
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

The Impact of Imperfect Change Rules on
Framework API Evolution Identification:
An Empirical Study

Wei Wu · Adrien Serveaux ·
Yann-Gaël Guéhéneuc · Giuliano Antoniol

Received: date / Accepted: date

Abstract Software frameworks keep evolving. It is often time-consuming for de-
velopers to keep their client code up-to-date. Not all frameworks have documen-
tation about the upgrading process. Many approaches have been proposed to ease
the impact of non-documented framework evolution on developers by identifying
change rules between two releases of a framework, but these change rules are im-
perfect, i.e., not 100% correct. To the best of our knowledge, there is no empirical
study to show the usefulness of these imperfect change rules. Therefore, we de-
sign and conduct an experiment to evaluate their impact. In the experiment, the
subjects must find the replacements of 21 missing methods in the new releases of
three open-source frameworks with the help of (1) all-correct, (2) imperfect, and
(3) no change rules. The statistical analysis results show that the precision of the
replacements found by the subjects with the three sets of change rules are signif-
icantly different. The precision with all-correct change rules is the highest while
that with no change rules is the lowest, while imperfect change rules give a preci-
sion in between. The effect size of the difference between the subjects with no and
imperfect change rules is large and that between the subjects with imperfect and
correct change rules is moderate. The results of this study show that the change
rules generated by framework API evolution approaches do help developers, even
they are not always correct. The imperfect change rules can be used by developers
upgrading their code when documentation is not available or as a complement
to partial documentation. The moderate difference between results from subjects
with imperfect and all-correct change rules also suggests that improving precision
of change rules will still help developers.

W. Wu, A. Serveaux,Y.-G. Guéhéneuc
Ptidej Team, DGIGL, École Polytechnique de Montréal, Canada
E-mail: {wei.wu,adrien.serveaux,yann-gael.gueheneuc}@polymtl.ca

W. Wu, G. Antoniol
Soccer Lab, DGIGL, École Polytechnique de Montréal, Canada
E-mail: {wei.wu,giuliano.antoniol}@polymtl.ca

2 Wei Wu et al.

1 Introduction

Software frameworks and libraries are widely used in software development to re-
duce costs. (Without loss of generality, we use the term “framework” to mean
both frameworks and libraries in this article.) Indeed, developers evolve frame-
works constantly to fix bugs, patch security vulnerabilities, and meet new require-
ments. In theory, the Application Programming Interface (API) of the new release
of a framework should be backward-compatible with its previous releases, so that
programs linked to the framework continue to work with the new release [1].

Yet, upgrading to new releases of frameworks requires significant effort due to
changes to the APIs. Developers must dig into the documents and the source code
of the new and previous releases of the frameworks to understand their differences
and to make their programs compatible with the new releases. The longer they
delay the upgrading, the more time consuming is upgrading, because there will be
more changes to absorb.

To adapt the API changes in new releases of frameworks, developers usually
perform four tasks: (1) find possible replacements of missing APIs, (2) find work-
arounds for missing APIs if their replacements cannot be found, (3) implement
the replacements or the work-arounds and, (4) test the implementation. Finding
replacements for missing APIs (or identifying them as simply deleted, i.e., without
replacements) avoids looking for unnecessary work-arounds and–or trying wrong
replacements, thus reducing the overall time to adapt to new frameworks.

An effective way to help find the proper replacements is documentation. How-
ever, many frameworks are not sufficiently documented, especially when it comes
to the changes between releases and the rules to adapt programs from an older
release to a new one. The Java programming language provides the @deprecated

annotation to help framework developers mark API changes, but developers do
not always use these annotations to document how to update to the new releases.
As examples, Google provides Android API difference reports1 regularly but these
reports only list the API removed or added, but do not include the information on
how to replace the removed APIs. Eclipse informs developers about internal APIs
and official APIs with Provisional API Guidelines2, using Javadoc annotations to
describe changes and, sometimes, replacements to deprecated methods. By the
definition, internal APIs can be changed without notice and documentation. How-
ever, a survey conducted by Businge et al. showed that 70% of the developers of
Eclipse-related projects used Eclipse internal APIs and only 3.3% of them always
followed Eclipse Provisional API Guidelines [2]. Other ad hoc forms of upgrad-
ing documents include, for example, dedicated tutorials, such as the one helping
Python developers to replace calls to the os.system() with functions provided
by the subprocess module3. In general, very few companies explicitly document
changes in APIs or provide such information to the public.

Therefore, many approaches have been developed to provide replacements for
missing APIs. Some approaches require that the framework developers do addi-
tional work, such as providing explicit upgrade rules with annotations [3] or that
they record API updates to the framework [4–6]. However, framework developers

1 http://developer.android.com/sdk/api_diff/8/changes.html
2 http://wiki.eclipse.org/Provisional_API_Guidelines#Before_the_API_freeze
3 http://docs.python.org/2/library/os.html#os.system

Title Suppressed Due to Excessive Length 3

may not be able or willing to build change rules manually or use specific tools.
Thus, to avoid the extra work for framework developers, other approaches auto-
matically identify change rules that describe a matching between target methods,
i.e. methods existing in the old release of a framework but not in the new one, and
replacement methods in the new release [7–21]. The change rules generated by these
approaches are imperfect or not all of them are correct. Their precision varies in
the frameworks analyzed.

However, with these approaches as with upgrading documents, developers do
not know if the change rules are correct until having used them to modify their
client programs. Based on their understanding of the frameworks, if they believe
that the change rules are correct, they will modify their code accordingly and
test if the replacements indeed fix the errors and provide the expected behavior.
For the missing methods whose change rules that they believe are incorrect or
whose replacements do not pass the tests, developers must explore the documents
or source code of the releases of the framework to search for the replacements
manually.

Zhang and Budgen [22] stated that “Software design is widely recognised as
being a “wicked” or “ill-structured” problem, characterised by ambiguous spec-
ifications, no true/false solutions (only ones that are “better” or “worse” from
a particular perspective), the lack of any “stopping rule” to determine when a
solution has been reached, and no ultimate test of whether a solution meets the
requirements.” Therefore, there are no strict standards to assess the effectiveness
of many software engineering activities but empirical studies. In the context of
framework API evolution, to the best of our knowledge, there is no empirical
study of the usefulness of the imperfect change rules (generated by tools or from
other sources) to show that the imperfect change rules help developers to identify
the replacements more accurately and faster than without change rules or, rather,
that they confuse developers because they are not all correct. Although we could
expect that using already-known all-correct change rules would help developers,
it could actually slow them down in the case which developers would not be cer-
tain that the change rules are correct. Indeed, according to Fagar [23], providing
no information is actually better than providing the wrong information: it is less
confusing and distracting. Knowing the usefulness of imperfect change rules could
encourage and direct research on framework API evolution.

Therefore, we design and conduct an experiment to evaluate the usefulness of
framework API evolution change rules. In the experiment, the subjects find the
replacements of target methods with the help of all-correct, imperfect, and no
change rules. Then, we measure the performance of the subjects by the precision
of the replacement methods that they find and the time that they spend. To limit
the influence of a specific program on the results, we ask the subjects to analyze
three medium size programs (JHotDraw v5.2–v5.3, JFreeChart v0.9.11–v0.9.12,
and JEdit v4.1–v4.2). To limit the experiment time to about one hour, we did
a pre-experiment evaluation of the required time and found that analyzing seven
changed APIs in each program can meet the experiment time requirement. Thus,
we randomly select seven change rules for each program. Among them, five correct
rules and two incorrect change rules in the imperfect change rules of JEdit v4.1–
v4.2 and six correct rules and one incorrect change rule for JFreeChart v0.9.11–
v0.9.12 and JHotDraw v5.2–v5.3. The precision of the imperfect change rules is
similar to that of the state-of-the-art approaches to framework API evolution.

4 Wei Wu et al.

We use a randomized, complete block design [24] in our experiment to minimize
the number of subjects required and to lessen some threats to validity, discussed in
Section 6. Under this design, each subject performs experiments with all the three
programs and the three sets of change rules, but the orders of the combinations
of programs and change rule sets are randomized. In total, 31 subjects participate
in the experiment. The statistical analysis shows that the precision of the replace-
ments of target methods found by the subjects with all-correct, imperfect, and no
change rules are significantly different with average values of 82%, 71%, and 57%,
respectively. The effect size (Cliff’s Delta) of the difference in precision between
the subjects with no and imperfect change rules is large and that between the
subjects with imperfect and all-correct change rules is moderate. Different from
the precision values, the time that the subjects with the three treatments spend
to find the replacement methods is not statistically different with average values
of 24, 23, and 25 minutes (1,413, 1,338, and 1,479 seconds), respectively.

These results are evidence that change rules generated by framework API evo-
lution approaches are useful, even when some of the change rules are incorrect.
Yet, as expected, the higher precision the change rules have, the more help they
provide. Thus, the imperfect change rules can be used instead of unavailable docu-
mentation or as complement to partial documentation. Developers of frameworks
could also use them as starting point to build upgrading documentation. The dif-
ference between results between subjects with imperfect and all-correct change
rules is moderate. Therefore, improving the precision of change rules will still help
developer.

