Gamma Q4 Q6 Q2

S17 D15,Schauer Q2 Q4 Q6 S23 D40,Schauer Q1 Q6 Q3

D40,Dong Q5 Q1 Q3 D15,Dong Q4 Q2 Q5

S18 D15,Gamma Q3 Q6 Q1 S24 D40,Gamma Q4 Q1 Q5

D40,Dong Q4 Q2 Q5 D15,Dong Q2 Q3 Q6

Fig. 7 Questions’ distribution in the study

the study. These questions are appropriate to analyze the efficiency of the studied

representations.

An object of attention viewed by a subject is called a “stimulus”. We combine

one question with one diagram to form a stimulus. Previous work highlighted the

subjects’ tendency to look to the stimulus’ top-left corner [GSL+02,Boj05]. Therefore

we placed the question on the top-left corner of the screen, the diagram filling the

rest of the screen, as shown in Figure 8, to prevent any bias towards elements of the

representations placed in the top-left corner.

The subjects were requested to provide their answer aloud, to avoid head move-

ments that could decalibrate the eye-tracker. Also, previous work [GLCR06] showed

that asking subjects to provide their answers aloud after having first recorded their

eye-movements to find the answer does not alter their gaze patterns. The experimenter

used a check-list to assess the accuracy of each answer. The experiment was approved

by the Ethical Review Board of Université de Montréal.

14

State : StateContext

Singleton : Singleton

State : ConcreteState

State : ConcreteState

Prototype : Client

State : State

<<Interface>>

DrawingView

+ tool() : Tool

+ drawing() : Drawing

+ edition() : DrawingEditor

<<Implementation>>

+ tool() : Tool

+ drawing() : Drawing

+ edition() : DrawingEditor

+ mousePressed(MouseEvent) : void

+ mouseDragged(MouseEvent) : void

+ mouseReleased(MouseEvent) : void

+ getInstance() : StandardDrawingView

- StandardDrawingView() : void

- fDrawing : Drawing

- fEditor : DrawingEditor

- fSelection : Vector

StandardDrawingView

+state

<<Implementation>>

fView : DrawingView

+ AbstractTool(itsView : DrawingView) :

+ drawing() : Drawing

+ edition() : DrawingEditor

+ view() : DrawingView

+ activate() : void

+ deactivate() : void

+ mouseDown(MouseEvent, x : int, y : int) : void

+ mouseDrag(MouseEvent, x : int, y : int) : void

+ mouseUp(MouseEvent, x : int, y : int) : void

AbstractTool

+ SelectionTool(DrawingView) :

+ mouseDown(MouseEvent, x : int, y : int) : void

+ mouseDrag(MouseEvent, x : int, y : int) : void

+ mouseUp(MouseEvent, x : int, y : int) : void

createAreaTracker(DrawingView) : Tool

createDragTracker(DrawingView, Figure) : Tool

SelectionTool

+ clone() : Object

+ draw(Graphics) : void

+ moveBy(x : int, y : int) : void

+ addFigureChangeListener(FigureChangeListener) : void

+ removeFigureChangeListener(FigureChangeListener) : void

- fCreatedFigure : Figure

- fPrototype : Figure

+ CreationTool(DrawingView, prototype : Figure) :

+ activate() : void

+ mouseDown(MouseEvent, x : int, y : int) : void

+ mouseDrag(MouseEvent, x : int, y : int) : void

+ mouseUp(MouseEvent, x : int, y : int) : void

createFigure() : Figure

CreationTool

+prototype

Nommer tous les patrons de conception dans lesquels participe la classe CreationTool

Fig. 8 Portion of the stimulus with Representation Gamma. (The question is in French be-
cause all subjects were French-speakers.)

3.9 Equipment

We used the EyeLink II eye-tacking system from SR Research3 to perform our study.

This system has a high resolution (noise limited to 0.01◦) and fast data rate (500

samples per second). Its precision has an average gaze position error < 0.5◦.
The eye-tracker is composed of two computers and a head-band. One computer is

used for experiment execution and the other for system calibration and data processing.

The two computers communicate by an Ethernet connection. The head-band includes

two cameras and an infra-red emitter. The cameras use infra-red rays that are reflected

on the subject’s cornea to register eye-movements. Four sensors are placed on the

subject’s screen. These sensors work with the infra-red emitter and allow computing the

position of the head-band with respect to the screen.These four sensors in combination

with the cameras allow the system to compute precisely the position of the subject’s

gaze on the screen.

The communication between the two computers is based on the principle of “Ac-

tion/Event” → “Reaction”. When an event is emitted by the subject’s computer, the

experimenter’s computer reacts and takes the control back. The experimenter’s com-

puter compute the position of the subject’s gaze and record this data on the disk, in

real time. When the experimentation is finished, the experimenter’s computer sends

back the whole data file to the subject’s computer for future analysis. Figure 9 shows

all eye-tacking system’s components.

