
Noname manuscript No.
(will be inserted by the editor)

An Empirical Study on the Importance of Source Code
Entities for Requirements Traceability

Nasir Ali, Zohreh Sharafi, Yann-Gaël

Guéhéneuc, and Giuliano Antoniol

the date of receipt and acceptance should be inserted later

Abstract Requirements Traceability (RT) links help developers during program
comprehension and maintenance tasks. However, creating RT links is a laborious
and resource-consuming task. Information Retrieval (IR) techniques are useful
to automatically create traceability links. However, IR-based techniques typically
have low accuracy (precision, recall, or both) and thus, creating RT links remains
a human intensive process. We conjecture that understanding how developers ver-
ify RT links could help improve the accuracy of IR-based RT techniques to create
RT links. Consequently, we perform an empirical study consisting of four case
studies. First, we use an eye-tracking system to capture developers’ eye move-
ments while they verify RT links. We analyse the obtained data to identify and
rank developers’ preferred types of Source Code Entities (SCEs), e.g., domain vs.
implementation-level source code terms and class names vs. method names. Sec-
ond, we perform another eye-tracking case study to confirm that it is the semantic
content of the developers’ preferred types of SCEs and not their locations that at-
tract developers’ attention and help them in their task to verify RT links. Third,
we propose an improved term weighting scheme, i.e., Developers Preferred Term
Frequency/Inverse Document Frequency (DPTF/IDF), that uses the knowledge
of the developers’ preferred types of SCEs to give more importance to these SCEs
into the term weighting scheme. We integrate this weighting scheme with an IR
technique, i.e., Latent Semantic Indexing (LSI), to create a new technique to RT
link recovery. Using three systems (iTrust, Lucene, and Pooka), we show that the
proposed technique statistically improves the accuracy of the recovered RT links
over a technique based on LSI and the usual Term Frequency/Inverse Document
Frequency (TF/IDF) weighting scheme. Finally, we compare the newly proposed
DPTF/IDF with our original Domain Or Implementation/Inverse Document Fre-
quency (DOI/IDF) weighting scheme.

Nasir Ali
School of Computing, Queen’s University, Kingston, ON, Canada
E-mail: nasir@cs.queensu.ca

Zohreh Sharafi, Yann-Gaël Guéhéneuc, and Giuliano Antoniol
DGIGL, École Polytechnique de Montréal, Canada,
E-mail: zohreh.sharafi,yann-gael.gueheneuc@polymtl.ca, antoniol@ieee.org

2 Nasir Ali, Zohreh Sharafi, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

1 Introduction

Requirements traceability (RT) is “the ability to describe and follow the life of
a requirement, in both a forwards and backwards direction (i.e., from its ori-
gins, through its development and specification, to its subsequent deployment and
use, and through all periods of on-going refinement and iteration in any of these
phases)” [27]. RT links help developers during program comprehension and main-
tenance tasks to ensure that their source code is consistent with the program
documentation. However, creating RT links is a laborious and resource-consuming
task. Moreover, during software evolution, developers add, remove, and–or modify
functionalities to meet ever-changing users’ needs without updating RT links due
to lack of resources (time and effort). Consequently, automated techniques to create
RT links are important to save resources. Many researchers have used Information
Retrieval (IR) techniques [5,9,34] to develop techniques to create traceability links
between requirements (and other “high-level” artifacts) and source code.

Indeed, several IR techniques have been applied to RT recovery and verifica-
tion tasks, see [3,32]. Yet, in general, the Vector Space Model (VSM) [9] is useful
for creating RT links. However, VSM has some limitations, e.g., synonym and pol-
ysemy [34]. Latent Semantic Indexing (LSI) [34] is an extension to VSM. LSI is
proven to overcome the limitation of VSM and can be considered as the baseline
approach to compare with. However, it is also known, see [3], that IR-based tech-
niques are not accurate yet. Thus, researchers believe that there is still room for
improving the accuracy of IR-based techniques, in particular by understanding
how developers verify RT links [3,46]. Thus, our conjecture is that understanding

how developers verify RT links can allow developing an improved IR-based technique to

recover RT links with better accuracy than previous techniques.
To verify our conjecture, in our previous study [7], we observed developers

during RT verification task. We answered the following research question while
analysing which types of source code entities (SCEs1) are important for developers:

– RQ0: What are the important Source Code Entities (SCEs) to which develop-
ers pay more attention when verifying RT links?

We observed that developers pay more attention to domain-level source code
terms, method names, and comments than to other SCEs; for sake of completeness
we briefly summarize main contributions of [7] in Section 3.

We named the former research question RQ0 because this paper is grounded
on RQ0: it builds upon [7] and investigates the impact of the presence of a type
of SCEs on developers’ efficiency while performing RT verification tasks. We are
interested to observe whether facilitating the detection of the most and the least
preferred types of SCEs impact the developers’ efficiency. Therefore, in this paper,
we first pose the following research question:

– RQ1: Are some types of SCEs preferred by developers because of their semantic
content or because of their very presence in source code? Through answering

1 In this paper, we call “source code entities” any domain-level term, implementation-level
term, class name, method name, variable name, or comment found in a piece of code. Do-
main concepts are concepts pertaining to the use of the system by users. Implementation
concepts relate to data structures, GUI elements, databases, and algorithms. For example,
in the Pooka e-mail client, addAddress in AddressBook.java class and addFocusListener in
AddressEntryTextArea.java are domain-level and implementation-level concepts, respectively.

Title Suppressed Due to Excessive Length 3

RQ1, we observe that highlighting certain types of SCEs does not attract more
developers’ attention thus we answer RQ1 as follows: it is indeed the semantic
content of the SCEs that is important during the RT link verification tasks.
Thus, we confirm the results of RQ0 [7].

Based on the answers to RQ0 and RQ1, in this paper, we devise a new term
weighting scheme to mimic developers’ behavior giving more focus to certain types
of SCEs. We name this new scheme Developers Preference-based Term Frequency
and Inverse Document Frequency, DPTF/IDF for short.

The traditional weighting scheme, Term Frequency and Inverse Document Fre-
quency, TF/IDF , assigns weight to a term based on its frequency in a corpus
whereas DPTF/IDF weighs a term based on its frequency in a corpus and impor-
tance during the RT link recovery process. We showed in [6] that using a dynamic
parameter tuning approach, named DynWing, led to an increase in the accuracy
of a RT link recovery technique. Thus, we also apply DynWing to dynamically
tune the parameters of DPTF/IDF .

Finally, to ascertain DPTF/IDF accuracy, we compare it with our previous
term weighting scheme, DOI/IDF [7], which also considers developers’ preferences
to assign weights. However, DOI/IDF divides a term twice with IDF , which
may cause double penalty for important terms. In addition, DOI/IDF has more
parameters to tune than DPTF/IDF .

Consequently, to verify the usefulness of DPTF/IDF , in this paper, we also
address the following two research questions:

– RQ2: Does using DPTF/IDF allow developing a RT links recovery technique
with better accuracy than a technique using TF/IDF? Results show that on
three systems, iTrust, Lucene, and Pooka, the DPTF/IDF weighting scheme
statistically improves precision, recall, and F-measure on average up to 11%,
6%, and 5.63%, respectively.

– RQ3: Does using DPTF/IDF allow developing a RT links recovery tech-
nique with better accuracy than a technique using DOI/IDF? We find that
DPTF/IDF provides slightly better results than DOI/IDF . In addition, Dyn-
Wing can dynamically tune DPTF/IDF . Thus, new improved DPTF/IDF

weighting scheme does not require a developer to tune parameters for each
system separately.

To answer the four research questions, we conduct four case studies. The first
case study was conducted in our previous paper [7] and the goal was to identify
important types of SCEs using an eye-tracking system while developers verify RT
links (RQ0). We performed this case study with 26 subjects and six source code
fragments. We collected and analysed the data related to the developers’ visual
attention on SCEs. If developers paid more visual attention to a particular type
of SCEs than to others, we considered it a more important type of SCEs. The first
case study results showed that developers prefer certain types of SCEs.

However, it could be that their preferences are due to the very presence of these
types of SCEs, not to their semantic content. Such a contingent preference could
be due to the developers’ implicit trust that method names are useful, because
they have likely been taught in their programming classes that method names are
important. This situation is similar to the situation in which subjects trust a piece
of information by virtue if it being shown rather than by its intrinsic value, as it
has been shown by Pan et al. [36] for Google results. Thus, we perform a second

4 Nasir Ali, Zohreh Sharafi, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

1

Goal To observe which types of SCEs receive more developers’ visual
attention during RT links verification tasks.

Dependent
variables

(1) Accuracy and (2) average fixation time

Independent
variables

(1) Type of SCE: domain and implementation-level source code
terms, class name, method name, variable name, and comment.

Subjects 26 students: 4 M.Sc. and 22 Ph.D
Tasks Six RT links verification tasks
Results Results show that developers prefer certain types of SCE. They

spent more visual attention on method names and comments and
also preferred domain-level SCEs to implementation-level ones.

2

Goal To investigate the impact of the presence of a type of SCEs on
subjects’ efficiency during RT links verification tasks.

Dependent
variables

(1) Accuracy, (2) average fixation time, (3) total fixation time,
and (4) effort

independent
variables

(1) Type of SCE: class name and method name.

Subjects 14 students: 2 B.Sc., 3 M.Sc. and 9 Ph.D
Tasks Six RT links verification tasks
Results It is the content of the method names, and not just their presence,

that subjects seek to perform the RT verification tasks.

Table 1 The summary of the eye-tracking case studies.

1

Goal To improve an IR-based, RT link recovery technique using the
novel DPTF/IDF weighting scheme based on developers’ pre-
ferred SCEs. Moreover, to compare the results of DPTF/IDF
against the previous TF/IDF and DOI/IDF schemes.

Dependent
variables

F-measure

Independent
variables

Sets of RT links using three techniques: LSITF/IDF ,
LSIDPTF/IDF , and LSIDOI/IDF .

Objects Three open-source systems: iTrust (v10.0), Lucene (v2.9), and
Pooka (v2.0).

Findings Results show that assigning different importance to different types
of SCEs, depending on their role and occurrence in source code
provides better accuracy. Moreover, LSIDPTF/IDF provides bet-
ter F-measures at all the different values of threshold.

Table 2 The summary of the RT case study.

case study, again using an eye-tracking system, to gauge whether developers really
consider the meaning of preferred types of SCEs (RQ2). The two eye-tracking case
studies are summarized in Table 1.

The goal of the third and fourth case studies, to answer RQ3 and RQ4, is
to measure the accuracy improvement of a LSI-based RT link recovery technique
using DPTF/IDF over one using TF/IDF or DOI/IDF . We use LSI because it
has been shown to produce interesting results and overcome VSM limitations [34].
DOI/IDF requires to recognize domain concepts; as we seek to devise a completely
automatic approach, to separate domain concepts from implementation concepts,
we use Latent Dirichlet Allocation (LDA) with the same settings used in previous
works [2] for the same task, i.e., domain concepts identification. We summarize
the RT case study in Table 2. The replication package for all the case studies is
available online2.