In the reminder of the paper, Section 2 introduces previous work. In Section 3,
we describe the design and the execution of the experiment. The analysis results
are presented in Section 4. Section 5 discusses related issues. Threats to validity
are discussed in Section 6. Conclusions and future work are presented in Section
7.

2 Related Work

We now discuss the related works. First, we present approaches to frameworks
API evolution, then introduce previous related empirical studies in software engi-
neering.

2.1 Framework API Evolution Approaches

Several approaches help developers evolve their programs when the frameworks
that they use change. We now discuss the differences between these approaches
and ours according to the formulation presented in this paper.

2.1.1 Inputs

Existing approaches of capturing API-level changes require the framework develop-
ers to manually enter the change rules or to use a particular IDE to automatically
record the changes. Chow and Notkin [3] presented a method that requires the
framework developers to provide change rules with the new releases. CatchUP!

Title Suppressed Due to Excessive Length 5

[5] and JBuilder [6] record the refactoring operations in one release and replay
them in another. MolhadoRef [4] also employs a record-and-replay technique for
handling API-level changes in merging program releases. These approaches can
provide accurate change rules because of the framework developers’ involvement,
which might not always be available.

Dagenais and Robillard’s SemDiff [8] and HiMa of Meng et al. [17] use software
repository commits. Diff-CatchUp, developed by Xing and Stroulia [25], uses the
models of logical design of two releases of a program as input. Others approaches
[12,14,15,18,20] take the source code of evolved frameworks as input. Schäfer et

al. [18]’s approach also uses the client programs code as a part of its input.

2.1.2 Features

The features used by the approaches to framework API evolution are the more
specific information extracted from the inputs, such as call-dependency relations
or text similarity.

The features used by the approaches of capturing API-level changes [3,5,6,4]
are different presentations of the change rules manually added or automatically
captured. These approaches have a specific model for each target method and its
replacement.

Godfrey and Zou’s [12] and S. Kim et al.’s [14] approaches use text similar-
ity, software metrics, and call dependency relations to describe target methods
and their replacements. Xing and Stroulia [25] extract the differences between two
releases of the logical design models using lexical and structural similarity, in-
cluding text similarity, inheritance relations, usage dependencies, and association
relations. M. Kim et al.’s [15] compute LCS of the target methods and its replace-
ment to measure the difference between them. SemDiff [8], Schäfer et al. [18], and
AURA [20] use call-dependency relations measured by confidence value and vari-
ous presentations of text similarity. HiMa [17] uses call-dependency relations and
natural-language-analysis-filtered comments of consecutive commits.

2.1.3 Matching Techniques

The approaches of capturing API-level changes only need simple matching tech-
niques to match the collected change rules with the target methods, but the de-
velopers’ involvement that they require might not be available.

The matching techniques of Godfrey and Zou’s [12] and S. Kim et al.’s [14]
approaches are based on origin analysis techniques. The former is semi-automatic
while the latter is automatic. Diff-CatchUp [25] defined three sets of heuristics for
class, method, and fields, respectively to order the possible replacement methods.
SemDiff [8] and Schäfer et al. [18] first use confidence values to preselect the pos-
sible replacement methods, then use text similarity to rank them. The difference
between them is that the former focuses on how frameworks adapt to their own
changes while the latter discovers the usage changes from client code. M. Kim et

al.’s [15] classifier leverages systematic renaming patterns using text similarity to
match old APIs to new APIs. AURA [20] uses a multi-iteration algorithm com-
bining call-dependency and text similarity analyses. HiMa’s [17] generates initial
change rules using processed revision comments, then expends and refines them
using call-dependency analysis.

6 Wei Wu et al.

2.2 Empirical Study on Program Comprehension

Another field related to this work is the empirical studies on program comprehen-
sion. Lawrie et al.’s conducted an empirical study to investigate the influence of
identifiers on program comprehension [26]. Sharif et al. [27] and Sharafi et al. [28]
use eye-tracking systems to compare camel-case and underscore identifier styles.
The former focuses on accuracy and speed when developers recognize identifiers
while the latter studies identifier comprehension from the point of view of gen-
ders. Some studies focus on diagram comprehension, such as UML. Cepeda and
Guéhéneuc evaluated the impact of three visual presentations on design pattern
comprehension with an eye-tracking system. Yusuf et al. conducted an experiment
to study the characteristics of UML class diagrams that affect program compre-
hension [29]. Soh et al. performed an experiment to assess the role of professional
status and expertise on UML class diagram comprehension. There are also other
empirical studies related to program comprehension. Abbes et al. performed an ex-
periment to evaluate the impact of two anti-patterns (Blob and Spaghetti Code) on
program comprehension [30]. Ali et al. use eye-tracking system to rank developer’s
preferred entities, such as class names, method names [31].

2.3 Summary

To the best of our knowledge, there is no empirical study to show the usefulness of
the change rules generated by approaches to framework API evolution, i.e., if the
imperfect change rules can help developers to identify the replacement methods
more accurately or faster than without them, despite the popularity of empirical
studies in software engineering. Thus, we designed and conducted this study.

3 Experiment

The goal of our experiment is to verify that the imperfect change rules help de-
velopers to find the replacements of target methods more accurately or faster
than without such them. The usefulness of imperfect change rules describing API
evolutions is the quality focus of our experiment and its perspective is to help
developers to decide if they should use imperfect change rules when they upgrade
their client programs to new releases of frameworks, when documentation is not
available, complete, or up-to-date. The context of our experiment is finding the
replacements of 21 target methods of three frameworks by 31 subjects with three
treatments: (1) all-correct, (2) imperfect, and (3) no change rules. The correctness
of the change rules is unknown to the subjects. We follow the guidelines described
by Wohlin et al. [24] to present our experiment.

3.1 Research Questions

We expect that the results of the experiment can answer the two research questions:

Title Suppressed Due to Excessive Length 7

– RQ1: Is there a difference between the precision of the replacements of the
target methods found by the subjects with all-correct, imperfect, and no change
rules?

– RQ2: Is there a difference between the time that the subjects spend to find
replacements with all-correct, imperfect, and no change rules?

In the experiment, although we do not give any time constraint to perform
the tasks, we cannot expect all subjects to be able or willing to finish all of them.
Therefore, we take both the time spent and the precision of the answers into
account. The differences between our experiment and real context are discussed
in Section 5.5.

3.2 Objects

The objects of our experiment are the source code of two releases of three frame-
works written in Java. We choose three medium size programs as objects of our
experiment. These three programs are among those that we and other researchers
have analyzed: JEdit v4.1–v4.2, JFreeChart v0.9.11–v0.9.12, and JHotDraw v5.2–
v5.3. JEdit is a text editor4. It has 37 releases between 2000 and 2013. Its API
and implementation between its v4.1 and 4.2 changed dramatically. JFreeChart is
a chart library5. There are 54 release between 2000 to 2013. The APIs between its
v0.9.11 and v0.9.12 also changed a lot and there are many APIs in v0.9.12 with
very similar names. The dramatic changes in the two programs are challenging for
both developers and the approaches to identify API changes. JHotDraw is a GUI
framework6 developed by Gamma et al. to demonstrate the application of design
patterns [32]. Its is less active compared to the former two programs with only 12
releases between 2001 and 2011. Yet, between v5.2 and v5.3, they are several API
changes. Previous approaches to identify API changes have all very high precision
when applied on these two versions of JHotDraw.

We use these programs for four reasons. First, Java is supported by most
framework API evolution approaches [8,15,17,18,20,21]. Second, by using pro-
grams with which we are familiar, we can more easily identify correct and im-
perfect change rules and better evaluate the results of the subjects on the tasks
in the experiment. Third, these programs have different characteristics regarding
framework API evolution. We believe that they are representative of typical API
evolution patterns. Fourth, these programs are of medium sizes with numbers of
lines of code ranging from 9,441 to 64,710, as shown in Table 1: the subjects do
not have to spend too much time to explore them.

The source code of the three programs is provided to subjects in an Eclipse
workspace. We also recommend the subjects to explore the source code with
Eclipse. They are available online7. We present change rules and collect subjects’
answers using a dedicated Web site (see Section 3.9).

4 http://www.jedit.org
5 http://www.jfree.org/jfreechart
6 http://www.jhotdraw.org
7 http://www.ptidej.net/download/experiments/emse13a

8 Wei Wu et al.

Frameworks Releases # Methods # SLOC

JHotDraw
5.2 1,486 9,441
5.3 2,265 14,612

JEdit
4.1 2,773 46,176
4.2 3,547 59,804

JFreeChart
0.9.11 4,751 59,060
0.9.12 5,197 64,710

Table 1 Object Systems

3.3 Tasks

We also consider the difference between experiment and real context, when we
design the tasks for the subjects. While finding replacements of missing methods,
developers can use the compiler and their tests to verify if a replacement is correct.
We do not provide client code in the experiment for two reasons. First, the client
code could have helped the subjects to verify if the replacements were correct, but
it cannot help developers find the correct replacements. Second, there would have
been extra effort for the subjects to make the client code executable using the
replacements. For example, if there was a new parameter in a replacement, to find
out the proper value for that parameter would have taken time too. Such effort
cannot be saved by change rules and we excluded it from our experiment.