The system can collect two types of data: raw positions and parsed positions. Parsed

positions are given in terms of fixations and saccades based on physiological thresholds.

A fixation is a stabilization of the eye during a gaze. A saccade is a quick movement

of the eye from one fixation to another. The eyes are only sensitive to the details in

3 http://www.eyelinkinfo.com/

15

Fig. 9 Eye-tracker’s components (from SR Research web site)

the center of the visual field, visual information is only treated during fixations and

not during saccades [Ray98,Duc03,War]. Similarly to previous work [Gu06,YKM07],

we use fixations as a measure of the amount of attention given by a subject to the

different AOI and AOG of a diagram.

We use a dentist chair to configure the environment of the experiment easily: to

align the subject’s head with the four sensors, avoid movements, and give more comfort.

We also use a travel pillow to give support to the subject’s neck and further reduce

head movements. We use a 17” CRT screen to show the stimulus. For each subject,

a session takes about 40-50 minutes, including a presentation of all the steps of the

study and legal issues, a tutorial on the representations and kinds of tasks, eye-tracker’s

calibration, data collection, and questionnaires.

3.10 Procedure

The experiments were conducted in a quiet room without any disturbances. The pro-

cedure is as follows:

1. First, the subject registers for the study in person, by email, or using the inscription

Web site. The Web site gives a description of the study and a video showing the

eye-tracking system.

2. We present a tutorial to introduce the four representations used for the study

with some example diagrams to familiarize the subjects with the tasks they will

perform later. This tutorial is helpful to alleviate anxiety and to give all subjects

the same base knowledge necessary to use the representations (as shown by the

high percentage of correct answers, CAP, detailed in section 4). The tutorial is

useful also to reduce the learning effect.

3. At the end of the tutorial, we give a presentation of the eye tracker used to collect

data and important instructions on the use of the system, e.g., to avoid head

movements while performing the tasks.

16

4. Then, we install the subject on a fixed dentist chair and we put a travel pillow

around the subject’s neck to make the subjects comfortable while avoiding head

movements.

5. We explain the technical settings of the running of the study: each question is

displayed on the screen at the top-left corner of the screen, a subject must give the

answer aloud at the end of each task. Once a task finished and the answer given,

the subject presses the “Escape” key to go to the next stimulus.

6. Before performing the tasks, the eye-tracker is calibrated. Calibration requires the

subjects to fix one by one nine points on the screen.

7. After calibration, a short text presenting JHotDraw is shown to the subject, sum-

marizing its intent and main characteristics. This text provides enough information

to perform the tasks.

8. Then, data collection begins while the subjects perform the tasks. No time limit

is set but subjects are requested to answer aloud as soon as possible. We use a

check-list to assess the answers of each task. If all elements of the list are covered,

then the subject’s answer is correct, otherwise the answer is considered incorrect.

9. Finally, we provide each subject with a short written auto-evaluation question-

naire to evaluate their knowledge of design patterns and JHotDraw. We give this

questionnaire after the experimentation not to reveal the purpose of our study.

10. At the end of the experiment, we give a symbolic present to the subjects for their

participation. We ask them not to share any information with other potential sub-

jects until the date of the end of the complete study.

4 Analysis and Results

We discuss here the results of testing our hypotheses. We use the Student t-Test after

verifying that all the collected data is normal. The Student t-Test is a robust statis-

tical test that can be used when the sample size is small. It only assumes random

independent samples with normal distributions or distributions close to the normality.

We explore two factors that could mitigate these results, DP Knowledge and

JHotDraw Knowledge. Table 3 summarizes some statistics of the collected data.

Next sections will show the result of our analyses on the effects of adding the Rep-

resentations Dong, Gamma, Schauer, and UML on UML class diagrams for the tasks

Participation, Composition, and Role respectively.

4.1 Data Analysis of Task Participation, 15 classes

Subjects performed better for the metric of correct answer percentage CAP using UML

than using any of the other three representations. Diagrams using Representation Dong

are effort-consuming with respect to UML: p-values around 0.007 and less for both the

ratio of fixations, ROAF, and the ratio on fixation time, ROAFT, and differences in

CAP and in the average fixation duration AFD showing the same tendency, see Tables 4

and 5. The mean differences between Dong and UML shows a difference of 0.25 and 0.29

in ROAF and ROAFT, meaning more effort with Representation Dong. A difference

in AFD of roughly 13ms showing more effort with Representation Dong. Finally, CAP

has a value of 50% with Dong in comparison to 100% with Representation UML.

