
Empirical Software Engineering – An International Journal manuscript No.
(will be inserted by the editor)

Experimental Study On the Effect of Context on Identifier
Splitting and Expansion

Latifa Guerrouj · Massimiliano di Penta ·
Yann-Gaël Guéhéneuc · Giuliano Antoniol

Received: date / Accepted: date

Abstract ;

Context: The literature reports that source code lexicon plays a paramount role in

program comprehension, especially when software documentation is scarce. Develop-

ers often composed identifiers with abbreviated words and acronyms. They sometimes

do not use consistent mechanisms to separate such words. Such choices and incon-

sistencies impede the work of later developers who must understand identifiers by

decomposing them to their component terms and mapping them onto dictionary or

domain words. Developers therefore must use the available contextual information to

understand source code identifiers.

Aim: This paper aims at investigating on how developers split and expand source code

identifiers, and, specifically, on the extent to which different kinds of contextual infor-

mation could support such a task. In particular, we consider (i) an internal context

consisting of the content of functions and source code files in which the identifiers are

located, and (ii) an external context involving external documentation: more precisely

a thesaurus of acronyms and abbreviations. Furthermore, we investigate how identi-

fier characteristics and context co-factors, such as subjects’ background, influence the

splitting and expansion performances.

Method: We conducted an experiment with 42 subjects, including Bachelor, Master,

Ph.D. students, and Post-Docs. Subjects were asked to split and expand a set of 40

identifiers in absence and presence of internal and external contexts. In the later case,

we provided subjects with source code functions, source code files, and source code

files, plus a thesaurus of acronyms and abbreviations. The aim is to analyze the effect

of increasing the context while performing the given tasks. We randomly sampled the

identifiers from a corpus of open-source C programs.

L. Guerrouj · Y. G. Guéhéneuc · G. Antoniol
SOCCER Lab.
DGIGL, École Polytechnique de Montréal, Québec, Canada
E-mail: {latifa.guerrouj, yann-gael.gueheneuc.}@polymtl.ca,
E-mail: antoniol@ieee.org

M. Di Penta
University of Sannio, Italy
E-mail: dipenta@unisannio.it

2

Results: We report evidence on the usefulness of context for identifier splitting and

acronym and/or abbreviation expansion. We observe that the source code files are

more helpful than functions. The availability of external sources of information does

not significantly impact identifier splitting and expansion. However, we observed that

when the source of information increase also the entropy increase but this does not

negatively affect the attained accuracy.

Conclusions: The obtained results confirm the conjecture that contextual information

is useful in program comprehension, including when developers must split and expand

identifiers to understand them. Also, results are in line with performances of auto-

matic identifier splitter algorithms, which improve their performance when contextual

information is available. Both developers and automatic tools could benefit from these

results: developers could reduce the time and effort deployed when performing such

tasks by focusing on the relevant contextual levels. Identifier splitting and expansion

tools could enhance their accuracy by considering the levels of interest i.e., the source

code files as they have been proven to be the most helpful for identifier splitting and

expansion tasks.

Keywords Program understanding, identifier splitting and expansion, identifier

context

1 Introduction

As programs evolve, the only up-to-date source of information is often the source code

in which identifiers (e.g., names of classes, methods, or attributes) account for approx-

imately more than half of linguistic information [DP05]. Previous work on program

comprehension [SBE83,MV95] highlighted the importance of textual information to

capture and encode developers’ intent and knowledge; they showed that identifiers

convey relevant information about the application domain [CT99,DP05,JM01], and

have influence on software quality [TGM96,LMFB07,LMFB06].

When the identifiers are made up of full (natural language) words and–or mean-

ingful abbreviations, e.g., predictBugs, execQuery, imagePntr, developers have little

trouble identifying component terms, i.e., predict and bugs, execute and query, or

image and pointer, and understanding the concepts conveyed by such identifiers. How-

ever, identifiers can be acronyms, e.g., SOA, or abbreviations, e.g., cntr. Developers

knowledgeable enough with the application domain can expand them without exces-

sive doubts, while less knowledgable developers could face off some difficulty—e.g.,

does cntr map to “control” or to “counter”? In some other cases, the abbreviations

are quite cryptic, e.g., cwdfn and their expansion becomes therefore non-trivial. To un-

derstand such identifiers, developers can use the neighbor source code (including other

identifiers) or comments to split and expand identifiers. Tools developed for automatic

splitting and expansion of identifiers, such as Samurai [EHPVS09], TIDIER [GPAG11],

or Normalize [LB11] also exploit contextual information in the splitting and expansion

process.

In this paper, we experimentally investigate factors that influence developers’ per-

formances in identifiers splitting and expansion. We conduct an experiment with 42

subjects, including graduate students and post-docs at the École Polytechnique de

Montréal. Each subject splitted and expanded a set of identifiers extracted from vari-

ous C programs with several type of contexts.

3

In the experiment, subjects have to disambiguate concepts embedded in source

code identifiers by splitting and expanding them: The splitting consists of dividing

compound identifiers into their constituent terms refereed to as “hard-words”. Hard-

words are terms reflecting domain concepts [LMFB06] e.g., domain-specific terms or

English words. Hard words are usually concatenated to form compound identifiers, us-

ing the Camel Case naming convention, e.g., fixBug, or underscore, e.g., fix bug. When

no Camel Case convention or other separator (e.g., underscore) is used, e.g., fixbug or

pntrapplicationgid, the component words fix, bug, application, the abbreviation pntr,

and the acronym gid (i.e., group identifier) are called “soft-words” [LFB06]. Identifier

expansion consists of mapping soft-words to their corresponding domain concepts; it

is helpful for programming languages (e.g., C and C++) that favor the use of short

identifiers. In such languages, the use of abbreviations and acronyms is likely an her-

itage of the past when certain operating systems and compilers limited the maximum

length of identifiers. In fact, a C developer may use the soft-word dir instead of the

hard-word directory, pntr instead of pointer, or net instead of network.

In the experiment, we specifically investigate:

1. The effect of two types of contextual information, namely, the internal context,

i.e., source code functions and files, and the external context, i.e., a thesaurus of

acronyms and abbreviations.

2. The difficulty in expanding abbreviated identifiers, acronyms, and compound iden-

tifiers, i.e., identifiers composed of full English words, acronyms and–or abbrevia-

tions.

3. The effect of co-factors: subjects’ gender, experience, and knowledge background.

Results show that internal contextual information significantly impacts subjects’

performance when they split and expand identifiers. Specifically, the availability of

source code files significantly help to better split and expand identifiers. Furthermore,

even if the entropy (number of possible choices) increases, accuracy also increases; we

explain this observation with the assumption that a richer context is more important

than a limited one (source code functions) and that there is no better information than

more information. Indeed, human-based splitting benefits of contextual information

as automatic tools (TIDIER in particular) do, although automatic tools could rely

on even richer contexts (e.g., program using the identifier instead of the source code

file or function where it appears) which is not feasible for developers. Results also

indicate that the knowledge of English influence subjects’ capability to split and expand

identifiers but also their ability to benefit of the increase of contextual information.

Other characteristics, such as gender and domain knowledge do not have a significant

effect.

This paper is organized as follows. Section 2 describes our experimental study and

the analysis method we followed to address our research questions. Section 3 reports

and discusses the quantitative results of our experiment. A qualitative analysis of our

results is provided in Section 4 while section 5 presents the threats to validity related

to our work. In Section 6, we relate this work to the existing literature. Finally, Section

7 concludes and outlines future work.

2 Experiment Definition and Planning

This section describes our experiment following to the templates provided by Basili et

al. [BCR94] and by Wohlin et al. [CPM+00].

4

2.1 Experiment Definition

The goal of this study is to investigate how developers split and expand source code

identifiers, with the purpose of evaluating the impact of contextual information as well

as of other factors, such as identifier characteristics and developers’ background, on such

task. The quality focus is program understanding, which could be eased by adopting

meaningful identifiers. The perspective is of researchers and practitioners interested to

(i) investigate the extent to which contextual information helps developers properly

understand and map identifiers to dictionary (or domain) words, (ii) determine the

developers’ characteristics that are relevant for the identifier splitting and expansion

task. The former information reveals the most important contextual information for the

studied task and hence reduces the time and effort costs of attempting to investigate

several sources of information to perform a similar task. The latter information provides

practitioners with information about the human characteristics required to achieve

identifier splitting and expansion.

The context of this study consists of subjects, i.e., Bachelor, Master, Ph.D. students,

and Post-Docs involved in the experiment, and objects, i.e., identifiers to be split and

expanded, and their related context (e.g., source code files or functions in which they

appear).

2.1.1 Context Selection

The subjects are students of the Computer and Software Engineering department

of École Polytechnique de Montréal. The population is composed of 28 Ph.D., eight

Master, and five Bachelor students, plus one Postdoctoral fellow. According to a pre-

experiment questionnaire we conducted before running the experiment, some subjects

are native English speakers while others are not. In addition, all subjects have at least a

basic knowledge in the C programming language and have performed at least one main-

tenance task the previous years (i.e., it was not the first time they tried to deal with

source code). Table 1 reports the main descriptive statistics of subject’s C program-

ming experience. The subjects’ population includes a variety of training levels (from

Bachelor to Post-Doctoral) and can be considered representative of young developers

hired by companies in the Montreal area.

Table 1 Subject’s C Programming Experience: Descriptive Statistics

C Programming Experience
Min Max Mean Median Std. Dev.

