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Antoniol

Received: date / Accepted: date

Abstract Testing is the most widely adopted practice to ensure software quality. How-

ever, this activity is often a compromise between the available resources and software

quality. In object-oriented development, testing effort should be focused on defective

classes. Unfortunately, identifying those classes is a challenging and difficult activity on

which many metrics, techniques, and models have been tried. In this paper, we investi-

gate the usefulness of elementary design evolution metrics to identify defective classes.

The metrics include the numbers of added, deleted, and modified attributes, methods,

and relations. The metrics are used to recommend a ranked list of classes likely to

contain defects for a system. They are compared to Chidamber and Kemerer’s metrics

on several versions of Rhino and of ArgoUML. Further comparison is conducted with

the complexity metrics computed by Zimmermann et al. on several releases of Eclipse.

The comparisons are made according to three criteria: presence of defects, number of

defects, and defect density in the top-ranked classes. They show that the design evolu-

tion metrics, when used in conjunction with known metrics, improve the identification

of defective classes. In addition, they show that the design evolution metrics make sig-

nificantly better predictions of defect density than other metrics and, thus, can help in

reducing the testing effort by focusing test activity on a reduced volume of code.

Keywords Defect Prediction, Design Evolution Metrics, Error Tolerant Graph

Matching

1 Introduction

In the software market, companies often face the dilemma to either deliver a software

system with poor quality or miss the window of marketing opportunity. Both choices
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may have potentially serious consequences on the future of a company. Defects slipping

from one release to the next release may harm the image and trust of the users into

the companies; delaying a release may give competitors a commercial advantage.

However, software development is labor intensive and software testing can cost up

to 65% of available resources [MGM06]. Testing activities (e.g., unit, integration, or

system testing) are often performed as “sanity checks” to minimize the risk of shipping

a defective system.

A large body of work on object-oriented (OO) unit and integration testing focuses

on the important problem of minimizing the cost of test activities while fulfilling a clear

test coverage criteria (e.g., [BLW03]). We believe that previous work does not fully

address the problem of assessing the cost of testing activities that must be devoted

to a class: it leaves managers alone in the strategic decision of allocating resources to

focus the testing activities.

For example, let us consider a manager who wants to substantially improve the

quality of a large OO system in its next release. She needs to know what are the key

classes on which to focus testing activities, i.e., allocate her resources. We believe that

key classes can be defect-prone classes, i.e., classes which have the highest risk of pro-

ducing defects and classes from which a defect could propagate extensively across the

system. Although reliability or dependability are the ultimate goals, locating defects is

crucial. Provided with a ranked list of classes likely to contain defects, the manager can

decide to prioritize testing activities based on her knowledge of the project (frequency

of execution or relevance to the project of the classes). Consequently, the manager

would benefit from an approach to identify defective classes.

Many approaches to identify defective classes have been proposed in the literature.

They mainly use metrics and machine learning techniques to build predictive models.

However, as of today, researchers agree that more work is needed to obtain predictive

models usable in the industry1. This paper contributes to the field by investigating

the identification of defective classes using design evolution metrics based on changes

observable in the designs of OO systems.

In a previous work [KRAG09], we showed that metrics based on class evolution

and class connectivity help in identifying defective classes. We computed these met-

rics using an Error Tolerant Graph Matching (ETGM) algorithm [KRG+10] applied to

subsequent releases of a system. Our algorithm computes, for each class, its Class Rank

(CR) [PBMW98] and its Evolution Cost (EC) [KRAG09], where CR measures the rel-

ative importance of the class in the system while EC, given the class history, quantifies

the amount of changes in signature and relations (i.e., associations, aggregations, and

generalizations) that the class underwent.

CR and EC are computed quantities summarizing the evolution of a class; as aggre-

gated measures, they sometimes mask the finer-grain data available. Indeed, it seems

reasonable to assume that details about design changes may help to locate classes that

underwent risky changes and are likely to contain defects. For example, if a high num-

ber of method signatures have been modified in a new version of a class, then this class

is more defect-prone than other classes that underwent less or no changes, because of

possible unwanted side effects.

Thus, we introduce a new set of metrics, the design evolution metrics (DEM),

computed on the basic design changes used previously to compute CR and EC. The

1 Researchers discussed the limits of current predictive models at the 6th edition of Working
Conference on Mining Software Repositories (MSR’09).
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DEM include metrics counting the additions, modifications, or deletions of attributes,

methods, or relations in the classes between releases of a system. We build models

using the DEM and other metrics to study their explanatory and predictive power to

identify defective classes. We compare the DEM with traditional object-oriented and

complexity metrics when included in models for (1) explaining defects in a system, (2)

identifying defective classes, (3) predicting the number of defects in a class, and (4)

predicting the defect density in a class. We perform our comparisons on 7 releases of

Rhino, 9 of ArgoUML, and 3 of Eclipse.

Our comparisons show that the DEM improve, with statistical significance, the

identification of defective classes. The DEM have, in particular, a very good predictive

power when predicting defect density, i.e., identifying classes providing a high number

of defects in a small amount of code volume. Therefore, they are able to support

a manager in the difficult task of choosing the classes on which to concentrate her

resources.

This paper is organized as follows. Section 2 presents related work. Section 3 recalls

our ETGM algorithm [KRAG09,KRG+10,KRGA08] for the sake of completeness and

presents the design evolution metrics. Section 4 describes our case study and Section

5 presents and discusses its results. Section 6 highlights threats to validity and Section

7 concludes and outlines future work.

2 Related Work

Predicting location, number or density of defects in systems is a difficult task that has

been studied in several previous works. We focus on the works most closely related to

ours: the use of metrics extracted from design or code, project or software historical

data, and code churns to predict defects.

2.1 Static OO Metrics

Several researchers identified correlations between static OO metrics, such as the Chi-

damber and Kemerer (C&K) metrics [CK94], and location of defects. The intuition

supporting the use of complexity metrics for the prediction of defective classes is that

complex code is more defect-prone than simple code.

Basili et al. [BBM96] were among the first to use the OO metrics proposed by C&K

[CK94] to predict defective classes. To validate their work, these authors collected data

on the development of eight similar small-sized information management systems (180

classes in total). All eight systems were developed using an OO analysis/design method

and the C++ programming language. Results showed that five out of the six considered

metrics, defined in Section 4.2, appear to be useful to predict defective classes: WMC,

DIT, RFC, NOC, CBO. LCOM was not found useful.

Another empirical study [CS00] conducted on an industrial C++ system (over 133

KLOC) supported the hypothesis that classes participating in inheritance structures

have a higher defect density than others. It followed that C&K’s DIT and NOC metrics

could be used to identify classes that are likely to be more defective, thus confirming

the previous work by Basili et al.

More recently, Gyimothy et al. [GFS05] compared the accuracy of a large metric

suite, including C&K metrics, to predict defective classes in the open-source system
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Mozilla. They concluded that CBO is the best predictive metric. They also found LOC

to be useful in the prediction.

Zimmermann et al. [ZPZ07] related bug reports for Eclipse (releases 2.0, 2.1, and

3.0) to fixes, i.e., they computed the mapping of packages and files to the number of

defects in each considered release. They conducted an empirical study using common

complexity metrics (e.g., fan-in and fan-out) to define prediction models. Their models

showed that a combination of complexity metrics can predict defects, suggesting that

the more complex a class, the more defective. We use in this paper their work as a

comparison basis to evaluate our proposed metrics.

El Eman [EBGR01] showed that, after controlling for the confounding effect of

“size”, the correlation between OO metrics and defect-proneness disappeared: many

OO metrics are correlated with size and, therefore, “add nothing” to the models that

predict defects. This latter work can be regarded as an incentive to develop new metrics,

possibly based on software evolution, to avoid strong correlation with size.

2.2 Historical Data

Some researchers used historical data to predict defects, following the intuition that

systems with defects in the past will also have defects in the near future.