17

Collected Data
Number of subjects (#) 24
Data (Mb) 36
Number of videos (#) 144
Total time of experiments (hours) 18
Total time eye-tracking (min) 112,4
Total number of fixations 21.395
Diagrams of 15 classes
Average time on task Composition(sec) 36
Average time on task Participation(sec) 33
Average time on task Role(sec) 54
Diagrams of 40 classes
Average time on task Composition(sec) 49
Average time on task Participation(sec) 52
Average time on task Role(sec) 58

Table 3 Collected Data

Diagrams

Perf. Effort Measures

C
A
P

(%
)

A
F
D

(m
s)

R
O
A
F

(#
)

R
O
A
F
T

(m
s)

Dong15 50.00 277.61 0.54 0.55
Gamma15 60.00 270.60 0.70 0.74
Schauer15 83.33 273.85 0.84 0.87
UML15 100.00 264.66 0.79 0.84

Table 4 Means of dependent variable values for Representations Dong, Gamma, Schauer,
and UML on Task Participation, diagrams with 15 classes.

Diagrams

P-Values

A
F
D

(m
s)

R
O
A
F

(#
)

R
O
A
F
T

(m
s)

H01: Dong15 vs. UML15 0.79 0.290 0.380
H02: Gamma15 vs. UML15 0.90 0.120 0.080
H03: Schauer15 vs. UML15 0.70 0.007 < 0.001

Table 5 Hypotheses testing for Representations Dong, Gamma, Schauer, and UML on Task
Participation, diagrams with 15 classes.

Figure 10 shows that subjects working with Representation Dong exhibit clearly

lower values for ROAF and ROAFT and a higher value in AFD. However, subjects

using Representation Dong have a uniform performance, i.e., flat box plots, compared

to Gamma, Schauer, and UML. Dong is a representation rich in semantics and that

could explain this little variance observed in the box plots.

We conclude that for Task Participation, the average effort is superior in subjects

using Representation Dong than in subjects using UML. For the other two representa-

tions, we do not report statistically significant differences on the effort. Representation

UML has more correct answers than the other two representations. However, it is im-

portant to mention that Representation Schauer shows similar performances to UML

for this task. Representation Gamma shows a larger variance in subject’s effort in

18

50

50

83,33

100

0 20 40 60 80 100

D

G

S

U

CAP (%)

D

G

S

U

Repre sentation

U10S10G10D10

A
F

D
 (

m
s

)

450,000

400,000

350,000

300,000

250,000

200,000

150,000

p-values:
H01: 0,798

H02: 0,906

H03: 0,700

286,28

261,182 266,310

240,814

Representation

U10S10G10D10

R
O

A
F

 (
#

)

1,000

,900

,800

,700

,600

,500

,400

p-values:
H01: 0,293

H02: 0,128

H03: 0,0007 ---> Hα3.1 verified

0,549

0,801

0,856

0,742

Representation

U10S10G10D10

R
O

A
F

T
 (

m
s

)

1,000

,900

,800

,700

,600

,500

,400

p-values:
H01: 0,389

H02: 0,08

H03: <0,0001---> Hα3.1 verified

0,562

0,749

0,874
0,862

Fig. 10 Data distribution for Task Participation, diagrams of 15 classes.

AFD, i.e., bigger box plots compared to the other representations, which could mean

an influence of one or both of the mitigating factors on the performance of subjects for

Gamma.

4.2 Data Analysis of Task Composition, 15 classes diagram

For Task Composition, most subjects performed well for CAP. The results on the

metrics show that diagrams using Representation Dong are less effort-consuming than

Representation UML (p-values around 0.01 for both ROAF and ROAFT and a slightly

better CAP with respect to UML, see Tables 6 and 7). Even if Representation Dong

requires more to build a mental representation (a mean difference in AFD superior of

35ms with respect to UML), this difference is not statistically significant. Moreover, the

differences in ROAF (0.24) and ROAFT (0.28) shows less effort with Representation

Dong. Values for CAP are slightly superior with Representation Dong with respect to

Representation UML (100% with Dong versus 83,3% with UML).

As Representation Dong, Representation Gamma requires less effort from subjects

than UML. However, the value of 50% in CAP for Gamma prevent us of drawing

conclusions. If we look at Figure 11, we can see again a dispersed variance in the box

plots for Gamma, particularly for AFD. This variance leads us to think that one or

both of the mitigating variables could have an influence on the performance of subjects

for this representation. Representation Schauer has performed slightly better than

Representation UML in all our metrics. Despite this fact, we do not report significant

differences between Representations Schauer and UML.

In conclusion, the significance tests presented in Table 7 indicate that diagrams

with Representation Dong require less effort for Task Composition. Having all pattern-

19

Diagrams

Perf. Effort Measures

C
A
P

(%
)

A
F
D

(m
s)

R
O
A
F

(#
)

R
O
A
F
T

(m
s)

Dong15 100.00 280.11 0.66 0.73
Gamma15 50.00 279.76 0.65 0.70
Schauer15 100.33 230.84 0.56 0.63
UML15 83.33 245.12 0.42 0.45

Table 6 Means of dependent variable values for Representations Dong, Gamma, Schauer,
and UML on Task Composition, diagrams with 15 classes.