5 months 20 years 3 years 2 4

The objects are 50 identifiers randomly extracted from 340 open-source programs:

337 C programs from the GNU repository (also used as benchmark in a previous pa-

per [NLP+10]), two operating systems (the Linux Kernel release 2.6.31.6 and FreeBSD

release 8.0.0), and the Apache Web server release 2.2.14. The randomly-extracted iden-

tifiers include function, parameter, and structure names. We dealt with such a large

number of C applications to show that our findings are valid for different domains.

In this paper, we focus on C programs only because, as found in our previous

work [GPAG11], Java identifiers strictly adhere to the Camel Case convention and

5

identifier construction rules as opposite to C and C++ where developers tend to use

short identifiers.

2.2 Research Questions and Hypothesis Formulation

In the following, we present the research questions that we address in our paper, and

formulate the related null hypotheses.

1. RQ1: To what extent does contextual information impact the splitting and expan-

sion of source code identifiers? This research question analyzes the developers’

performance when splitting and expanding identifiers in absence and presence of

contextual information. In fact, when developers split identifiers and expand abbre-

viations, they may do so relying on information (e.g., comments or other identifiers)

in the neighbor of the identifiers, or else on other external sources of information

(e.g., an acronym dictionary). In this paper, we consider two types of contextual

information (i.e., internal and external contexts). These context’ types lead to

three possible context levels: contextual information related to the function where

the identifier appears; contextual information related to the file that contains the

identifier; and contextual information related to both the source code file and a dic-

tionary of abbreviations and acronyms. We also study the case where no contextual

information is provided. Hence, we have a total of four possible levels of context,

representing the increasing level of information the developer could gather when

splitting and expanding identifiers: no contextual information; function, file, and

file plus acronyms and abbreviations. The null hypothesis being tested to address

this research question is:

– H01: There is no significant effect of the given context on the subjects’ perfor-

mances when splitting and expanding source code identifiers.

2. RQ2: To what extent do the characteristics of source code identifiers affect splitting

and expansion performances? This research question investigates whether particu-

lar characteristics of an identifier may favor or hinder the developers’ capability of

splitting and expanding it. Specifically, we consider whether identifiers are abbre-

viations, full English words, or acronyms only, and whether they are combinations

of these types. In addition, we compute a metric—named splitting and expansion

entropy—aiming at capturing the difficulty in splitting and expanding an identi-

fiers, related to the number of possible splittings and expansions (possible choices

or degrees of freedom) one has when performing such a task.

Entropy was first introduced by Shannon [Sha48] in the early 50s to model infor-

mation sources; given a source of information, say X, emitting symbols, xi (e.g.,

letters or words), the source entropy (or simply entropy) measures the symbol in-

formation or conversely the symbols’ uncertainty. Let p(xi) be the probability of

observing the symbol xi, entropy is formally defined as:

H(X) =
∑

p(xi)log[p(xi)] (1)

H(X) is also often interpreted as the number of bits needed to encode the source

information because 2H(X) source code words are needed to represent and transmit

X symbols. Shannon estimated the entropy of English characters in about 2.14 bits

per letter and, because the average English words is 5.5 character long, written

6

English word entropy is on average of 11.82 bits per word. Given one English

word, there are about 4096 (i.e., 212) possible subsequent words. More recent,

results slightly reduce the entropy of English words to about 10 bits per word

but essentially the set of possible words following a given one is on the order of

thousands.

When splitting and expanding identifiers, symbols xi are terms composing iden-

tifiers (i.e., acronyms, jargon terms, abbreviations and English words) and p(xi)

is the probability of observing such a term. We conjecture that the difficulty in

splitting and expanding identifiers is related, among other factors, to entropy. It is

worth underlying that entropy cannot fully explain the difficulty of developers in

splitting and expanding an identifiers: other factors such as developer’s knowledge,

familiarity with the domain, source code, as well as experience play a fundamental

role, which we explore in RQ3

Let us first assume the identifier is split into composing terms (by removing the

underscore mem pntr val is mapped into mem, pntr,val), and further assume the

correct split and expansion is known, i.e., the availability of an oracle. The distance

between the identifiers terms (mem, pntr,val), and the oracle (memory, pointer,

value) is eighth, because a total of eighth letters are removed from (memory, pointer,

value) to obtain (mem, pntr,val). This defines an upper bound when searching into

the dictionary D for words possibly generating identifier terms. We believe it is

extremely unlikely that the user or a tool will go any further in searching for a

match of a fraction of the oracle (i.e., correct identifier split and expansion) length

as it will imply changing all oracle characters. Indeed, in general, the upper bound

is smaller than the length of the oracle, 18, or the identifier itself. Our conjecture

is that in expanding an identifier term, the developer tend to use dictionary words

having closest possible distance from the term. According to this conjecture, we

define a split-expansion entropy HSE(w) for a given word w, a dictionary D and

an oracle identifier distance d as:

HSE(w) =
∑
t

∑
w∈Dt(d)

p(w)log[p(w)] (2)

where t varies over the identifier terms (mem, pntr and val in our example), and

Dt(d) is the sub-dictionary extracted from D and containing all D terms at a

distance lower or equal than the distance of d from t. p(w) is the uniform distri-

bution over the sub-dictionary Dt(d), thus p(w) = 1/|Dt(d)| where |Dt(d)| is the

cardinality of Dt(d).

To compute HSE , we use two basic configuration for the dictionary D: (i) the

dictionary of English words extracted from the context and (ii) we augment this

dictionary with the following information:

– English words, longer than two characters, extracted from WordNet and the

Ispell dictionary (about 150,000 words);

– a list of well-known C abbreviations and acronyms (390 words).

In summary, for what concerns RQ2, we test two null hypotheses:

– H02a: the subject’s performances in identifier splitting and expansion does not

significantly vary among the types of identifiers we studied.

– H02b: the subject’s performances in identifier splitting and expansion is not

correlated to the splitting and expansion entropy.

7

3. RQ3: To what extent subjects’ background and characteristics impact the perfor-

mance of identifier splitting and expansion? This research question investigates how

co-factors related to the developers performing the tasks impact the splitting and

expansion performances and the extent to which such factors interact with the use

of contextual information. Specifically, the factors that we consider are: gender,

level of experience, programming language (C) knowledge, domain knowledge, and

English proficiency. Given factori, one of these factors, we test two null hypotheses:

– H03a: there is no significant effect of factori on identifier splitting and expansion

accuracy.

– H03b: there is no significant interaction between factori and the studied levels

of context on identifier splitting and expansion accuracy.

2.3 Variable Selection

In the following, we describe the dependent and independent variables of our experi-

mental study.

2.3.1 Dependent Variable

The experiment has one dependent variable, namely, the correctness of the provided

splitting and expansion, which measure the subjects’ performances when performing

identifier splitting and expansion. Such a correctness is measured with respect to an

oracle that we manually build, using precision and recall measures.

Given an identifier si to be split and expanded, oi = {oraclei,1, . . . oraclei,m} the

expansion in the manually-produced oracle, and ti = {termi,1, . . . termi,n} the set of

terms obtained by subjects, we define precision and recall as follows:

precisioni =
|ti ∩ oi|

|ti|
, recalli =

|ti ∩ oi|
|oi|

To provide an aggregated, overall measure of precision and recall, we use the F-

measure, which is the harmonic mean of precision and recall:

F−measure =
2 · precision · recall
precision+ recall

We manually built our oracle by associating each identifier with a list of terms

obtained after splitting it and expanding them. We only create one oracle for both

the splitting and expansion because we consider them as one task; we justify this

assumption by the fact that identifier expansion involves identifier splitting. In fact,

one has first to identify terms composing an identifier and then expand them to their

corresponding domain concepts. For example, the oracle entry for counterPntr would

be counter pointer, obtained by splitting the identifier after the seventh character and

after expanding the abbreviation Pntr into pointer. We built the oracle following a

consensus-based approach (i.e., one author proposed an identifier split and expansion,

which was then verified and validated by a second author). In a few cases, where there

was a disagreement, a discussion was held among all the authors and a consensus was

reached. If a consensus was not possible and contrasting evidence was found, we remove

8

Table 2 Null hypotheses and independent variables

RQs Hyps. Descriptions Variables
RQ1 H01 Effect of context Context levels: no context, function,

file, file plus acronyms and abbrevia-
tions

RQ2 H02a Effect of identifiers’ type Type of identifiers: full English words
only (plain), acronyms only (acro), ab-
breviations (abbr) only, and identi-
fiers using combinations of these types
(comp)

H02b Effect of splitting/expansion
entropy

Splitting/expansion entropy

RQ3 H04a Effect of person characteris-
tics/backgrounds

Co-factors: gender, experience, C
knowledge, domain (Linux) knowl-
edge, English proficiency

H04b Interaction of co-factors with
use of context

the identifier from the oracle. We adapted this approach to minimize the bias and the

risk of producing erroneous results. This procedure was motivated by the complexity

of identifiers, which capture developers’ domain and solution knowledge, experience,

and personal preference. Indeed, sometimes it is difficult to decode the true meaning of

identifiers and thus in the construction of the oracle, we performed a manual analysis

of various sources of information, such as projects change logs, developers mailing lists,

source-code comments, and user manuals.

2.3.2 Independent Variables

The independent variables of our study are all the factors that we considered when

testing the null hypotheses formulated in Section 2.2 and summarized in Table 2.

As Table 2 shows, other than the independent variables of RQ1 (context level),

RQ2 (types of identifiers and splitting entropy),RQ3 considers how co-factors pertain-

ing subjects’ characteristics influence identifier splitting and expansion. Specifically, we

considered the following co-factors:

1. Program of studies. Subjects are enrolled in/pursuing different programs. Their

study level ranges from Bachelor to Post-Doc.

2. Gender. Female and male may differently perform the identifier splitting and

expansion tasks.