2 http://www.ptidej.net/download/experiments/emse13b/

Title Suppressed Due to Excessive Length 5

This paper is organised as follows: Section 2 provides a brief overview of the
state-of-the-art RT techniques and of the use of eye-tracking system in program
comprehension. Section 3 summarises the eye-tracking case study on developers’
preferred types of SCEs and its results. Section 4 describes our second eye-tracking
case study to confirm that it is the semantic content of the SCEs that attracted de-
velopers’ attention and its results. Sections 5 and 6 describe our proposed weighting
scheme and its empirical evaluation. Section 7 reports discussions on the scheme
and its evaluation. Finally, Section 9 concludes with future work. We thus bring
the following contributions with respect to our previous work [7]:

– We confirm that developers prefer certain types of SCEs because of the infor-
mation that they bring, not because of their very presence.

– The new term weighting scheme, i.e., DPTF/IDF , has less tuning parameters
than DOI/IDF . In addition, DynWing is integrated into DPTF/IDF scheme
to automatically tune the parameters.

– We compare the use of the DPTF/IDF tuned using DynWing and DOI/IDF
to analyse the different potential improvements versus the effort required by
DOI/IDF to manually tune parameters.

– We perform detailed statistical analysis to compareDPTF/IDF withDOI/IDF .
– We perform case studies on three medium-size open-source systems, i.e., one

additional system, Lucene, in addition to iTrust and Pooka.

2 Related work

We now present some work related to the use of eye-tracking systems in program
comprehension, to zoning, and to RT.

2.1 Eye-tracking

Eye-tracking systems have been used to study program and model comprehension.
De Smet et al. [21] performed three different eye-tracking case studies to investigate
the impact of the Visitor, Composite, Observer design patterns, and the Model
View Controller style, on comprehension tasks. Their results showed that different
patterns have different impacts on program comprehension. They also proposed a
tool, Taupe, to analyse eye-tracking data.

Guéhéneuc et al. [29] and Yusuf et al. [47] also conducted eye-tracking studies
to analyse how well a developer comprehends UML class diagrams. Their results
showed that developers tend to use stereotypes, colours, and layout to have a
more efficient exploration and navigation of class diagrams while the relationships
between classes may be less important.

Bednarik et al. [12] used eye-tracking systems to characterise the program com-
prehension strategies deployed by developers during dynamic program visualiza-
tion. Their results showed that eye-tracking data can reveal important information
about developers’ behavior, which can be hard to access using other methods.

Uwano et al. [45] conducted an experiment to characterise the developers’ per-
formance while reviewing source code. They concluded that the more developers
read the source code, the more efficiently they find defects.

6 Nasir Ali, Zohreh Sharafi, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

Recently, Busjahn et al. [15] conducted a study to analyze the process of code
reading using 10 subjects. They considered five elements in the source code: com-
ments, comparisons, complex statements, simple assignments, and keywords. They
investigated how subjects read a set of small pieces of Java source code to under-
stand them. They concluded that reading natural language text is different from
reading source code. They also found out that novices looked more at comments
and comparisons while experts looked more at complex statements. Similar to the
work of Busjahn et al., in this paper, we divide source code into elements, which
we call source code entities. We consider a different set of SCEs based on the struc-
ture of the Java class. Also, we look into the semantics of SCEs by considering
implementation-level and domain-level ones.

Sharif et al. [41] carried on an eye-tracking case study to analyse the effect of
identifier style, i.e., camel case and underscore, on developers’ performance while
reading source code. Their results showed that there is no statistical differences in
accuracy between the two styles. Yet, subjects recognise identifiers in the under-
score style more quickly than camel case.

To the best of our knowledge, only Sharif et al. [43] explored the potential use
of eye-tracking systems to improve traceability recovery techniques. However, they
did not describe the linking at source-code level and did not quantify their results
statistically or otherwise.

Eye-tracking systems have proven useful to understand developers’ behaviour.
We draw inspiration from this previous work to use an eye-tracking system for
observing developers during RT verification task. We observe which types of SCEs
are preferred by developers when accurately and efficiently verifying RT links.

2.2 Zoning

The developers’ preference for certain types of SCEs could be only due to their
particular locations in the source code, rather than to their semantic content.
Indeed, some researchers observed that if a term appears in different zones of a
document, then its importance changes [25,31,44].

This idea that a term has different importance to a reader depending on where
it appears has also been investigated in the domain of information retrieval [31].
Search engines, such as Google, assign higher ranks to the Web pages that contain
the searched terms in specific parts of the pages, e.g., their titles.

Erol et al. [25] used a questionnaire to ask participants which parts of docu-
ments are more important for performing certain tasks. They concluded that titles,
figures, and abstracts are the most important parts for both searching and under-
standing documents while figure captions are only important for understanding.

However, to the best of our knowledge, the importance of terms at different
source-code locations and the distinction between domain-level and implementation-
level terms has only be explored in our previous work [7]. Moreover, readers’ pref-
erences for documents may differ from developers’ preferences for source code.

We draw inspiration from this previous work to observe concretely how develop-
ers read source code when verifying RT links. We use the results of this observation
to develop new weighting schemes to improve the accuracy of automated RT links
recovery techniques.

Title Suppressed Due to Excessive Length 7

2.3 RT

Preliminary to any software evolution task, a developer must comprehend the
project landscape [17], in particular, the system architecture, design, implementa-
tion, and the relations between its various artifacts. RT links help to understand
the relationship between a requirement and its implementation in the source code.
However, due to continuous software evolution, RT links often become obsolete or
outdated. Automatically recovering RT traceability links is a laborious task.

Many researchers [1,9,34,38] have proposed IR-based RT techniques to auto-
matically recover RT links. Often, IR-based RT techniques [9,34,38] use VSM,
probabilistic rankings, or VSM transformed using LSI. Whenever available, dy-
namic data proved to be complementary and useful for traceability recovery by
reducing the search space [38].

Recently, Ali et al. [4] proposed COPARVO to recover traceability links be-
tween the source code of object-oriented systems and requirements. They parti-
tioned source code into four parts (class name, method name , variable name, and
comments). Each source code part then “votes” on the RT links recovered using
VSM. Results showed that using source code parts improved the accuracy of a
VSM-based RT technique.

Andrea et al. [19] proposed a technique helping developers to maintain source
code identifiers and comments consistently with high-level artifacts. Their tech-
nique computes textual similarity between source code and related high-level ar-
tifacts, e.g., requirements. The textual similarity helps developers to improve the
source code lexicon. They have provided some comparisons between different IR
techniques, e.g., [20], with inconclusive results. They showed the importance of
term vocabulary for recovering traceability links. However, they did not explore
the difference between different types of SCEs.

Wang et al. [46] performed an exploratory study of feature location with devel-
opers. They recorded the developers’ actions during feature location tasks. They
analysed the process used by developers to train a second group of developers.
Their results showed that the second group performed better than the first one.
They did not use their results to improve an automated RT links recovery tech-
nique based on their observations with developers.

In the following, we draw inspiration from the works of Andrea et al. [19] and
Wang et al. [46] but with the aim of improving an automated RT link recovery
approach. We use the developers’ preferred types of SCEs to propose a novel
weighting scheme, which could be used in previous RT link recovery approaches,
such as [8,4,34,38], as shown in the following.

3 Developers’ Preferred SCEs – An Eye Tracking Study

For the sake of completeness, we recall here a first case study performed to identify
the types of SCEs preferred by developers during RT link verification tasks [7].
This case study and its results are summarised in Table 1.

We perform an empirical study using an eye-tracking to identify which types
of SCEs are preferred by developers to verify RT links efficiently and accurately.
We ask RQ0: What are the important Source Code Entities (SCEs) to which
developers pay more attention when verifying RT links? We use an eye-tracking

8 Nasir Ali, Zohreh Sharafi, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

system to identify developers’ preferred types of SCEs. Our goal is to observe
precisely which types of SCEs receive more developers’ visual attention during RT
links verification tasks. We formulate the following null hypothesis to answer RQ0:

H01: All types of SCEs have equal importance for developers.

We now recall the study design and steps that we followed in our previous
eye-tracking study.

3.1 Eye-tracking System

Eye-tracking systems are designed to work with the human visual system. They
provides the focus of subjects’ attention during their cognitive process [23]. An eye-
tracking system provides us with two main types of eyes-related data: fixations and
saccades. A fixation is the stabilisation of the eye on an object of interest for a
period of time, whereas saccades are quick movements from one fixation to another.
We use fixations to measure the subjects’ visual attention because comprehension
mostly occurs during fixations [24,39]. This choice directs the settings of our first
two case studies.

We use FaceLAB from Seeing Machine [40], which is a video based remote eye-
tracking system, to collect the eye movements of developers performing RT links
verification tasks. Using two built-in cameras, one infrared pad, and one computer,
FaceLAB tracks subjects’ eye-movements on the computer monitor. We use two
27” LCD monitors for our eye-tracking case studies: the first one is used by the
experimenter to set up and run the experiments while monitoring the quality of
the eye-tracking data; the second one (screen resolution is 1920× 1080) is used to
display the stimulus to subjects.

FaceLAB sends eye-movements data to a data visualization tool, Gaze Tracker
from Eye Response3. GazeTracker stores eye-movement data including fixations
and saccades associated with each image and displays all fixations on top of the
stimulus. The time resolution of the eye-tracking system is the millisecond. We
use Taupe [21] to analyse the collected data. Taupe is an open-source eye-tracking
data analysis software4 to help researchers visualise, analyse, and edit the data
recorded by eye-tracking systems.

3.2 Case Study Design

We use six questions and source code snippets that subjects must read to verify
a link between them. Each pair {question, piece of source code} form a stimulus.
Table 3 shows the list of questions. Each question deals with the implementation
of one requirement. For example, a piece of source code could implement the
requirement “This class takes an input the radius of a circle to calculate its area”.
A subject could answer “yes” if (s)he thinks that the source code shown on the
stimulus is implementing the specified requirement. There are four correct and two

3 http://www.eyeresponse.com/
4 http://www.ptidej.net/research/taupe/

Title Suppressed Due to Excessive Length 9

Questions Answer
1 This class takes as input the radius of a circle to calculate its area. True/False
2 This class uses a JDBC driver to connect to a database and get data from myTable. True/False
3 This class draws a circle in a JFrame. True/False
4 This class uses the Java 2D API to draw lines and a rectangle in a JFrame. True/False
5 This class compares two strings. True/False
6 This class uses a JDBC driver to connect to a database and insert data in myTable. True/False

Table 3 List of questions answered by subjects to verify RT links.

incorrect links. We have on average 48% domain-level and 52% implementation-
level SCEs in our case study.

We manually created true RT links to evaluate the correctness of the the sub-
jects’ answers. The first two authors manually created traceability links between
source code and requirements. The third author verified the manually created links
to avoid any bias. A subject answer can either be right or wrong.

We capture subjects’ eye movement during the RT link verification task. We
define sets of Areas of Interest (AOIs) per pieces of source code as rectangles, each
enclosing one (and only one) type of SCEs. Each SCE could either be a domain-
level or an implementation-level term. For each AOI, we calculate time by adding
the duration of all fixations in that AOI. The average time of fixations shows the
amount of time spent by each subject on specific AOI while (s)he focused on that
SCE to understand it.

The eye-tracking system captures the fixations at the granularity of line. There-
fore, we consider the line that contains the SCE. We divide the total calculated
time spent on a SCE by the number of lines of code that the SCE take to obtain
an average time for each SCE. For example, if the comments are written on two
lines and a subject spends 40 milliseconds to read comments, we divide 40 by 2 to
get the time spent on each comment line.