Diagrams

P-Values

A
F
D

(m
s)

R
O
A
F

(#
)

R
O
A
F
T

(m
s)

H01: Dong15 vs. UML15 0.56 0.02 0.090
H02: Gamma15 vs. UML15 0.42 0.03 0.020
H03: Schauer15 vs. UML15 0.33 0.01 0.008

Table 7 Hypotheses testing for Representations Dong, Gamma, Schauer, and UML on Task
Composition, diagrams with 15 classes.

100

50

100

83,33

0 20 40 60 80 100

D

G

S

U

CAP (%)

D

G

S

U

Representation

U10S10G10D10

A
F

D
 (

m
s

)

450,000

400,000

350,000

300,000

250,000

200,000

150,000

p-values:
H01: 0,5677

H02: 0,425

H03: 0,3328

261,469
268,2

240,22

226,245

Representation

U10S10G10D10

R
O

A
F

 (
#

)

1,000

,800

,600

,400

,200

,000

0,658 0,666

0,539

0,458

p-values:
H01: 0,219

H02: 0,033 ---> Hα2.2 verified

H03: 0,015 ---> Hα3.2 verified

Representation

U10S10G10D10

R
O

A
F

T

(m
s

)

1,000

,800

,600

,400

,200

,000

0,738

p-values:
H01: 0,091

H02: 0,020 ---> Hα2.2 verified

H03: 0,008 ---> Hα3.2 verified

0,717

0,622

0,516

Fig. 11 Data distribution for Task Composition, diagrams of 15 classes.

related information inside the class (same space) in Dong, requires less effort from the

subjects compared to the effort of visually searching for pattern related information in

UML.

20

Diagrams

Perf. Effort Measures

C
A
P

(%
)

A
F
D

(m
s)

R
O
A
F

(#
)

R
O
A
F
T

(m
s)

Dong15 100 327.06 0.73 0.79
Gamma15 40 268.43 0.54 0.60
Schauer15 0 289.36 0.87 0.87
UML15 50 272.85 0.52 0.58

Table 8 Means of dependent variable values for Representations Dong, Gamma, Schauer,
and UML on Task Role, diagrams with 15 classes.

Diagrams

P-Values

A
F
D

(m
s)

R
O
A
F

(#
)

R
O
A
F
T

(m
s)

H01: Dong15 vs. UML15 0.57 0.005 0.004
H02: Gamma15 vs. UML15 0.91 0.570 0.810
H03: Schauer15 vs. UML15 0.14 0.010 0.020

Table 9 Hypotheses testing for Representations Dong, Gamma, Schauer, and UML on Task
Role, diagrams with 15 classes.

4.3 Data Analysis of Task Role, 15 classes diagram

Subjects using Representation Dong performed better in CAP than using any of the

other three representations. Tables 8 and 9 shows that Representation Dong requires

less effort than Representation UML. The difference of roughly 0.22 in ROAF and

ROAFT show less effort with Dong. Values in CAP show also better performances

with Dong (100% against 50% for UML). Here again, Representation Dong is slightly

more effort-consuming. Values in AFD for Representation Dong shows a mean dif-

ference superior of 54ms with respect to UML. However, this difference is not statis-

tically significant. We had similar performances between users using Representations

Gamma and UML. Figure 12 shows clearly less effort from subjects using Represen-

tation Schauer when compared to UML. However, we can see a higher effort with

Representation Schauer. Moreover, all subjects gave wrong or incomplete answers us-

ing this representation. Thus, even if we have statistically significant differences in

ROAF and ROAFT when comparing Representation Schauer to UML, we cannot say

that Schauer performs better than UML, due to poor subject performance in CAP

when using Schauer.

For Task Role, we conclude that diagrams using Representation Dong requires with

statistical significance less effort and have better answer performance than UML. Rep-

resentation Gamma showed similar effort than Representation UML. Representation

Schauer showed less effort. However, we conjecture that due to the lack of information

in this representation, subjects were giving up faster. Looking at the poor performance

of Representation Schauer, we conjecture that just showing design patterns with the

same structure as described in [GHJV98] without any additional information could

be a source of confusion for the subjects to really understand the intent of the class

participating in a pattern.

21

0 20 40 60 80 100

D

G

S

U

CAP (%)

D

G

S

U

100

40

0

50

Representation

U10S10G10D10

A
F

D
 (

m
s

)

450,000

400,000

350,000

300,000

250,000

200,000

150,000

p-values:
H01: 0,574

H02: 0,914

H03: 0,145

329,923

236,121

281,664 286,894

Representation

U10S10G10D10

R
O

A
F

 (
#

)

1,000

,900

,800

,700

,600

,500

,400

,300

p-values:
H01: 0,0005 ---> Hα1.2 verified

H02: 0,576

H03: 0,018 ---> Hα3.2 verified

0,764

0,554

0,857

0,525

Representation

U10S10G10D10

R
O

A
F

T
 (

m
s

)

1,000

,900

,800

,700

,600

,500

,400

,300

p-values:
H01: 0,004 ---> Hα1.2 verified

H02: 0,817

H03: 0,028 ---> Hα3.2 verified

0,819

0,63

0,884

0,633

Fig. 12 Data distribution for Task Role, diagrams of 15 classes.