3. Knowledge of C. The subjects may have different levels of expertise in C pro-

gramming and hence different levels of C understanding.

4. Level of English. Vocabulary of the programs from where we sampled identifiers

is written in English. Some subjects are native English speakers while others may

have a different level of English proficiency.

5. Linux knowledge. C Applications from were we sampled identifiers are from Linux

utilities and kernels. Some subjects are knowledgable in such a type of utilities while

others are not.

Table 3 reports some statistics about these co-factors.

9

Table 3 Co-factors related to subjects’ characteristics and background.

Additional Factors Treatments # Participants

Program of
Studies

Bachelor 5
Master 9
PhD 28
Post-Doc 1

Gender
Female 30
Male 12

C Programming
Experience

Basic 11
Medium 23
Expert 9

Level of English
Bad 8
Good 8
Very Good 18
Excellent 8

Linux
Knowledge

Occasional 12
Basic Usage 13
knowledgeable but not expert 17
Expert 0

2.4 Experiment Procedure and Design

This section presents the design choices that we made to limit threats to our ex-

periment’s validity. We first detail the tasks performed by subjects, then we present

co-factors collected to mitigate the effect of confounding factors, and finally we describe

the experiment design and how the extraneous factors are controlled.

2.4.1 Experimental Tasks

During the experiment, we asked each participant to split and expand 40 identifiers

that we presented to them using a Web application, in four possible configurations:

– without a context i.e., just an identifier in an empty page;

– within a “source code function”, i.e., subjects could browse the source code of the

function containing the identifier;

– within a “source code file”, i.e., subjects could browse the source code of the file

containing the identifier;

– with an “external context”, i.e., subjects have access to a list of widely used

acronyms and abbreviations, named AcronymFinder1.

Source code was mapped into HTML via HTML-highlight, an open-source tool

that highlights source code in HTML documents, thus helping subjects locate language

elements (e.g., for, if, while) via coloring. When performing the experiment, subjects

had access to computers with two screens. On one screen, they had access to the Web

application where all questions and tasks appear. On the second screen, they had access

to the response form. We informed the subjects before the experiment that it takes

maximum 120 minutes and that they are free to leave at any time without incurring

any penalty. We did not measure the time and we did not impose any time constraint.

Collected information was anonymous. We validated the response forms to make sure

that subjects correctly follow the experiment procedure. Subjects were aware of the

purpose of the experiment that is to perform program understanding tasks in the

1

10

presence or absence of context information but did not know the exact hypotheses

tested.

2.4.2 Experiment Design

This section describes our experiment design where the main details are summarized

in Table 4.

Table 4 Experimental design

Objects’ sets Group1 Group2 Group3 Group4 Group5

Set1 ids1 + cx1 ids2 + cx1 ids1 + cx4 ids1 + cx3 ids1 + cx2

Set2 ids2 + cx2 ids3 + cx2 ids3 + cx1 ids2 + cx4 ids2 + cx3

Set3 ids3 + cx3 ids4 + cx3 ids4 + cx2 ids4 + cx1 ids3 + cx4

Set3 ids4 + cx4 ids5 + cx4 ids5 + cx3 ids5 + cx2 ids5 + cx1

Given Groupi group i of subjects, idsj a set j of ten identifiers to be splitted and

expanded by subjects with j ∈ {1, 2, 3, 4, 5}, and cxk effect of context k on the subjects’

performance with k ∈ {1, 2, 3, 4}, idsj + cxk is the set j of identifiers to be splitted

and expanded using context k by group i of subjects. In our case, the different levels

of context are cx1: no contextual information; cx2: contextual information related to

the function where the identifier appears; cx3: contextual information related to the

files where the identifier appears; and cx4: as cx3, plus the availability of a dictionary

to help expanding abbreviations and acronyms. As described in Table 4, each group

of subjects dealt with the four introduced context levels, we gave each group i of

subjects a set j of ten identifiers per context i.e., a total of forty different identifiers

to split and expand in the order shown in Table 4. We adopted a randomized block

design to account for subjects’ individual differences, increase the statistical power of

our analysis, and ensure the design would not introduce any bias in the results of the

experiment. Another advantage of proceeding with a block design is that we can study

the interaction between subjects’ characteristics and context. We therefore grouped

subjects into blocks. We considered blocks of participants with a basic, medium, and

expert knowledge in C. Subjects were also blocked according to their level of English

and their gender. Then, we created five groups randomly assigning subjects from blocks

in nearly identical proportions. Each of the five groups is of approximately the same

size (either eight or nine subjects). Thus, in Table 4, the rows represent the set of

identifiers that have been splitted and expanded by subjects with the used level of

context whereas the columns show the five groups of subjects. The table cells therefore

show, for each group of subjects, the set of identifiers on which they worked and the

context level given to them. Each subject performs the identifier splitting and expansion

individually; we prevented the subjects from collaborative work and we made sure all

the tasks were individually performed. The rationale for making subjects deal with forty

identifiers belonging to different domain applications was (1) to maximize the number

of data points (observations) so as to increase statistical power, (2) to avoid bias from

the differences in programs’ complexity, and (3) to make general conclusions from the

obtained results. When subjects perform several times similar tasks and use the same

levels of context, they are subject to learning or fatigue effects. We limit the threats

of such effects in two ways: First, each group of subjects splits and expands a specific

11

group of identifiers using all the contexts (functions, files, and files plus acronyms and

abbreviations). Second, we presented to the subjects different identifiers belonging to

different programs to avoid learning effects being confounded with context effects.

2.4.3 Post-experiment Questionnaire

Finally, we presented post-experiment questionnaires to the subjects to gain insight on

the collected data. We asked each subject whether the context was helpful for him/her.

A summary of the post-experiment questionnaire is shown in Table 5; answers were

collected on a five point Likert scale plus a free text form where subjects were asked

to provide further comments if any.

Table 5 Post-Experiment Survey Questionnaire

ID Question
Question 1 Was the context helpful when splitting and expanding identifiers?

If yes, what was the most helpful type of context among the 3
(function, file or file plus AcronymFinder) investigated ones?

Question 2 Does your C programming experience help you when splitting and
expanding the identifiers in question?

Question 3 To what extent was your knowledge in Linux helpful when split-
ting and expanding source code identifiers?

Question 4 Were the comments provided with the source code helpful for you
when splitting and expanding the identifiers in question?

Question 5 How do you rate the level of complexity of the programs given to
you (Simple, Complex, Too complex)?

Question 6 How did you find the information provided in the procedure (Not
helpful, Helpful, Very helpful)?

Question 7 What was the impact of information provided in the Post-
experiment procedure on your performance in accomplishing the
requested tasks (Negative, Positive, Required too much concen-
tration, Correct)?

2.5 Analysis Method

RQ1 concerns the comparison of the precision, recall, and F-measure of identifier

splitting/expansion provided by subjects for the studied levels of context. Other than

showing boxplots and descriptive statistics, we test the null hypothesis H01 using the

Wilcoxon paired tests to perform a pairwise comparison of the results obtained for each

identifier (on which the test is paired) with the four different levels of context. Since, we

apply the Wilcoxon test multiple times, we need to adjust p-values. We use the Holm’s

correction procedure [Hol79]. This procedure sorts the p-values resulting from n tests

in ascending order of values, multiplying the smallest by n, the next by n − 1, and

so on. Finally, in addition to the statistical comparison, we compute the effect-size of

the difference using Cliff’s delta non-parametric effect size measure [GK05], defined as

the probability that a randomly-selected member of one sample has a higher response

than a randomly selected member of a second sample, minus the reverse probability.

Cliff’s delta ranges in the interval [−1, 1] and is considered small for 0.148 ≤ d < 0.33,

medium for 0.33 ≤ d < 0.474, and large for d ≥ 0.474.

12

RQ2 concerns the comparison of the correctness, precision, recall, and F-measure

of identifier splitting/expansion achieved for the studied types of identifiers, specif-

ically (i) identifiers composed of plain English words only, (ii) identifiers containing

abbreviations (and possibly English words), (iii) identifiers containing acronyms (and

possibly English Words), and identifiers containing both acronyms and abbreviations.

We perform the analyses of RQ2 similarly to that of RQ1, i.e.,, using Wilcoxon paired

test (with p-values corrected with Holm’s correction) and Cliff’s delta. Also, we used

two-way ANOVA to test the interaction between the context levels and identifier types.

Furthermore RQ2 analyzes to what extent the performance in identifier splitting

and expansion correlate with the splitting and expansion entropy Hse. To this aim, we

use the Spearman rank correlation to determine the presence of a significant correlation,

and its magnitude.

RQ3 analyzes the interaction between the effect of context levels on subjects’

performances when splitting/expanding identifiers and a set of investigated co-factors

(gender, experience, Linux expertise, C knowledge, and English proficiency). To this

aim, we use two-way ANOVA.

3 Experimental Results

In this section, we report the quantitative results of our experiment.

3.1 RQ1 – Context Relevance

The first quantitative results are related to the relevance of contextual information

when splitting and expanding source code identifiers. In the following, AcronymFinder

is the thesaurus of acronyms and abbreviations we used as external documentation.

3.1.1 Identifier Context Levels Relevance

Fig. 1 shows the boxplots of precision, recall, and F-measure computed for different

context levels i.e., (i) functions, files, files plus AcronymFinder, and no contextual in-

formation. Descriptive statistics 1st quartile, median, 3rd quartile, mean and standard

deviation) are reported in Table 6.

The boxplots and the table show that the subjects achieve the best performances in

terms of precision, recall and F-Measure when using files plus AcronymFinder and file

contexts. The recall (and consequently the F-measure) results are slightly higher for the

File plus AcronymFinder context, while the precision is similar for the two contexts.