Ostrand et al. [OWB05] proposed a negative binomial regression model based on

various metrics (e.g., number of defects in previous releases, code size) to predict the

number of defects per file in the next release. The model was applied with success on

two large industrial systems, one with a history of 17 consecutive releases over four

years, the other with 9 releases over two years. For each release of the two systems, the

top 20% of the files with the highest predicted number of defects contained between

71% and 92% of the defects actually detected, with an overall average of 83%. We

adapt in the following their approach to evaluate the results of the predictive models

by focusing on the top recommended classes.

Graves et al. [GKMS00] presented a study on a large telecommunication system

of approximately 1.5 million lines of code. They used the system defect history in

a two-year period to build several predictive models. These models were based on

combinations of the ages of modules, the number of changes done to the modules, and

the ages of the changes. They showed that size and other standard complexity metrics

were generally poor predictors of defects compared to metrics based on the system

history.

2.3 Code Churn

Code churn is the amount of change taking place within the code source of a software

unit over time [NB05]. It has been used by some researchers to identify defective arti-

facts: changes often introduce new defects in the code. We share with these researchers

the intuition that frequently-changed classes are most likely to contain defects.

Nagappan et al. [NB05] used a set of relative code churn measures to predict defects.

Predictive models were built using statistical regression models using several measures

related to code churn (e.g., Churned LOC, the sum of added and changed lines of code

between two releases of a file). They showed that the absolute measures of code churn

generate a poor predictor while the proposed set of relative measures form a good
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predictor. A case study performed on Windows Server 2003, with about 40 million

lines of code, illustrated the effectiveness of the predictor by discriminating between

defective and non-defective files with an accuracy of 89%.

Munson et al. [ME98] predicted defects in an embedded real-time system using the

notion of code churn over 19 successive versions. The analyzed system is composed of

3,700 C modules for about 300 KLOC. Code churn metrics were found to be among

the most highly correlated metrics with bug reports (Pearson correlation of 0.65).

Hassan [Has09] proposed a measure of entropy for code changes based on the idea

that a change affecting only one file is less complex than a change affecting many

different files. The proposed metrics, based on Shannon’s entropy, were proven superior

to metrics based on prior defects and–or changes for six different systems.

Moser et al. [RM08] proposed 17 change metrics at the file level, ranging from the

number of refactorings, authors, bug fixes, age to various measures of code churn. Using

three different binary classifiers, they found that their metrics were significantly better

than the ones of Zimmermann et al. on the Eclipse data set. Replication value of this

work was unfortunately impaired as the new metric data set was not made publicly

available.

We share with the presented previous work the general problem of identifying

defective classes. As those previous works, we use metrics, i.e., change metrics, and

exploit the evolution of designs. While some previous works investigated mostly changes

in the sizes of files, we focus on metrics reporting changes visible in the design of OO

systems and prove the efficiency of such metrics in explaining and predicting defects.

3 Design Evolution Metrics

The DEM aim at capturing elementary design evolution changes. In our study, we

represent systems by their class diagrams, because such diagrams are simple to reverse

engineer from source code and are often used or altered during development and main-

tenance. They capture design changes, such as additions or deletions of methods and

attributes.

Identifying and counting design changes between two releases of the class diagram

of an evolving system of realistic size is tedious and error-prone. Therefore, to automate

the computing of the DEM, we first compute an optimal or sub-optimal matching of

subsequent class diagrams to retrieve any class evolution through time. Second, once

this data is obtained, we compute the proposed design evolution metrics.

In the following subsections, we first define the DEM and then present the problem

of retrieving the evolution of the class diagram of an OO system. Our solution to this

latter problem is based on an Error-Tolerant Graph Matching (ETGM) algorithm.

3.1 Definitions

In our approach, we consider simple design evolution metrics pertaining to basic

changes that affect the design of an OO system. We show in Sections 4 and 5 that

these metrics can identify classes with high defect-density and complement previously-

used metrics.

We assume that the evolution of classes is available, extracted by hand or computed

by an algorithm, e.g., the ETGM algorithm presented in the following subsection. Once
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the evolution of classes is available, we count the numbers of simple design changes.

At this stage of the research, we consider as relations: associations, aggregations, and

generalizations. Also, we do not consider modified attributes, changes to the visibility,

and changes of relations, which will all be studied in future work. Thus, we use the

following counts:

– Number of added methods: nbAddMet

– Number of added attributes: nbAddAtt

– Number of added outgoing relations: nbAddRelOut

– Number of added incoming relations: nbAddRelIn

– Number of deleted methods: nbDelMet

– Number of deleted attributes: nbDelAtt

– Number of deleted outgoing relations: nbDelRelOut

– Number of deleted incoming relations: nbDelRelIn

– Number of modified methods: nbModMet

– Number of modified outgoing relations: nbModRelOut

– Number of modified incoming relations: nbModRelIn

Once the class diagram evolution is available, the above metrics can be easily

computed as follows. Let a class C be represented by the quadruple (A, M, Rin, Rout)

with A representing the set of attributes, M the set of methods, Rin the set of incoming

relations, and Rout the set of outgoing relations.

If a class C1(A1, M1, Rin1, Rout1) is matched with another C2(A2, M2, Rin2, Rout2),

then A = A1∩A2 (respectively, M = M1∩M2) represents the set of matched attributes

(respectively, methods)2.

Each element in A1 −A counts as a deleted attribute while each element in A2 −A

counts as an added attribute. Modified methods are methods sharing the same name

and either the same return type or input type(s). New relations count as additions while

relations present in previous release and absent from the new one count as deletions.

An added or deleted relation is also counted as a modified relation when the two classes

involved were present in a previous release.

3.2 Class Diagram Evolution Problem

We compute the evolution of classes by assuming that OO systems evolve over time

and, thus, that their class diagrams are subject to modifications and restructuring:

classes, methods, and attributes are created, deleted, and modified.

Let us consider two versions D1 and D2 of the class diagram of a system, observed

at two different instants in time and let Cl(D1) and Cl(D2) denote the set of classes

in D1 and D2. The Class Diagram Evolution (CDE) problem consists in finding the

true matching between the two class diagrams, i.e., the one-to-one partial function m

that indicates, for each class c in Cl(D1), if c was deleted or not and, if not, which

class m(c) in Cl(D2) is the new version of c. The function m : Cl(D1) → Cl(D2)

defines a mapping between the two class diagrams in which a class match is any couple

(c, c′) ∈ Cl(D1) × Cl(D2) such that c′ = m(c) (we write (c, c′) ∈ m). If (c, c′) ∈ m,

then, according to m, c′ represents the new version of c.

2 An attribute is matched to another if they share the same name and type while a method
is matched to another if they share the same signature.
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Fig. 1 Class diagram evolution example

For example, in Figure 1, we can assume that: class WinningOrder was deleted;

class C was created; classes TheClient, Ticket, FreeT icketLaw were renamed to

Client, MyTicket, TicketLaw, respectively. We can therefore assume that the fol-

lowing matching is true:

(TheClient → Client,

Lottery → Lottery,

Ticket → MyTicket,

FreeT icketLaw → TicketLaw)

3.3 Modeling the CDE Problem as an ETGM Problem

We model the class diagrams of two releases as labeled graphs, with nodes being classes

and edges representing the relations among classes. Labels on edges specify the type

of the relation: association, aggregation, or inheritance; labels on nodes encode class

properties: class name, methods, and attributes data.

We then translate the CDE problem into an optimization problem: the differences

between the two class diagrams stem from edit operations with assigned costs, account-

ing for both internal and structural differences. Given some cost parameter values, we

solve the optimization problem using an ETGM algorithm able to find a matching with

minimal overall cost. Costs account for four different types of discrepancies between the

two class diagrams: class insertions or deletions, internal class discrepancies, structural

errors, and relation type discrepancies.

– We say that a class c ∈ Cl(D1) is deleted if class c is not involved in m: there is

no c′ such that (c, c′) ∈ m. Similarly, we say that a class c′ ∈ Cl(D2) is inserted

if class c′ is not involved in m. A penalty cost is paid for every deleted class and

inserted class.