In a pre-experiment questionnaire, we collect data related to the mitigating
variables, e.g., number of years of experience in Java. In a post-experiment ques-
tionnaire, we ask our subjects to rank the source code entities based on how much
they think that these entities help to understand the source code and verify a
traceability link.

3.3 Subjects Selection

Out of 26 subjects, there were 4 M.Sc., and 22 Ph.D students who enroll in gradu-
ate programs in the Departments of Computer and Software Engineering at École
Polytechnique de Montréal and Université de Montréal. Most of the subjects per-
formed traceability creation/verification tasks in the past. They are representative
of junior developers, just hired in a company [30]. All of the subjects have, on av-
erage, 3.39 years of Java programming experience.

There was only one subject for whom we could not have eye-tracking data be-
cause of the subject’s eyeglasses. Thus, we excluded that subject. We also excluded
the subject from a pilot study to validate that the requirements used in the case
study are clear and simple and the piece of source code on the screen is easy to
read and understand. We analyse the data of a total of 24 subjects.

The subjects were volunteers and they have guaranteed anonymity and all data
have been gathered anonymously. The subjects could leave the case study at any

10 Nasir Ali, Zohreh Sharafi, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

Fig. 1 The source code stimulus.

time, for any reason, without any kind of penalty. The subjects were aware that
they are going to perform RT tasks, but did not know the particular case study
research questions.

3.4 Objects Selection

We use several criteria to select the pieces of source code used in this eye-tracking
case study. We use the Java programming language to perform our case study
because it is well known by our subjects. In addition, Java is one of the (many)
object-oriented programming languages that contains several different types of
SCEs, i.e., class names, method names, variable names, and comments.

We select short pieces of source code that fit in one screen to have better control
over the eye-tracking system. These pieces contain one class and one method. The
source code size is similar to previous eye-tracking studies [13,42]. The six pieces
of source code have 19, 18, 19, 18, 24, and 28 lines of code. Font size is 20. There
are four correct (true positive) and two incorrect (false positive) links.

We modify the code to remove any automatically generated source code com-
ments and empty lines are used to distinguish between two types of SCEs. In
addition, we mix domain-level and implementation-level terms in the different
types of SCEs. For example, a domain term may appear in a method name or a
class name. On average, we have 48% domain-level and 52% implementation-level
SCEs in source code snippets.

Figure 1 shows one source code stimulus.

3.5 Dependent, Independent, and Mitigating Variables

We have one independent variable: the SCEs (domain and implementation-level
source code terms, class name, method name, variable name, and comment). The
dependent variables are chosen as follows:

Title Suppressed Due to Excessive Length 11

– Accuracy: we quantify and measure this variable as the percentage of correct
answers given by a subject while reading six pieces of source code to perform
RT verification tasks.

– Average fixation time: we measure this variable as the amount of fixation
time that each subject spends on each type of SCEs. We measure this variable
using the eye-tracking system. To compute the average fixation time, we collect
data about fixations on the AOIs in each piece of source code shown to the
subjects and calculate time by adding the duration of all fixations available in
that AOI for each SCE.

Mitigating variables may impact the effect of the independent variables on the
dependent variables. In this first case study, we use a questionnaire to collect data
about about the following mitigating variables: (1) level of study (B.Sc., M.Sc.,
or Ph.D.); (2) number of years of programming experience in general; and, (3)
number of years of programming experience in Java.

3.6 Procedure

The procedure we followed in our study has mainly four steps. In the first step,
we provide single-page guidelines to the subjects to perform the case study. In the
second step, we ask subjects to answer the pre-experiment questionnaire to collect
data related to the mitigating variables. Before running the case study, we briefly
give a tutorial to explain the procedure of the case study and the eye-tracking
system (e.g., how it works and what information is gathered by the system).

The subjects are seated approximately 70cm away from the screen in a com-
fortable chair with arms and head rests and the eye-tracking system is calibrated.
This process takes less than five minutes to complete. After this, the environment
in front of the subjects is just a stimulus.

In the third step, we ask subjects to read the source code, requirements, and
assess whether their is a RT link between them. We instruct subjects that they
can press space bar key when they find the answer. Pressing the space bar key
takes the subjects to a blank screen so that they can write down their answer
on the answer sheet. For each question, we ask subjects to spend adequate time
to explore the code while we capture subjects’ eye movements during traceability
verification process. The order of the questions was same for all the subjects.

In the last step, we ask subjects to provide feedback about source code readabil-
ity and understandability. We also ask subjects which SCEs they prefer more than
the others during RT verification task. We ask this question to analyse whether
or not subjects followed the same pattern in eye-tracking case study.

3.7 Case Study Results

It took on average 20 minutes to perform the case study including setting up eye-
tracking system. No subject mentioned any difficulty regarding the source code
readability and understandability.

We perform the following analysis to answer RQ0 and try to reject the null
hypothesis. For each subject, we calculate the average fixation time that (s)he
spent on the different types of SCEs, e.g., class or method name, in milliseconds.

12 Nasir Ali, Zohreh Sharafi, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

Fig. 2 Distribution of average correct answers and average fixation time.

Domain Impl. Class Method Variable Comments p-value

Average fixation times (ms) 4865.30 1729.80 2317.25 5701.10 3181.81 4542.41 < 0.01

Rankings 5 1 2 6 3 4 –

Table 4 Average fixation times spent on each type of SCEs. Rankings of each type of SCEs
are based on the average fixation times (1 means the least important).

We consider the time for both wrong and correct answers. Figure 2 shows the
distribution of average correct answers and average fixation times for each type
of SCEs. The x axis shows the number of subjects while the y axis shows the
average time spent on each type of SCEs and average correct answers. To show
both average correct answers and time spent on each SCE, we normalise the total
amount of data. S1 was the subject of our pilot study and we could not get accurate
fixations and saccades for S14 due to eyeglasses. Thus, we excluded S1 and S14
from our study.

We apply Kruskal-Wallis rank sum test on the average fixation times that
our subjects spent on four types of SCEs to analyse statistically the subjects’
preferences for class names, method names, variable names, and comments. The
Kruskal-Wallis rank sum test is a non-parametric method for testing the equality
of the population medians among different groups. Table 4 reports that the p-
value of the Kruskal-Wallis test for all the SCEs results is statistically significant:
the p-value is below the standard significant value α = 0.05. The table also re-
ports the ranking of the types of SCEs and whether subjects preferred domain or
implementation-level SCEs. It shows that subjects focused more on method names
and then comments and also preferred domain-level to implementation-level SCEs.

By replaying the subjects’ gazes, using the collected fixations and saccades and
their time stamps, we observe that, as soon as the subjects read the requirements,
they went directly to read method names and–or comments.

We also analyse the heatmaps consisting of the cumulative fixations of all the
subjects on each stimulus. A heatmap is a color spectrum that represents the
intensity of fixations. Figure 3 shows the heatmap for one of our subjects working
on one of our source codes. It shows a large number of fixations on the method

Title Suppressed Due to Excessive Length 13

Fig. 3 A heatmap showing the cumulative fixations of subjects. The colors red, orange, green,
and blue indicate the decrease in the number and duration of fixations from highest to lowest.

name, comments, and requirement. (The heatmap shows that there is some offset in
the position of the fixations and saccades collected using the eye-tracking system.
Using Taupe, we managed/adjusted the offsets during the data analysis.) Using
the heatmap, we confirm that subjects’ visual attention is stronger on SCEs that
belong to domain-level concepts than to implementation-level ones. For example,
for the Question 1 in Table 3, more fixations are on the “radius” identifier and very
few on the “bufRead” identifier. Subjects spent on average 4, 865.3 milliseconds on
domain-level SCEs and only 1, 729.8 millisecond on implementation-level SCEs.

The selection of source code snippets with only one SCE per type (one class
name, one method name, one paragraph of comments, and one group of variables)
could be a direct threat to our results. It is quite possible that developers may
have different SCEs preference on larger source code snippets with multiple SCEs.
Because we are interested to find the most important SCE based on the time that
our subjects spent, we used classes containing only one SCE of each type. Adding
more sample of each SCE makes the analysis of the results more complicated
because other factors must be considered, such as the relationship between the
SCEs. For example, for a particular task, the developers may prefer variable names
in large methods than method names. To avoid, such a problem, we chose to have
a simple version of each class.

The size of the source code snippets used in this study are comparable to
the ones that used in other eye-tracking studies [13,42]. At the end of the eye-
tracking study, we ask subjects to answer post questionnaire compare and match
with our eye-tracking results. The post-experiment questionnaire about subjects’
personal ranking for SCEs to comprehend the source code confirms the results of
eye-tracking data.

14 Nasir Ali, Zohreh Sharafi, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

Thus, we reject H01 and answer RQ0 as follows: developers pay different visual
attention on different types of SCEs to verify RT links, they prefer method
names and comments. In addition, developers almost double their visual at-
tention on domain-level SCEs in comparison with implementation-level SCEs.

4 Semantic Contents of SCEs – An Eye-Tracking Study

The results of the previous eye-tracking case study show that developers prefer
some types of SCEs over others while performing RT link verification tasks. How-
ever, it is possible that their preferences are due only to the presence of these types
of SCEs, not to their semantic content. Hence, developers could prefer method
names and comments because they have been taught in their programming classes
that method names are important. This situation is similar to the situation in
which subjects trust a piece of information by virtue if it is being shown rather
than by its intrinsic value, as it has been shown by Pan et al. for Google results
[36]. Thus, we perform this second case study to answer RQ1: Are some types of
SCEs preferred by developers because of their semantic content or because of their
very presence in source code?

The goal of this case study, which is summarised with its results in Table 1, is
to investigate the impact of the presence of a type of SCEs on subjects’ efficiency
while performing RT verification tasks. We want to observe whether facilitating
the detection of the most preferred types of SCEs (method names) and the least
preferred type of SCEs (class names) impact the subject’ efficiency. We formulate
the following hypotheses to answer RQ1:

H02: There is no significant differences between the accuracy of developers
verifying RT links with the source code in which a method name is easier to
detect compared to the rest of code.

H03: There is no significant differences between the time spent by developers
verifying RT links with the source code in which a method name is easier to
detect compared to the rest of code.

H04: There is no significant differences between the effort of developers verify-
ing RT links with the source code in which a method name is easier to detect
compared to the rest of code.

We have similar null hypotheses pertaining to class names, the least preferred
type of SCEs by developers.

4.1 Case Study Design

The design of this case study is similar to the previous eye-tracking case study
that is explained in Section 3.

We use six pieces of source code in which either the method name (Method
name in Bold, MiB) or the class name (Class name in Bold, CiB) is shown in bold

Title Suppressed Due to Excessive Length 15

and in bigger font size (font size = 36) in comparison to the rest of code (font size
= 16). The six pieces of source code and questions are different from the ones used
in the previous case study. In all six source code snippets, three out of six tasks
have highlighted class names and the other three have highlighted method names.

We ask our subjects to manually verify RT links by answering one question
per piece of source code. Each question deals with the implementation of a re-
quirement. For example, a piece of source code implements the requirement “Pri-
meNumCalculator class calculates and prints the prime numbers between 0 and
10,000”. A subject can answer “yes” if (s)he thinks that the code is implementing
that specific requirement. There are four correct (true positive) and two incorrect
(false positive) links. As with the previous case study, we manually created true RT
links to evaluate the correctness of the subjects’ answers. The first two authors
manually created traceability links between source code and requirements. The
fourth author verified the manually-created links to avoid any bias. A subject’s
answer can either be right or wrong.