This could be justified by the fact that when the AcronymFinder is given with the

files, subjects use it to expand the identifiers’ terms that they would not have been

able to expand with the source code only. Function-level context yield lower subject’s

performances (precision, recall, F-measure) than the other cases and the performances

are even lower when no contextual information is provided. Data also show that, as the

available context increases (i.e., from no context to function-level context, file, and file

plus AcronymFinder), the performance variation (in terms of interquartile range and

of variance) increases, especially for precision. This result can be explained because,

although a wider context can provide additional information which could, in some case,

increase the uncertainly when performing the splitting and expansion. One could find

13

File+acronyms File Function No context

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Context

P
re

ci
si

on

(a) Precision

File+acronyms File Function No context

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Context

R
ec

al
l

(b) Recall

File+acronyms File Function No context

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Context

F
−

M
ea

su
re

(c) F-Measure

Fig. 1 Boxplots of precision, recall, and F-measure for the different context levels.

in the additional context words that could drive splitting and expansion in the correct,

but also, in some cases, in the wrong direction.

Table 7 reports results of the statistical comparison among the different context

levels; it shows the difference in subject’s performances when using a context level

Context 1 versus a second possible level of Context Context 2 (adjusted p-values and

Cliff’s d effect size are positive when the effect is in favor of Context 1). Concerning

precision, there is a significant difference in subjects’ performances between file plus

AcronymFinder and no context as well as between file and no context, in both cases

with a medium effect size. There is a marginal difference (p-value = 0.09) between file

14

Table 6 Precision, recall and F-measure of identifier splitting and expansion with different
contexts.

Metrics Contexts 1q Median 3q Mean σ
Precision file plus Acronym Finder 0.40 0.67 1.00 0.63 0.31

file 0.33 0.67 1.00 0.61 0.30
function 0.40 0.60 0.80 0.59 0.29
no context 0.33 0.50 0.67 0.46 0.28

Recall file plus Acronym Finder 0.33 0.67 1.00 0.62 0.31
file 0.33 0.60 0.83 0.60 0.31
function 0.33 0.50 0.80 0.55 0.30
no context 0.25 0.40 0.60 0.42 0.27

F-Measure file plus Acronym Finder 0.40 0.67 1.00 0.62 0.31
file 0.36 0.60 0.89 0.60 0.30
function 0.36 0.50 0.80 0.56 0.30
no context 0.29 0.40 0.60 0.43 0.27

plus AcronymFinder and function. In all other cases, there is no significant difference.

For recall, there is a significant difference in subject’s performances between files plus

AcronymFinder and function (small effect size), file plus AcronymFinder and no context

(medium effect size), between file and function (though the effect size is negligible),

between file and no context (medium effect size), and between function and no context

(medium effect size). Finally, for the F-Measure, differences are significant between file

and no context and between file plus AcronymFinder and no context (in both cases

with a medium effect size), between file plus AcronymFinder and function (small effect

size), and between function and no context (medium effect size).

Table 7 Precision, recall, and F-measure for different context levels: results of Wilcoxon paired
test and Cliff’s delta.

Precision
Context 1 Context 2 Cliff’s d adj p
file plus AcronymFinder file 0.044 0.53
file function 0.040 0.53
file no context 0.28 <0.01
file plus AcronymFinder function 0.084 0.09
file plus AcronymFinder no context 0.32 <0.01
function no context 0.25 <0.01

Recall
Context 1 Context 2 Cliff’s d adj p
file plus AcronymFinder file 0.036 0.36
file function 0.097 0.03
file no context 0.32 <0.01
file plus AcronymFinder function 0.13 <0.01
file plus AcronymFinder no context 0.35 <0.01
function no context 0.23 <0.01

F-Measure
Context 1 Context 2 Cliff’s d adj p
file plus AcronymFinder file 0.041 0.31
file function 0.069 0.16
file no context 0.31 <0.01
file plus AcronymFinder function 0.11 0.02
file plus AcronymFinder no context 0.34 <0.01
function no context 0.25 <0.01

In summary, we can conclude that contextual information significantly increases the

subject’s performances when splitting and expanding identifiers, in terms of precision,

recall, and F-Measure. There is a slight difference between a file-level context and

15

function-level context, although not statistically significant. Also, the presence of an

AcronymFinder also slightly increases the performances even though the difference is

not statistically significant.

3.2 RQ2: Identifier Types and Splitting/Expansion Entropy Effect

In this section, we study the impact of identifier’s type and splitting/expansion entropy

on subjects’ performances when splitting and expanding source code identifiers.

3.2.1 Identifier Types Effect

We first show the results of dealing with different types of identifiers i.e., identifiers com-

posed of plain English words only (plain), identifiers containing abbreviations (abbr),

identifiers containing acronyms (acro), and identifiers containing both abbreviations

and acronyms i.e., composite identifiers (comp).

Fig. 2 shows boxplots of precision, recall, and F-measure obtained for the studied

types of identifiers. Table 8 reports results of the comparisons between results achieved

for different types of identifiers. We compare subjects’ performances obtained with a

type Type 1 of an identifier versus those attained with a second possible type Type 2.

In terms of precision, the table does not show significant differences. In terms of recall,

identifiers in plain English are split/expanded significantly better—and with a medium

effect size—than acronyms and composite identifiers (containing both abbreviations

and acronyms). In all other cases, there is no significant difference. Finally, in terms of

F-measure the table shows that there is no significant difference among different types

of identifiers. Having a significantly lower recall for acronyms means that subjects

were not able to split some acronyms, while the problem was relatively mitigated for

abbreviations. A possible interpretation is that the expansion of abbreviations can be

guessed as an abbreviation is just the full word without some letters (usually vowels).

To expand an acronym, either one knows it, otherwise it is difficult to guess. Overall,

we can say that types of identifiers significantly impact the recall measure because the

type mainly dictates whether the subjects are able or not to expand all the terms.

Table 9 shows the two-way ANOVA of recall (the only measure for which we ob-

tained significant differences in subjects’ performances) by identifier type (Id. Type)

and context (Context). As the table shows, not only both variables have a significant

effect but also there is a significant interaction (results of the interaction are those of

the Id. Type:Context row) (p-value = 0.034).

To aid better interpreting such result, Fig. 3 shows the interaction plot of recall

(y-axis) by type of identifier (x-axis) and used context (different traces). As it can be

noticed from the figure:

– the line related to no context clearly stays below the others, because as concluded

in RQ1, identifier splitting and expansion performances are significantly lower

when no context is provided. Similarly, the line of function-level context stays a bit

below the others (except in correspondence of abbreviation where the mean recall

is similar to file-level context);

– for file-level context, the mean recall is very high for plain English identifiers, then

there is a sudden decrease in correspondence of abbreviations, then slightly in-

crease again for acronyms and remains almost constant (with a slight decrease) for

composite identifiers;

16

plain abbr acro comp.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Identifier type

P
re

ci
si

on

(a) Precision

plain abbr acro comp.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Identifier type

R
ec

al
l

(b) Recall

plain abbr acro comp.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Identifier type

F
−

M
ea

su
re

(c) F-Measure

Fig. 2 Boxplot of Precision, Recall, and F-Measure for different identifier types.

– for file plus AcronymFinder, while there is a decrease, again, between plain En-

glish words and abbreviations, such a decrease is less evident, even because the

mean recall for plain English identifiers is lower than for file context. This obser-

vation is somewhat surprising, because the additional context (AcronymFinder)

should not help nor create confusion during the splitting of plain-English identi-

fiers. Very likely, this difference is just due to variability in subjects’ performance.

Then, again surprisingly, there is no increase in correspondence of acronyms, as like

the AcronymFinder again does not help particularly. In this case, the conjecture is

that a general-purpose AcronymFinder was not particular useful to expand specific

17

Table 8 Comparison between results achieved for different identifier types.

Precision
Type 1 Type 2 Cliff’s d adj p

plain abbr 0.15 0.25
plain acro 0.10 0.82
plain comp. 0.088 0.82
abbr acro -0.022 0.82
abbr comp. -0.081 0.28
acro comp. -0.060 0.82

Recall
Type 1 Type 2 Cliff’s d adj p

plain abbr 0.15 0.15
plain acro 0.26 0.01
plain comp. 0.26 0.01
abbr acro 0.093 0.16
abbr comp. 0.058 0.35
acro comp. -0.039 0.50

F-Measure
Type 1 Type 2 Cliff’s fd adj p

plain abbr 0.15 0.20
plain acro 0.13 0.44
plain comp. 0.20 0.07
abbr acro 0.019 1.00
abbr comp. 0.0065 1.00
acro comp. -0.045 1.00

Df Sum Sq Mean Sq F value Pr(>F)
Id. Type 3 1.18 0.39 4.20 0.0057
Context 3 6.16 2.05 22.04 <0.01
Id. Type:Context 9 1.69 0.19 2.02 0.034
Residuals 1295 120.73 0.09

Table 9 Recall: Two-way ANOVA by Identifier Type & Context

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Identifier Type

M
ea

n
of

 R
ec

al
l

plain abbr acro comp.

 Context

file
file plus Acronym Finder
function
no context

Fig. 3 Recall: Interaction plot of Identifier Type and Context.

acronyms of GNU utilities and Linux kernels (e.g., acronyms related to network

protocols, drivers, etc.).

In summary, we can conclude that acronyms are generally more difficult to ex-

pand than abbreviations and than identifiers made up of plain English words. Also, for

domain-specific acronyms, general-purpose glossaries are clearly useless or could even

be misleading.