Consequently, we design our experiment tasks as program comprehension to
verify if the imperfect change rules can help subjects locate the replacements faster
or more accurately than with all-correct or no rules. We measure both the precision
of the answers of the subjects and the time that they spend. So, incorrect answers
do not prevent us to evaluate subjects’ performance.

We select a set of target methods from each framework and ask the subjects to
find their replacements in the source code of the new release with all-correct, im-
perfect, and no change rules. For example, a subject is given a target method from
JEdit v4.1, void org.gjt.sp.jedit.gui.FloatingWindowContainer.save(org.gjt.sp.

jedit.gui.DockableWindowManager.Entry), which does not exist in v4.2. She searches
for its replacement by going through the source code of JEdit v4.1 and v4.2. Ac-
cording to our design, she may be provided with correct, incorrect, or no replace-
ments methods, depending on her treatment. The subject does not know if the
change rule is correct or not, therefore she must verify it by understanding the
source code. In the end, she may or may not find that the actual replacement is
org.gjt.sp.jedit.GUIUtilities.saveGeometry(java.awt.Window,java.lang.

String). We measure her performance by the precision of the replacement methods
that she found and the time that she spent on the task.

3.4 Subjects

The subjects are volunteer software practitioners familiar with Java. Among the
total 31 subjects, nine are B.Sc., four are M.Sc., and 16 are Ph.D. students in
computer science or software engineering, two subjects are professional developers
working in software development companies; 10 subjects are female and 21 are
male. Their task distribution is shown in Table 18.

Title Suppressed Due to Excessive Length 9

3.5 Independent Variable

The independent variable of our experiment is the kind of set of change rules
provided to subjects. We have three treatments:

– TRc: All-correct change rules.
– TRi: Imperfect change rules.
– TRn: No change rule.

A change rule is the mapping between a target method and their replacements
in the new release of a framework. It can be correct or incorrect if the replace-
ment methods in the change rule can replace the target method or not. A set of
imperfect change rules, TRi, represents a set of change rules mixing correct and
incorrect replacement methods. Usually, the change rules generated by framework
API evolution approaches are imperfect. A set of all-correct change rules, TRc,
includes change rules manually verified to be correct, i.e., to provide correct re-
placement method(s) to a given target methods. We do not inform subjects that
the change rules are imperfect or all-correct before performing the experiment.
Because the change rules are randomly selected, we do not control the relations
between the target methods and the type of change rules.

To build TRc, TRi, and TRn, we first generate the change rules of the ob-
ject systems with AURA [20]. We choose AURA, because it is a state-of-the-art
approach to framework API evolution. Our experiment studies the influence of all-
correct, imperfect, or no change rules - using other tools or even building change
rules manually do not affect the results of the study. Second, we randomly select
five correct rules and two incorrect change rules for JEdit v4.1–v4.2 and six correct
rules and one incorrect change rule for JFreeChart v0.9.11–v0.9.12 and JHotDraw
v5.2–v5.3 to build the imperfect change rules, TRi. The precision of TRi is close
to that of the state-of-the-art approaches to framework API evolution. Third, we
manually correct the incorrect change rules to build TRc and remove all the re-
placements from the change rules in TRi to build TRn. To limit the time of the
experiment approximately to one hour, we perform a pre-experiment and choose
21 change rules, seven from each program.

3.6 Dependent Variable

The dependent variables of our experiment are the precision of the replacements
that the subjects identify for the given target methods and the time that they
spend on the task. We compute the precision using the equation below. For each
target method, we compare the subjects’ answers, i.e., given set of methods, against
the manually-validated, expected set of replacement methods. Time is counted in
seconds when subjects work on the tasks. Break time, if there were any, were
excluded.

Precision =
|{Correct Replacements}|
|{Given Target Methods}|

10 Wei Wu et al.

3.7 Mitigating variables

We collected several mitigating variables that could influence the results of our
experiment:

– Subjects’ knowledge of the object programs;
– Subjects’ knowledge of Java;
– Subjects’ knowledge of Eclipse;
– Subjects’ experience in software engineering;
– Learning effect;
– Fatigue;
– Experiment environment.

For the first four mitigating variables, we asked the subjects to fill a question-
naire to provide their levels of knowledge on five-point Likert scales [33] (bad, quite
good, good, excellent or expert). Their knowledge levels are show in Table 2. We
provide a tutorial about the functions related to our experiment to minimize the
influence of the knowledge of Eclipse. We verify if there is any correlation between
the dependent variables and the four mitigating variables during the result analy-
sis. We limit learning effect and fatigue with a randomized complete block design
[24]. To minimize the influence of the environment, we require that the subjects
complete the tasks in a quiet environment.

KnowledgeLevel
Topics

SE Java Eclipse JHotdraw JEdit JFreechart
Bad 0 1 1 21 22 20

Quite Good 1 5 10 7 7 6
Good 18 19 16 3 2 3

Excellent 8 5 3 0 0 2
Expert 4 1 1 0 0 0

Table 2 Subjects’ Knowledge Levels

3.8 Hypotheses

The null hypotheses of our experiment are that there is no difference between the
precision of the replacements of the target methods found by the subjects and the
time that they spend with the help of all-correct, imperfect, and no change rules.
For example:

– Hp1: There is no difference between the precision of the replacements of the
target methods found by the subjects find without change rules and with im-
perfect change rules.

The completed null hypotheses are in Table 3.

Title Suppressed Due to Excessive Length 11

Hp1 There is no
precision of the without change rule and with imperfect change rules.

Hp2 replacement methods without change rule and with correct change rules.
Hp3 difference

found by the subjects with imperfect change rules and with correct change rules.
Ht1 time spent

without change rule and with imperfect change rules.
Ht2 between the

without change rule and with correct change rules.
Ht3 by the subjects with imperfect change rules and with correct change rules.

Table 3 Null Hypotheses

3.9 Experiment Web Site

To conduct the experiment and abstract the presentation of the change rules
from a particular tool format, we develop a dedicated Web site. The screen-
shots of the main Web pages are shown in Figure 1. Page 1(a) is the paper
where the subjects fill in background information. Page 1(b) is the main task
page. For each target method, the page displays the target method on the left
(e.g., TextFigure.disconnect()) and a set of candidate replacement methods, i.e.,
obtained from a change rule, on the right-bottom corner (e.g., TextFigure.dis-

connect(Figure)). The right-top box is for subjects to enter their answers.
The gathering of information from the subjects, such as background informa-

tion and experiment question answers, occurs in a Web browser. All the data that
subjects enter and the time that they spend on each question are stored in a
database. The subjects do not need paper or writing. The experiment Web site is
accessible online8 and its source code is also available online8.

3.10 Experiment Workspace

Besides using the experiment Web site to read the questions, the target and sug-
gested replacement methods (if any), and to enter their answers, the subjects
had also to explore the source code of the object programs to find the replace-
ment methods. We provided an Eclipse workspace to each subject with the source
code of JEdit v4.1–v4.2, JFreeChart v0.9.11–v0.9.12, and JHotDraw v5.2–v5.3, as
shown in Figure 2 and available online8. With Eclipse, the subjects could check
the definitions and usage context of the target methods, read the source code of
both versions of the source code of the frameworks, and identify the replacements.

3.11 Experiment Process

For each program, the subjects had to find the replacements for the seven target
methods with all-correct, imperfect, or no change rules.

At the beginning of the experiment, each subject received two tutorials in PDF
format. One tutorial explains the procedure of the experiment without revealing
the purpose of our study: what subjects should do and how they fill in the answers
of the questions. The other tutorial was about the use Eclipse to explore the source
code of the frameworks, in case some subjects were not familiar with it. We asked
the subjects to read these two documents carefully before the experiment. If the

8 http://web.soccerlab.polymtl.ca/~serveaua/experiment/ with password: ptidejexp

12 Wei Wu et al.

(a) Background Information

(b) Question

Fig. 1 Web Site

subjects had any questions, they could ask us in person if they performed the
experiment in our laboratory or by email if they did it remotely.

When the subjects were familiarized with the experiment and Eclipse, we ad-
ministered a pre-experiment questionnaire to collect their gender, level of study,
profession, knowledge in software engineering, Eclipse, Java, and the frameworks
used in the study, using the background information page of our Web site.

Then, they completed the tasks by exploring the source code of the frame-
works, looking for the replacement methods of each target method displayed on
the question pages. According to the treatment, they had either all-correct or im-

Title Suppressed Due to Excessive Length 13

Fig. 2 Source Code Workspace

perfect replacements methods or no method at all to help them. When they found
the replacement method(s), they copied the qualified names of the replacement
methods from Eclipse or from the box at the bottom-right corner of the ques-
tion pages and pasted them into the answer box on each question page. Eclipse
provides a context menu to copy the qualified names of methods easily and our
tutorial explained how to use this feature. If the subjects thought that the target
method was simply deleted, i.e., without any replacement, they could fill in “null”
in the answer box.