4.2 Subjects Selection

Our 14 subjects are 2 B.Sc., 3 M.Sc., and 9 Ph.D. students in the Department of
Computer and Software Engineering at École Polytechnique de Montréal. Again,
most of these subjects performed traceability verification tasks in the past and are
representative of junior developers [30]. All of these subjects have, on average, 2
years of Java programming experience.

As with the previous case study, these subjects were all volunteers. Some
subjects are common to both eye-tracking studies. However, for the second eye-
tracking study, subjects do not know the goal of the study and the questions and
code snippets are different.

4.3 Objects Selection

We use the same criteria and the same programming languages as in the previous
case study to choose the pieces of code that make up the stimuli. The lengths of
the pieces of code (in lines of code) are 28, 29, 19, 27, 33, and 35, respectively. In
this case study, for each piece of source code, there is one instance of each type of
SCEs. Thus, each piece of source code contains one class name, one method name,
one comment, and one set of variables. Figure 4 shows an example of a source code
stimulus CiB.

4.4 Dependent, Independent, and Mitigating Variables

The type of SCEs (class name or method name) is the independent variable. We
select two different sets of dependent variables to compare and complement the
results of the first study. Similar to the first eye-tracking study, the first set of
dependent variables contains the subjects’ average fixation times and accuracies.
In the second set of dependent variables, because we are interested to investigate
the impact of the presence of specific type of SCEs on subjects’ efficiency, we put
the following variables:

16 Nasir Ali, Zohreh Sharafi, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

Fig. 4 Example of a source code stimulus in which the class name is written in bold using a
larger font size.

– Total fixation time: we measure this variable as the amount of time that each
subject spends on the source code stimuli. We use again the data provided by
the eye-tracking system to measure this value for each stimuli separately.

– Effort: we use the Average Fixation Duration (AFD) metric for calculating
the subjects’ visual effort using data that are provided by the eye-tracking
system. The formula for calculating AFD is presented in Equation 1, where
ET (Fi) and ST (Fi) represent the end time and start time for a fixation Fi

and n represent the total number of fixations in the stimulus. Longer fixations
mean that our subjects spend more time looking at that stimuli. Therefore,
stimuli that require shorter fixations are more efficient than the ones with
longer fixations [16].

AFD(Stimulus) =

∑n
i=1(ET (Fi)− ST (Fi))Stimulus

n
(1)

The mitigating variables are the same as in the previous case study and we
reuse the same questionnaire to collect data about about the following mitigat-
ing variables: (1) level of study (B.Sc., M.Sc., or Ph.D.); (2) number of years of
programming experience in general; and, (3) number of years of programming
experience in Java.

4.5 Procedure

The procedure of this case study is identical to that of the previous case study.
The subjects and stimuli are different but the collected data are identical: fixations
and saccades as well as data related to the mitigating variables and the subjects’
preferred types of SCEs.

Title Suppressed Due to Excessive Length 17

Class Method Variable Comments p-value

CiB
Average fixation times (ms) 1580.5 4351.167 905.3947 1003.593 < 0.01

Rankings 3 4 1 2 –

MiB
Average fixation times (ms) 882.3333 4088.5 1428.517 1654.833 < 0.01

Rankings 1 4 2 3 –

Table 5 Average times and rankings for CiB and MiB source code, spent on each type of
SCEs. Rankings of each type of SCEs are based on average fixation times (1 means the least
important).

MiB CiB
Accuracies (Std dev.) 0.78 (0.41) 0.85 (0.34)
Total fixation times (ms) (Std dev.) 20,134.38 (9664.29) 21,164.31 (8136.51)
Efforts (Std dev) 78.99 (6.63) 76.95 (6.81)

Table 6 Accuracies, total fixation times, and effort that our subjects spent on method names.

4.6 Case Study Results

By comparing Tables 4 and Table 5, we observe that if method names are high-
lighted, then subjects read immediately these method names and then read com-
ments and, finally, class names. If class names are highlighted, then subjects read
them first and then read method names, spending more time over the method
names. In addition, the results show that changing font color/size might yield dif-
ferent AFD for each SCE. However, more case studies are required to explain and
generalize this last observation.

Table 6 shows the difference of subjects’ accuracies, total fixation times, and
efforts on MiB and CiB code variants. We test our hypotheses to find any potential
advantage of CiB over MiB. After applying the non-parametric unpaired Wilcoxon
test with α = 0.05, the p-values report that there is no significant difference be-
tween the two code variants for accuracy, total fixation time, and effort. We thus
cannot reject any of our null hypotheses, H02, H03, or H03. We use non-parametric
unpaired Wilcoxon statistical test to determine significance because our data is
not normally distributed.

We consider and compute the total fixation time that our subjects spent to
perform the whole task and effort that are required for reading the code to under-
stand it. Our analysis of the heatmaps of the subjects’ fixations for each stimuli
show that although we highlight class or method name, our subjects read the code
completely and spent enough time on all types of SCEs to understand them and
perform RT verification tasks. These results and observations emphasize that one
types of SCEs does not lead and help our subjects to read the code and find the
answers more effectively.

In conclusion, this second case study confirms the results of the previous one:
method names are the most preferred SCEs. It also shows that whether method
names or class names are highlighted, subjects spend more time on method names,
with equivalent accuracy, total fixation time, and effort. It is indeed the content
of the method names, and not just their presence, that subjects seek to perform
the RT verification tasks.

However, these results suggest further case studies with longer pieces of code
and more types of SCEs to understand the subjects’ reading time and effort.
Such study would require a different setting because eye-tracking systems are

18 Nasir Ali, Zohreh Sharafi, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

notoriously difficult to use when subjects can scroll text/images. Other case studies
should also be performed with different means of highlighting class and method
names because there is a complex interplay between the form and semantics of the
SCEs. More sophisticated highlighting techniques may produce different results
than observed in this study.

We cannot reject H02, H02, and H02 and answer RQ1 as follows: whether
method names or class names are highlighted, subjects spend more time on
method names, with equivalent accuracy, total fixation time, and effort. It
is thus the content of the method names, and not just their presence, that
subjects seek to perform the RT verification tasks.

5 DPTF/IDF Weighting Scheme

The results of the two previous case studies show that, while performing RT tasks,
subjects preferred certain types of SCEs (method names) and that it is likely the
semantic content of these SCEs, not their form or location that positively impact
the subjects preferences. From this observation, we infer that the semantic content
of the subjects’ preferred type of SCEs could be used to improve an automated
RT recovery technique as follows. Most RT recovery techniques use the semantics
of words in the high-level and low-level documents to create links, such as LSI.
Therefore, because subjects preferred certain types of SCEs based on their seman-
tic content, we conjecture that giving more importance to these types of SCEs in
a RT recovery technique, should improve the accuracy of the technique.

This section describes our weighting scheme DPTF/IDF , i.e., Developers’
Preference-based Term Frequency and Inverse Document Frequency to improve
the accuracy of an IR technique. The weighting scheme rewards a term based on
its type whereas state-of-the-art IR-based weighting schemes give importance to
a term based on its probability or frequency in a corpus. Generally, our proposed
DPTF/IDF weighting scheme allows developers to tune the weighting scheme to
increase or decrease the importance of any type of term in a corpus.

In our previous work [7], we proposed the DOI/IDF weighting scheme to
calculate term weights based on their location in source code. To use this scheme,
a developer must tune up eight parameters by manually selecting a value for each
parameter. Thus, an oracle is required to actually compute its parameter values
[7]. However, while dealing with real, legacy systems, no such oracle exists, i.e., no
priori-known set of traceability links exists. Moreover, using the same parameter
values [7,38] or giving a fixed reward Rk to terms in different part of a system
may not be beneficial for all recovered links. The DOI/IDF is only able to weight
up to six types of SCEs. For example, if a developer wants to use each line of
source code as a type of SCEs then DOI/IDF would not be able to handle so
many SCEs. In the following, we propose an improved version of DOI/IDF , i.e.,
DPTF/IDF , that can deal with any number of SCEs. The DPTF/IDF is easy to
tune with the DynWing without developer’s intervention.

Title Suppressed Due to Excessive Length 19

5.1 Defining DPTF/IDF

State-of-the-art term frequency TF is described by a t × d matrix, where t is the
number of terms and d is the number of documents in the corpus (a document can
either be a requirement or a piece of source code). The TF is often called local
weight. The most frequent term has more weight in TF but it does not mean that
it is an important term:

TFi,j =
ni,j∑
k nk,j

where ni,j is the number of occurrences of a term ti in a document dj , and
∑

k nk,j
is the total number of occurrences of all terms in the document.

DPTF/IDF recognises that not all terms have equal importance. It checks
for the type of a term in the source code to compute its importance, to reward
the term. For example, if a term appears in method name, it could be given
more importance than a term that appears in comments. A term would be highly
rewarded if it appears in two (or more) preferred types of SCEs in the source code.

In DPTF/IDF , we represent a traceability link as a triple (source docu-
ment, target document, similarity) and we use the following notations. Let R =
{r1, . . . , rN} be a set of requirements and C = {c1, . . . , cM} be a set of classes
supposed to implement these requirements. Following Bunge’s ontology [14], let
X = ⟨x, P (x)⟩ be a substantial individual, i.e., an object, where the object X is
identified by its unique identifier x, and P (x) a set of properties.

We consider a class as a collection of all types of SCEs, i.e., all possible sources
of information. Each source of information, such as comments, method names,
or local variables possibly contribute in different ways to provide traceability ev-
idence. To define the SCEs, let ψk be a family of functions k = 1, . . . N . Each
function selects a sub-set of C elements properties, for example, for a given class
cj (our document), a given ψk extracts the method names. In other words, each ψk

function creates a new set of documents. By means of ψk, DPTF/IDF partitions
X5 properties into class name (CN), method name (MN), variables name (VN),
comment (CMT), implementation-level (A), and domain-level (D) terms.

In the two previous case studies, we find that method names are the most
important source of information for developers. However, given two links in two
different classes for two different requirements, the relative importance of methods
names with respect to, for example, class names may change. Let Rk be a set of
reward functions assigning a positive integer when a term, ti, in a class cj belongs
to the projection ψk. This is to say Rk(ψk(cj), ti) implements the ranking defined
in Table 4: it returns values in N . For example, if a term appears in a method
name, then Rk would use the value 6 as reward for that term. In this paper, we use
two methods to calculate the reward: (1) we use developers preferences (see Table
4) to decide and choose the reward and (2) we use DynWing [6], i.e., a dynamic
reward calculator. However, it may also happen that a term belongs to comments
as well as being used as a variable name. The DPTF/IDF implements an additive
reward mechanism thus, if a term is a variable name and it is also included in a

5 We consider any object X is a source code class, i.e., ci.

20 Nasir Ali, Zohreh Sharafi, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

comment, it is rewarded by two Rk dynamically added on per link basis:

DPTFi,j = TFi,j ×
∑
k

λk Rk(ψk(cj), ti)

where λk are the parameters adjusted to maximize DPTF/IDF and, thus, max-
imize DPTF/IDF , where IDF is the inverse document frequency, which weighs
how often a term is encountered in the corpus as follows:

IDFi = log2

(
|D|

d : |ti ∈ d|

)
where |D| is the total number of documents in the collection and d : |ti ∈ d| is
the number of documents in which the term ti appears. The larger d : |ti ∈ d| in
documents set, the smaller contribution of the term in the corpus.