18

3.2.2 Identifier Splitting/Expansion Entropy Effect

Table 10 shows the Spearman rank correlation between precision, recall, F-measure

and split-expansion entropy.

We experimented with different ways to distribute the distance d between identi-

fier terms; reported correlations values were obtained by distributing d among terms

proportional to the identifier term length. Other configurations (e.g., dividing d by the

number of terms) produced low correlation values. Although the correlation is low, in

general, higher correlation values are observed for larger contexts (e.g., file rather than

functions) and when additional knowledge is added to the context. The interpretation

of this result is that if, on the one hand, a wider context increases the chances a devel-

oper has to get information helpful to perform splitting/expansion, on the other hand,

this also increases the entropy, and, thus, the number of possible splits/expansions she

can perform using terms from the context vocabulary and from the available knowledge.

Table 10 Results of Spearman rank correlation between Precision, Recall, F-Measure and
split-expansion entropy HSE

Precision
Context p-value ρ
file plus knowledge <0.01 0.22
file 0.18 0.08
function plus knowledge 0.04 0.13
function 0.02 0.15

Recall
Context p-value ρ
file plus knowledge 0.04 0.13
file 0.01 0.16
function plus knowledge <0.01 0.20
function 0.12 0.09

F-measure
Context p-value ρ
file plus knowledge 0.07 0.11
file <0.01 0.19
function plus knowledge 0.01 0.17
function 0.08 0.11

In summary, although the correlation is not high, we can conclude that while a

larger context increases the splitting/expansion performances, it also increases the split-

ting/expansion entropy.

3.3 RQ3: Effect of Co-factors

Table 11 shows the two-way ANOVA of F-measure by context (Context row) and Linux

knowledge (Linux row). As the table shows, the Linux knowledge has no effect on the F-

measure. Also, there is no significant interaction (Context:Linux row) between the two

factors (p-value = 0.2024). Thus, there is no evidence of a correlation between identifier

splitting/expansion and the knowledge of Linux. This conclusion confirms also the one

gained from the post-experiment questionnaire. In fact, subjects who have non basic

experience on Linux, explain that they did not benefit a lot from their expertise in

Linux because the given identifiers are specific and require a (too) specific technical

Linux knowledge.

19

Df Sum Sq Mean Sq F value Pr(>F)
Context 3 8.81 2.94 34.02 0.0000
Linux 2 0.12 0.06 0.71 0.4940
Context:Linux 6 0.74 0.12 1.42 0.2024
Residuals 1668 143.90 0.09

Table 11 F-Measure: Two-way ANOVA by Context & Knowledge of Linux

Table 12 shows the two-way ANOVA of F-measure by context (Context row) and

C experience (Cexp row). As the table shows, C experience has no effect on the F-

measure. Also, there is no significant interaction (Context:Cexp row) between the two

factors (p-value = 0.7733). We conclude that there is no evidence of a correlation

between identifier splitting/expansion and C experience. The experience in C does not

intervene a lot because probably the subjects (most of them) do not try to understand

deeply the source code when expanding identifiers, they try to have an idea about what

a function/program is doing, they check comments that surround the code, and try to

see where the same identifier could be used in the code given to them.

Df Sum Sq Mean Sq F value Pr(>F)
Context 3 8.81 2.94 33.95 0.0000
Cexp 2 0.29 0.14 1.67 0.1884
Context:Cexp 6 0.28 0.05 0.55 0.7733
Residuals 1668 144.19 0.09

Table 12 F-Measure: Two-way ANOVA by Context & Knowledge of C

Table 13 shows the two-way ANOVA of F-measure by context (Context row) and

gender (Gender row). As the table shows, the gender has a no effect on the F-measure.

Also, there is no significant interaction (Context:Gender row) between the two factors

(p-value = 0.8554). We conclude that there is no evidence of a correlation between

identifier splitting/expansion and the co-factor gender.

Df Sum Sq Mean Sq F value Pr(>F)
Context 3 8.81 2.94 33.94 0.0000
Gender 1 0.11 0.11 1.23 0.2674
Context:Gender 3 0.07 0.02 0.26 0.8554
Residuals 1672 144.59 0.09

Table 13 F-Measure: Two-way ANOVA by Context & Gender

Table 14 shows the two-way ANOVA of F-measure by context (Context row) and

program of studies (Program row). As the table shows, the program of studies has

no effect on the F-measure. Also, there is no significant interaction (Context:Program

row) between the two factors (p-value=0.8373). We conclude that there is no evidence

of a correlation between identifier splitting/expansion and the program of studies. This

conclusion confirms the fact that identifier splitting/ expansion requires a knowledge

about the domain of the applications rather than a high-level of studies. The latter

20

explanation is in accordance with what we noticed from the experiment: sometimes

Bachelor and Master students performs better than PhD students when providing

them with context.

Df Sum Sq Mean Sq F value Pr(>F)
Context 3 8.81 2.94 33.94 0.0000
Program 3 0.42 0.14 1.64 0.1789
Context:Program 9 0.43 0.05 0.55 0.8373
Residuals 1664 143.91 0.09

Table 14 F-Measure: Two-way ANOVA by Context & Program

Table 15 reports the two-way ANOVA of F-measure by context (Context row)

and knowledge of English (English row). As the table shows, not only the English

knowledge has a significant effect on the F-measure (p-value=0.0356) but, there is also

a significant interaction (Context:English row) between the context and the English

knowledge.

Df Sum Sq Mean Sq F value Pr(>F)
Context 3 8.81 2.94 34.22 0.0000
English 3 0.74 0.25 2.86 0.0356
Context:English 9 1.30 0.14 1.68 0.0888
Residuals 1664 142.73 0.09

Table 15 F-Measure: Two-way ANOVA by Context & Knowledge of English

Fig. 4 shows the interaction plot of mean of F-measure (y-axis) by English knowl-

edge (x-axis) and context (different traces):

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

English Knowledge

M
ea

n
of

 F
−

M
ea

su
re

Bad to good Good Very good Excellent

 Context

file
file plus Acronym Finder
function
no context

Fig. 4 F-Measure: Interaction plot of Context and English Knowledge.

– the mean of F-measure increases when the level of English increases for the graph

related to no context. Clearly, the F-measure moves from 0.41 to 0.45 when the

level of English goes from Bad to Good. Yet, this increase in the F-measure mean is

21

not observable when the level goes from Good to Excellent. Also, the graph related

to no context stays below the others (graphs of respectively function, file and file

plus AcronymFinder). Overall, we can conclude that, when no context is provided

to subjects, the English knowledge helps but not a lot to improve the subjects’

performance while splitting and expanding identifiers.

– for the function-level context graph, the mean F-measure increases when the level

of English increases from Bad to Good. It goes from 0.56 to 0.59. Then, it decreases

towards 0.55 when the level of English goes from Good to Very good. However, the

F-measure mean increases to attain 0.56 when the level of English goes from Very

good to Excellent. Similarly to the graph that represents no context, the graph

of function-level context stays a bit below the others as we previously discussed

in RQ1. Overall, the English knowledge helps improve the subjects’ performance

while expanding identifiers in presence of source code functions as context.

– for the file plus AcronymFinder level context graph, the F-measure mean increases

when the level of English increases from Bad to Excellent. In fact, the mean of

F-Measure increases from 0.57 to 0.59 when the level of English goes from Bad to

Good. Then, it increases towards 0.65 when the level of English goes from Good

to Very good. The F-measure mean remains stable (0.65) when the level of En-

glish increases from Very good to Excellent. Clearly, the F-measure significantly

increases when the level of English increases for subjects performing identifier split-

ting/expansion using as a context the file level plus AcronymFinder.

– for the file level context graph, the F-measure mean decreases when the level of

English increases from Bad to Good. It goes from 0.56 to 0.49. Then, it increases

towards 0.64 when the level of English goes from Good to Very good. Then, it

significantly increases moving from 0.64 to 0.68 when the level of English increases

from Very good to Excellent. Overall, the level of English helps improve the sub-

jects’ performances when splitting and expanding identifiers using as a context the

source code files.

Overall, the level of English does not matter when no context is given to the

subjects. Yet, when the level of contextual information increases i.e., when the context

level goes from function to file to file plus acronyms and abbreviations, the help of the

English Knowledge becomes more significant.

In summary, we can conclude that there is a significant evidence of a correlation

between identifier splitting/expansion and the English knowledge. This conclusion re-

veals that the English knowledge is used besides the domain knowledge that developers

have about the programs they are dealing with, to understand the source code, and,

hence disambiguate the concepts conveyed by source code identifiers.

4 Qualitative Analysis

In this section, we present and discuss the observations reported in the post-experiment

questionnaire plus others noticed during the experiment.

To gain insight to strengthen and explain our results, we asked subjects to fill

a post-questionnaire which main questions are summarized in Table 5, presented in

Section 2.4.3 of this paper. Regarding Q1, thirty subjects agreed that the most helpful

context for them was the file-context level. Eight subjects found that the function

level was the most useful for them. Yet, only four subjects found that the file plus

22

Function File File+AcronymFinder

Context Relevance

Context Levels

N
um

be
r

of
 S

ub
je

ct
s

0
5

10
15

20
25

30

 8

30

 4

Fig. 5 Post-experiment Questionnaire: Context Relevance.

AcronymFinder level was the most helpful during the experiment. The latter analysis

confirms our quantitative analysis, i.e., the fact that the file level is the most important

context level and that AcronymFinder does not help a lot when splitting and expanding

source code identifiers and that in some cases AcronymFinder could be misleading by

providing too generic expansions that do not fit in the context of the abbreviated

identifiers. Some subjects (eight) found that the function context level was the most

useful for them; which can be explained by the fact that some functions contain enough

hints/indicators in their comments or body about what the substrings composing the

identifier could be. This observation can be also justified by the presence of the possible

expansions corresponding to the identifier in these functions (their comments or–and

body), which makes it sufficient for subjects in these cases to figure out the correct

splitting and expansion at the level of function.

