
Springer EMSE manuscript No.
(will be inserted by the editor)

Evaluating the Impact of Design Pattern and Anti-pattern
Dependencies on Changes and Faults

Fehmi Jaafar · Yann-Gaël Guéhéneuc ·
Sylvie Hamel · Foutse Khomh · Mohammad
Zulkernine

November 25, 2014

Abstract On the one hand, design patterns are solutions to recurring design prob-
lems, aimed at increasing reuse, flexibility, and maintainability. However, much prior
work found that some patterns, such as the Observer and Singleton, are correlated
with large code structures and argued that they are more likely to be fault prone.
On the other hand, anti-patterns describe poor solutions to design and implementa-
tion problems that highlight weaknesses in the design of software systems and that
may slow down maintenance and increase the risk of faults. They have been found to
negatively impact change and fault-proneness.

Classes participating in design patterns and anti-patterns have dependencies with
other classes, e.g., static and co-change dependencies, that may propagate problems
to other classes. We investigate the impact of such dependencies in object-oriented
systems by studying the relations between the presence of static and co-change de-
pendencies and (1) the fault-proneness, (2) the types of changes, and (3) the types of
faults that these classes exhibit.

We analyze six design patterns and 10 anti-patterns in 39 releases of ArgoUML,
JFreeChart, and XercesJ, and investigate to what extent classes having dependencies
with design patterns or anti-patterns have higher odds of faults than other classes. We
show that in almost all releases of the three systems, classes having dependencies with
anti-patterns are more fault-prone than others while this is not always true for classes
with dependencies with design patterns. We also observe that structural changes are
the most common changes impacting classes having dependencies with anti-patterns.

Fehmi Jaafar and Mohammad Zulkernine
School of Computing, Queen’s University, Ontario, Canada
E-mail: {jaafar, mzulker}@cs.queensu.ca

Sylvie Hamel
DIRO, Université de Montréal, Québec, Canada
E-mail: hamelsyl@iro.umontreal.ca

Yann-Gaël Guéhéneuc and Foutse Khomh
DGIGL, École Polytechnique de Montréal, Québec, Canada
E-mail: {yann-gael.gueheneuc, foutse.khomh}@polymtl.ca

2 Fehmi Jaafar et al.

Software developers could use this knowledge about the impact of design pattern
and anti-pattern dependencies to better focus their testing and reviewing activities
towards the most risky classes and to propagate changes adequately.

Keywords Anti-patterns · Design patterns · Faults proneness · Change proneness ·
Static relationships · Co-change

1 Introduction

Developers use design patterns as recurring design solutions for object-oriented de-
sign problems that can improve several quality attributes of their classes, such as
reusability, flexibility, and ultimately maintainability. Yet, recent work, e.g., [4, 17,
58], has shown that some design pattern classes, such as the ones participating in
the Composite design pattern, were more fault-prone than non design-pattern classes
in some systems. Similarly, developers may introduce poor solutions when solving
recurring design problems in their object-oriented systems. These poor solutions are
documented in the form of anti-patterns [59]. Having instances of anti-patterns in
a design negatively impacts code quality [40] because anti-pattern classes are more
change and fault-prone than others [32]. However, no previous work [4, 17, 32, 40]
analyzed the impact on faults of the presence of instances of design patterns and anti-
patterns on the rest of the classes of a system through their static and co-change
dependencies. Static dependencies between classes in software systems are typi-
cally use, association, aggregation, and composition relationships [20]. Co-change
dependencies (or temporal dependencies) exist when developers, while changing a
class, also must change other classes. It is not clear how classes having static or co-
change dependencies with instances of anti-patterns and design-patterns are linked
with faults.

Conjecture: Therefore, our conjecture is that classes having dependencies with anti-
pattern and design-pattern classes could be involved in fault fixing changes more
often than other classes in a system and that faults could propagate from anti-pattern
and design-pattern classes to other classes through their dependencies.