Thus, we define DPTF/IDF as follows:

DPTF/IDFi,j = DPTFi,j × IDFi

5.2 Calculating Parameter Values (λk)

To automatically calculate the values of the parameters, i.e., λk, we apply our
previous approach for dynamic tuning, DynWing [6]. We use DynWing to dynam-
ically combine different sources of information, e.g., software repositories [6]. We
apply the same idea using DynWing to automatically tune parameters values, i.e.,
λk, of DPTF/IDF .

Existing weighting schemes, e.g., DOI/IDF [7], use static parameter values
to compute term weights [5,38]. For example, MN could be chosen to have an
importance of λ = 0.4 and CN to have an importance of λ = 0.3. These static
weighting schemes require oracles to decide a “good” set of parameter values or
an acceptable range of values. Furthermore, these static weighting schemes cannot
dynamically reward terms of the same type in different ways: once the parameter
value associated with class names is chosen, there is no possibility to adapt it to
the class or document under analysis.

In DPTF/IDF , we consider each type of SCEs as an individual entity and dy-
namically assign importance to each of them. Choosing the right parameter value
for each SCE is a problem that we formulate as a maximisation problem. Each
SCE has its own importance in the source code. By maximizing the term impor-
tance value (and hence determining the optimal λk values), the DynWing-based
approach automatically identifies the SCEs that are most trustworthy (highest λk
values) and less trustworthy (lowest λk values) in source code.

The goal of our weighting scheme is to reward more to a term if it appears
in a particular SCE, e.g., method name. First, for each SCE, we compute term’s
weight using stat-of-the-art TF weighting scheme. Second, we pass all the TF
values to DynWing to compute λk. DynWing uses different combinations of values
to automatically adjust the λk, where it maximizes the term’s weight. For example,
if a term in a method name has 0.3 TF and a term in a class name has .4 TF then
DynWing will assign 0.9 to method TF and 0.1 to class TF . DynWing will keep
using different λk values until it finds a combination that gives high weight to the
term in the method name. DynWing uses following constraints to calculate λk:

Title Suppressed Due to Excessive Length 21

max
λ1,...,λN

{DPTFi,j} (2)

with the following constraints:

0 ≤ λk ≤ 1, k = 1, ..., N

λ1 + λ2 + ...+ λN = 1

λk1
≥ λk2

≥ . . . ≥ λkN

(3)

Given the three previous constraints, it is possible that the DynWing-based
approach assigns λk = 1 to a single SCE. To avoid such an assignment, a developer
can define a global term importance. For example, MN may be considered by
the developer more trustworthy than CN. Therefore, the developer may constrain
further Equation 2 by imposing the following constraint:

λMN ≥ λCN > 0

6 Impact of DPTF/IDF - A RT Study

We perform an empirical study to analyse whether the DPTF/IDF weighting
scheme provides better results than the state-of-the-art TF/IDF weighting scheme
and our previously proposedDOI/IDF weighting scheme. We perform a case study
on three datasets, iTrust, Lucene, and Pooka, to analyse how much DPTF/IDF

improves the F-measure of an RT link recovery technique that uses it, as sum-
marised in Table 2.

6.1 Case Study Design

To answer RQ2: Does using DPTF/IDF allow developing a RT links recovery
technique with better accuracy than a technique using TF/IDF? and RQ3: Does
using DPTF/IDF allow developing a RT links recovery technique with better
accuracy than a technique using DOI/IDF?; we build three sets of traceability
links using three different term weighting schemes, i.e., TF/IDF , DPTF/IDF ,
and DOI/IDF .

We formulate the following two null hypotheses related to RQ2 and RQ3:

H04: There is no difference between the accuracy of a LSI-based technique
using TF/IDF and using DPTF/IDF in terms of F-measure.

H05: There is no difference between the accuracy of a LSI-based technique
using DOI/IDF and using DPTF/IDF in terms of F-measure.

Consequently, we define three sets of RT links: LSITF/IDF , LSIDOI/IDF , and
LSIDPTF/IDF . The first set, LSITF/IDF , contains the RT links recovered by a
technique based on LSI and using the standard TF/IDF weighting scheme. The
second and third sets, LSIDOI/IDF and LSIDPTF/IDF are the sets of RT links

22 Nasir Ali, Zohreh Sharafi, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

obtained by a technique also based on LSI but using either the DOI/IDF or
DPTF/IDF weighting schemes.

Then, we perform two comparisons to assess the potential improvement in the
accuracy of the recovered RT links brought by the DPTF/IDF weighting scheme:
(1) LSITF/IDF vs. LSIDPTF/IDF and (2) LSIDPTF/IDF vs. LSIDOI/IDF . With
these comparisons, we can understand the importance of various types of SCEs
for RT links recovery.

6.2 Objects and Oracles

We use three criteria to select the systems that are used in our case studies. First,
we select open-source systems, i.e., iTrust6, Lucene7, and Pooka8, because their
source code is freely available thus, other researchers can replicate our case studies.
Second, we avoid small systems that do not represent real world systems usually
handled by developers. Third, we choose small enough systems to manually create
oracles (“true” RT links).

iTrust (v10.0) is a medical application that provides patients with the means to
keep up with their medical history and records. It helps patients to communicate
with their doctors, including selecting which doctors to be their primary care giver,
and seeing and sharing satisfaction results. iTrust also allows the medical staff to
keep track of their patients through messaging capabilities, scheduling of office
visits, diagnoses, prescribing medication, ordering and viewing lab results, and so
on. iTrust is developed in Java and it has 526 source code files and 35 requirements.
We did not create any traceability for iTrust. We used the same traceability matrix
as provided online6 by the original developer(s).

Lucene (v2.9) is an open-source, high-performance, text-based search-engine
library that is written entirely in Java. It is a technology suitable for nearly any ap-
plication that requires full-text search, especially cross-platform. We select Lucene
v2.9 because it contains more feature requests than other versions and these are
linked to its SVN repository. Lucene has 413 source code files and 116 new fea-
ture requests. We download new feature requests and SVN logs from Lucene JIRA
repository. Developers usually write feature IDs in SVN logs when they add–or
modify a new feature [10]. We automatically extract feature IDs from SVN logs
to link newly requested feature to the related classes. For example, if a developer
committed some files in SVN and mentioned feature ID in the SVN log then we
link particular feature to those committed files. We use new feature requests as new
requirements. Using these requirements and knowing the classes that were added
to the SVN to fulfill them, we build the set of “true” RT links, OracleLucene, which
consists of 744 links.

Pooka (v2.0) is an email client written in Java using the JavaMail API. It
supports reading email through the IMAP and POP3 protocols. Outgoing emails
are sent using SMTP. It supports folder search, filters, context-sensitive colors,
and so on. Pooka version 2.0 has 298 source code files and 90 requirements. We
reuse these 90 functional requirements recovered in our previous work [5]. We use

6 http://agile.csc.ncsu.edu/iTrust
7 http://lucene.apache.org/
8 http://www.suberic.net/pooka/

Title Suppressed Due to Excessive Length 23

these requirements to manually create traceability links between requirements and
source code. Two of the authors created the RT links and the third author verified
all the links to accept or reject them. The true RT links, OraclePooka, consists of
546 verified links.

6.3 Dependent, Independent, and Mitigating Variables

We use the sets of recovered RT links using the three techniques as independent
variables, this variable has three possible values, which correspond to the three
sets of RT links: LSITF/IDF , LSIDPTF/IDF , and LSIDOI/IDF .

We use the F-measure as a dependent variable to empirically attempt to re-
ject the null hypotheses. We compute F-measure of the three sets of RT links in
comparison to OracleLucene, OraclePooka and OracleiTrust. We use the F-measure
because we want to know if the proposed technique improves both precision and
recall. The F-measure is the harmonic mean of precision and recall computed as:

F =
2

1
R + 1

P

where R is the recall, P is the precision, and F is the harmonic mean of R and
P (thus, relative to the jth document in the ranking). The function F assumes
that values are in the interval [0, 1]. The value is equal to 0, when no relevant
documents have been retrieved and it is equal to 1 when all ranked documents
are relevant. Further, the harmonic mean F assumes a high value only when both
recall and precision are high. Therefore, finding the maximum value for the F is
an attempt to find the best possible compromise between precision and recall [4].

6.4 Procedure

The following paragraphs detail the steps to obtain the RT links, LSITF/IDF ,
LSIDPTF/IDF , and LSIDOI/IDF , and to compute their respective F-measure val-
ues with respect to the oracles, OracleiTrust, OracleLucene, and OraclePooka.

Extracting Concepts:

If a term belongs to the domain concepts then Rk (see Section 5.1) will assign
more weight to that term than to term that is an implementation concept. In this
paper, we use LDA [2,28,35] to separate terms likely representing domain concepts.
LDA considers that documents are represented as a mixture of words acquired
from different latent topics, where each topic is characterised by a distribution
of words. We consider two topics: domain-level terms and implementation-level
terms. LDA takes three parameters α, β, and k to create the topics: α is the
Dirichlet hyper-parameter for topic proportions, β is the Dirichlet hyper-parameter
for topic multinomials, and k is the number of topics. More details on using LDA
to extract domain concept are available in previous work [11,22,26,35,37].

In this case study, as in previous work [2], the values for the parameters α and
β are set to 25 (50/k) and 0.1 respectively. The value assigned for k is 2. LDA also
uses a threshold to decide whether or not a term belongs to a topic. We use 0.01
as threshold as suggested by Abebe et al. [2] who used three different threshold

24 Nasir Ali, Zohreh Sharafi, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

points, i.e., 0.01, 0.02, and 0.03, to assess the effect of terms having different levels
of probabilities in representing the topics. Their results showed that 0.01 threshold
provides better results than 0.02 and 0.03.

To concretely separate domain-level and implementation-level terms, we use
an implementation of LDA in Java, i.e., MALLET9. We look at each two topics
to see if one was closer to domain concepts. We read the requirements and look at
each two topics to see if one had more requirement-related terms. We consider the
topic with the most requirement-related terms as containing domain-level terms.

LDA is not yet a perfect technique to accurately distinguish domain-level from
implementation-level terms. However, to the best of our knowledge, LDA is a
widely used and stable approach to extract concepts. Thus, we use the results of
LDA as they were provided by the tool. The results of LDA could impact the
accuracy of our proposed weighting technique. In future, other advanced domain
concept extraction techniques could be integrated in our proposed term weighting
scheme. However, better concept extraction techniques could only improve the
quality of the results generated by our weighting scheme and, thus, we consider
that our use of LDA is conservative.

Generating Corpora:

To process source code, we use Java parser [4] to extract all source code identi-
fiers. The Java parser builds an abstract syntax tree (AST) of source code that can
be queried to extract required identifiers, e.g., class, method names, etc. Each Java
source code file is thus divided in four types of SCEs and the textual information
is stored in their respective source code files. We use these files to apply proposed
weighting schemes to create RT links.

Pre-processing the Corpora:

We perform standard state-of-the-art [34] pre-processing steps. We remove non-
alphabetical characters and then use the classic Camel Case and underscore algo-
rithm to split identifiers into terms. Then, we perform the following steps to nor-
malise requirements and SCEs: (1) convert all upper-case letters into lower-case
and remove punctuation; (2) remove all stop words (such as articles, numbers, and
so on), and (3) perform word stemming using the Porter Stemmer to bring back
inflected forms to their morphemes.