Concerning Q2, Fig. 6 shows that eight subjects found that their experience in C

programming was totally useless when splitting and expanding source code identifiers.

Fourteen subjects found that their C experience was not very useful when doing such

tasks. Seventeen subjects found that their C experience was a bit useful when per-

forming such tasks. Only three subjects agreed that their C experience was helpful.

Thus, the sum of subjects who disagree on the usefulness of C experience for such tasks

(twenty two) is more than twenty i.e., more than the number of subjects that found

it a bit useful (seventeen) added to the number of subjects that found their C experi-

ence very useful (three). This graph confirms our quantitative findings regarding the

non-usefulness of C experience when performing the identifier splitting and expansion.

23

Totally useless Not very useful A bit useful Very useful

C Programming Experience Usefulness

Usefulness Scales

N
um

be
r

of
 S

ub
je

ct
s

0
5

10
15

 8

14

17

 3

Fig. 6 Post-experiment Questionnaire: C Experience Usefulness.

Q3 concerns the knowledge of Linux utilities. As Fig. 7 shows, only two subjects

found that their knowledge of Linux was helpful for them when splitting and expanding

the identifiers given to them. Five subjects found it a bit useful. However, eleven

subjects found that their knowledge in Linux was not very useful and twenty four

subjects found it totally useless. Thus, the graph clearly confirms our quantitative

results regarding the fact that the Linux knowledge is not useful when performing

identifier splitting and expansion.

Regarding Q4, Fig. 8 shows that thirty three subjects found that the source code

comments were helpful when performing their tasks. Only one subject found them a

bit useful. Five subjects found the comments very useful and only three found the com-

ments not very useful. Hence, the number of subjects that agreed on the usefulness of

source code comments is significantly higher that the number of subjects who disagree

on it. These reported numbers confirms our quantitative analysis about the usefulness

of comments when splitting and expanding identifiers.

Q5 is related to the information provided in the procedure that we prepared and

gave to the subjects before the experiment to give them an overview about the exper-

iment and also the instructions to be followed when performing the tasks. As it can

be noticed from Fig. 9, subjects agree on the usefulness of this information. In fact,

twenty six subjects found this information helpful and sixteen found it very helpful.

Q6 concerns the impact of the information provided in the experiment procedure.

Fig. 10 shows that no subject received a negative impact from the use of the experi-

ment procedure when performing the tasks. Only one subject found that the procedure

24

Totally useless Not very useful A bit useful Very useful

Usefulness of Linux Utilities Knowledge

Usefulness Scales

N
um

be
r

of
 S

ub
je

ct
s

0
5

10
15

20

24

10

 5

 3

Fig. 7 Post-experiment Questionnaire: Linux Knowledge.

required too much concentration. Thirteen subjects have found that the information

is correct. By correct, we mean that it has no impact on the subject’s performance.

However, twenty eight subjects found that it has a positive impact on them. These

answers confirms the goal of the experiment procedure that is to make the experiment

instructions clear for the subjects and avoid bias that can be introduced by not fol-

lowing the instructions mentioned in the procedure. As an example of bias that can

be introduced if subjects did not follow the procedure of the experiment is the use of

the Internet connection to search the expansions of the abbreviations and acronyms

contained in the identifiers instead of using the AcronymFinder database embedded in

the Web application designed for the purpose of the experiment.

We provide in the following part some observations that confirm both our quantita-

tive findings and our post-experiment analysis. The first observation that we did based

on our interview with the subjects is that when we provide subjects with function or

file context level, in general, subjects do not try to understand the source code given to

them when splitting and expanding identifiers. This observation is not the case for all

subjects, but most of them seem to have such a trend: subjects try first to have an idea

about what a function or a program is doing, they check the source code comments

and then navigate through the source code to locate the identifier in question. Indeed,

by locating all occurrences of an identifier in its corresponding source code, subjects

try to search hints and clues that can help them map the identifier to its appropriate

expansion. This observation could justify the non-significant effect of C experience on

the subjects’ performance, i.e., on the F-measure (RQ3 - Effect of co-factor C experi-

25

Not very useful A bit useful Useful Very useful

Source Code Comments Usefulness

Usefulness Scales

N
um

be
r

of
 S

ub
je

ct
s

0
5

10
15

20
25

30

 3

 1

33

 5

Fig. 8 Post-experiment Questionnaire: Source Code Comments Usefulness.

ence). When we provide subjects with the File plus AcronymFinder context level, we

observed the following:

Some subjects used AcronymFinder to expand identifiers that are/contain acronyms

and abbreviations. Yet, the expansions given by AcronymFinder can be so general and

do not fit, in all cases, in the context that subjects were dealing with. Example of such

identifiers is: dbsm start that contains the acronym dbsm, which has been expanded by

some subjects to data, base, system, manager, and start when using AcronymFinder.

The latter expansion provided by subjects does not match the oracle of the identi-

fier dbsm start that is decibel, per, square, meter, and start. This mismatch is due

to the fact that data, base, system, and manager is a generic expansion proposed

by AcronymFinder to the acronym dbsm start. In this case, either subjects had to

search a more technical expansion to dbsm in AcronymFinder (via the option technical

acronyms) and try to relate it to the given context or propose an expansion based on

the source code only in case the ones proposed by AcronymFinder did not fit in the

context. Examples of such a type can justify our quantitative findings i.e., the fact that

there is no statistical significant difference between File and File plus AcronymFinder

levels (RQ1 - Context relevance) even if AcronymFinder slightly increases the perfor-

mances of subjects in some cases, i.e., when subjects appropriately use it and relate

its search results to the provided context.

According to our interview with the subjects at the end of the experiment, some of

them did not use AcronymFinder very often because in some cases the source code file

was sufficient to correctly expand the acronyms in question. This observation confirms

26

Totally useless Not very useful Useful Very useful

Usefulness of the Experiment Procedure Information

Usefulness Scales

N
um

be
r

of
 S

ub
je

ct
s

0
5

10
15

20
25

 0 0

26

16

Fig. 9 Post-experiment Questionnaire: Procedure Information Usefulness.

what we stated in our previous observation (AcronymFinder is not always helpful) and

strengths our quantitative results reported for (RQ1 - Context relevance).

We also interviewed subjects concerning Linux knowledge and C experience. Re-

garding the Linux knowledge, most of subjects that have non-basic experience on Linux

argue that their knowledge does not help them a lot when splitting and expanding

identifiers as each task was related to a specific application and hence the expansion of

identifiers requires a specific knowledge about the application domain. In fact, subjects

argue that their knowledge in Linux was helpful only for few known identifiers such as

ptr for pointer and cpy for copy. This observation confirms our quantitative findings,

i.e., the non-significant effect of Linux knowledge on subjects’ performances (RQ3 -

Effect of co-factor Linux knowledge).

Concerning C experience, subjects (with non-basic experience) reported during

our interview that their knowledge in C does not intervene when performing identifier

splitting and expansion tasks. In fact, some subjects were experts in C but found

difficulty in mapping the identifiers to their corresponding expansions. This category

of subjects argue the difficulty of such tasks by the fact that they require a knowledge

about the domain of the programs from where identifiers were sampled rather than

skills in C programming. This statement confirms our quantitative findings, i.e., the

non significant effect of C experience on the subjects’ performance (RQ3 - Effect of

co-factor C experience). It also show the relevance of domain knowledge to perform

such tasks.

27

Negative Correct Positive

Impact of the Experiment Procedure

Impact Levels

N
um

be
r

of
 S

ub
je

ct
s

0
5

10
15

20
25

 0

13

28

 1

Fig. 10 Post-experiment Questionnaire: Impact of the Procedure Experiment Information.

Our interview to the subjects reveals also the importance of having a good level

of English when performing identifier splitting and expansion tasks. In fact, subjects

who are native speakers of English or who are, in general, good in English benefitted

from their English knowledge as at least they did not deploy any effort to recognize full

English words contained in identifiers. However, subjects who are not good in English

face difficulties when trying to recognize terms composing identifiers. This observation

confirms our quantitative findings for (RQ3 - Effect of co-factor English knowledge).

More precisely, it confirms the quantitative results reported in Table 15.

Another observation is related to the time allocated to perform the tasks. As we

already mentioned, we did not impose any time constraint on subjects when performing

the experiment. Yet, we observed two categories of subjects. The first (of few subjects)

took time to perform the tasks, this category of subjects spend two to three hours

i.e., more time than what is estimated for the experiment (two hours). This category

of subjects tries to carefully read the source code, navigate through it and use the

external information, if any, is available. The other category spend one hour to one

hour and thirty minutes, which is less than the time estimated to perform the tasks.

This category probably tries to quickly read the source code and its comments and use

the external information, if any. This observation is of practical importance as it clearly

reveals the amount of time that such tasks require. In fact, even one hour and thirty

minutes for forty identifiers is an important amount of time. Thus, identifier splitting

and expansion is time consuming and challenging and hence it should be automatized to

let developers, maintainers and Information Retrieval techniques fully benefit from it.

28

Also, subjects found that identifiers containing acronyms are, in general, more difficult

than identifiers containing abbreviations to split/expand. Moreover all subjects agreed

that, when context is available, the experiment tasks required concentration. Thus,

identifier splitting and expansion is both time and effort consuming.

In summary, we can do the following conclusions:

– Identifier splitting and expansion is time and effort consuming. Hence, it is a chal-

lenging problem to tackle and automatize.