4.4 Data Analysis of the Impact of Secondary Factors in 15 Classes Diagrams

The results presented in Sections 4.1, 4.2 and 4.3 show:

– For Task Participation: a better performance in CAP for users using Representation

UML over all other representations and also less effort in subjects with respect to

Dong. No statistically significant differences on subjects’ effort were reported when

comparing UML to the other two representations.

– For Task Composition: subjects performed well in most representations for CAP,

despite this fact, only Representation Dong requires less effort when compared to

UML.

– For Task Role: Representation Dong has better values in CAP than the other three

representations and was again the only representation to require less effort when

compared to UML.

Considering the variances in the metrics reported in previous sections, we inves-

tigated if the levels of knowledge in design patterns could mitigate the results. We

eliminated the mitigating variable of JHotDraw Knowledge because more than 80% of

the subjects where classified on the basic level. Therefore, we are sure that this variable

will not have an impact on the presented results.

For simplicity reasons and because none of our subjects had knowledge of design

patterns, we decided to group design patterns knowledge in two categories: 1 for basic-

medium level and 2 for the expert level. We also chose to study only the values of

answers given and ROAF.

Figure 13 (left) shows the impact of design pattern knowledge on Task Composition.

With Representation Gamma, subjects who have very good design pattern knowledge

(level 2) perform better than subjects having basic or average knowledge (level 1). We

22

Answers ROAF Answers ROAF Answers ROAF
(C) (C) (P) (P) (R) (R)

DP Knowledge 0.02 0.31 0.82 0.21 0.45 0.95
Combined 0.13 0.95 0.98 0.93 0.15 0.06

Table 10 Impact of design patterns knowledge, 15 classes diagram

RFOA

Fig. 13 Combined impact of answers or design pattern knowledge and the different represen-
tations used, 15 classes diagram

can see the same tendency for Representation UML. This same tendency is present

for the metric of ROAF for all representations even if is not statistically significant.

A 2-way ANOVA test (see Table 10) shows a statistically significant impact of design

patterns knowledge only on the correctness of the answers for Task Composition. We

can see more ore less the same tendency in the correctness of responses for the other

two tasks even if there is no statistically significant impact for these two tasks.

For Task Participation, we find two interesting situations. The first situation is for

Representation Schauer in the correctness of answers where novices seems to perform

better than experts. The second is in the values for ROAF where all experts seem

to need more effort than novices when performing the task. These situations could

be caused by a deeper analysis made by the experts. Despite the results mentioned

before, we report no significant impact of combining representation and design pattern

knowledge on subjects’ performance.

4.5 Data Analysis of Diagrams of 40 classes

For Task Participation as with 15 classes diagrams, we found that the effort with

Representation Dong is greater than with UML. Representation Schauer shows similar

performances than UML. For tasks Composition and Role, we report no statistically

significant results. Due to readability issues caused by the high class density, we cannot

draw further conclusions. The statistical analysis and the descriptive statistics for these

diagrams are available at http://url.hidden-for-double-blind.review.

23

5 Threats to validity

Following [WRH+00], we identified some threats to the validity of our study and mit-

igated or accepted them. Some threats are related to the use of human subjects and

some others to the use of the equipment.

5.1 Internal Validity

We identified three possible threats to internal validity of our study: maturation, in-

strumentation, and diffusion of the treatments. To mitigate the maturation threat, we

addressed the learning effect by (1) illustrating the representations and the kinds of

tasks to be performed by the subjects during the tutorial and (2) showing the tasks to

subjects in different orders. Showing tasks in different orders avoids favoring the tasks

presented at the end. This random ordering also prevents the fatigue effect that could

disadvantage tasks always given at the end. We also mitigated the fatigue effect with

the design of experiment, limiting the subjects’ effort to perform the experiment to

between 12 and 15 minutes.

The instrumentation threat is related to the use of the equipment. Subjects have

to wear a fairly heavy head-band and must minimize head movements to avoid de-

calibration. Head movements are unavoidable. People tend to move their heads while

they are concentrating, causing small coordinate offsets. To deal with this threat, we

used a dentist chair and a travel pillow to give support to the subject’s neck and head.

We also analyzed eye-movement movies recorded during the experiment of each sub-

ject to detect any coordinate offset. Coordinates offset can be fixed easily, only simple

drift correction is needed to the data to create a coordinates translation. We had some

cases of coordinates offset and they were fixed with drift correction. We also identified

and accepted one threat to the instrumentation validity, the readability issues with

diagrams of 40 classes.

Finally, to prevent subjects to diffuse any information about the study, we asked

the subjects not to talk about the study with other people before the end of the study.