3.12 Analysis Method

We compared the subjects’ answers with the all-correct rules and classified those
as wrong if they were different from the all-correct rules.

We tested our hypotheses using Kruskal-Wallis test [24], which is applicable
for non-parametric randomized, complete block designs. The hypotheses testing
results are presented as Table 4. We chose Kruskal-Wallis test because we did
not have to make any assumption on the distribution of the data collected in
the experiment. The regular α value of single comparison Kruskal-Wallis test was
0.05. Our experiment had three object programs for each treatment. Therefore,
we adjusted the α value to 0.01 according to the Bonferroni correction [34]. If the
p-value of Kruskal-Wallis tests was smaller than 0.01, the results with different
treatments were statistically different. We also computed the Cliff’s Delta d [35] of
the results with different treatments to evaluate the effect size of their differences.
Cliff’s Delta is also a non-parametric and it does not require any knowledge of the
distribution of the data. The effect size is small for 0.147 ≤ d < 0.33, medium for
0.33 ≤ d < 0.474, and large for d ≥ 0.474, respectively. We computed p-values and

14 Wei Wu et al.

Cliff’s Deltas of the results on all three frameworks and each framework separately
to distinguish the potential effect of one particular framework.

We always applied the statistical tests on the average precision values of the
subject’s answers and average times spent by the subjects for subjects using two
different treatments, for example subjects provided with all-correct change rules
and subjects provided with no change rules. In the next section, for the sake of
simplicity, we talk about precision and time to mean average precision values and
average time spent by subjects.

4 Result Analysis

We now report the collected data and discuss the data analysis and the results
of hypothesis testing. First, we report the general results on the precision of the
subjects’ answers and the time that they spent. Then, we discuss the results on
the three frameworks separately.

4.1 Overall Data Analysis

Precision. The distribution of the data on precision is shown in Figure 3. On
average, the precision values of the answers of the subjects with all-correct change
rules is the highest with the value of 82%. The next is that with imperfect change
rules with the value of 71%. The precision of the answers without change rule is
the lowest with the value of 57%. In Table 4, the hypothesis testing results show
that there are statistically significant differences in the precision of the subjects’
answers when they used all-correct, imperfect, and no change rules. In the third
column, the value of Cliff Delta is moderate between the subjects with imperfect
and all-correct rules and it is large between those with imperfect and no change
rules. These results support the expectation that even imperfect change rules help
developer find the correct replacements.

Therefore, we conclude that the subjects with all-correct change rules could
find the replacements of the target methods more accurately than the subjects
with the other two treatments. The subjects with imperfect change rules did not
perform as well as the former, but significantly better than the subjects without
change rule. However, even with all-correct change rules, the subjects still could not
correctly answer all the questions. This last observation is evidence of the difficulty
of framework API evolution. We further discuss this observation in Section 5.

Time. Figure 4 shows the distribution of the time that subjects spent with the
tree treatments. The subjects spent almost the same time to find the replacement
methods with all-correct, imperfect, or no change rules. The subjects with imper-
fect change rules spent less time than the subjects with the other two treatments.
On average, they spent 23 minutes (1,338 seconds) while the subjects with all-
correct change rules and without change rule used 24 minutes (1,413 seconds) and
25 minutes (1,479 seconds), respectively. However, the hypothesis testing results
do not confirm any statistically significance difference between the times spent
with each treatment, as shown in Table 5.

Title Suppressed Due to Excessive Length 15

Fig. 3 Boxplots for Precision

Discussion. We examined the outliers in precision and time. There were two sub-
jects with precision of 14% on JHotDraw and JEdit, respectively, and three spent
more than 46 minutes (2,800 seconds) on a single program: one on JHotdraw and
two on JFreechart. There was no common subject between the two cases in preci-
sion and three cases in time. The results of these five subjects were “normal” when
they worked on the other programs. Four of the five cases were on the first program
that they analyzed in the experiment. We suspect that these outlier cases were
caused by these subjects being not really familiar with the experiment tasks and
tools. The other outlier case (more time on JFreechart) was on the third program.
Probably, the subject productivity was compromised by tiredness.

4.2 Data Analysis per System

The results presented above show that the change rules helped the subjects to
find the replacements of the target methods more accurately but not faster than

16 Wei Wu et al.

Treatements
Kruskal-Wallis

Cliff’s Delta
p-value

No-Imperfect-Correct
< 0.01

N/A
(4.496e-06)

No-Imperfect
< 0.01 Large

(0.006293) (0.619)

No-Correct
< 0.01 Large

(5.269e-06) (1.325)

Imperfect-Correct
< 0.01 Moderate

(0.002763) (0.443)

Table 4 Hypothesis Testing Results for Precision

Treatements
Kruskal-Wallis

Cliff’s Delta
p-value

No-Imperfect-Correct
> 0.01

N/A
(0.1378)

No-Imperfect
> 0.01

N/A
(0.02611)

No-Correct
> 0.01

N/A
(0.3348)

Imperfect-Correct
> 0.01

N/A
(0.6272)

Table 5 Hypothesis Testing Results for Time

without them. We want now to investigate if this conclusion applies to all three
frameworks. Therefore, we also compare the results on different framework indi-
vidually to see if the change rules helped similarly.

4.2.1 JHotDraw

Precision. For JHotDraw, the boxplot in Figure 3 shows that the precision of the
subjects’ answers with imperfect change rules was better than that of the subjects
without change rule and the precision of the subjects answers with all-correct
change rules was the best, but the differences between the precision of subjects’
answers with the three treatments are not statistically significant, according to the
hypothesis testing results in Table 6.

Time. Regarding the time that subjects spent on JHotDraw, Figure 4 shows that
the average values of the subjects’ time with the three treatments were slightly
different. Similar to the general result on time, the hypothesis testing results (Table
7) show that the differences are not statistically significant. The change rules did
not help to find the replacement methods faster or slower, while adapting to the
new release of JHotDraw.

Discussion. JHotDraw is a program developed by Gamma et al. to demonstrate
the application of design patterns [32]. It was elegantly designed and consistently
coded. When we studied its v5.2 and v5.3, we found that it is very straightfor-
ward to navigate and understand its source code. Between JHotDraw v5.2 and

Title Suppressed Due to Excessive Length 17

Fig. 4 Boxplots for Time

v5.3, the change rules helped subjects, but it did not take much more time for
subjects to complete the task without them. Indeed, the hypothesis testing results
on JHotDraw show that there is no statistically significant differences between the
subjects with the three treatments.

4.2.2 JFreeChart

Precision. The change rules helped subjects to find replacements for the target
methods of JFreeChart more accurately. The boxplot in Figure 3 shows that the
precision of the subjects’ answers with correct change rules was the best and the
precision of the subjects’ answers with imperfect change rules is better than that
without change rule. There is much less overlap between the precision values of the
subjects’ answers with the three treatments than that on JHotDraw and JEdit.
The hypothesis testing results confirm that the differences between the subjects’
answers with no vs. all-correct and no vs. imperfect change rules are statistically

18 Wei Wu et al.

Treatements
Kruskal-Wallis

Cliff’s Delta
p-value

No-Imperfect-Correct
> 0.01

N/A
(0.01738)

No-Imperfect
> 0.01

N/A
(0.5376)

No-Correct
> 0.01

N/A
(0.01008)

Imperfect-Correct
> 0.01

N/A
(0.02132)

Table 6 Hypothesis Testing Results for Precision on JHotDraw

Treatements
Kruskal-Wallis

Cliff’s Delta
p-value

No-Imperfect-Correct
> 0.01

N/A
(0.3632)

No-Imperfect
> 0.01

N/A
(0.2353)

No-Correct
> 0.01

N/A
(0.2207)

Imperfect-Correct
> 0.01

N/A
(0.7223)

Table 7 Hypothesis Testing Results for Time on JHotDraw

significant with large effect size and the difference between the subjects’ answers
with imperfect and all-correct change rules is not significant.

Treatements
Kruskal-Wallis

Cliff’s Delta
p-value

No-Imperfect-Correct
< 0.01

N/A
(0.001069)

No-Imperfect
< 0.01 Large

(0.004354) (1.60919)

No-Correct
< 0.01 Large

(0.001702) (1.80291)

Imperfect-Correct
> 0.01

N/A
(0.08238)

Table 8 Hypothesis Testing Results for Precision on JFreeChart

Time. Similar to JHotDraw, Figure 4 shows that the average values of the times
spent by the subjects with the three treatments are only slightly different. The
subjects with imperfect change rules have the largest value while the subjects with
all-correct change rules have the smallest. The hypothesis testing results in Table
9 show that there are no significant differences. The change rules did not help
save time to find the replacement methods while upgrading to the new release of
JFreeChart.