– We call internal information of a class the name of the class, its set of attributes,

and its set of method signatures. Given two classes c and c′ with their names

represented by l and l′, their attribute sets by A and A′, their method-signature
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sets by M and M ′, we compute [KRGA08] the internal similarity intSim(c, c′)

between c and c′ as:

intSim(c, c′) = lw ×

(

1 −
Levenshtein(l, l′)

max(length(l), length(l′))

)

(1)

+ mw × Jaccard(SetAs, SetAs′)

+ aw × Jaccard(SetMs, SetMs′)

where Levenshtein() is the Levenshtein distance between two strings; Jaccard()

the Jaccard index between two sets of strings; lw, mw and aw the weights of the

class name, methods, and attributes3. The similarity function is normalized between

0 and 1. For each class match (c, c′), there is a price to be paid proportional to

1 − intSim(c, c′).

– A structural error occurs for two class matches (c, c′) and (d, d′) in m, if there is

a relation between c and d but not between c′ and d′. A unitary cost is paid for

every structural error.

– A relation type discrepancy occurs for two class matches (c, c′) and (d, d′) in m, if

there is relation between c and d and also between c′ and d′, but these two relations

do not have the same type.

The cost function is governed by a set of parameters (e.g., lw, mw, aw). To be

a true matching, an optimal matching (the matching with the lowest cost) depends

on the choice of the parameter values. We discovered an appropriate set of parameter

values by performing an extensive study [KRG+10] and used these values to perform

all the computations presented in the following sections.

3.4 ETGM Algorithm

Solving the ETGM problem is known to be NP-hard [TF79]. In general, given a pair

of graphs containing n and m nodes, the search space cardinality is of the order of nm.

Exact algorithms that can guarantee optimal solutions have an exponential worst-case

complexity: they require prohibitive computation times even for medium-size graphs.

Therefore, we resort to heuristics to obtain near optimal solutions with good perfor-

mance.

We use a taboo search algorithm [Glo86] to implement an ETGM algorithm. Start-

ing from an initial matching, our algorithm builds and transforms iteratively the current

matching by inserting or removing a class match. At each iteration, the algorithm per-

forms the best local transformation, i.e., the transformation that produces the matching

with the lowest cost. The taboo mechanism is used to avoid cycling.

The initial matching used by the algorithm contains all class matches (c, c′), such

that classes c and c′ share the same name. The local search that follows eventually

match classes that do not share a same name. More details about the algorithm are

available in our previous work [KRG+10].

3 In the study, we fix lw = 0.6, mw = 0.2, and aw = 0.2.
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Systems
Releases Number of

(Number Thereof) Classes LOCs Defects
Rhino 1.5R1–1.6R1 (7) 89–270 30,748–79,406 12–114
ArgoUML 0.12–0.26.2 (9) 792–1,841 128,585–316,971 25–187
Eclipse 2.0–3.0 (3) 4,647–17,167 781,480–3,756,164 1044–2502

Table 1 Summary of the object systems

4 Case Study

The description of the study follows the Goal-Question-Metrics paradigm [BCR94].

The goal of this empirical study is to compare the efficiency of the DEM in explaining

and predicting defects in classes with regard to other previously-used metrics. The

quality focus is to achieve a prediction better than that of the predictors based on the

C&K metrics and on the complexity metrics computed by Zimmermann et al. [ZPZ07].

The perspective is that of both researchers, developers, and managers, who want to

identify defective classes. The context of this study are three open-source systems: the

Rhino JavaScript/ECMAScript interpreter, the ArgoUML CASE tool, and the Eclipse

Integrated Development Environment (IDE).

This study extends our previous study [KRAG09] by answering the same general

research question with evolution metrics: do evolution metrics improve prediction ac-

curacy in identifying defective classes with respect to other previously-used metrics,

such as the C&K metrics? We also consider several releases of three different systems,

while in our previous work we used only Rhino v1.6R5 to which all past defects were

assigned. Also, we emphasize the relevance of our metrics and limit threats to validity

by comparing predictors built with our metrics against predictors built with metrics

detailed in another previous work4 [ZPZ07].

4.1 Objects

We selected Rhino, ArgoUML, and Eclipse as systems for our case study because:

(i) several releases of these systems are available, (ii) these systems were previously

used in other case studies [EZS+08,ZPZ07] and, (iii) defect data are available from

previous authors [EZS+08,ZPZ07] for Rhino and Eclipse or from a customized Bugzilla

repository for ArgoUML. Table 1 provides summary data about releases and defects

for the three systems.

Rhino5, the smallest system, is a JavaScript/ECMAScript interpreter and compiler

that implements the ECMAScript international standard, ECMA-262 v3 [ECM07]. We

downloaded Rhino releases between 1.4R3 to 1.6R5 from the Rhino Web site. We used

only 7 releases, those for which the total number of defects is greater than ten, from

1.5R1 to 1.6R16. Thus, in comparison to our previous work, we exclude all the releases

greater than 1.6R1 because they either do not include enough defects or have already

been studied in our previous work [KRAG09]. We could have aggregated and assigned

the defects of several releases to a single release, such as in previous work [OWB05,

4 The metric values are available on-line at http://www.st.cs.uni-saarland.de/softevo/

bug-data/eclipse/.
5 http://www.mozilla.org/rhino/
6 Rhino1.4R3 is excluded since it is the initial release
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KRAG09]. However, this assignment is possible only post mortem, i.e., once defects are

known, and is thus not representative of the day-to-day use of predictors. Therefore, we

decided not to aggregate defects and to skip releases where defects impacted very few

classes because, in these releases, a constant predictor would be difficult to outperform.

ArgoUML is a UML CASE tool to design and reverse-engineer various kinds of UML

diagrams. It is also able to generate source code from diagrams to ease the development

of systems. ArgoUML is written in Java. We use all pre-built releases available on

ArgoUML Web site7 except ArgoUML0.10.1, the initial release. We extract defect

data from the ArgoUML customized Bugzilla repository, i.e., we use the bug-tracking

issues identified by the special tag “DEFECT”. We then match the bug IDs of the bug

tracking issues with the SVN commit messages, as retrieved from the ArgoUML SVN

server. Once the file release matching the bug ID is retrieved, we perform a context

diff with the previous file release to assign the defect to the appropriate class.

Eclipse8 is a large, open-source, IDE. It is a platform used both in the open-

source community and in industry, for example as a base for the WebSphere family of

development environments. Eclipse is mostly written in Java, with C/C++ code used

mainly for the widget toolkit. C++ code was not considered in this study. We used

releases 1.0, 2.0.0, 2.0.1, 2.0.2, 2.1, 2.1.1, 2.1.2, 2.1.3 and 3.0. to compute the DEM.

Defect and metrics data made available by previous authors [ZPZ07] pertain to releases

2.0, 2.1, and 3.0. We retained in our study only the sub-set of classes whose name and

path perfectly match those of the files in the Z&Z dataset, which include more than

95% of the original files and defects.

We recovered the class diagrams of the releases of the systems using the Ptidej

tool suite and its PADL meta-model. PADL is a language-independent meta-model to

describe the static part and part of the behavior of object-oriented systems similarly to

UML class diagrams [GA07]. It includes a Java parser and a dedicated graph exporter.

4.2 Treatments

The treatments of our study are predictors for defects in a system. We build these

predictors using logistic and Poisson regressions built with different sets of metrics:

1. C&K are the metrics defined by Chidamber and Kemerer [CK94]. The C&K met-

rics are Response For a Class (RFC), Lack of COhesion on Methods (LCOM),

Coupling Between Objects (CBO), Weighted Methods per Class (WMC), Depth

of Inheritance Tree (DIT), Number Of Children (NOC) and Line Of Code (LOC).

WMC is defined as the sum of methods complexity. We define LCOM following

C&K, thus it cannot be negative [BDW98]. We also define LCOM2 and LCOM5

following Briand et al. [BDW98] and complete the set with the number of attributes

(nBAtt) and number of methods (nbMet). Thus, this metric set has a cardinality

of 11 and is a super-set of the set of metrics used in previous work (e.g., [BMW02,

GFS05]).

2. Z&Z includes the complexity metrics computed by Zimmermann et al. in their

study of Eclipse [ZPZ07]. We use this set when studying Eclipse by reusing metrics

and defect data provided on-line5 by the authors. We chose this metric set to

prevent bias in the computation and analysis of the metric values.