We are confident that our instructions were followed by the subjects.

5.2 Construct Validity

We addressed four threats to construct validity: mono-operation bias, mono-method

biases, hypothesis guessing, and apprehension.

We accepted the risk of having a mono-operation bias caused by the utilization of

one single system (JHotDraw) in our study. However, regarding the amount of variables

to test, we decided to accept the risk instead of increasing the complexity of our study.

The mono-method bias is the risk to have a bias in the measures of our experiments

as a consequence of using only a single type of measures. We used four dependent

variables, i.e., CAP, ROAF, ROAFT, and AFD, and we cross-checked each measure

against the others in our analyses to draw conclusions.

In order to avoid hypothesis guessing, we did not inform the subjects about the

goal of the study. We just explained them in the tutorial that they had to perform

tasks on different UML class diagrams with different design pattern representations.

24

To prevent the apprehension threat, we first detailed to the subjects the eye-tracker

operation and we reassured them about the absence of risks related to infrared emissions

directed towards their eyes. Second, subjects were confirmed about the anonymous

nature of their answers and their identity. Finally, we decided not to set a predefined

time to perform the tasks, instead, we just asked subjects to answer as soon as possible.

5.3 External Validity

Two threats were addressed, interaction of selection and treatment and interaction of

setting and treatment. The issue with the interaction of selection and treatment is to

assure that the subjects in this study are representative of software professionals. This

issue has been discussed in several studies (e.g., by Briand et al. [BLPYB05]). In our

study, subjects are graduate students with a good knowledge of UML and the majority

of them has a comparable knowledge of UML software modelling and design patterns

to software professionals.

For the interaction of setting and treatment issue, we considered the size and com-

plexity of the used diagrams. We chose and reverse-engineered JHotDraw, a good ex-

ample of a program that extensively uses design patterns. Diagrams used in the study

contains four different design patterns with a maximum class participation density of

two design patterns. We presented diagrams containing 15 classes, which enters in the

range of recommended number of classes for effective program comprehension activities

[Amb05]. We also presented diagrams containing 40 classes with the aim of studying

the representations on more complex diagrams. We cannot state that our results will

apply for all diagrams and for all design patterns. Specific replications in industry

settings is needed to draw such conclusions.

5.4 Conclusion Validity

Threats to conclusion validity identified and addressed are: violated assumptions of

statistical tests, reliability of measures, random irrelevancies in experimental setting,

and random heterogeneity of subjects. To prevent violating assumptions of statistical

tests, we verified and respected all the assumptions on which the tests used in our

analysis relies.

To address the reliability of measures, we chose well-documented measures and we

took care of calibrating well the eye-tracker for every subject before collecting data.

Regarding the random irrelevancies in experimental setting, our study was per-

formed in a quiet laboratory without any distraction. We also performed preliminary

tests with some other subjects (not included in our study) to detect any other factor

that could influence the results.

Finally, considering the choice of subjects, our sample is heterogeneous enough

in terms of design pattern knowledge to reflect the target population. Moreover, to

avoid subject knowledge from being mainly related to the results, we use the former

as a mitigation variable and verified that its impact is less important than the use of

different design pattern representations.

25

6 Conclusion, Discussion, and Future Work

Representing design patterns used in a program ease the understanding of its design and

facilitate program comprehension in general. Indeed, a good understanding of pattern-

related information is needed to develop and maintain programs efficiently. Currently, a

common representation to visualize design patterns is the UML collaboration notation.

Previous work highlighted limitations in this representation and proposed alternative

representations. However, none of these previous pieces of work made an empirical

study to assess whether their representations facilitate more the comprehension of

programs than the common one.

We conducted an empirical study to evaluate the efficiency of one set of alternative

representations (pattern enhanced class diagrams [SK98], stereotype enhanced UML

diagrams [DYZ07], and “pattern:role” notation [Gam96,Vli98]) compared to the UML

collaboration notation.

We designed and performed experiments to collect data to compare subjects’s per-

formance while performing three basic tasks (class participation, pattern composition

and roles played by class) required for design pattern comprehension using the different

representations overlapped on the same UML class diagrams. We used the following

design patterns: Composite, Prototype, Template Method, State and Singleton. De-

sign patterns were shown as described in [GHJV98] with some slight differences due to

language implementation issues. We measured performance in terms of correct answers

and effort that subjects spend to perform given tasks. We collected effort data using

eye trackers on diagrams with small density (15 classes) and with larger density (40

classes).

The analyses showed that stereotype-enhanced UML diagrams [DYZ07], with their

semantic richness, are more efficient for Tasks Composition and Role than the UML

collaboration notation for diagrams of 15 classes. The UML collaboration notation

and the pattern-enhanced class diagrams, are more efficient for locating the classes

participating in a design pattern (Task Participation).