Title Suppressed Due to Excessive Length 19

Treatements
Kruskal-Wallis

Cliff’s Delta
p-value

No-Imperfect-Correct
> 0.01

N/A
(0.5209)

No-Imperfect
> 0.01

N/A
(0.5676)

No-Correct
> 0.01

N/A
(0.4288)

Imperfect-Correct
> 0.01

N/A
(0.3198)

Table 9 Hypothesis Testing Results for Time on JFreeChart

Discussion. JFreeChart is a Java chart library to generate different types of charts.
Between v0.9.11 and v0.9.12, there were many methods with similar names in the
two versions, such as DefaultBoxAndWhiskerCategoryDataset.getMedianValue(int,
int) and DefaultBoxAndWhiskerXYDataset.getMedianValue(int, int). It would be
time-consuming to go over all of these similar methods to find possible replace-
ment methods and verify them. Therefore, with the change rules, subjects used
much less time to find the replacements than those without them.

Because of the differences between a real context and our experiment, the
subjects without change rules spent almost the same time as the subjects with
imperfect and all-correct change rules, but with lower precision in their answers.
Although we asked them to take as much time as they needed, it seems that
they just spent the same effort as the subjects with the other treatments and did
not verify their answers thoroughly. The hypothesis testing results show that the
precision of the subjects’ answers with imperfect and all-correct change rules are
statistically better than that without change rules, while the time that they spent
is not significantly different.

4.2.3 JEdit

Precision. Similar to the precision for JFreeChart, the boxplot in Figure 3 shows
that the average value of precision of the subjects’s answers with imperfect change
rules is better than that of the subjects without change rule and that the precision
of the subjects’ answers with all-correct change rules is the best. In Table 10,
the hypothesis testing results of the precision for JEdit shows that there is no
statistically significant difference between the subjects’ answers with imperfect
and no change rules while the difference between the subjects’ answers with all-
correct and no change rules is statistically significant with large effective size.

Time. The distribution of the times that subjects spent on JEdit is different than
those on JHotDraw and JFreeChart as shown in Figure 4. First, the subjects with
imperfect change rules used the least time to answer. Second, the times spent by
the subjects with the three treatments were very different. The hypothesis testing
results (Table 11) confirm that only the difference between times spent by the
subjects with imperfect and no change rules is significant with a large effective
size. The differences between the times spent by the subjects with imperfect and
all-correct change rules and with all-correct and no change rules are not significant.

20 Wei Wu et al.

Treatements
Kruskal-Wallis

Cliff’s Delta
p-value

No-Imperfect-Correct
< 0.01

N/A
(0.00329)

No-Imperfect
> 0.01

N/A
(0.1959)

No-Correct
< 0.01 Large

(0.001198) (1.98641)

Imperfect-Correct
> 0.01

N/A
(0.02876)

Table 10 Hypothesis Testing Results for Precision on JEdit

Treatements
Kruskal-Wallis

Cliff’s Delta
p-value

No-Imperfect-Correct
< 0.01

N/A
(0.008001)

No-Imperfect
< 0.01 Large

(0.001939) (0.7322)

No-Correct
> 0.01

N/A
(0.4812)

Imperfect-Correct
> 0.01

N/A
(0.04125)

Table 11 Hypothesis Testing Results for Time on JEdit

Discussion. JEdit is a free text editor supporting plugins and syntax highlighting
for more than 200 programming languages. When we analyzed JEdit, we found
that the implementations of v4.1 and v4.2 changed dramatically. The major dif-
ferences between the two versions make the upgrading process more difficult for
the subjects. The precision between the subjects with all-correct and no change
rules are significantly different, but not between the subjects with imperfect and
no change rules. However, the time that subjects spent with imperfect and no
change rules is statistically different. The subjects with imperfect change rules
spent much less time than the subject without change rule with similar precision
in their answers. So, the change rules did save some effort for JEdit.

One result on JEdit that we did not expect is that the average time spent by
the subjects with all-correct change rules was more than that for the subjects with
imperfect change rules. To explain this observation, we first checked if there was
any correlation between the results and the mitigating variables, but the answer
was negative. Then, we checked if the ten subjects with all-correct change rules on
JEdit also spent more time than the other subjects when they worked on JHotDraw
and JFreechart with imperfect and no change rules. We found that these subjects
did spend 39% more time than the others, on average. We applied Kruskal-Wallis
test to the time spent by these ten subjects and others on other tasks. The p-values
are 0.20, 0.20, 0.05 and 0.83 on JHotdraw with imperfect and no change rules and
JFreechart with imperfect and no change rules, respectively. These results show
that, in three of the four other tasks, these ten subjects spent more time than the
other subjects with more the 80% confidence. The only exception was when they
worked on JFreechart with no change rule. We suspect that all these ten subjects

Title Suppressed Due to Excessive Length 21

reached the upper bound of the time that they could spend on one program in our
experiment, because JFreechart’s code is more difficult to comprehend.

4.3 Summary

Based on the results of the experiment and the statistical analyses, we answer the
research questions as follows:

– RQ1: Is there a difference between the precision of the replacements of the
target methods found by the subjects with all-correct, imperfect, and no change
rules?
Answer. Yes, the precision values of the subjects’ answers with the help of
all-correct, imperfect, and no change rules shows statistically significant dif-
ferences. The subjects with all-correct change rules have the higher value, the
next is with imperfect change rules, and the subjects without change rules have
the lowest value. The effect size of the differences in precision values between
the subjects with no and imperfect change rules is large and that between the
subjects with imperfect and all-correct change rules is moderate.

– RQ2: Is there a difference between the time that the subjects spend with all-
correct, imperfect, and no change rules?
Answer. No, there is no significant difference between the times spent by the
subjects with all-correct, imperfect, and no change rules.

These results show that the change rules generated by framework API evolution
approaches are useful. Yet, different to upgrading to new releases of frameworks in
a real context, the subjects could only spend limited times on the tasks, no matter
how serious they were. So, they could given wrong answers. In a real context,
the change rules will help developers to adapt their client code to new releases of
frameworks faster, because they must work on the upgrading until they have 100%
precision. As we discussed after presenting the results on each object program, the
effect of the change rules can vary on a specific framework.

5 Discussion

We now discuss the influence of the mitigating variables and other issues impacting
the results of our study.

5.1 Mitigating Variables

For mitigating variables like fatigue and learning effect, we used a randomized,
complete block design to minimize their influences. There are five other mitigat-
ing variables whose influence we could not neutralize: gender, degree, knowledge of
software engineering, Java, and Eclipse, because we did not have this information
until the subjects performed the experiment. Therefore, we verified if there was
any correlation between the precision of the subjects’ answers (the times spent by
the subjects) and the five mitigating variables, using permutations tests. A permu-
tation test [36] is non-parametric and does not require normal data distribution.

22 Wei Wu et al.

We also consider gender as a mitigating variable, because the differences be-
tween male and female in problem solving activities have been studied before[37–
39,28]. We want to see if the results of our experiment are correlated with gender.

Tables 12 to 16 show that the precision of the subjects’ answers are not cor-
related to the five mitigating variables. (The time that the subjects spent are
not correlated to the five mitigating variables either and the results can be found
online9.)

Df R Sum Sq R Mean Sq Iter Pr(Prob)

Treatment 2 9961.83 4980.91 500000.00 <0.01

SE 1 18.39 18.39 232090.00 0.81

Treatment:SE 2 1042.32 521.16 500000.00 0.20

Residuals 87 27276.64 313.52

Table 12 Precision: Two-way Permutation Test by Change Rule Type and Knowledge in
Software Engineering

Df R Sum Sq R Mean Sq Iter Pr(Prob)

Treatment 2 9961.83 4980.91 500000.00 <0.01

Java 1 64.57 64.57 500000.00 0.64

Treatment:Java 2 83.80 41.90 408504.00 0.88

Residuals 87 28188.98 324.01

Table 13 Precision: Two-way Permutation Test by Change Rule Type and Knowledge in
Java

Df R Sum Sq R Mean Sq Iter Pr(Prob)

Treatment 2 9961.83 4980.91 500000.00 <0.01

Eclipse 1 55.64 55.64 469963.00 0.68

Treatment:Eclipse 2 291.67 145.84 500000.00 0.64

Residuals 87 27990.04 321.72

Table 14 Precision: Two-way Permutation Test by Change Rule Type and Knowledge in
Eclipse

5.2 NASA Task Load Index

Besides the two objective measurements of subjects’ performance (precision and
time), we also asked the subjects to fill in the NASA Task Load Index (NASA-
TLX) [40] after each program to give their subjective evaluation of the effort

9 http://www.ptidej.net/download/experiments/emse13a

Title Suppressed Due to Excessive Length 23

Df R Sum Sq R Mean Sq Iter Pr(Prob)

Treatment 2 9545.85 4772.92 500000.00 <0.01

Gender 1 582.55 582.55 500000.00 0.17

Treatment:Gender 2 156.21 78.11 500000.00 0.78

Residuals 87 27598.60 317.23

Table 15 Precision: Two-way Permutation Test by Change Rule Type and Gender

Df R Sum Sq R Mean Sq Iter Pr(Prob)

Treatment 2 9956.99 4978.49 500000.00 <0.01

Degree 2 91.86 45.93 500000.00 0.86

Treatment:Degree 4 2014.42 503.60 500000.00 0.17

Residuals 84 26231.07 312.27

Table 16 Precision: Two-way Permutation Test by Change Rule Type and Degrees

Fig. 5 NASA-TLX

to complete the tasks. The NASA-TLX is a subjective measurement of subjects’
workload in human–machine environments, using six sub-scales: Mental Demands,
Physical Demands, Temporal Demands, Own Performance, Effort and Frustration,
as shown in Figure 5. Each sub-scale is measured from 1 to 20. Level 1 represents
the lightest or the best while level 20 means heaviest or worst. We computed the
average value of the six sub-scales as the overall NASA-TLX value [41].