7 http://argouml-downloads.tigris.org/
8 http://www.eclipse.org/
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3. DEM is the set of basic design changes and account for the number of added,

modified, and deleted attributes, methods, and relations in a class between its

introduction in the system to the release under study. It comprises the following

metrics nbAddAtt, nbAddMet, nbAddRelOut, nbAddRelIn, nbDelAtt, nbDelMet,

nbDelRelOut, nbDelRelIn, nbModMet, nbModRelOut and nbModRelIn.

Finally, we define two unions of the previous sets: Z&Z+DEM and C&K+DEM

to study the benefits of our novel metrics when combined with traditional metrics.

4.3 Research Questions

We aim at answering the following four research questions:

– RQ1 – Metrics Relevance: To answer the general research question presented

above, a preliminary study must be performed to give us confidence that the design

evolution metrics indeed are useful to predict defective classes. RQ1 aims at pro-

viding evidence that a relation between the design evolution metrics and number

of defects exists. Therefore, we sought to reject the following null-hypothesis: A

linear regression model built with DEM, Z&Z+DEM, or C&K+DEM does not

better explain the number of defects discovered in classes with respect to the Z&Z

or C&K sets.

– RQ2 – Defect-proneness Accuracy: Often, developers and managers are inter-

ested to know whether a given class contains defects or not. Thus, a classification

of a class into “defective” or “not-defective” may be enough to save the developers’

and managers’ efforts. Therefore, we sought to reject the following null-hypothesis:

A binary predictor built to identify defective classes with the DEM, Z&Z+DEM,

or C&K+DEM sets does not perform better than a predictor built only with the

Z&Z or C&K metric sets.

– RQ3 – Defect Count Prediction Accuracy: An adequate testing of defect-

prone classes would lead to more defects being removed from the system and, thus,

it is interesting to know the possible number of defects in a class. We want to reject

the following null-hypothesis: A predictor of the number of defects in classes built

with the DEM, Z&Z+DEM, or C&K+DEM sets, does not perform better than

a predictor built only with the Z&Z or C&K metric sets.

– RQ4 – Defect Density Prediction Accuracy: Finally, we establish the general

usefulness of the DEM by comparing their ability to reduce effort needed to test

code with defects; effort in terms of LOCs to analyze. Therefore, we sought to

reject the following null-hypothesis: A predictor of defect density in classes built

with the DEM, Z&Z+DEM, or C&K+DEM sets, does not perform better than

a predictor built only with the Z&Z or C&K metric sets.

4.4 Analysis Method

We perform the following analyses to answer the research questions:

– RQ1 – Metrics Relevance: We build multi-dimensional linear regression models

for each release of the systems, using the number of defects reported for a class as

dependent variable and the different sets of metrics as independent variables.
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For each set of metrics, we apply backward elimination to select a first set of

relevant metrics. If the DEM are important to explain defects in classes, then they

should be kept as explanatory variables – even when mixed with other metrics –

and increase the proportion of variability accounted for than if one uses only the

C&K and Z&Z metrics.

We consider that a metric significantly contributes to explain the dependent vari-

able if it is included in at least 75% of the built models with a p-value of 0.05

or smaller, i.e., the metric must contribute to the modeling of defective classes in

at least 75% of the releases. This choice was inspired by model built for disease

prediction [HL00].

The DEM should also improve the models and their adjusted R2. An Adjusted

R2 expresses the proportion of variability in a data set that is accounted for by

a statistical model and adjusted for the number of terms in a model. A Wilcoxon

test was applied to assess statistical significance of adjusted R2 improvement.

At standard significance levels (i.e., 5% and 10%), intercepts were never signifi-

cantly different from zero; thus we force regression models built to answer RQ1 to

pass through the origin.

– RQ2 – Defect-Proneness Prediction Accuracy: To answer RQ2, we apply

logistic regression. Logistic regression models were previously used to predict if a

class is defective or not, in our previous work and by other researchers, for example

[GFS05].

In a logistic regression-based predictor, the dependent variable is commonly a di-

chotomous variable and, thus, it assumes only two values {0, 1}, i.e., defect-free and

defective. The multivariate logistic regression predictor is based on the formula:

π(X1, X2, . . . , Xn) =
eC0+C1·X1+···+Cn·Xn

1 + eC0+C1·X1+···+Cn·Xn

(2)

where Xi are the characteristics describing the modeled phenomenon, C0 is the

intercept, Ci (i = 1..n) is the regression coefficient of Xi
9, and 0 ≤ π ≤ 1 is

a value on the logistic regression curve. In our study, variable Xi will be metrics

quantifying structural or evolution properties. The closer π(X1, X2, . . . , Xn) is to

1, the higher is the probability that the class contains defects.

– RQ3 – Defect Count Prediction Accuracy: We apply Poisson regression to

predict the location and numbers of defects in the classes of a system. Poisson

regression is a well-known technique for modeling counts. It has already been used

in the context of defect prediction by [Eva97].

In a Poisson regression-based predictor, the dependent variable is commonly a count

with no upper bound; the probability of observing a specific count, y, is given by

the formula:

P (Y = y) =
λye−y

y!
(3)

where λ is known as the population rate parameter and represents the expected

value of Y . In the general case, λ is expressed in log-linear form as:

log(λ(X1, X2, ..., Xp)) = a + b1X1 + b2X2 + ··· + bpXp (4)

9 The bigger |Ci|, the more Xi impacts the outcome. In particular, if Ci > 0, the probability
of the outcome increases with the value of Xi.
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where Xi are the characteristics describing the modeled phenomenon. In our study,

variable Xi will be metrics quantifying structural or evolution properties.

– RQ4 – Defect Density Prediction Accuracy: We investigate the usefulness

of the DEM to predict defect density rather than numbers of defects. To that end,

Poisson regression models are trained and tested for defect density, i.e., the number

of defects divided by the number of LOCs.

To answer RQ2, RQ3, and RQ4, and consistently with sound industrial practices,

as reported in [OWB05], results are organized as ranked lists of classes recommended

for testing.

All statistic computations were performed with the R10 programming environment.

4.5 Building and Assessing Predictors

We focus on inter-release prediction because such prediction is the most interesting

with respect to practitioners and researchers: using data from a release to identify

defective classes in a subsequent release.

Models are trained with the sets of metrics on a release i and used to predict a defect

measure (probability, number, and density) for classes in the subsequent release i + 1.

A step-wise backward elimination is applied using the whole set of metrics on a release

i and the best11 model returned is tested on the subsequent release i + 1. Backward

elimination starts with a model including all independent variables and creates new

models with fewer variables by removing one variable at the time and by penalizing

models with a low likelihood and containing many parameters.

For each system and research question (RQ2, RQ3, and RQ4), we report for

each set of metrics, the metrics present in at least 75% of the best models, i.e., those

effectively used for the predictions.

Our logistic regression model (for RQ2) assigns a probability of being defective to

each class in a system while our Poisson regression-models assign a predicted number

of defects (for RQ3) or defect density (for RQ4). Rather than trying to devise an

optimal threshold above which the classes should be recommended, we rank classes

[OWB05] according to their predicted probability of being defective (for RQ2), their

predicted number of defects (for RQ3), and their predicted defect density (for RQ4).

Predictors are built with the different sets of metrics and we use results obtained

with different cut points to compare different models. For RQ2 and RQ3, we consider

the classes in the top 10%, 20% and 30% defect-prone classes. For defect density (RQ4),

the number of LOCs is the relevant measure. In a nutshell, we study the numbers of

defects per LOCs, and we cumulatively partition the results to obtain the top-ranked

classes containing 10% 20% and 30% of the LOCs of the system.

For RQ2, we use the F-measure that is the geometric mean between precision and

recall to assess the performance of the models. The F-measure is defined as:

F =
2 × Precision × Recall

Precision + Recall
(5)

where precision is defined as the ratio between retrieved defective classes over retrieved

classes and recall as the ratio between retrieved defective classes over all defective

10 http://cran.r-project.org/
11 We use Akaike’s information criterion to elect the “best” model.
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classes. An ideal model would obtain an F-measure value of 1 while real models usually

trade precision for recall or vice versa. For RQ3 and RQ4, we use the percentage of

defects present in the top recommended classes as performance indices.