Looking at the poor performance of the pattern enhanced class diagrams in Task

Role, we may think that just showing design patterns with the same structure as de-

scribed in [GHJV98] without any additional information is a source of confusion for the

subjects. We also report that 40 class diagrams are difficult to read and, thus, we can-

not draw conclusions on the results from these diagrams. Therefore, other experiments

are required to confirm our findings and generalize for more design patterns.

Thus, the importance of this empirical study, evaluating the efficiency of rep-

resentations to visualize design patterns in UML diagrams, is three-fold. First, it

provides a framework for comparing current and future notations. We attempted

to provide all necessary details to replicate our experiments and–or apply them on

other notations, in particular, all the material is accessible on-line at http://url.

hidden-for-double-blind.review. Second, it shows that notations have advantages

and weaknesses. Therefore, it provides ground to devise new notations that would

further overcome identified limitations while combining the best of current notations.

Third, the results of this empirical study could be use to motivate tool builders to

include different notations for different tasks: for example, tool vendors could decide

to include Dong’s notation to describe patterns while keeping the UML collabora-

tion notation for other tasks and for locating classes participating in design patterns.

Finally, the results could influence educators in choosing to teach to their students dif-

ferent notations, emphasizing that none of the existing notation fits all possible tasks.

26

They could also help them to highlight to their students the importance of carefully

investigating notations, even if backed by industrial consortium, such as the UML

collaboration notation.

In future work, we will replicate the study with other diagrams and using other

design patterns to confirm our observations and to address more threats to the valid-

ity. We will conduct scan-paths studies in pattern comprehension activities to compare

experts and novices trying to find diagram-reading patterns. We will use the results

obtained in this work to propose a new representation and compare its efficiency ex-

ecuting an empirical study. We will also study dynamic-visualization techniques in

design pattern comprehension as those proposed by Dong et al. [DYZ07] and Schauer

et Keller [SK98].

Acknowledgments

The authors thank Rocco Olivieto for the fruitful discussions and suggestions.

References

[ACC+07] Lerina Aversano, Gerardo Canfora, Luigi Cerulo, Concettina Del Grosso, and Mas-
similiano Di Penta. An empirical study on the evolution of design patterns. In
Proceedings of the the 6th European Software Engineering Conference and sym-
posium on the Foundations of Software Engineering, pages 385–394. ACM Press,
2007.

[Amb05] Scott W. Ambler. The Elements of UML 2.0 Style. Cambridge University Press,
2005.

[BLPYB05] Lionel C. Briand, Yvan Labiche, Massimiliano Di Penta, and Han Yan-Bondoc. An
experimental investigation of formality in UML-based development. Transaction
on Software Engineering, 31(10):833–849, 2005.

[Boj05] Agnieszka Bojko. Eye tracking in user experience testing: How to make the most
of it. In Proceedings of the 14th Annual Conference of the Usability Professionals
Association. Usability Professionals’ Association, 2005.

[BT06] Roman Bednarik and Markku Tukiainen. An eye-tracking methodology for char-
acterizing program comprehension processes. In Proceedings of 5th symposium on
Eye Tracking Research & Applications, pages 125–132. ACM Press, 2006.

[CK05] Christopher F. Chabris and Stephen M. Kosslyn. Representational correspondence
as a basic principle of diagram design. In Knowledge and Information Visualiza-
tion, pages 36–57. Springer-Verlag, 2005.

[Duc03] Andrew T. Duchowski. Eye Tracking Methodology: Theory and Practice. Springer-
Verlag, 2003.

[DYZ] Jing Dong, Sheng Yang, and Kang Zhang. Visdp: A web service for visualizing
design patterns on demand. In Proceedings of the 6th International Conference
on Information Technology: Coding and Computing.

[DYZ07] Jing Dong, Sheng Yang, and Kang Zhang. Visualizing design patterns in their
applications and compositions. Transactions on Software Engineering, 33(7):433–
453, 2007.

[Eic03] Holger Eichelberger. Nice class diagrams admit good design? In Proceedings of
the 1st Symposium on Software visualization, pages 159–ff. ACM Press, 2003.

[EvG03] Holger Eichelberger and Jürgen Wolff von Gudenberg. Uml class diagrams – state
of the art in layout techniques. In Proceedings of the 1st SOFTVIS workshop on
Visualizing Software for Understanding and Analysis, pages 30–34. ACM Press,
2003.

[EYG97] A.H. Eden, A. Yehudai, and J. Gil. Precise specification and automatic application
of design patterns. pages 143–152. IEEE Computer Society, 1997.

27

[FKGS04] Robert B. France, Dae-Kyoo Kim, Sudipto Ghosh, and Eunjee Song. A uml-based
pattern specification technique. Transactions on Software Engineering, 30(3):193–
206, 2004.

[Gam96] Erich Gamma. Applying design patterns in Java. Java Report, 1(6):47–53, 1996.
[GHJV98] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns

– Elements of Reusable Object-Oriented Software. Addison-Wesley, 1998.
[GK99] Joseph H. Goldberg and Xerxes P. Kotval. Computer interface evaluation us-

ing eye movements: methods and constructs. International Journal of Industrial
Ergonomics, 24(6):631–645, 1999.