Because the NASA-TLX depends on the subjects’ personal feeling, we did not
use it as a dependent variable, but it is interesting to see the relations between
NASA-TLX value and the two objective measurements of subject performance.
The distribution of the NASA-TLX values (see Figure 6) and the hypothesis test-
ing results on NASA-TLX values (see Table 17) show that there is no statistical
difference between the subjects with all-correct, imperfect, and no change rules. We

24 Wei Wu et al.

(a) General (b) On JHotDraw

(c) On JFreeChart (d) On JEdit

Fig. 6 Boxplots for NASA-TLX

argue that the main reason for observing statistically-similar NASA-TLX values
is that the subjects’ feelings vary dramatically between subjects.

We cross-referenced the NASA-TLX values and the times that the subjects
spent. For the same NASA-TLX value, the times could be very different. For
example, 11 subjects gave a NASA-TLX value of 7 for their tasks, but the times
that they spent varied between 14 minutes (849 seconds) and 40 minutes (2,379
seconds). Similarly, we observed a subject with a NASA-TLX value of 2 who spent
40 minutes (2,378 seconds) on the tasks.

We suspect that the randomized, complete block design of the experiment
amplified the variance of the subjects’ feelings regarding their workload. If we
had used only one object program, the subjects could have reported consistent
feelings between the treatments. However, an experimental design with one object
program would have been a serious threat to the generalizability of the results. The
lesson learned is that it is risky to use only subjective measurements as dependent
variables in experiments. Subjects may choose different values for similar personal
feeling on same tasks, especially when the experiment design is complex.

Title Suppressed Due to Excessive Length 25

Treatements
Kruskal-Wallis p-value

General JHotDraw JFreeChart JEdiit
No-Correct- > 0.01 > 0.01 > 0.01 > 0.01
Imperfect (0.978) (0.6182) (0.6777) (0.8287)

No- > 0.01 > 0.01 > 0.01 > 0.01
Imperfect (0.9379) (0.507) (1) (0.7228)

No- > 0.01 > 0.01 > 0.01 > 0.01
Correct (0.9211) (0.3443) (0.4208) (0.4989)

Imperfect- > 0.01 > 0.01 > 0.01 > 0.01
Correct (0.8209) (0.7191) (0.4954) (1)

Table 17 Hypothesis Testing Results for NASA-TLX

5.3 Change Rule Types

The change rules can be classified in different ways. While considering code ele-
ment changes, the change rules can be return type , package , class, method, and
parameter changes (assuming frameworks written in Java). The change rules used
in the experiment cover all these code element change types. While considering
the mapping between changed API and its replacements, the types of the change
rules include one-replaced-by-one, one-replaced-by-many, many-replaced-by-one,
and simply-deleted. In our experiment, besides one-replaced-one change rules as
illustrated in Section 3.3, the randomly selected change rules in our experiment
also include one-replaced-by-many and simply-deleted rules. For the target meth-
ods of one-replaced-by-many change rules, the answers of subjects are correct only
when they find all the replacements. Subjects can answer “null” as replacement
when they think that the target methods are simply-deleted.

The goal of our experiment is to investigate the influence of all-correct and
imperfect change rules in comparison to no change rules. The influence of different
types of change rules is an interesting future study.

5.4 Skeptical Subjects

The results of the experiment show that the subjects were serious and skeptical
about the provided change rules. Because they do not know a priori, even with
the correct change rules, most of the subjects spent almost the same time as the
subjects without them to find the replacement methods. The hypothesis testing
results on time confirm this conclusion statistically. Moreover, the average precision
of the subjects’ answers with all correct change rules is just 82%. Even with correct
change rules, the subjects did correctly answer all the questions during the time
that they spent for our experiment even though we did not give any time limitation
to the subjects. This observation is a further evidence of the difficulty of framework
API evolution.

5.5 Experiment vs. Real Tasks

The differences between our experiment and framework upgrading tasks in a real
context are caused by the goal of this study, which focuses only on a part of the

26 Wei Wu et al.

framework upgrading tasks. In the experiment, the subjects are volunteers. No
matter how serious they are, they can only spend a limited amount of time on
the experiment. We cannot expect all of them to be able or willing to finish all
the tasks correctly if they take too long. In a real context, developers first would
try to find the replacements of missing methods. If they could not find any proper
replacements, then they would need to find a work-around. Finally, whether with
replacements or work-arounds, they would test their programs after changes. If the
test passes, then the upgrading task would be done, else they would keep working
on it or they would stay with the previous release of the framework.

Our study focuses on the impact of imperfect change rules on framework API
evolution identification. We want to investigate if the imperfect change rules still
help developers find the replacements of missing methods caused by software evo-
lution, such as class or parameter changes. It does not cover finding work-arounds
and testing. If we had asked the subjects to perform real framework upgrading
tasks, finding work-arounds and testing would have increased the precision and
the time spent. However, following previous works on change-rules for framework
APIs [8,15,17,18,20,25], we assume that providing more accurate replacement
methods can only help developers by reducing (1) the time spent understanding
the new framework, (2) the time spent performing the changes necessary to adapt
their programs, and (3) the overall time spent in the cycle {search-for-replacement,
change, test}. Yet, in addition to the threats to the validity to our experiment dis-
cussed in Section 6, it is possible that other factors impact the accuracy and time
of the overall cycle and future work is necessary (1) to study these factors in de-
tails, (2) to understand how time is spread throughout the cycle, and (3) to assess
the impact of the change rules (and of their accuracy) on the whole cycle.

We argue that finding replacements for missing methods is a program com-
prehension task and, consequently, we designed our experiment as other program
comprehension experiments, asking the subjects to answer questions based on their
understanding of the frameworks. In our experiment, the subjects were volunteers.
No matter how serious they were, they could only spend a limited amount of time
on the experiment. We could not ask them to perform real framework upgrading
tasks, because they could take very long time. Therefore, subjects may have given
answers even if they were not 100% confident. Although we asked the subjects to
take as much time as they needed, the time that the subjects spent ranges from
40 to 120 minutes and the precision of their answers lies between 14% and 100%.
The average times for choosing a replacement method are 24, 23, and 25 minutes
(1,413, 1,338, and 1,479 seconds). The times spent by the subjects with all-correct,
imperfect and no change rules are not statistically different. These times are quite
short and likely to be shorter than the times necessary to test the changes. On the
one hand, such times show the importance of using API change rules to reduce
the overall time of choosing and testing a change. On the other hand, such times
do not show the total times needed to complete the changes to satisfy the tests in
the absence of change rules, which may be longer than the average times with no
change rules, because developers must find a work-around and not just provide a
possible replacement, as in our experiment.

There is another difference between a real context and our experiment. In a
real context, developers must have client code to test the replacements. In our
experiment, we did not provide such client code for two reasons. First, the test
code could have helped the subjects to verify if the replacements were correct,

Title Suppressed Due to Excessive Length 27

but it cannot help developers find the correct replacements. Second, there could
have been extra effort for the subjects to make the client code executable using
the replacements. For example, if there was a new parameter in a replacement,
to find out the proper value for that parameter could have taken time too. Such
effort cannot be saved by change rules and we excluded it from our experiment.

5.6 Subjects vs. Professional Developers

In our experiment, most subjects are students. From their answers, we can see
that they understood the frameworks well because most of their answers are cor-
rect. Still, they are different from professional developers. We can see subjects as
inexperienced developers. Change rules may help experienced and inexperienced
developers in different ways. For experienced developers, their experience can help
them to distinguish the correct and wrong change rules. So, change rules let them
quickly focus on “difficult” changes. For inexperienced developers, change rules
can reduce the general comprehension effort by guiding them to a relatively small
part of the frameworks. Only further studies with professional and expert subjects
could help identify differences, if any.

6 Threats to Validity

Some threats limit the validity of our study. We discuss these threats and how we
accepted or mitigated them following the guidelines provided by Wohlin et al. [24].