– Context and domain knowledge are relevant for identifier splitting and expansion.

This statement confirms findings of previous work [GPAG11] that investigated iden-

tifier context when performing similar tasks.

– If manually performed either for research purposes or in companies, identifier split-

ting and expansion should be done by trainees (either female or male) having a

good level of English.

4.1 Use of additional context: manual vs. automatic splitting

Results of this study showed that the presence of contextual information increases the

performance of experiment subjects when performing identifier splitting and expansion

tasks. A previous paper [GPAG11] indicated that algorithms for automatic identifier

splitting and expansion benefit of contextual information. While developers use con-

textual information to understand the identifier domain/semantics or to seek words

similar to terms contained in the identifier, automatic splitting algorithm try to match

identifier terms onto other terms available in the context. Specifically, what the paper

by Guerrouj et al. [GPAG11] showed was that:

– a small context (e.g., function level) does not provide much useful information to

the automatic identifier splitting and expansion tools;

– the performance of automatic splitting and expansion tools improves when an

application-level context is available, i.e., when using all possible terms in the

application dictionary;

– performance of identifier splitting/expansion tools improves even further when ad-

ditional knowledge—e.g., known acronyms or abbreviations—are provided to the

algorithm.

In summary, results of this paper not only provide indications about how and where

developers find information to split and expand identifiers, but also further justifies the

usage of contextual information in automatic splitting and expansion algorithms such as

TIDIER [GPAG11], Normalize [LB11], and Samurai [EHPVS09]. Nevertheless, an im-

portant difference is that while automatic splitting/expansion could potentially benefit

of the largest possible context—e.g., application level—when a program comprehension

task is performed by a human, the context must be kept relatively small to avoid in-

formation overload, i.e., while a file level context could be feasible, an application-level

context could be too wide.

5 Threats to Validity

Threats to internal validity concern any confounding factor that could influence our

results. One example of internal validity threats is the learning and fatigue effects. This

29

threat is addressed in our experiment by using different treatments for each group in

an order that prevents fatigue or learning effects to be confounded with our treatment.

Another threat could be the one related to the subjectivity of the subjects when

answering the pre-experiment questionnaire. For example, when we ask subjects to

evaluate their level of English from Bad to Excellent, we are not sure if the provided

answer is exactly the one corresponding to the level of subjects as we do not classify

them according for example to their grades in English and this is due to the fact that

even the grade do not usually reflect the real level/knowledge of a person.

To tackle the selection threat that is related to the variation in human performance,

we identified a number of blocks to which the students were assigned. These blocks are

based on the pre-experiment questionnaire. Students were selected from the different

blocks to obtain a stratified random sampling over the different groups.

Another internal validity threat is the diffusion or imitation of treatments. This

threat was also limited by controlling the experiment and preventing the access to

the experiment material outside the experiment hours by other groups members. Also,

although participants were aware of the lab objectives, they did not know exactly what

hypotheses were tested.

Another internal threat could be due to the subjectivity of the manual building

of the oracle and to the possible biases introduced by manually splitting identifiers.

To limit this threat, the oracle was produced using a consensus approach (one author

proposed an identifier split, which was then verified and validated by a second author).

In a few cases, disagreements were discussed among all the authors. We adapted this

approach in order to minimize the bias and the risk of producing erroneous results.

This decision was motivated by the complexity of identifiers, which capture developers

domain and solution knowledge, experience, personal preference, etc., thus, it is non

trivial to decode the true meaning of identifiers in some cases.

Threats to construct validity concern the relation between the theory and the

observation. This threat is mainly due to mistakes in the oracle. We cannot exclude

that errors are present in the oracle. As the intent of the oracle is to explain identifiers

semantics, we cannot exclude that some identifiers could have been splitted and ex-

panded in different ways by the developers that originally created them. To limit this

threat, we built context-dependent oracles using different sources of information, such

as comments, source code, and online documentation.

Threats to conclusion validity are concerned with issues that affect the ability

to draw the correct conclusion about relations between the treatment and the outcome

of the experiment.

Proper tests were performed to statistically reject the null hypotheses. In particular,

we used non-parametric tests, which do not make any assumption on the underlying

distributions of the data such as the Cliffs delta tests. Also, we used the Wilcoxon

unpaired test. ANOVA tests were used for the analysis of co-factors. we dealt with

problems related to performing multiple Cliffs delta andWilcoxon tests using the Holms

correction procedure which is less restrictive than Bonferroni adjustment.

Threats to external validity concern the possibility of generalizing our results. To

make our results as generalizable as possible, we selected our sample of identifiers from

a large set of open-source project. We only consider C programs rather than Java pro-

gram because it has already been proven that contextual identifier splitting/expansion

is more significant for C programs than Java ones [NLP+10]. This is due to the fact that

Java identifiers mostly adhere to naming conventions and are built using the Camel

Case convention and, quite often, using complete English words rather than abbrevi-

30

ations and/or acronyms. Instead, the usage of a more complex splitting/expansion is

particularly useful for programming languages that use short identifiers (e.g., C and

C++).

The subjects that performed the experiment form a population that includes a

variety of training level (from bachelor to postdoctoral) and can be considered repre-

sentative of a young developer population hired by a company.

6 Related Work

This section describes related work concerning (i) the role of textual information on

program comprehension and software quality and (ii) approaches and tools for the

automatic splitting and expansion of identifiers.

6.1 Role of Textual Information on Program Comprehension and Software Quality

A large body of work shows the paramount role of identifiers and comments in program

comprehension and software quality. Among these contributions, we state the following:

Takang et al. [TGM96] empirically studied the role of identifiers and comments on

source code understanding. They compared abbreviated identifiers to full-word iden-

tifiers and uncommented code to commented code. The results of their study showed

that commented programs are more understandable than non-commented programs

and that programs containing full-word identifiers are more understandable than those

with abbreviated identifiers.

The main finding of the study on identifiers by Anquetil et al. [AL98] was the

existence of “hard-terms” that encode core concepts.

Caprile and Tonella [CT99] performed an in-depth analysis of the internal structure

of identifiers. They showed that identifiers are an important source of information about

system concepts and that the information they convey is often the starting point of

program comprehension.

Other researchers [CT00,MMM03] assessed the quality of identifiers, their syntactic

structure, plus the information carried by the terms that compose them.

Deißenböck et al. [DP05] provided a set of guidelines to produce high-quality identi-

fiers. With such guidelines, identifiers should contain enough information for a software

engineer to understand the program concepts.

Lawrie et al. [LMFB07] attempted to asses the quality of source code identifiers.

They suggested an approach, named QALP (Quality Assessment using Language Pro-

cessing), relying on the textual similarity between related software artifacts. The QALP

tool leverages identifiers and related comments to characterize the quality of a program.

The results of their empirical study indicated that full words as well as recognizable

abbreviations led to better program understanding. This work suggested that the recog-

nition of words composing identifiers, and, thus, of the domain concepts associated with

them could contribute to a better comprehension.

Binkley et al. [BDLM09] investigated the use of the identifier separators, namely

the Camel Case convention and underscores in program comprehension. They found

that the Camel Case convention led to better understanding than underscores and,

when subjects are properly trained, that subjects performed faster with identifiers

built using the Camel Case convention rather than those with underscores.

31

Sharif and Maletic [SM10] replicated this study using an eye-tracking system. The

results of their study showed that subjects recognized identifiers that used the under-

score notation more quickly. They also reported that there is no difference in terms of

accuracy between the CamelCase and underscore style.

Overall, prior works reveal that identifiers represent an important source of domain

information, and that meaningful identifiers improves software quality and reduce the

time and effort to acquire a basic comprehension level for any maintenance task.

6.2 Approaches for Identifier Splitting and Expansion

Stemming from Deißenböck and Pizka’s observation on the relevance of identifiers’

terms for program comprehension, several approaches have been proposed to split

and expand source identifiers. Examples of such works are the CamelCase, Samurai,

TIDIER and Normalize. The simplest, widely-adopted CamelCase technique is often

sufficient to accomplish software evolution tasks, see for example [DGPA11]. CamelCase

is based on the following simple rules:

RuleA: Underscore, structure, and pointer access, as well as special symbols are re-

placed with the space character.

RuleB: Identifiers are split where terms are separated using the Camel Case naming

convention. For example, bugDescription is split into bug and Description while

getBugID is split into get, Bug and ID.

RuleC: When two or more upper case characters are followed by one or more lower

case characters, the identifier is split at the last-but-one upper-case character. For

example, SVNCommit is split into SVN and Commit.

Overall, CamelCase splitting algorithm leaves same-case composite identifiers such

as USERID and currentversion unaltered.

CamelCase strategies do not use contextual information, which use is at the basis of

Samurai [EHPVS09]. In a sense Samurai can be thought as a clever CamelCase guided

by global and local knowledge coded into frequency tables. Indeed, Samurai local table

is built by mining terms in the program under analysis while the global table is made

by mining the set of terms in a large corpus of programs.

A truly context-sensitive identifier split and expansion approach is TIDIER [GPAG11].

TIDIER uses high-level and domain concepts captured into multiple dictionaries. Dic-

tionaries can be context and application–or domain dependent and can also include

acronyms and abbreviations knowledge. TIDIER is inspired by speech recognition tech-

niques (it uses a modified version of Herman Ney dynamic time warping algorithm

[Ney84]) to compute a string-edit distance between dictionary terms and a given iden-

tifier.

More recently, a machine-translation algorithm based on n-gram language mod-

els have been proposed to accurately split and expand identifiers [LBM10,LB11]. The

core part of the expansion algorithm is based on a machine translation technique,

namely maximum coherence model based on co-occurrence data that capture local

context information. The heart of normalization is a similarity metric computed from

co-occurrence data, exploited to select the best candidate among several possible ex-

pansions.