Note that the above performance indices are used in Section 5 to further specify

the Research Questions. A special focus is also made there on the top 10%, top 20%,

top 30% classes (or LOCs) as we believe a tester or manager will not likely go beyond

those top sets of classes.

For each system, predictions are made for every release and we consider the av-

erage values of the performance indices. We also perform a Wilcoxon signed rank test

to perform a comparison of different predictors and assess whether or not our metrics

induce statistically significant improvement over a random predictor12 or a predic-

tor built without the DEM. We then compute the Cohen-d statistics13 to obtain a

statistically-reliable effect size of our metrics. The Cohen standardized difference be-

tween two groups [Coh88] is defined as the difference between the means (M1 and M2)

divided by the pooled standard deviation (σp) of both groups: d = (M1 − M2)/σp. A

Cohen-d inferior to 0.2 is perceived as a very small or trivial effect; a value between

0.2 and 0.5 is considered to represent a small effect; a value between 0.5 and 0.8 is

deemed a medium effect, and a value of more than 0.8 provides evidence of a large

effect [Coh88].

Given the small sample size (2 inter-release predictions) of Eclipse, we could not

apply to the results from this system either the Wilcoxon tests or the Cohen-d statistics.

Therefore statistical tests could not be conducted for the Z&Z set.

5 Study Results and Discussions

We now present and discuss the results of our case study.

5.1 RQ1 – Metrics Relevance

We answer RQ1 by testing the following null-hypothesis: DEM do not contribute to

better explain the number of defects discovered in classes with respect to Z&Z or C&K

metric sets. We use this preliminary analysis to verify that the DEM correlate with

the number of defects in classes, i.e., that these metrics bring are relevant wrt. defects.

5.1.1 Most Used Metrics

Following the elimination procedure, different independent variables (metrics) were

retained depending on the system and its releases. Those variations were expected and

are due to several factors, including the system size in a release, its evolution history,

the class diagram structure, and design stability.

Table 2 shows the metrics kept in the models built with the different sets of metrics.

For each system, metrics from the DEM are kept as relevant to explain the number

of defects per classes, even when they are added to the C&K and Z&Z sets.

12 We consider that a random prediction model would give in average X% of the defective
classes or the defects in any X% partition of the system
13 We compute the Cohen-d statistics using pooled standard deviation.
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TM DEM TM+DEM
Rhino RFC, CBO, LOC,

LCOM2, LCOM1
nbDelAtt, nbDelRelOut,
nbAddMet, nbAddRelOut,
nbModMet, nbModRelOut,

RFC, CBO, LOC, LCOM1,
nbAtt, LCOM2, nbMet,
nbModMet, nbDelRelOut,
nbAddRelOut, nbDelAtt,
nbDelMet, nbAddMet,
nbAddRelIn, nbModRelOut

Argo RFC, LCOM2,
LOC, WMC, DIT

nbAddMet, nbAddAtt,
nbAddRelOut, nbModRelIn,
nbDelRelOut, nbModMet,
nbAddRelIn

RFC, LOC, LCOM1,
LCOM2, DIT, WMC,
nbDelRelOut, nbAddMet,
nbModRelIn, nbAddRelOut,
nbModRelOut

Eclipse FOUT(max,sum),
MLOC(max,sum,avg),
NBD(sum),
NOF(avg,max),
NOM(avg,max,sum),
NOT, TLOC,
NSF(avg,sum),
NSM(avg,max),
PAR(sum),
VG(avg,max,sum)

nbAddMet, nbAddRelOut,
nbModRelOut, nbAddAtt,
nbDelMet, nbModMet,
nbAddRelIn, nbModRelIn,
nbDelRelOut

FOUT(max,sum),
TLOC, MLOC(avg,max),
NBD(sum), NOF(avg,max),
NOI, NOM(avg,max,sum),
NSF(avg,sum),
NSM(avg,max),
PAR(avg,max,sum),
VG(avg,max,sum), nbAd-
dAtt, nbAddRelOut, nbAd-
dMet, nbAddRelIn, nbDe-
lAtt, nbDelRelIn, nbDelMet,
nbDelRelOut, nbModMet,
nbModRelOut

Table 2 RQ1: Metrics kept 75% (or more) times when building linear regression models to
explain the number of defects—TM = C&K for Rhino and ArgoUML, TM = Z&Z for Eclipse

Rhino C&K DEM C&K+DEM
1.5R1 0.3723 0.5169 0.6058
1.5R2 0.2925 0.5271 0.6063
1.5R3 0.6314 0.4468 0.711
1.5R4 0.6569 0.6437 0.7362
1.5R4.1 0.5632 0.6063 0.6619
1.5R5 0.6511 0.634 0.767
1.6R1 0.5246 0.6326 0.6608

Mean 0.5274 0.5725 0.6784
Std 0.1434 0.0759 0.0623
Median 0.5632 0.6063 0.6619

Table 3 Adjusted R2 from linear regressions on Rhino

Some metrics are always kept: for the C&K set, RFC, LOC, and LCOM2 are

present as significant metrics for both Rhino and ArgoUML. The metrics in DEM

consistently kept are the number of added or modified methods and number of addi-

tions, deletions, and modifications of outgoing relations. The Z&Z set contain many

relevant metrics, such as TLOC (the total LOCs) and FOUT (fan-out).

5.1.2 Proportion of variability explained

Tables 3, 4, and 5 show the values of adjusted R2 for the regression models built using

the various sets.

For Rhino, see Table 3, all sets of metrics mostly give an adjusted R2 superior

to 0.5. The most effective model uses the C&K+DEM set and has an average of

0.6784, contrasting with the adjusted R2 of 0.5274 of the C&K model: adding DEM

to C&K provides a gain of 0.1510. The DEM model, with an adjusted R2 of 0.5725,

outperforms the C&K model by 0.0451. A Wilcoxon test rejects with a p-value of
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Argo C&K DEM C&K+DEM
0.12 0.1292 0.0794 0.1479
0.14 0.4454 0.2206 0.4875
0.16 0.2873 0.2654 0.3248
0.18.1 0.3028 0.2608 0.342
0.20 0.2529 0.1572 0.2597
0.22 0.1627 0.2221 0.2794
0.24 0.2379 0.1529 0.2924
0.26 0.0433 0.0562 0.0705
0.26.2 0.1623 0.1279 0.1852

Mean 0.2249 0.1714 0.2655
Std 0.117 0.0758 0.1214
Median 0.2379 0.1572 0.2794

Table 4 Adjusted R2 from linear regressions on ArgoUML

Eclipse Z&Z DEM Z&Z+DEM
2.0 0.2962 0.1378 0.3136
2.1 0.2236 0.1642 0.2545
3.0 0.3141 0.195 0.3416

Mean 0.2766 0.1657 0.3032

Table 5 Adjusted R2 from linear regressions on Eclipse

0.007813 the following null hypothesis The C&K+DEM set does not provide a better

adjusted R2 with respect to the C&K set.

For ArgoUML, see Table 4, the values of R2 are substantially lower than for Rhino.

Differently from Rhino, the DEM model is now, in average, 0.0535 lower than the

C&K model. However, the best model remains the C&K+DEM model with an

average of 0.2655, improving the C&K model by 0.0406. The low means are due to

some releases, such as ArgoUML 0.26, for which the maximal adjusted R2 obtained

was only 0.0705 because there are only 25 bugs in 1,628 classes. Similarly to Rhino,

a Wilcoxon test rejects the following null-hypothesis: The C&K+DEM set does not

provide a better adjusted R2 with respect to the C&K set. with a p-value of 0.001953.

Linear regression models built on Eclipse, see Table 5, provide adjusted R2 of at

most 0.3416 (for Eclipse 3.0 and with the C&K+DEM model). Except for the values

being higher than those for ArgoUML, the model using the mixed set Z&Z+DEM

outperforms the models built with the Z&Z and DEM sets. The size of the Z&Z set,

with 31 metrics, could explain in part the clear advantage it has over DEM set, which

includes only 11 metrics.