Context: We showed in our previous work [29, 30] that more attention should be
given to static and co-change dependencies between classes participating in instances
of anti-patterns and other classes. The finding by Marinescu and Marinescu [38], that
clients of classes with Identity Disharmonies are more fault-prone than others, also
supported our work. In this paper, we replicate our study on 10 more releases of Ar-
goUML, JFreeChart, and XercesJ to assess the generalizability of our results. We also
present new results about the impacts of static and co-change dependencies between
classes participating in instances of design patterns and other classes. Another con-
tribution with respect to previous work is a qualitative analysis of these impacts by
reporting the variety of changes and faults occurring in affected classes.

Thus, we extend our previous work [30] with the following three contributions.
First, we extend our approach to analyze the fault proneness of classes having depen-
dencies with design patterns. Second, we provide more details about our findings by

Evaluating the Impact of Design Pattern and Anti-pattern Dependencies on Changes and Faults 3

presenting a fine-grain analysis and some actionable recommendations. Third, we in-
vestigate the kind of changes and faults impacting classes having dependencies with
anti-pattern or design-pattern classes. We study structural changes [18], which are
defined as changes that transform an object-oriented constituent (e.g., class, method,
field) as types of changes. We study data fault, interface fault, logic fault, description
fault, and syntax fault as types of faults1.

Research Questions: We analyze the static and co-change dependencies between
anti-pattern and design-pattern classes and other classes in two ways. Quantitatively,
we investigate whether classes having static relationships (use, association, aggrega-
tion, and composition relationships) with instances of anti-patterns or design patterns
are more fault-prone than others. Then, we investigate whether classes co-changing
with anti-pattern or design pattern classes are more fault-prone than others. Quali-
tatively, we analyze the types of changes and faults impacting these classes. Conse-
quently, we formulate the following research questions:

– RQ1: Are classes that have static relationships with anti-pattern classes more
fault-prone than other classes?

– RQ2: Are classes that co-change with anti-pattern classes more fault-prone than
other classes?

– RQ3: Are classes that have static relationships with design pattern classes more
fault-prone than other classes?

– RQ4: Are classes that co-change with design pattern classes more fault-prone
than other classes?

– RQ5: What types of changes and faults are propagated by static and co-change
dependencies?

We perform the study on 11 releases of ArgoUML, 9 of JFreeChart, and 19 of
XercesJ, and across the changes and fault-fixing changes occurring between these
releases. We detect the instances of six design patterns and 10 anti-patterns in these
systems to investigate the relations between anti-pattern and design pattern classes
and other classes through their static and co-change dependencies while considering
changes and faults.

The major results of this paper are that (1) static dependencies with anti-pattern
classes do have a negative impact on changes and faults and (2) co-change depen-
dencies with anti-pattern and design pattern classes have similar negative impacts on
changes and faults. We also discuss the types of changes and faults that affect classes
with dependencies on anti-pattern and design pattern classes. Classes with dependen-
cies on anti-pattern classes are more subject to logic faults and structural changes.
Classes with dependencies on design pattern classes are more subject to code addi-
tion changes and syntax faults.

Finally, we show the benefits of considering static and co-change dependencies
with anti-pattern and design pattern classes to improve the precision of the prediction
of class fault-proneness, along with other discussions on the usefulness and limita-
tions of our study and of its results. We show that considering anti-pattern dependen-
cies improve the prediction of fault-prone classes.

1 http://standards.ieee.org/findstds/standard/1044-2009.html

4 Fehmi Jaafar et al.

Organization: Section 2 presents our methodology. Section 3 describes the empirical
study. Section 4 presents the study results while Section 5 analyzes the results along
with threats to their validity. Then, Section 6 relates our study with previous work.
Finally, Section 7 concludes the study and outlines future work.

2 Methodology

This section describes our methodology as well as the steps necessary to extract and
analyze the data required to perform our empirical study. Given an object-oriented
program, we use DECOR [40] to extract instances of anti-patterns and DeMIMA
[21] to extract instances of design patterns. As we focused on the dependencies of
these patterns, we use PADL2 to extract static relationships and Macocha [28] to
detect co-changes. Finally, we analyze the impact of anti-pattern and design-pattern
dependencies on fault-proneness and we investigate the types of changes and faults
propagated by such dependencies.