Setting the Global Constraints:

The proposed weighting scheme requires to choose some global constraints (see
Equation 3). We use the ranking based on the fixation time (see Table 4), observed
during eye-tracking case study, to tune Equation 3. We analyse that subjects give
more preference (spent more time) to MN then D, CMT, VN, CN, and A. We
also observed that our subjects looked at domain-level and implementation-level
SCEs 74% and 26% of their time respectively. Thus, we define global constraint
in Equation 3 is as follows:

λMN > λD > λCMT > λV N > λCN > λA > 0

Creating the RT Links:

We use LSI [34] to create the three sets LSITF/IDF , LSIDPTF/IDF , and
LSIDOI/IDF . LSI is an information retrieval technique based on the VSM. For

9 http://mallet.cs.umass.edu

Title Suppressed Due to Excessive Length 25

k = 30 k = 50 k = 100
Pooka 9.02 9.52 9.05
iTrust 16.82 17.76 17.27
Lucene 14.54 17.01 16.13

Table 7 F-measure values using different k values for LSI.

each requirement, LSI generates a ranked list of classes. It assumes that there is
an underlying or latent structure in word usage for every document in a corpus [34].
The processed corpus is transformed into a term-by-document matrix. The values
of the matrix cells represent the weights of the terms in the documents, which are
computed using the weighting schemes: TF/IDF , DPTF/IDF , and DOI/IDF .

The matrix is then decomposed using Singular Value Decomposition (SVD) [34]
to derive a particular latent-semantic structure model from the term-by-document
matrix. In SVD, each term and artifact could be represented by a vector in the
k space. The choice of k value, i.e., the SVD reduction of the latent structure, is
critical and still an open issue in the natural-language processing literature. We
want a value of k to be large enough to fit all the real structures in the data but
small enough so we do not also fit the sampling error or unimportant details. The
selection of a “good” k value requires an oracle of traceability links and, therefore,
we use the oracle as reference to choose the k value. We find that k = 50 provides
better accuracy than the other k values for all three datasets. Table 7 shows the
F-measure results of different k values.

Once all requirements and source code documents have been represented in
the LSI sub-space, we compute the similarities between requirements and classes
using cosine similarity.

Computing the F-measure Values:

We use a threshold t to prune the set of traceability links, keeping only links
whose similarity values are greater than t. We use different values of t from 0.01 to 1
per step of 0.01 to obtain different sets of traceability links with varying precision,
recall, and F-measure values. We use the same t number of threshold values, for
comparing two techniques, to have the same number of data points for paired
statistical test. We use these different sets to assess which technique provides better
F-measure values at all the t. Then, we perform statistical test to assess whether
the differences in F-measure values, in function of t, are statistically significant
between LSITF/IDF vs. LSIDPTF/IDF and LSIDPTF/IDF vs. LSIDOI/IDF .

Analysing the Differences in F-measure Values:

To select an appropriate statistical test, we use the Shapiro-Wilk test to analyse
the distributions of our data points. We observe that these distributions do not
follow a normal distribution. Thus, we use a non-parametric test, i.e., Wilcoxon
test, to test our null hypotheses. We use the α = 0.05 to accept or refute null
hypotheses. Because we have three comparisons, we apply Bonferroni correction
by dividing 0.05 by 3 and rounding α to 0.01

An improvement might be statistically significant but it is also important to
estimate the magnitude of the difference between the accuracy levels achieved with
LSITF/IDF , LSIDPTF/IDF , and LSIDOI/IDF . We use a non-parametric effect size
measure for ordinal data, i.e., Cliff’s d [18], to compute the magnitude of the effect

26 Nasir Ali, Zohreh Sharafi, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

Technique Precision Recall F-Measure Effect Size p-Value

Pooka LSITF/IDF 14.71 21.07 9.52
LSIDOI/IDF 25.73 26.42 14.56 0.98 < 0.01

LSIDPTF/IDF 25.86 27.48 15.15 0.98 < 0.01

iTrust LSITF/IDF 36.43 33.14 17.76

LSIDOI/IDF 39.55 35.07 20.64 0.90 < 0.01

LSIDPTF/IDF 40.24 37.34 22.52 0.91 < 0.01

Lucene LSITF/IDF 24.27 42.28 17.01
LSIDOI/IDF 29.36 39.46 17.48 0.13 < 0.01

LSIDPTF/IDF 27.70 43.74 18.47 0.47 < 0.01

Table 8 Average values and Wilcoxon p-values. We performed Bonferroni correction due to
multiple comparisons.

F-Measure Effect Size p-Value
Pooka LSIDOI/IDF 14.56

0.67 < 0.01
LSIDPTF/IDF 15.15

iTrust LSIDOI/IDF 20.64
0.61 < 0.01

LSIDPTF/IDF 22.52

Lucene LSIDOI/IDF 17.48
0.11 < 0.01

LSIDPTF/IDF 18.47

Table 9 Average F-Measure values of LSIDOI/IDF and LSIDPTF/IDF .

of DPTF/IDF on precision and recall as follows:

d =

∣∣∣∣#(x1 > x2)−#(x1 < x2)

n1n2

∣∣∣∣
where x1 and x2 are F-measure values with LSITF/IDF , LSIDPTF/IDF , and
LSIDOI/IDF , and n1 and n2 are the sizes of the sample groups. The effect size is
considered small for 0.15 ≤ d < 0.33, medium for 0.33 ≤ d < 0.47 and large for
d ≥ 0.47 [33].

6.5 Results

Figure 5 shows the F-measure values of LSITF/IDF and LSIDPTF/IDF . It shows
that LSIDPTF/IDF provides better F-measures at all the different values of thresh-
old t. Figure 5 shows that giving different importance to SCEs, depending on their
role and occurrence in source code, provides better accuracy. Table 8 shows that
LSIDPTF/IDF statistically improves, on average, up to 11%, 6%, and 5.63% pre-
cision, recall, and F-measure, respectively.

We perform the Wilcoxon test on all F-measure values to analyse if the im-
provements are statistically significant. In all the cases, DPTF/IDF statistically
improves the F-measure values with large effect size.

We have statistically significant evidence to reject the H04 hypothesis for all
datasets’ results. Table 8 shows that the p-values, with Bonferroni correction,
are below the standard significant value, i.e., α = 0.05. Thus, we answer RQ2
as follows: integrating the developers’ knowledge, i.e., SCEs preferences, in an
IR technique statistically improves its accuracy.

Title Suppressed Due to Excessive Length 27

Dataset

iTrust

Lucene

Pooka

Fig. 5 F-measure values of LSITF/IDF and LSIDPTF/IDF .

Table 9 shows that results are slightly improved for all three datasets when
compared to DOI/IDF . Figure 6 shows, that most of the times, LSIDPTF/IDF

provides better F-measure values. In the case of Lucene, only in almost 34% of
the cases, LSIDPTF/IDF , was slightly lower then LSIDOI/IDF . However, Table 9
shows that, on average, LSIDPTF/IDF provides better results than LSIDOI/IDF .

We perform the Wilcoxon test to analyse the improvements in F-measure values
using the DPTF/IDF and DOI/IDF . Table 9 shows that LSIDPTF/IDF provides
better results than LSIDOI/IDF . Table 9 shows that using LSIDPTF/IDF , for
Lucene, the effect size goes from no improvement to large a improvement. For

28 Nasir Ali, Zohreh Sharafi, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

Dataset

iTrust

Lucene

Pooka

Fig. 6 F-measure values of LSIDOI/IDF and LSIDPTF/IDF .

Pooka and iTrust, there is not much improvement in the effect size. It is possible
that new and more advanced parameter tuning technique to compute the λk values
would provide even better results.

We have statistically significant evidence to reject the H05 hypothesis for all
datasets. Table 9 shows that the p-values are below the standard significant
value, i.e., α = 0.05. Thus, we answer RQ3 as follows: DPTF/IDF provides
better results than DOI/IDF . DynWing automatically tune DPTF/IDF pa-
rameters and it does not require a developer to tune the parameter for each
dataset separately.

The understanding that we gained by answering RQ2 and RQ3 is important
from the point of view of both researchers and practitioners. For researchers, our
results bring further evidence to support our conjecture that different types of

Title Suppressed Due to Excessive Length 29

SCEs must be given different importance, according to the developers’ prefer-
ences. For practitioners, our results provide concrete evidence that they should
pay attention to terms, in particular method names, to help developers perform
RT tasks. In addition, we show that using domain-level terms in source code helps
developers using an IR technique to create RT links with better accuracy than
using implementation-level terms.

7 Discussion

In response to the research questions defined in Section 1, we observe that devel-
opers have different preferences for different types of SCEs. In summary, during
RT manual verification tasks, developers pay more attention to method names and
their semantic content. We observe that, as soon as developers read a requirement,
they started looking for specific methods of interest and read their comments. We
believe that developers least bothered with the class names because one class
may contain several functionalities [4]. Similarly, we believe that developers paid
less attention to variable names because variable names could be object names of
other classes. Moreover, Figure 2 shows that a high number of fixations on variable
names lead to more wrong answer.

To avoid the bias of eye-tracking observations, we ask our subjects through
a post-experiment questionnaire about the type of SCEs that helped them to
verify RT links. The results of cross verification questions are in agreement with
the observations that we made with the eye-tracking studies. This step gives us
confidence in our findings and mitigates the threats to validity.

In regular text documents’ zoning, researchers mentioned that the title of a
document is important [25,31,44]. If we map a document structure into source
code structure then class name is equal to a document title. In our case study,
we analyse that developers do not give preference to class name. We change our
main constraint in Equation 3 and observe that it decreases the F-measure values.
In some cases, putting comments more important than the other types of SCEs
provides better recall but lower precision. To compare with normal regular textual
documents’ zoning, we give more importance to class name and observe that it
decreases the F-measure value. Thus, we conclude that a document is not the same
as the source code. In addition, MN and domain-level terms play an important
role in manual and automatic RT links recovery tasks.

We used our eye-tracking observations in the LSIDOI/IDF and LSIDPTF/IDF

techniques to analyse how much it improves its accuracy when compared to the
LSITF/IDF technique. Table 8 shows that observing developers during RT tasks
and integrating those observations in an automated RT technique can improve
its accuracy. This is the first step towards using eye-tracking systems to learn
how developers perform RT tasks. Results are promising and exploring more into
previously mentioned direction (observing developers) can improve the accuracy
of automated RT techniques.

We observe that DPTF/IDF is less effective on iTrust and Lucene than on
Pooka. We investigate the reason, we find that in iTrust, many classes do not
contain all types of SCEs, i.e., class, method, variable name, and comments. In
the case of Lucene, we observe that LDA identified 9% more implementation-
level SCEs than domain-level ones. In the case of iTrust, LDA identified 3% more

30 Nasir Ali, Zohreh Sharafi, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

domain-level SCEs terms. In the case of Pooka, LDA identified 14% more domain-
level SCEs than implementation-level SCEs. Thus, we could summarise that if a
dataset contains all types of SCEs and more domain-level SCEs then, the proposed
DPTF/IDF weighting scheme performs better accuracy in terms of F-measure.
However, even in the case of iTrust and Lucene, it has less domain-level SCEs and
fewer classes containing all types of SCEs; the proposed weighting scheme still
provides better accuracy.

We set the parameter values (λk) of our weighting schemes based on the ob-
servations that we made during our eye-tracking case study. DPTF/IDF is com-
pletely automatic once you set preferences for the global constraints defined in 3.
It is quite possible that using other values for λk may yield different results. How-
ever, with the current parameters, we observe that proposed weighting schemes
outperform traditional TF/IDF .