As a conclusion, the DEM set improves the adjusted R2 of any model built with

the C&K set or Z&Z. For Rhino, it even outperforms the C&K set.

We can thus answer RQ1 affirmatively and conclude that on Rhino, ArgoUML,

and Eclipse, the design evolution metrics actually correlate with the numbers of defects

and would help in explaining the number of defects in a class.

5.2 RQ2 – Defect-proneness Accuracy

To answer RQ2, we rank the classes of a system according to their predicted probability

of being defective, given by a logistic regression model. Then, we select the top-ranked
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TM DEM TM+DEM
Rhino LCOM1, LCOM2,

CBO
nbAddMet, nbModMet,
nbAddRelIn, nbDelRelOut,
nbModRelOut

LCOM1, LCOM2, NOC,
nbModRelOut, nbAddMet,
nbAddAtt, nbDelRelOut

Argo RFC, DIT, LCOM5,
LOC

nbAddMet, nbDelRelOut,
nbAddAtt, nbDelMet

RFC, WMC, CBO, DIT,
nbAddAtt, nbAddRelOut

Eclipse TLOC,
FOUT(avg,max),
NBD(max,sum),
NSF(max,sum),
PAR(avg,max),
VG(max,sum)

nbAddAtt, nbAddMet,
nbDelRelOut, nbMod-
RelOut

TLOC, FOUT(avg),
NBD(max,sum), NOF(max),
NOI, NOT, NSF(max,sum),
PAR(avg,max), nbAddAtt,
nbModMet, nbModRelOut

Table 6 RQ2: Metrics kept 75% (or more) times when building logistic regression models to
predict defective classes—TM = C&K for Rhino and ArgoUML, TM = Z&Z for Eclipse

classes and tag those classes as likely to be defective. We report in the following the

most used metrics in the models and the results obtained.

5.2.1 Most Used Metrics

Table 6 reports the most frequently retained metrics in predictors of RQ2, after the

backward elimination procedure used in the training phase. We can observe that metrics

such as the numbers of added attributes and methods (nbAddAtt, nbAddMet) and that

of modified outgoing relations (nbModRelOut) were almost always used in all systems

and for both the DEM set and mixed set (C&K+DEM or Z&Z+DEM).

5.2.2 Analysis of the Obtained Means

Figures 2, 3, and 4 report the average F-measure in the top ranked classes. As shown

in the figures, the C&K+DEM model is consistently better than the C&K model.

On Rhino, the improvement is roughly of 4 points on average for the top 10% and

20% top ranked classes and 8 points for the top 30% classes. The improvement is on

average less important for ArgoUML (about 2%) and Eclipse (about 1%). The same

remark applies when considering the medians: the improvement is about 5 points for

Rhino and 2 for ArgoUML.

5.2.3 Wilcoxon Tests

We performed a Wilcoxon paired test to check whether predictors built with our metrics

are indeed improving the F-measure when compared to predictors built only with

the C&K set. The null hypothesis tested is the F-measure of a predictor built with

C&K+DEM is not greater than a predictor built with C&K metrics when the top 10%,

20%, 30% classes are selected.

For both Rhino and ArgoUML, we were able to reject the null-hypothesis, as shown

by the p-values reported in Table 7. Considering that a random ranking should have

an average of X% of defective classes within the top X% classes, we also perform a

Wilcoxon test and confirm that the C&K+DEM model is substantially better than

the random model (see Table 8).
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Fig. 2 Average F-measure for defective classes on Rhino per top classes

Fig. 3 Average F-measure for defective classes on ArgoUML per top classes

5.2.4 Cohen-d Statistics

To further assess the improvement of F-measure brought by the DEM, we also compute

the Cohen-d statistics to quantify the effect size of using DEM in building predictors

with respect to C&K metrics or a random ranking. Results are reported in Tables 9

and 10.

In summary, when comparing C&K+DEM to C&K, for Rhino, we have a large

effect on the top 20% classes, a medium effect on the top 30% classes and a small effect

on the top 10%; for ArgoUML, there is only a small effect (on the top 10% and top

20% classes) and a very small effect on the top 30%.
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Fig. 4 Average F-measure for defective classes on Eclipse per top classes

Top 10% Top 20% Top 30%
Rhino 0.05017 0.05017 0.05017
ArgoUML 0.01125 0.003906 0.03796

Table 7 C&K+DEM ≤ C&K? p-value of Wilcoxon signed rank test for the F-measure of
defective classes (confidence level: light grey 90%, dark grey 95%)

Top 10% Top 20% Top 30%
Rhino 0.01563 0.01563 0.01563
ArgoUML 0.003906 0.003906 0.003906

Table 8 C&K+DEM ≤ random? p-value of Wilcoxon signed rank test for the F-measure of
defective classes (confidence level: light grey 90%, dark grey 95%)

Top 10% Top 20% Top 30%
Rhino 0.44 0.80 0.59
ArgoUML 0.22 0.22 0.13

Table 9 Assessing C&K+DEM improvement over C&K: Cohen-d statistics

The comparison with a random predictor displayed in Table 10 clearly demonstrates

the superiority of a model using the DEM set.

Top 10% Top 20% Top 30%
Rhino 5.07 6.78 3.12
ArgoUML 3.20 2.62 1.94

Table 10 Assessing C&K+DEM improvement over random: Cohen-d statistics

Overall, the reported means and statistical tests support that our design evolution

metrics are useful for predicting defective classes and we can claim statistical signifi-

cance of the observed improvement yet with a small effect size.
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TM DEM TM+DEM
Rhino LCOM1,

LCOM2, nbMet,
CBO

nbDelAtt, nbModMet,
nbAddMet, nbModRelOut

RFC, LOC, nbAtt, nbMet,
LCOM1, LCOM2, nbMod-
Met, nbDelRelOut, nbAd-
dRelOut

ArgoUML LOC, RFC,
LCOM1, nbMet

nbModRelOut, nbAddAtt,
nbAddMet, nbDelRelOut

RFC, LCOM1, CBO,
LCOM2, WMC, DIT,
nbModRelOut, nbDelRelIn

Eclipse FOUT(avg,sum),
MLOC(sum),
NBD(max,sum),
NOM (avg),
NSF(sum),
NSM(avg),
PAR(avg,max),
TLOC,
VG(max,sum)

nbDelMet, nbAddMet,
nbAddRelIn, nbDelRelOut,
nbAddRelOut

FOUT (avg,sum),
MLOC(avg,sum),
NBD(max,sum), NOF(sum),
NOI, NOT, NSF(sum),
NSM(avg), PAR(avg,max),
TLOC, VG(max,sum),
nbModMet, nbDelRelIn,
nbAddRelIn, nbAddRelOut,
nbModRelOut

Table 11 RQ3: Metrics kept 75% (or more) times when building Poisson regression models to
predict the number of defects—TM = C&K for Rhino and ArgoUML, TM = Z&Z for Eclipse

5.3 RQ3 – Defect count prediction

To answer RQ3, we first rank the classes of a system according to their predicted

number of defects, given by a Poisson regression model. Then, we select the top X%

classes and assess the percentage of defects contained within the selection. We report

in the following the most used metrics (kept after the elimination procedure) in the

models and the results obtained.

5.3.1 Most Used Metrics

The metrics kept most of the time are reported in Table 11. The number of modified

outgoing relations (nbModRelOut) is the single most used metric for the DEM and

C&K+DEM sets.

5.3.2 Analysis of the Obtained Means

Figures 5, 6, and 7 report the mean of the percentages of defects contained in the top

X% ranked classes. The C&K+DEM model is consistently better than the C&K

model. On Rhino, the improvement is roughly of 6% on average from the top 10%

to 30% ranked classes. The improvement is less important for ArgoUML (2% to 3%)

and Eclipse (2%). Looking at the medians, the improvement due to the DEM metrics

seem to increase with the cardinality of the set of classes considered. The improvement

brought by the mixed model is quite important for the top 30 % classes (in particular

more than 5 % for Rhino) but mostly small for the top 10 % and top 20 % classes (in

particular less than 1 % for the top 20 % classes of Rhino).