Construct Validity. Construct validity verifies that the observation really reflects
the theory, i.e., if the treatment reflects the cause and the outcome reflects the
effect. We wanted to evaluate if change rules help subjects find the replacements
of target methods more accurately and faster. We used correct, imperfect, and no
change rules as the treatments. We used the precision of the subjects’ answers and
the time that they spent as the outcomes. Some mitigating variables could affect
the outcomes and we minimized their influence as described in Section 3.7. We
did not observe correlations between the mitigating variables and the outcomes
in the collected data. Thus, we argue that the treatments and outcomes reflect
the cause and the effect. We use our tool, AURA [20], to collect raw change rules
from which we selected 21 correct change rules, verified manually. Moreover, we
used a dedicated Web site to present the change rules to the subjects. Therefore,
we used AURA only to make it easier for us to build the sets TRc and TRi. The
experiment does not depend on AURA, its algorithms or the formats of its change
rules. We could have used another tool but choose AURA by convenience and due
to his high precision on the three object programs.

Internal Validity. Internal validity verifies that the outcome is really caused by the
treatment. To overcome threats to internal validity, first, we selected three object
programs to avoid that the experiment results depended on the properties of a
single program. Second, we used a randomized, complete block design to avoid
maturation threats, such as fatigue and learning effect. Third, we did not provide
feedback to the subjects’ answers, so the subjects could complete subsequent tasks

28 Wei Wu et al.

using the answers of previous questions. Fourth, we chose Eclipse, a popular IDE
as tool to explore the source code to avoid instrumentation threat. Among the
31 subjects, only one reported poor skills with Eclipse. We provided a tutorial
about the Eclipse features required for the experiment to help such inexperienced
subjects. Fifth, because wrong answers may be due to misunderstood tasks, we
provided detailed experiment instructions and asked the subjects to read them
carefully before answering questions. The experiment results showed that the sub-
jects well understood the tasks. Sixth, asking subjects for their genders could lead
to anxiety and decreased performances (stereotype threat). However, our study
shows that gender could not explain any differences among subjects and, there-
fore, that this threat does not impact the results of our study. Last, no subject
participated in the development of the experiment design, documents, tasks, and
Web site. We also asked the subjects not to talk about the experiment with other
people before the end of the study to avoid diffusion threat.

Conclusion Validity. Conclusion validity verifies that the relation between the out-
come and the treatment can be proved statistically. The null hypotheses are well
defined. In total, 31 subjects participated in the experiment. We applied Kruskal-
Wallis test [24], which is proper for randomized, complete block design to verify
the significance level and Cliff’s Delta [35] to evaluate the effect size. Both Kruskal-
Wallis test and Cliff’s Delta do not make any assumption on the distribution of
data collected during the study.

External Validity. External validity verifies that the results of a study are gener-
alizable. We identify two threats to external validity. The first is the interaction
between selection and treatment. In our experiment, the subjects acted as software
developers. Yet, because of their limited number and specific demographics, they
may not represent generally software developers accurately. However, all the 31
subjects who participated in the experiment were university-level students or had
a degree in computer science or software engineering. Most of them had a good
knowledge in Java, Eclipse, and software engineering. Among 29 subjects, 20 of
them were graduate students. Thus, we believe that they represent junior software
developers. The second threat is interaction of setting and treatment. We only
used three Java programs and 21 target methods in our experiment. They may
not reflect the whole framework API evolution problem. Considering the popular-
ity of frameworks in Java and the variety of the three object programs, we believe
this setting is not a major threat to external validity. We also chose the 21 target
methods randomly, so there was no bias for this factor in our experiment design.

7 Conclusion

Software frameworks are indispensable in software development to reuse existing
code and reduce development and testing costs. They constantly evolve to fix bugs
and add new features. It is often time-consuming for developers to keep their code
up-to-date with new framework versions due to the pace of software evolution.
However, the upgrading process is not always documented. Thus, approaches have
been proposed to lessen the impact of non-documented (or partially documented)
framework evolution on developers by identifying change rules between two releases

Title Suppressed Due to Excessive Length 29

of a framework. Usually, the change rules are imperfect, i.e., not 100% percent
correct. To the best of our knowledge, there was no empirical study to show the
usefulness of the change rules, i.e., to show whether imperfect change rules can
help developers to identify the replacements more accurately or faster than without
them. We designed and conducted an experiment to evaluate the precision of the
replacement methods that subjects find and the time that they spend with all-
correct, imperfect, and no change rules.

The dependent variables of the experiment were the precision of the replace-
ment methods that the subjects found and the times that they spent with and
without the help of change rules. We chose randomly 21 target methods as the
independent variable of the experiment and defined three treatments: all-correct,
imperfect, and no change rules. To limit the influence of a specific program on the
results and to control experimental time, we chose three medium-size programs
(JHotDraw v5.2–v5.3, JFreeChart v0.9.11–v0.9.12, and JEdit v4.1–v4.2) and seven
target methods for each program. Because of the numbers of treatments and ob-
ject programs, we use a randomized, complete block design [24] to minimized the
number of subjects required and to overcome some threats to validity discussed in
Section 6.

In total, 31 subjects participated in the experiment. In general, the statis-
tical analysis results showed that the precision values of subjects’ answers with
all-correct, imperfect, and no change rules are significantly different with average
values of 82%, 71% and 57%, respectively. The effect size Cliff’s Delta of the differ-
ences between the precision of the subjects’ answers with no and imperfect change
rules is large and that between the subjects with imperfect and correct change
rules is moderate. The time that the subjects spent with the three treatments to
find the replacements methods is not statistically different with average values of
24, 23, and 25 minutes (1,413, 1,338, and 1,479 seconds), respectively.

In conclusion, the results of our study show that the change rules generated by
framework API evolution approaches are useful. The higher precision the change
rules have, the better help they provide. Thus, the imperfect change rules can be
used instead of unavailable documentation or as complement to partial documen-
tation. Developers of frameworks could also use them as starting point to build up-
grading documentation. The experiment results also suggest that approaches that
generate change rules may not need perfect precision but rather possibly should
seek other ways to help developers, for example through better integration with
development environment or through generating work-arounds for simply deleted
methods. Consequently, while future work includes experiments to investigate the
influence of types of change rules and the influence of change rules with different
values of precision, it also should investigate other ways to help developers, includ-
ing the behaviors between male and female, professional and student, novice and
expert subjects when they perform framework API evolution identification tasks,
formats of change rules, mining code samples to generate work-arounds.

Acknowledgement

The authors would like to thank all the anonymous subjects, who contributed their
effort and time for this work, and the anonymous reviewers for their comments
that greatly improve the quality of this article.

30 Wei Wu et al.

References

1. D. M. German and A. E. Hassan, “License integration patterns: Addressing license mis-
matches in component-based development,” in ICSE ’09: Proceedings of the 2009 IEEE
31st International Conference on Software Engineering. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 188–198.

2. J. Businge, A. Serebrenik, and M. van den Brand, “Analyzing the eclipse api usage: Putting
the developer in the loop,” in CSMR, 2013, pp. 37–46.

3. K. Chow and D. Notkin, “Semi-automatic update of applications in response to library
changes,” in : Proceedings of the 1996 International Conference on Software Maintenance,
ser. ICSM 1996. Washington, DC, USA: IEEE Computer Society, 1996, p. 359.

4. D. Dig, K. Manzoor, R. Johnson, and T. N. Nguyen, “Refactoring-aware configuration
management for object-oriented programs,” in ICSE ’07: Proceedings of the 29th inter-
national conference on Software Engineering. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 427–436.

5. J. Henkel and A. Diwan, “Catchup!: capturing and replaying refactorings to support api
evolution,” in ICSE ’05: Proceedings of the 27th international conference on Software
engineering. New York, NY, USA: ACM, 2005, pp. 274–283.

6. C. Kemper and C. Overbeck, “What’s new with jbuilder,” in JavaOne Sun’s 2005 World-
wide Java Developer Conference, 2005.

7. G. Antoniol, M. D. Penta, and E. Merlo, “An automatic approach to identify class evolu-
tion discontinuities,” in IWPSE ’04: Proceedings of the Principles of Software Evolution,
7th International Workshop. IEEE Computer Society, 2004, pp. 31–40.

8. B. Dagenais and M. P. Robillard, “Recommending adaptive changes for framework evo-
lution,” ACM Transactions on Software Engineering and Methodology, vol. 20, no. 4, pp.
19:1–19:35, Sep. 2011.

9. S. Demeyer, S. Ducasse, and O. Nierstrasz, “Finding refactorings via change metrics,”
in OOPSLA ’00: Proceedings of the 15th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications. New York, NY, USA: ACM, 2000,
pp. 166–177.

10. D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Automated detection of refactorings
in evolving components,” in ECOOP ’06: Proceedings of the 20th European Conference
on Object-Oriented Programming. Springer Berlin / Heidelberg, July 2006.

11. B. Fluri and H. C. Gall, “Classifying change types for qualifying change couplings,” in
ICPC ’06: Proceedings of the 14th IEEE International Conference on Program Compre-
hension. Washington, DC, USA: IEEE Computer Society, 2006, pp. 35–45.