We also made some interesting observations as follows.

7.1 Identifiers’ Vocabulary

We observe that when a similar term appears in both requirement and source code,
it helps developers to provide better accuracy than when different terms refer to
the same idea. RT link verification and recovery techniques are not 100% perfect
yet and a developer must verify the recovered links that are provided by automated
techniques and–or create the missing links. We observe that if the method names
are not meaningful, then a developer may skip the whole method. However, it is
quite possible that the method is implementing the requirement. We only observe
this situation for method names because there is only one class per requirement. It
is quite possible that, if there are meaningless class names, then a developer may
skip the whole class as well without reading the whole source code. We thus suggest
that developers must work closely with requirement engineers to understand the
requirements and use the requirements’ terms to name the SCEs.

The identifiers’ vocabulary does not make any threat to the validity of our
study. In our study, the meaningless SCEs were implementation-level SCEs that
we take into account in our case study.

We observe that domain-level SCEs are developers’ focal points during RT cre-
ation tasks. We record more fixations on domain-level terms. Using implementation-
level terms as identifier names may help developers to remember them and–or their
data type. However, implementation-level identifiers do not help a lot in RT man-
ual and automated tasks. Thus, we give more importance on implementation-level
identifiers and observed decrease in F-measure value.

7.2 Male vs. Female

The main purpose of the study was not to compare the male and female subjects
during RT recovery. However, we make interesting observations that may lead
to future case studies on gender effect on RT tasks. There are 7 female subjects
and 17 male subjects in our study. We observed that female subjects were more
interested in details than male subjects. For example, female subjects directly
look at the implementation of the source code without reading the comments or

Title Suppressed Due to Excessive Length 31

Fig. 7 New Links Recovered using DPTF/IDF .

method names. They spent more time reading variable names and understanding
them. Whereas, male subjects are more concerned about the high-level structure of
the source code. They preferred more method names and comments. However, we
cannot generalise this observation. More detailed studies are required to analyse
gender difference on RT tasks.

7.3 Missing Links Analysis

It could be relatively easy to verify a link than recovering a missing link. Thus,
recall plays an important role in RT. We observe that DPTF/IDF recovers up
to 4.37% more links that have been missed by TF/IDF . Figure 7 shows the re-
call of TF/IDF and DPTF/IDF . In the case of iTrust and Pooka, we find that
DPTF/IDF tries to recover more missing links. For Lucene, the percentage of
missing links is already less than 2%. However, DPTF/IDF still tries to recover
almost 100% links. DPTF/IDF supplements the results of TF/IDF with addi-
tional correct links. We did not observe any case where DPTF/IDF missed a link
that TF/IDF recovered. Figure 7 shows that DPTF/IDF also recovers more links
than DOI/IDF .

7.4 Static Weights vs. DynWing

Manually tuning the parameters (λk) requires a labelled corpus, i.e., an oracle,
that is almost never available [6]. Consequently, previous techniques [5,7,38] used
a range of parameters (λk) values to tune their techniques. However, it is possible
that these manually-tuned parameters may work on one dataset but not on the

32 Nasir Ali, Zohreh Sharafi, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

other. In our previous study [7], we found that iTrust had less good results than
Pooka. One reason could be that the parameter values were better for Pooka.

We use DOI/IDF , with static parameter tuning, as previously used in [7],
and use DPTF/IDF combined with DynWing. Then, we compute the precision,
recall, and F-measure of the obtained links in comparison to our three oracles:
(OracleiTrust, OracleLucene, and OraclePooka).

We observe in Table 9 that DPTF/IDF provides slightly better results than
DOI/IDF . For example, in the case of iTrust, DynWing provides up to on average
1.88% better F-measure than DOI/IDF . In the case of Lucene, Table 8 shows
that DPTF/IDF provides better precision and recall than baseline, i.e., TF/IDF ,
links, whereas DOI/IDF provides better precision but lower recall than baseline.
DPTF/IDF tends to provide a better trade-off between precision and recall. We
conclude that DPTF/IDF combined with DynWing does not require any previous
knowledge of an oracle and developers intervention for tuning parameters for every
dataset. The achieved improvements are statistically significant and with large
effect sizes. In the case of Lucene, Table 8 shows that DOI/IDF has no effect and
that using DPTF/IDF provides a large effect size on improvement.

8 Threats to Validity

Several threats limit the validity of our case studies. We now discuss these potential
threats and how we control or mitigate them.

Construct validity:

Construct validity concerns the relation between theory and observations. In
our empirical study, threats to the construct validity could be due to measure-
ment errors. We use the time spent on each AOI and the percentages of correct
answer to measure the subjects’ efficiency during the eye-tracking case studies.
These measures are objective, even small variations due to external factors, such
as fatigue, could impact their values. We minimise this threat by using small source
code and all the subjects finished each case study within, on average, 30 minutes.
We also use the widely-adopted F-measure to assess our new weighting scheme,
DPTF/IDF , as well as its improvement.

The oracle used to evaluate the accuracy of the RT links could also impact
our results. To mitigate this threat, two authors manually created traceability
links for Pooka and the third author verified the links. In addition, the oracle for
Pooka was not specifically built for this empirical study. We used this oracle in our
previous studies [4,5]. We used iTrust traceability oracle developed independently
by developers who did not know the goal of our empirical study. For Lucene, we
parsed the content of its JIRA version-control repository to create an oracle. It is
possible that developers mentioned a wrong feature ID in some log message but
we manually verified all the RT links in the oracle to discard any false positive
links to minimise this threat.

Internal Validity:

The internal validity of a study is the extent to which a treatment affects
change in the dependent variables. Learning threats do not affect our study for
any specific case study because we provide two independent sets of six different

Title Suppressed Due to Excessive Length 33

pieces of source code to the subjects. Moreover, the subjects did not know the goal
of the case study explicitly.

A threat could occur due to the subjects’ selection and impact our study results
due to natural differences among the subjects’ abilities. In our two eye-tracking
case studies, 24 and 14 subjects performed tasks related to RT links. The total
number of subjects, 38, mitigates the selection threat. The 14 subjects of the second
eye-tracking include 10 subjects from the first eye-tracking case study. Therefore,
their could be a learning effect: these subjects could have learned how to perform
RT link verification tasks. We mitigate this threat by using two different sets of
stimuli and by having a six months gap between the two case studies.

Subjects’ Java experience and background in object-oriented programming
could lead subjects to focus on some types of SCEs just because they are available,
not for their semantic content. We minimise this threat in two ways. First, we ask
all subjects for their preferred types of SCEs during source code comprehension at
the end of the first case study. Second, we perform a second case study highlighting
certain types of SCEs, described in Section 4. The post-experiment questionnaire
and the second case study results confirm the findings of our first case study.

The selection of the λk parameters could also impact the results that we report
in this paper. We minimise this threat by using two different parameters tuning
approaches, i.e., static and dynamic. In both cases, results were statistically im-
proved over the baseline results. However, using different values to tune λk could
provide better or slightly different results.

LDA cannot yet identify domain-level terms perfectly. Thus, our use of LDA to
distinguish domain-level terms from implementation-level terms could impact the
results of RQ2 and RQ3. However, better and more precise approaches would pos-
itively impact our results, thus our use of LDA can be considered as conservative.
We would need more case study to analyse the impact of different domain-level
terms extraction approaches on DPTF/IDF .

External Validity:

The external validity of a study relates to the extent to which we can generalise
its results. The issue of whether students as subjects are representative of software
professionals is one of the threats to generalize our results. Our subjects were
all graduate students with an average of 3.39 years of Java experience, i.e., they
all had good knowledge of Java. In addition, some of the subjects had industrial
experience. Thus, we believe that, as mentioned by Kitchenham et al. [30], “using
students as subjects is not a major issue as long as [we] are interested in evaluating
the use of a technique by novice or non-expert software engineers. Students are
the next generation of software professionals and, so, are relatively close to the
population of interest.”

The other external threat could be the size of the source code in our case study.
It is possible that in real development environment, e.g., Eclipse, subjects may
have different SCEs preferences. However, using development environment with
eye-tracking system would weaken our control over the case study. To mitigate
this threat, we used a post-experiment questionnaire and perform the second case
study to confirm our subjects’ preferred types of SCEs.

Our empirical study was limited to three systems: iTrust, Lucene, and Pooka.
They are not comparable to industrial systems, but the datasets used by other
authors [9,34,38] to compare different IR techniques had comparable sizes. We

34 Nasir Ali, Zohreh Sharafi, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

cannot claim that we would achieve similar results with other systems. Different
systems with different identifiers’ quality, requirements, implementations, or differ-
ent artifacts may lead to different results [3]. However, the three selected systems
have different source code quality and requirements. Thus, our choice reduces this
threat to validity.

Conclusion validity:

Conclusion validity threats deal with the relation between the treatment and
the outcome. We pay attention not to violate assumptions of the performed sta-
tistical tests. In addition, we verify the data distribution before selecting an ap-
propriate parametric or non-parametric test and effect size.

9 Conclusion and Future Work

In this paper, we conjectured that understanding how developers verify RT links

can allow developing an improved IR-based technique to recover RT links with better

accuracy than previous techniques. To support this conjecture, we ask four research
questions (RQs) pertaining to (1) the type of source code entities (SCEs) used by
developers to verify RT links (RQ0 and RQ1) and (2) the use of these to propose a
new weighting scheme, DPTF/IDF , to use with LSI to recover RT links (RQ2 and
RQ3). Tables 1 and 2 summarise the RQs, the case studies performed to answer
them, and the answers.

We answer the RQs as follows. For RQ0, we analyse the eye movements of 24
subjects to identify their preferred SCEs when they read the source code to verify
RT links using an eye-tracking system. Results show that subjects have different
preferences for class names, method names, variable names, and comments. They
search/comprehend source code by reading method names and comments mostly.
We report that, as soon as developers read a requirement, they paid immediately
attention to method names and then comments. We also observe that subjects
give more importance to domain-level SCEs.

For RQ1, we highlight the subjects’ preferred types of SCEs to assess whether
their preferences are due to the location of the SCEs or due to the semantic
contents. Such a preference would be similar to the observation that subjects
trust a piece of information by virtue if it being shown rather than by its intrinsic
value in the results returned by the Google search engine [36]. We show that it is
indeed the semantic content of the SCEs that developers seek.

For RQ2 and RQ3, we propose a new weighting scheme, DPTF/IDF , that
takes into account the subjects’ preferred types of SCEs and compared it with
DOI/IDF . We use LDA to distinguish domain-level terms from implementation-
level ones. We use a LSI technique with DPTF/IDF on three datasets, namely
iTrust, Lucene, and Pooka to show that, in general, the proposed scheme has a
better accuracy than TF/IDF in terms of F-measure. In all three systems, the new
weighting scheme statistically improves the accuracy of the IR-based technique.

Thus, we conclude that taking into account source code elements is impor-
tant to improve the accuracy of RT techniques. Consequently, there are several
ways in which we are planning to continue this work. We will use more advanced
techniques to distinguish domain-level and implementation-level terms [2] and ad-
vanced LDA parameter tuning techniques [37]. We will apply DPTF/IDF on

Title Suppressed Due to Excessive Length 35

different datasets, if possible from the industry. We will also analyse in which type
of SCEs a requirement term plays a more important role. We will apply the pro-
posed weighting scheme on heterogeneous artifacts to analyse the improvement of
the accuracy. We also plan to use DPTF/IDF to improve feature location tech-
niques. We may also perform more case studies on the role of highlighting SCEs in
program comprehension. We plan to replicate this study with industrial developers
in real development environments.