5.3.3 Wilcoxon Tests

We perform a Wilcoxon paired test to check whether our metrics are indeed improving

over C&K set. The null hypothesis tested is the percentage of defects of a predictor

built with C&K+DEM is not greater than that of a predictor built with C&K metrics

when the top 10%, 20%, 30% classes are selected.
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Fig. 5 Average Percentage of defects on Rhino per top classes

Fig. 6 Average Percentage of defects on ArgoUML per top classes

For both Rhino and ArgoUML, considering the best model, i.e., C&K+DEM

and as shown by the p-values reported in Table 12, we were able to reject the null-

hypothesis - though at a 90% confidence level for some partitions. Considering that a

random ranking should have an average of X% of defects within the top X% classes, we

also performed a Wilcoxon test to verify that the C&K+DEM model is substantially

better than the C&K model (see Table 13).

5.3.4 Cohen-d Statistics

To assess the size in the improvement of percentage of defects in the top ranked classes,

we also computed the Cohen-d statistics to quantify the effect size of using DEM in
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Fig. 7 Average Percentage of defects on Eclipse per top classes

Top 10% Top 20% Top 30%
Rhino 0.03125 0.05017 0.08876
ArgoUML 0.01802 0.02596 0.09766

Table 12 C&K+DEM ≤ C&K? p-value of Wilcoxon signed rank test for the percentage of
defects per top classes (confidence level: light grey 90%, dark grey 95%)

Top 10% Top 20% Top 30%
Rhino 0.01563 0.01563 0.01563
ArgoUML 0.003906 0.003906 0.003906

Table 13 C&K+DEM ≤ random? p-value of Wilcoxon signed rank test for the percentage of
defects per top classes (confidence level: light grey 90%, dark grey 95%)

building predictors with respect to C&K metrics or a random ranking. Results are

reported in Tables 14 and 15.

In summary, when comparing C&K+DEM to C&K, for Rhino, we have a large

effect on the top 10% and top 30% classes and medium effect on the top 20%; for

ArgoUML, there is only a small effect on the top 20% classes and a very small effect

on the rest. The comparison with a random predictor shows the clear superiority of a

model built using our evolution metrics.

Top 10% Top 20% Top 30%
Rhino 0.88 0.58 0.91
ArgoUML 0.18 0.29 0.12

Table 14 Assessing C&K+DEM improvement over C&K: Cohen-d statistics

Overall, the reported means and statistical tests support our conjecture that our

evolution metrics are useful for predicting the number of defects. In addition, we can
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Top 10% Top 20% Top 30%
Rhino 10.63 8.44 12.05
ArgoUML 4.21 5.54 5.51

Table 15 Assessing C&K+DEM improvement over random: Cohen-d statistics

TM DEM TM+DEM
Rhino LCOM1,

LCOM2, CBO,
DIT, WMC

nbAddMet, nbModRelOut,
nbAddAtt, nbDelRelIn,
nbAddRelIn, nbModRelIn,
nbAddRelOut

LOC, nbMet, nbAddMet,
nbModMet, nbDelRelIn,
nbModRelOut

ArgoUML LCOM1,
LCOM2, DIT,
RFC, WMC

nbAddAtt, nbDelMet, nbAd-
dMet, nbModMet, nbDel-
RelOut, nbModRelOut

LOC, LCOM1, nbMet, DIT,
nbAddAtt, nbDelRelOut,
nbDelMet, nbAddRelIn,
nbModRelOut

Eclipse NBD(avg,max),
NOM (avg),
PAR(max)

nbAddAtt, nbAddMet,
nbModRelIn

TLOC, NOI, NOF(avg),
NBD(avg,max), nbAddAtt,
nbAddMet, nbModRelOut

Table 16 RQ4: Metrics kept 75% (or more) times when building Poisson regression models
with different metric sets—TM = C&K for Rhino and ArgoUML, TM = Z&Z for Eclipse

claim statistical significance of the observed improvement on all systems and a large

effect on Rhino.

5.4 RQ4 – Defect Density Prediction

To answer RQ4, we test whether, given the same volume of recommended code, our

metrics provide a higher percentage of defects than traditional metrics. We use Poisson

regression to assess the predictive accuracy for defect density of models built with the

DEM and other metrics sets. We first rank the classes of a system according to their

predicted defect density; then, we cut this list by selecting the classes containing the

top X% LOCs and assess the percentage of defects contained within the selection. We

report in the following the most used metrics (kept after the elimination procedure) in

the models and the results obtained.

5.4.1 Most Used Metrics

Table 16 reports the metrics that were the most used in the prediction, i.e., those

kept after the elimination procedure. We observe that the number of added attributes

and methods and the number of modified outgoing relations (nbAddAtt, nbAddMet,

nbModRelOut) are again the most frequently kept by the elimination procedure.

5.4.2 Analysis of the Obtained Means

Figures 8, 9, and 10 report the average percentage of defects contained in the top LOCs.

They show that, for all systems, the models built with DEM are clearly superior to

the ones built with only C&K or Z&Z.

For Rhino, we have on average roughly 7% more defects with the top 10% (from

10% to 17%), 6% more defects with the top 20% LOCs (from 27% to 33%) and 10%

more defects for the top 30% LOCs (from 40% to 50%). For ArgoUML, the difference

is, in average, roughly 3% more defects with the top 10% LOCs (from 14% to 17%),



24

Fig. 8 Average Percentage of defects on Rhino per top LOCs

10% more defects with the top 20% LOCs (from 20% to 30%), and 13% more defects

for the top 30% LOCs (from 32% to 45%). With the two predictions for Eclipse, we

have on average 6% more defects (from 9% to 15%) with the top 10% LOCs, 9% more

defects (from 18% to 27%) with the top 20% LOCs, and 8% more defects (from 29%

to 37%) with the top 30% LOCs. On the medians, the DEM model improves over the

C&K model by 8 to 11 % for Rhino and by 4 to 8 % for ArgoUML. In summary, for

all systems, there is a substantial gain when models are built with only the DEM set.

Note that on average, the mixed set performs worse than the DEM set for all the

systems but better than the C&K or Z&Z set. It appears that adding the traditional

metrics degrades the predictive power of the DEM set. This is not rare in a prediction

context as overfitting can cause occurrences of a set performing much worse than one

of its subsets.

5.4.3 Wilcoxon Tests

We perform a Wilcoxon paired test to check whether our metrics are indeed improving

over C&K. The null hypothesis tested is the percentage of defects of a predictor built

with C&K+DEM is not greater than that of a predictor built with C&K metrics when

the top classes containing from 10% to 30% LOCs of the system are selected.

For both Rhino and ArgoUML, considering the best model, i.e., DEM, we were

able to reject the null-hypothesis, as shown by the p-values reported in Table 17.

Considering that a random ranking should have an average of X% of defects within

the top X% LOCs, we also performed a Wilcoxon test and confirmed that the DEM

model is substantially better than a random predictor (see Table 18).

5.4.4 Cohen-d Statistics

To assess the size in the improvement of percentage of defects in the top LOCs, we also

computed the Cohen-d statistics to quantify the effect size of using the DEM model
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Fig. 9 Average Percentage of defects on ArgoUML per top LOCs

Fig. 10 Average Percentage of defects on Eclipse per top LOCs

with respect to C&K metrics or a random ranking. Results are reported in Tables 19

and 20.

In summary, when comparing DEM to C&K models, except for a medium effect

for ArgoUML on the top 10% LOCs, we always observe a large effect for Rhino and

ArgoUML. The comparison with a random predictor again demonstrates the clear

superiority of our model.