We share with this previous work the assumption that identifier splitting and ex-

pansion is essential for program comprehension; we also agree on the importance of

32

identifier context. Yet, in this work, we show the extent to which contextual information

can support developers when performing program understanding tasks. We assume, a

small context (single line or part of a line) will not provide much hints: a context as

large as a complete application may be overwhelming and not useful due to information

overloading. We thus focused this empirical investigation on function, file, and file plus

external documentation context levels. In fact, we believe a not too big file but not too

small function are still manageable as most of the time a C function fits into a screen

and a file can be reasonably traversed and inspected.

7 Conclusion

This paper reported a controlled experiment that investigated the effect of one of the

practical tasks in software maintenance and evolution, that is the splitting and ex-

pansion of source code identifiers. More specifically, it revealed the extent to which a

source-code context could be helpful when splitting/expanding source code identifiers.

The experiment involved human participants where the intellectual level ranges from

Bachelor to Post-Doc. The study focused on two types of contexts: internal and exter-

nal contexts. Internal context: functions and source code files, are the context readily

available to any evolution task. External context in our setting involves external doc-

umentation. More precisely a thesaurus of acronyms and abbreviations.

We randomly sampled a set of fifty identifiers from a corpus of C programs and

asked forty two subjects to split and expand identifiers. The splittings/expansions pro-

vided by subjects were compared to TIDIER performance, a recent contextual approach

that splits and expands identifiers based on contextual information.

We reported evidence of the usefulness of context for both identifier splitting and

expansion. In particular, we found that the file-level context is more helpful than

function-level information. Moreover, external information does not significantly im-

pact identifier splitting and expansion. Results also showed that the accuracy of the

this comprehension task depends mainly on subject’s level of English. C experience

does not impact the task a lot. Linux expertise, gender, and program of studies do not

intervene when splitting/expanding identifiers. Finally, we introduce a split-expansion

entropy to model the difficulty in the split-expansion of identifiers. Our findings sup-

ports that a higher entropy does not imply a lower attained split-expansion accuracy as

the richer context information balance the wider is the set of possible split terms and

expansions. In computing the entropy we used dictionaries extracted from the functions

and files (our contexts) as well as other linguistic sources (e.g., Wordnet dictionary).

Correlation value are not very high thus supporting the conjecture that subjects

experience, knowledge and linguistic ability is not necessarily captured by the function

or file level contexts as developers have a much richer knowledge.

We believe the results that we provide in this paper and the conclusions that we

draw provide useful insights to practitioners and researchers alike and confirm our

beliefs of the importance of contextual information in program comprehension and the

need to promote meaningful identifiers avoiding cryptic abbreviations or user-defined

acronyms not known by others. The context is helpful not only to humans but also

to automatic tools and Information Retrieval-techniques that use such a process of

identifier splitting and expansion. Knowing the levels of interests when performing such

a task could reduce the time and effort that a developer will spend trying to investigate

many sources of information to map identifiers to their corresponding domain concepts

33

and hence the time and effort of understanding programs. These later benefits concern

also the automatic tools that attempt to explore context. In fact, current or future

identifier expansion tools that are dealing with context could use such levels of context

to enhance their splitting/expansion accuracy.

Future work will investigate the impact of investigated levels on other compre-

hension tasks. The ultimate goal is to see if the same levels will be useful for other

tasks and thus help not only developers understand programs with less effort and time

but also increase the accuracy of automatic tool that deal with the studied program

comprehension tasks.

Acknowledgment

This research was partially supported by the Natural Sciences and Engineering Re-

search Council of Canada (Research Chairs in Software Evolution and in Software

Patterns and Patterns of Software) and by Antoniol’s Individual Discovery Grant.

Data

All artifacts (releases, class diagrams, graph representations) used in this work can

be downloaded from the SOCCER laboratory Web server, under the Software Evolu-

tion Repository (SER) page, accessible at http://web.soccerlab.polymtl.ca/SER/

IdentifierContext_ProgramComprehension.

References

[AL98] N. Anquetil and T. Lethbridge. Assessing the relevance of identifier names in a
legacy software system. In Proceedings of CASCON, pages 213–222, December
1998.

[BCR94] V. Basili, G. Caldiera, and D. H. Rombach. The Goal Question Metric Paradigm
Encyclopedia of Software Engineering. John Wiley and Sons, 1994.

[BDLM09] David Binkley, Marcia Davis, Dawn Lawrie, and Christopher Morrell. To camel-
case or under score. In The 17th IEEE International Conference on Program
Comprehension, ICPC 2009, Vancouver, British Columbia, Canada, May 17-19,
2009, pages 158–167. IEEE Computer Society, 2009.

[CPM+00] Wohlin C., Runeson P., Host M., Ohlsson M.C., Regnell B., and Wesslen A. Ex-
perimentation in Software Engineering - An Introduction. Kluwer Academic Pub-
lishers, 2000.

[CT99] B. Caprile and P. Tonella. Nomen est omen: Analyzing the language of function
identifiers. In Proc. of the Working Conference on Reverse Engineering (WCRE),
pages 112–122, Atlanta Georgia USA, October 1999.

[CT00] B. Caprile and P. Tonella. Restructuring program identifier names. In Proc. of the
International Conference on Software Maintenance (ICSM), pages 97–107, 2000.

[DGPA11] B. Dit, L. Guerrouj, D. Poshyvanyk, and G. Antoniol. Can better identifier split-
ting techniques help feature location? In Proc. of the International Conference on
Program Comprehension (ICPC), pages 11–20, Kingston, 2011.

[DP05] F. Deißenböck and M. Pizka. Concise and consistent naming. In Proc. of the
International Workshop on Program Comprehension (IWPC), May 2005.

[EHPVS09] Eric Enslen, Emily Hill, Lori L. Pollock, and K. Vijay-Shanker. Mining source code
to automatically split identifiers for software analysis. In Proceedings of the 6th
International Working Conference on Mining Software Repositories, MSR 2009,
Vancouver, BC, Canada, May 16-17, 2009, pages 71–80, 2009.

[GK05] Robert J. Grissom and John J. Kim. Effect sizes for research: A broad practical
approach. Lawrence Earlbaum Associates, 2nd edition edition, 2005.

[GPAG11] L. Guerrouj, M. Di Penta, G. Antoniol, and Y. Gaël Guéhéneuc. Tidier: An iden-
tifier splitting approach using speech recognition techniques. Journal of Software
Maintenance - Research and Practice, page 31, 2011.

34

[Hol79] Sture Holm. A simple sequentially rejective Bonferroni test procedure. Scandina-
vian Journal of Statistics, 6:65–70, 1979.

[JM01] Maletic J.I. and MarcusA. Supporting program comprehension using semantic and
structural information. In Proc. of 23rd International Conference on Software
Engineering, pages 103–112, Toronto, 2001.

[LB11] Dawn Lawrie and David Binkley. Expanding identifiers to normalize source code
vocabulary. In Proc. of the International Conference on Software Maintenance
(ICSM), pages 113–122, 2011.

[LBM10] D.J. Lawrie, D. Binkley, and C. Morrell. Normalizing source code vocabulary. In
Proc. of the Working Conference on Reverse Engineering (WCRE), pages 112–
122, 2010.

[LFB06] Dawn Lawrie, Henry Feild, and David Binkley. Syntactic identifier conciseness and
consistency. In Sixth IEEE International Workshop on Source Code Analysis and
Manipulation Philadelphia Pennsylvania USA, pages 139–148, Sept 27-29 2006.

[LMFB06] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. What’s in a
name? a study of identifiers. In Proceedings of 14th IEEE International Conference
on Program Comprehension, pages 3–12, Athens, Greece, 2006. IEEE CS Press.

[LMFB07] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. Effective
identifier names for comprehension and memory. Innovations in Systems and
Software Engineering, 3(4):303–318, 2007.

[MMM03] Ettore Merlo, Ian McAdam, and Renato De Mori. Feed-forward and recurrent
neural networks for source code informal information analysis. Journal of Software
Maintenance, 15(4):205–244, 2003.

[MV95] A.V. Mayrhauser and A. M. Vans. Program comprehension during software main-
tenance and evolution. IEEE Computer, pages 44–55, 1995.

[Ney84] Herman Ney. The use of a one-stage dynamic programming algorithm for con-
nected word recognition. IEEE Transactions on Acoustics Speech and Signal Pro-
cessing, 32(2):263–271, Apr 1984.

[NLP+10] N.Madani, L.Guerrouj, M.Di Penta, Y-G.Guéhéneuc, and G.Antoniol. Recognizing
words from source code identifiers using speech recognition techniques. In Proceed-
ings of the Conference on Software Maintenance and Reengineering, pages 69–78.
IEEE, 2010.

[SBE83] E. Soloway, J. Bonar, and K. Ehrlich. Cognitive strategies and looping constructs:
An empirical study. Commun. ACM, pages 853–860, 1983.

[Sha48] Claude E. Shannon. A mathematical theory of communication. Bell System Tech-
nical Journal, 27:379–423, 625–56, 1948.

[SM10] B. Sharif and J.I. Maletic. An eye tracking study on camelcase and under score
identifier styles. In Proceedings of the International Conference on Program Com-
prehension, pages 196–205, June-July 2010.

[TGM96] Armstrong Takang, Penny A. Grubb, and Robert D. Macredie. The effects of com-
ments and identifier names on program comprehensibility: an experiential study.
Journal of Program Languages, 4(3):143–167, 1996.