Acknowledgements The authors would like to thank all the participants of the case studies
as this work would not be possible without their collaboration. This work has been partially
supported by the NSERC Research Chairs on Software Cost-effective Change, Evolution and
on Software Patterns and Patterns of Software, and by Fonds de recherche du Québec – Nature
et technologies (FRQNT).

References

1. A. Abadi, M. Nisenson, and Y. Simionovici. A traceability technique for specifications. In
Proceeing of 16th IEEE International Conference on Program Comprehension, pages 103
–112, June 2008.

2. S.L. Abebe and P. Tonella. Towards the extraction of domain concepts from the identifiers.
In Proceeding of 18th Working Conference on Reverse Engineering (WCRE), pages 77
–86, 2011.

3. Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. Factors impacting the inputs of
traceability recovery approaches. In Andrea Zisman, Jane Cleland-Huang, and Olly Gotel,
editors, Software and Systems Traceability, chapter 7. Springer-Verlag, New York, 2011.

4. Nasir Ali, Yann-Gaël Gueheneuc, and Giuliano Antoniol. Requirements traceability for
object oriented systems by partitioning source code. In Proceedings of 18th Working
Conference on Reverse Engineering, WCRE ’11, pages 45–54, Washington, DC, USA,
2011. IEEE Computer Society.

5. Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. Trust-based requirements trace-
ability. In Proceeding of 19th IEEE International Conference on Program Comprehension,
page 10, Washington, DC, USA, 2011. IEEE Computer Society.

6. Nasir Ali, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. Trustrace: Mining software
repositories to improve the accuracy of requirement traceability links. IEEE Transactions
on Software Engineering, 99(PrePrints):1, 2012.

7. Nasir Ali, Zohreh Sharafi, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. An empirical
study on requirements traceability using eye-tracking. In Proceedings of IEEE Interna-
tional Conference on Software Maintenance, pages 191–200, 2012.

8. G. Antoniol, B. Caprile, A. Potrich, and P. Tonella. Design-code traceability for object-
oriented systems. Annals of Software Engineering, 9(1):35–58, 2000.

9. Guiliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia, and Ettore
Merlo. Recovering traceability links between code and documentation. IEEE Transactions
on Software Engineering, 28(10):970–983, 2002.

10. Adrian Bachmann, Christian Bird, Foyzur Rahman, Premkumar Devanbu, and Abraham
Bernstein. The missing links: bugs and bug-fix commits. In Proceedings of the 18th ACM
SIGSOFT international symposium on Foundations of software engineering, FSE ’10,
pages 97–106, New York, NY, USA, 2010. ACM.

11. Pierre F. Baldi, Cristina V. Lopes, Erik J. Linstead, and Sushil K. Bajracharya. A theory
of aspects as latent topics. Sigplan Notices, 43(10):543–562, October 2008.

12. Roman Bednarik and Markku Tukiainen. An eye-tracking methodology for characterizing
program comprehension processes. In Proceedings of the 2006 symposium on Eye tracking
research & applications, ETRA ’06, pages 125–132, New York, NY, USA, 2006. ACM.

13. Roman Bednarik and Markku Tukiainen. An eye-tracking methodology for characterizing
program comprehension processes. In Proceedings of the 2006 symposium on Eye tracking
research & applications, pages 125–132, New York, NY, USA, 2006. ACM.

14. M. Bunge. Treatise on Basic Philosophy: Vol. 3: Ontology I: The Furniture of the World.
Reidel, Boston MA, 1977.

36 Nasir Ali, Zohreh Sharafi, Yann-Gaël Guéhéneuc, and Giuliano Antoniol

15. Teresa Busjahn, Carsten Schulte, and Andreas Busjahn. Analysis of code reading to
gain more insight in program comprehension. In Proceedings of the 11th Koli Calling
International Conference on Computing Education Research, Koli Calling ’11, pages 1–9,
New York, NY, USA, 2011. ACM.

16. Gerardo Cepeda Porras and Yann-Gaël Guéhéneuc. An empirical study on the efficiency
of different design pattern representations in uml class diagrams. Empirical Softw. Engg.,
15:493–522, October 2010.

17. Barthélémy Dagenais, Harold Ossher, Rachel K. E. Bellamy, Martin P. Robillard, and
Jacqueline P. de Vries. Moving into a new software project landscape. In Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1,
ICSE ’10, pages 275–284, New York, NY, USA, 2010. ACM.

18. A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella. Improving ir-based
traceability recovery using smoothing filters. In Proceeding of 19th IEEE International
Conference on Program Comprehension, pages 21 –30, june 2011.

19. Andrea De Lucia, Massimiliano Di Penta, and Rocco Oliveto. Improving source code
lexicon via traceability and information retrieval. IEEE Transactions on Software Engi-
neering, 37:205–227, 2011.

20. Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. Recovering trace-
ability links in software artifact management systems using information retrieval methods.
ACM Trans. Softw. Eng. Methodol., 16(4), 2007.

21. Benôıt De Smet, Lorent Lempereur, Zohreh Sharafi, Yann-Gaël Guéhéneuc, Giuliano An-
toniol, and Naji Habra. Taupe: Visualizing and analyzing eye-tracking data. Science of
Computer Programming, 2012.

22. Bogdan Dit, Annibale Panichella, Evan Moritz, Rocco Oliveto, Massimilano Di Penta,
Denys Poshyvanyk, and Andrea De Lucia. Configuring topic models for software engi-
neering tasks in tracelab. Proceedings of 7th ACM/IEEE International Conference in
Software Engineering, 13:105–109.

23. A.T. Duchowski. A breadth-first survey of eye-tracking applications. Behavior Research
Methods, 34(4):455–470, 2002.

24. A.T. Duchowski. Eye tracking methodology: Theory and practice. Springer-Verlag New
York Inc, 2007.

25. Berna Erol, Kathrin Berkner, and Siddharth Joshi. Multimedia thumbnails for docu-
ments. In Proceedings of the 14th annual ACM international conference on Multimedia,
MULTIMEDIA ’06, pages 231–240, New York, NY, USA, 2006. ACM.

26. Malcom Gethers, Trevor Savage, Massimiliano Di Penta, Rocco Oliveto, Denys Poshy-
vanyk, and Andrea De Lucia. Codetopics: which topic am i coding now? In Proceedings
of the 33rd International Conference on Software Engineering, pages 1034–1036. ACM,
2011.

27. O. C. Z. Gotel and C. W. Finkelstein. An analysis of the requirements traceability problem.
1st International Conference on Requirements Engineering, pages 94–101, April 1994.

28. T.L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the National
Academy of Sciences of the United States of America, 101(Suppl 1):5228–5235, 2004.

29. Y.G. Guéhéneuc. Taupe: towards understanding program comprehension. In Proceedings
of conference of the Center for Advanced Studies on Collaborative research, pages 1–13.
ACM, 2006.

30. Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard, Peter W. Jones,
David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg. Preliminary guidelines
for empirical research in software engineering. Transactions on Software Engineering,
28(8):721–734, August 2002.

31. G. Kowalski. Information retrieval architecture and algorithms. Springer-Verlag New York
Inc, 2010.

32. Andrea De Lucia, Andrian Marcus, Rocco Oliveto, and Denys Poshyvanyk. Information
retrieval methods for automated traceability recovery. In Software and Systems Traceabil-
ity, pages 71–98. 2012.

33. Guillermo Macbeth, Eugenia Razumiejczyk, and Rubén Daniel Ledesma. Cliff’s delta cal-
culator: A non-parametric effect size program for two groups of observations. Universitas
Psychologica, 10(2):545–555, 2011.

34. A. Marcus and J. I. Maletic. Recovering documentation-to-source-code traceability links
using latent semantic indexing. In Proceedings of 25th International Conference on Soft-
ware Engineering, pages 125–135, Portland Oregon USA, 2003. IEEE CS Press.

Title Suppressed Due to Excessive Length 37

35. Girish Maskeri, Santonu Sarkar, and Kenneth Heafield. Mining business topics in source
code using latent dirichlet allocation. In Proceedings of the 1st India software engineering
conference, ISEC ’08, pages 113–120, New York, NY, USA, 2008. ACM.

36. Bing Pan, Helene Hembrooke, Thorsten Joachims, Lori Lorigo, Geri Gay, and Laura
Granka. In Google we trust: Users’ decisions on rank, position, and relevance. Journal of
Computer-Mediated Communication, 12(3):801–823, April 2007.

37. Annibale Panichella, Bogdan Dit, Rocco Oliveto, Massimiliano Di Penta, Denys Poshy-
vanyk, and Andrea De Lucia. How to effectively use topic models for software engineering
tasks? an approach based on genetic algorithms. In Proceedings of the 2013 International
Conference on Software Engineering, pages 522–531. IEEE Press, 2013.

38. Denys Poshyvanyk, Yann-Gaël Guéhéneuc, Andrian Marcus, Giuliano Antoniol, and Va-
clav Rajlich. Feature location using probabilistic ranking of methods based on execu-
tion scenarios and information retrieval. IEEE Transactions on Software Engineering,
33(6):420–432, 2007.

39. K. Rayner. Eye movements in reading and information processing: 20 years of research.
Psychological bulletin, 124(3):372, 1998.

40. Seeing Machine. Seeing Machine’s website - FaceLAB. http://www.seeingmachines.com/
product/facelab/, 2012. Accessed July 13 in 2012.

41. B. Sharif and J.I. Maletic. An eye tracking study on camelcase and under score identi-
fier styles. In Proceedings of 18th International Conference on Program Comprehension
(ICPC), pages 196–205. IEEE, 2010.

42. Bonita Sharif, Michael Falcone, and Jonathan I. Maletic. An eye-tracking study on the
role of scan time in finding source code defects. In Proceedings of the Symposium on Eye
Tracking Research and Applications, ETRA ’12, pages 381–384, New York, NY, USA,
2012. ACM.

43. Bonita Sharif and Huzefa Kagdi. On the use of eye tracking in software traceability.
In Proceedings of the 6th International Workshop on Traceability in Emerging Forms of
Software Engineering (TEFSE), pages 67–70, NY, USA, 2011.

44. Y.H. Sun, P.L. He, and Z.G. Chen. An improved term weighting scheme for vector space
model. In Proceedings of 2004 International Conference on Machine Learning and Cy-
bernetics, volume 3, pages 1692–1695. IEEE, 2004.

45. Hidetake Uwano, Masahide Nakamura, Akito Monden, and Ken-ichi Matsumoto. Ana-
lyzing individual performance of source code review using reviewers’ eye movement. In
Proceedings of the 2006 symposium on Eye tracking research & applications (ETRA),
pages 133–140, New York, NY, USA, 2006. ACM.

46. Jinshui Wang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. An exploratory study of
feature location process: Distinct phases, recurring patterns, and elementary actions. In
Proceedings of 27th IEEE International Conference on Software Maintenance (ICSM),
pages 213 –222, 2011.

47. S. Yusuf, H. Kagdi, and J.I. Maletic. Assessing the comprehension of uml class diagrams
via eye tracking. In Proceedings of 15th IEEE International Conference on Program
Comprehension (ICPC), pages 113–122. IEEE, 2007.