Overall, the reported means as well as the Wilcoxon tests and Cohen-d statistics

provide evidence that our metrics increase the percentages of detected defects for a

given size of code. Hence, they help managers save their developers’ efforts by returning

less LOCs to be analyzed to locate and correct a defect.
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Top 10% Top 20% Top 30%
Rhino 0.01563 0.07813 0.04688
ArgoUML 0.07422 0.003906 0.003906

Table 17 DEM ≤ C&K? p-value of Wilcoxon signed rank test for the percentage of defects
per top LOCs (confidence level: light grey 90%, dark grey 95%)

Top 10% Top 20% Top 30%
Rhino 0.01563 0.01563 0.01563
ArgoUML 0.003906 0.003906 0.007813

Table 18 DEM ≤ random? p-value of Wilcoxon signed rank test for the percentage of defects
per top LOCs (confidence level: light grey 90%, dark grey 95%)

Top 10% Top 20% Top 30%
Rhino 2.17 0.85 1.76
ArgoUML 0.53 1.05 1.08

Table 19 Assessing DEM improvement over C&K: Cohen-d statistics

Top 10% Top 20% Top 30%
Rhino 3.60 4.05 6.78
ArgoUML 3.06 1.9 1.82

Table 20 Assessing DEM improvement over random: Cohen-d statistics

6 Threats to Validity

This work extends our previous work [KRAG09] in two ways: (i) the aggregate metrics

first proposed were replaced by their simple basic constituents, which are simpler and

more intuitive design evolution metrics, (ii) the case study now involves a comparison

on several releases of three different software systems showing that the design evolution

metrics are useful in identifying defective classes. Our purpose is not to investigate the

formal properties of the DEM following the guidelines of measurement theory [FP97].

We believe that before any formal study of the properties of a metric, the metric itself

must be shown useful. Thus, this work is a preliminary study which provides evidence

that the DEM can help developers in saving effort by focusing quality assurance on

defective classes.

Threats to construct validity concern the relation between the theory and the ob-

servation. This threat is mainly due to the use of incorrect defect classification or

incorrect collected metrics values. In our study, we used material and defects manually

classified and used by others [EZS+08,ZPZ07] and the independent issues stored in

ArgoUML bug-tracker. We inspected several randomly-chosen ArgoUML issues and

manually verified that they represented corrective maintenance requests in most of

the cases. Releases of ArgoUML were found to contain relatively few defects but it’s

possible that defects are more than those we had access to. This may be due to the

known fact that, in general, developers do not adequately document all the bugs they

fix. Manual classification of defects for large Bugzilla repository is not feasible and

thus a clear insight about how many defects were possibly missed cannot be proposed.

We conjecture that more defect data should result in better performances of the built

models.
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Extraction of C&K metrics for Rhino and ArgoUML is performed with PADL, a

tool already used in other experiments. Metrics values were manually assessed for a

subset of the classes and compared with the previous used tool [KRAG09]. We chose

to use PADL because it offers a richer set of metrics than the C&K metrics suite

used in [KRAG09] and thus makes it more challenging to show the usefulness of the

DEM. The Eclipse case study was performed using the metrics suite, values, and defect

classification provided by Zimmermann et al. [ZPZ07]. Consequently, we believe that

it is highly unlikely that the relation found between the theory and the observation is

due to a statistical fluctuation.

Threats to internal validity concern any confounding factor that could influence

our results. In particular, these threats can be due to subjectiveness during the manual

building of oracles and to the bias introduced by manually classifying defects.

As reported by Antoniol et al. in [AMAP07], most of bug tracking entries are not

related to corrective maintenance. We attempted to avoid any bias in the building of

the oracle by adopting a classification made available by other researchers [EZS+08,

ZPZ07] or documented in the independent ArgoUML bug-tracking system. For Rhino,

the defect data results from a manual classification provided by Eaddy in [EZS+08]. As

for ArgoUML, its bug tracking system has a field used to explicitly specify when an issue

is a ”defect”. In our study, we selected only the entries ArgoUML developers tagged

as ”defect”; thus minimizing the risk that non defect issues are part of our dataset.

Finally, as we replicated Zimmerman et al. [ZPZ07] study for comparison purposes,

we reused their publicly available defect datasets. However their data, though about

post-release defects, may contain some non defect entries.

Furthermore, Bird et al. [BBA+09] argue that defects documented by the devel-

opers are only a subset of all defects and are hardly representative of the whole set of

defects in terms of important defect features, such as severity. They specifically claimed

that the Eclipse data set by [ZPZ07] was only a sample of the actual defects but fortu-

nately representative in terms of severity. Unfortunately, their own data sets were not

made publicly available.

Another factor influencing results is the choice of the costs used in our ETGM

algorithm. A complete study of the impact of costs is beyond the scope of this work

and is documented in an earlier publication [KRG+10]. We used costs learned from

that study and though we cannot claim that changing ETGM costs would not affect our

results, we are confident that the chosen costs are appropriate for this study. The same

costs were used on the various releases of the three systems. In addition, we manually

inspected matched and non-matched classes and found an excellent agreement with

the expected results.

Threats to conclusion validity concern the relationship between the treatment and

the results. Proper tests were performed to statistically reject the null-hypotheses.

In particular, non-parametric tests were used in place of parametric tests where the

conditions necessary to use parametric tests do not hold. As an example, we selected

the Wilcoxon test because it is very robust and sensitive [CPM+00].

Threats to external validity concern the possibility of generalizing our results. The

study is limited to three systems: Rhino, ArgoUML, and Eclipse and a total of 19

releases on which we have defect data. Yet, our approach is applicable to any other

OO system. Results are encouraging on the studied systems but more work is needed

to verify if our approach is in general better than previously known fault location ap-

proaches. We cannot claim that similar results will be obtained with other systems.

We have built different predictive models and cannot be sure that their relative perfor-
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mances will remain the same on different systems or releases. On different systems or

releases, the procedure of variable selection can lead to different models with different

sets of variables. Nevertheless, the three systems correspond to different domains and

applications, have different sizes, are developed by different teams, and have a different

history. We believe this choice confirms the external validity of our case study.

7 Conclusion

Testing activities play a central role in quality assurance. Testing effort should be

focused on defective classes to avoid wasting valuable resources. Unfortunately, identi-

fying defective classes is a challenging and difficult task. In a previous paper, we used

a search-based technique to define software metrics accounting for the role that a class

plays in the evolution of the design of a system, described with class diagrams.

This work extends our previous work by comparing, on the one hand, the Chi-

damber and Kemerer’s metrics suite and traditional complexity metrics (e.g., fan-in,

fan-out) with, on the other hand, a novel set of design evolution metrics, DEM, mea-

suring basic design changes between releases of a system. To reinforce the empirical

evidence of a relation between our evolution metrics and defects in classes, we extended

our previous case study with several releases of Rhino, a Java ECMA script interpreter,

ArgoUML, a Java UML CASE tool, and Eclipse, a Java development environment, to

predict defective classes. We thus were able to address four research questions: RQ1

on metrics relevance, RQ2 on prediction of defective classes, RQ3 on prediction of

numbers of defects, and RQ3 on prediction of defect density.

By means of multivariate linear models, we positively answered RQ1: the new

metrics contribute to better explain the numbers of defects in the classes in Rhino,

ArgoUML, and Eclipse. On the extended set of systems, we found that integrating

the new metrics led to a significant improvement but with small effect size regarding

the location of the defects, thus answering positively RQ2. Combining the DEM with

traditional metrics led to a significant improvement with mostly medium to large effect

size thus answering positively RQ3. Finally, the prediction for which the DEM were far

better was about defect density, i.e., when it comes to maximize the number of defects

contained in a small share of the volume code in a system. We positively answered

RQ4 as the DEM consistently outperformed traditional OO and complexity metrics

with a large effect size.

Our future work will be devoted to replicate this case study on different systems

and deeply analyze the correlation and impact of each DEM on defect-proneness of

classes of a system. We will also study finer-grain changes to attributes, visibility,

and relations as well as the impact of using more than one previous release, possibly

the entire system history, in building models. Finer-grain study includes also further

investigating whether inheritance introduces defects, e.g., when classes participating

in hierarchies are defective.
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Data

All artifacts (releases, class diagrams, graph representations) used in this work can be

downloaded from the SOCCER laboratory Web server, under the Software Evolution

Repository (SER) page, accessible at http://web.soccerlab.polymtl.ca/SER/.
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