12. M. W. Godfrey and L. Zou, “Using origin analysis to detect merging and splitting of source
code entities,” IEEE Trans. Softw. Eng., vol. 31, no. 2, pp. 166–181, 2005.

13. Y. Kataoka, M. D. Ernst, W. G. Griswold, and D. Notkin, “Automated support for pro-
gram refactoring using invariants,” in Proceedings of the IEEE International Conference
on Software Maintenance, ser. ICSM 2001. Washington, DC, USA: IEEE Computer
Society, 2001, p. 736.

14. S. Kim, K. Pan, and E. J. Whitehead, Jr., “When functions change their names: Auto-
matic detection of origin relationships,” in WCRE ’05: Proceedings of the 12th Working
Conference on Reverse Engineering. Washington, DC, USA: IEEE Computer Society,
2005, pp. 143–152.

15. M. Kim, D. Notkin, and D. Grossman, “Automatic inference of structural changes for
matching across program versions,” in ICSE ’07: Proceedings of the 29th international
conference on Software Engineering. Washington, DC, USA: IEEE Computer Society,
2007, pp. 333–343.

16. G. Malpohl, J. J. Hunt, and W. E. Tichy, “Renaming detection,” in ASE ’00: Proceedings
of the 15th IEEE international conference on Automated software engineering. Wash-
ington, DC, USA: IEEE Computer Society, 2000, p. 73.

17. S. Meng, X. Wang, L. Zhang, and H. Mei, “A history-based matching approach to iden-
tification of framework evolution,” in Proceedings of 34th International Conference on
Software Engineering, ser. ICSE 2012, 2012, pp. 353–363.

18. T. Schäfer, J. Jonas, and M. Mezini, “Mining framework usage changes from instantia-
tion code,” in ICSE ’08: Proceedings of the 30th international conference on Software
engineering. New York, NY, USA: ACM, May 2008, pp. 471–480.

19. P. Weißgerber and S. Diehl, “Identifying refactorings from source-code changes,” in ASE
’06: Proceedings of the 21st IEEE/ACM International Conference on Automated Software
Engineering. Washington, DC, USA: IEEE Computer Society, 2006, pp. 231–240.

Title Suppressed Due to Excessive Length 31

20. W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, “Aura: a hybrid approach to identify
framework evolution,” in Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ser. ICSE ’10. New York, NY, USA: ACM, 2010,
pp. 325–334. [Online]. Available: http://doi.acm.org/10.1145/1806799.1806848

21. Z. Xing and E. Stroulia, “Refactoring detection based on umldiff change-facts queries,”
in WCRE ’06: Proceedings of the 13th Working Conference on Reverse Engineering.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 263–274.

22. C. Zhang and D. Budgen, “What do we know about the effectiveness of software
design patterns?” Transactions on Software Engineering, vol. 38, no. 5, pp. 1213–1231,
September–October 2012. [Online]. Available: http://ieeexplore.ieee.org/xpl/login.jsp?
tp=&arnumber=5975176

23. R. H. Fagard, J. A. Staessen, and L. Thijs, “Advantages and disadvantages of the meta-
analysis approach,” Journal of Hypertension, vol. 14, no. 2, September 1996.

24. C. Wohlin, P. Runeson, and M. Höst, Experimentation in Software Engineering: An In-
troduction. Springer, 1999.

25. Z. Xing and E. Stroulia, “API-evolution support with diff-CatchUp,” IEEE Trans. Softw.
Eng., vol. 33, no. 12, pp. 818 – 836, December 2007.

26. D. Lawrie, C. Morrell, H. Feild, and D. W. Binkley, “Effective identifier names for com-
prehension and memory,” ISSE, vol. 3, no. 4, pp. 303–318, 2007.

27. B. Sharif and J. I. Maletic, “An eye tracking study on camelcase and underscore identi-
fier styles,” in Proceedings of the 2010 IEEE 18th International Conference on Program
Comprehension, ser. ICPC ’10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 196–205.

28. Z. Sharafi, Z. Soh, Y.-G. Guéhéneuc, and G. Antoniol, “Women and men - different but
equal: On the impact of identifier style on source code reading,” in ICPC, 2012, pp. 27–36.

29. S. Yusuf, H. Kagdi, and J. I. Maletic, “Assessing the comprehension of uml class diagrams
via eye tracking,” in Proceedings of the 15th IEEE International Conference on Program
Comprehension, ser. ICPC ’07. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 113–122.

30. M. Abbes, F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol, “An empirical study of the im-
pact of two antipatterns, blob and spaghetti code, on program comprehension,” in Proceed-
ings of the 2011 15th European Conference on Software Maintenance and Reengineering,
ser. CSMR ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 181–190.

31. N. Ali, Z. Sharafi, Y.-G. Guéhéneuc, and G. Antoniol, “An empirical study on require-
ments traceability using eye-tracking,” in Proceedings of the International Conference on
Software Maintenance, ser. ICSM 2012, 2012.

32. E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

33. R. Likert, “A technique for the measurement of attitudes,” Archives of Psychology, vol. 22,
no. 140, pp. 1–55, 1932.

34. R. G. J. Miller, Simultaneous Statistical Inference, 2nd edition. Springer, 1981.
35. R. Grissom and J. Kim, Effect sizes for research: a broad practical approach. Lawrence

Erlbaum Associates, 2005.
36. R. D. Baker, “Modern permutation test software,” in Randomization Tests, E. Edgington,

Ed. Marcel Dekker Incorporated, 1995.
37. L. Beckwith, M. Burnett, S. Wiedenbeck, C. Cook, S. Sorte, and M. Hastings, “Effective-

ness of end-user debugging software features: Are there gender issues?” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, ser. CHI ’05, New
York, NY, USA, 2005, pp. 869–878.

38. J. Meyers-Levy, Gender Differences in Information Processing: A SelectivityInterpreta-
tion. P. Cafferata and A. Tybout, (Eds) Cognitive and Affective Responses to Advertising.
Lexington Books, 1989.

39. E. O’Donnell and E. Johnson, “The effects of auditor gender and task complexity on
information processing efficiency,” International Journal of Auditing, vol. 5, no. 2, pp.
91–105, 2001.

40. S. G. Hart and L. E. Stavenland, “Development of NASA-TLX (Task Load Index): Results
of empirical and theoretical research,” pp. 139–183, 1988.

41. S. G. Hart and L. E. Staveland, “Nasa task load index (tlx) v 1.0,” http://humansystems.
arc.nasa.gov/groups/TLX/downloads/TLX.pdf, 1988.

32 Wei Wu et al.

O
rd

er
T

rea
tm

en
t

S
u

b
ject

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
ch

a
n

g
e

ru
les

I
I

I
N

N
N

C
N

C
C

I
I

N
N

N
N

S
y
stem

J
H

D
J
H

D
J
H

D
J
E

J
F

C
J
E

J
F

C
J
H

D
J
E

J
F

C
J
E

J
F

C
J
H

D
J
H

D
J
F

C
J
E

2
ch

a
n

g
e

ru
les

C
C

N
I

C
I

I
C

I
I

N
N

I
C

I
C

S
y
stem

J
E

J
F

C
J
F

C
J
H

D
J
H

D
J
F

C
J
E

J
E

J
H

D
J
H

D
J
F

C
J
E

J
E

J
F

C
J
H

D
J
F

C

3
ch

a
n

g
e

ru
les

N
N

C
C

I
C

N
I

N
N

C
C

C
I

C
I

S
y
stem

J
F

C
J
E

J
E

J
F

C
J
E

J
H

D
J
H

D
J
F

C
J
F

C
J
E

J
H

D
J
H

D
J
F

C
J
E

J
E

J
H

D

O
rd

er
T

rea
tm

en
t

S
u

b
ject

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

1
ch

a
n

g
e

ru
les

I
C

N
I

C
C

C
N

C
N

C
C

C
I

I
S

y
stem

J
F

C
J
H

D
J
H

D
J
F

C
J
E

J
F

C
J
H

D
J
H

D
J
E

J
F

C
J
F

C
J
H

D
J
H

D
J
E

J
F

C

2
ch

a
n

g
e

ru
les

N
N

C
N

N
N

I
C

N
I

N
I

I
N

N
S

y
stem

J
E

J
E

J
F

C
J
H

D
J
F

C
J
E

J
E

J
F

C
J
H

D
J
H

D
J
E

J
E

J
F

C
J
H

D
J
H

D

3
ch

a
n

g
e

ru
les

C
I

I
C

I
I

N
I

I
C

I
N

N
C

C
S

y
stem

J
H

D
J
F

C
J
E

J
E

J
H

D
J
H

D
J
F

C
J
E

J
F

C
J
E

J
H

D
J
F

C
J
E

J
F

C
J
E

T
a
b
le

1
8

T
a
sk

D
istrib

u
tio

n
(C

-C
o
rrect,

I-Im
p

erfect,
N

-N
o
,

J
H

D
-J

H
o
tD

ra
w

,
J
F

C
-J

F
reeC

h
a
rt,

J
E

-J
E

d
it)