[GLCR06] Zhiwei Guan, Shirley Lee, Elisabeth Cuddihy, and Judith Ramey. The validity
of the stimulated retrospective think-aloud method as measured by eye tracking.
In Proceedings of the 12th Conference on Human Factors in Computing Systems,
pages 1253–1262, 2006.

[Gro97] Object Management Group. Unified modeling language specification, version 1.1.
http://www.omg.org, 1997.

[GSL+02] Joseph H. Goldberg, Mark J. Stimson, Marion Lewenstein, Neil Scott, and
Anna M. Wichansky. Eye tracking in web search tasks: design implications. In
Proceedings of the 1st symposium on Eye Tracking Research & Applications, pages
51–58. ACM Press, 2002.

[Gu06] Yann-Gal Guhneuc. Taupe: towards understanding program comprehension. In
Proceedings of 16th IBM Center for Advanced Studies Conference, pages 1–13.
ACM PRess, 2006.

[Hut95] Edwin Hutchins. Distributed Cognition. MIT Press, 1995.
[JHo] JHotdraw: a java GUI framework for technical and structured graphics.

http://www.jhotdraw.org.
[KG08] Foutse Khomh and Yann-Gaël Guéhéneuc. Do design patterns impact software

quality positively? In Proceedings of the 12th Conference on Software Maintenance
and Reengineering. IEEE Computer Society Press, 2008.

[KKB+98] Rick Kazman, Mark Klein, Mario Barbacci, Tom Longstaff, Howard Lispon, and
Jeromy Carriere. The architecture tradeoff analysis method. In Proceedings of
the 4th International Conference on Engineering of Complex Computer Systems,
pages 68–78. IEEE Computer Society, 1998.

[LK98] Anthony Lauder and Stuart Kent. Precise visual specification of design patterns.
In Proceedings of the 12th European Conference on Object-Oriented Programming,
pages 114–134. Springer-Verlag, 1998.

[MF93] Patrick Moore and Chad Flitz. Gestalt theory and instructional design. Journal
of Technical Writing and Communication, 23(2):137–157, 1993.

[MHG02] David Mapelsden, John Hosking, and John Grundy. Design pattern modelling and
instantiation using dpml. In Proceedings of the 14th International Conference on
Tools, pages 3–11. Australian Computer Society, Inc., 2002.

[PCA02] Helen C. Purchase, David A. Carrington, and Jo-Anne Allder. Empirical evalua-
tion of aesthetics-based graph layout. Empirical Software Engineering, 7(3):233–
255, 2002.

[Ray98] Keith Rayner. Eye movements in reading and information processing: 20 years of
research. Psychological Bulletin, 124(3):372–422, 1998.

[RW88] Charles Rich and Richard C. Waters. The programmer’s apprentice. Computer,
21(11):10–25, 1988.

[SK98] Reinhard Schauer and Rudolf Keller. Pattern visualization for software compre-
hension. In Proceedings of the 6th International Workshop on Program Compre-
hension, pages 4–12. IEEE Computer Society, 1998.

[SPL+88] Elliot Soloway, Jeannine Pinto, Stanley Letovsky, David Littman, and Robin Lam-
pert. Designing documentation to compensate for delocalized plans. Commununi-
cations, 31(11):1259–1267, 1988.

[ST02] Alan Shalloway and James R. Trott. Design patterns explained: a new perspective
on object-oriented design. Addison-Wesley, 2002.

[SW05] Dabo Sun and Kenny Wong. On evaluating the layout of uml class diagrams for
program comprehension. In Proceedings of the 13th International Workshop on
Program Comprehension, pages 317–326. IEEE Computer Society, 2005.

[TT07] Tim Trese and Scott Tilley. Documenting software systems with views V: towards
visual documentation of design patterns as an aid to program understanding. In
Proceedings of the 25th International Conference on Design of Communication,
pages 103–112. ACM Press, 2007.

28

[Vli98] John Vlissides. Notation, notation, notation. C++ Report, 1998.
[vMV95] A. von Mayrhauser and A. M. Vans. Program comprehension during software

maintenance and evolution. IEEE Computer, 28(8):44–55, August 1995.
[War] Colin Ware. Visual Queries: The Foundation of Visual Thinking. Springer-Verlag.
[WRH+00] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn Regnell,

and Anders Wesslén. Experimentation in software engineering: an introduction.
Kluwer Academic Publishers, 2000.

[YKM07] Shehnaaz Yusuf, Huzefa Kagdi, and Jonathan I. Maletic. Assessing the compre-
hension of uml class diagrams via eye tracking. In Proceedings of the 15th Inter-
national Conference on Program Comprehension, pages 113–122. IEEE Computer
Society, 2007.