2.1 Identifying Anti-pattern Classes

We use DECOR [40] to specify and detect instances of anti-patterns. DECOR is based
on a thorough domain analysis of anti-patterns defined in the literature and provides
a domain-specific language to specify code smells and anti-patterns and methods to
detect their occurrences automatically. DECOR uses rules to describes anti-patterns,
with different types of properties: lexical (i.e., class names), structural (i.e., classes
declaring public static variables), internal (i.e., number of methods), and the relation
among properties (i.e., use, association, aggregation, and composition relationships
among classes). Using this language, DECOR describes several anti-patterns.

In the following, we consider the instances of 10 anti-patterns from Brown et
al. [10] described in Table 1. We choose these anti-patterns because they are rep-
resentative of problems with data, complexity, size, and the features provided by
classes [32]. We also use these anti-patterns because they have been used and an-
alyzed in previous work [32,40]. Definitions and specifications are beyond the scope
of this paper and are available elsewhere [10, 50].

We preprocess inconsistent anti-patterns (due to eventual errors and imprecisions
of the detection tools) to eliminate false positives. We manually validate each oc-
currence of the anti-patterns detected by DECOR to verify the correctness of the
analyzed set. This preprocessing reduces the risks that we would answer our research
questions incorrectly. Yet, our results could still be affected by the presence of false
negatives, i.e., by a low recall exhibited by the detection approach. However, the sam-
ple of detected instances of anti-patterns is large enough to support our conclusions.

2 http://www.ptidej.net/tool/

Evaluating the Impact of Design Pattern and Anti-pattern Dependencies on Changes and Faults 5

Table 1 List of anti-patterns considered in this study

Anti-patterns Specifications
AntiSingleton A class that provides mutable class variables, which consequently could

be used as global variables
Blob A class that is too large and not cohesive enough, that monopolizes most

of the processing, makes most of the decisions, and is associated with
data classes

ClassDataShouldBePrivate A class that exposes its fields, thus violating the principle of encapsula-
tion

ComplexClass A class that has (at least) one large and complex method, in terms of
cyclomatic complexity and LOCs

LongMethod A class that has a method that is overly long in term of LOCs
LongParameterList A class that has (at least) one method with an excessively long list of pa-

rameters with respect to the average number of parameters per method
in the system

MessageChain A class that uses a long chain of method invocations to realize (at least)
one of its features

RefusedParentBequest A class that redefines one or more inherited methods using empty bodies
thus breaking polymorphism

SpeculativeGenerality A class that is defined as abstract but that has very few children, which
do not make use of its methods

SwissArmyKnife A class whose methods can be divided in disjunct sets of many methods,
thus providing many different unrelated functionalities

2.2 Identifying Design Pattern Classes

We use DeMIMA [21] to specify and detect instances of design patterns. DeMIMA
ensures the traceability between design patterns and source code by first identifying
idioms related to binary class relationships to obtain an idiomatic model of the source
code. Then, using this model, it can identify solutions to design patterns and generate
a design model of the system. Thus, DeMIMA makes it possible to recover two types
of design choices from source code: idioms pertaining to the relationships among
classes and design motifs characterizing the organization of the classes.

Design patterns were originally grouped into the categories: creational patterns,
structural patterns, and behavioral patterns [16]. Creational patterns describe creation
mechanisms to create objects in a suitable manner. They make code functionalities
independents of how objects are created, composed, and represented. Structural pat-
terns ease the design by offering simple ways to relate classes. They are concerned
with how classes and objects are composed to form larger structures. Finally, be-
havioral patterns describe common communication models among objects. They are
concerned with algorithms and the assignment of responsibilities among objects to
increase software system flexibility.

In the following, we focus on the instances of six design patterns belonging to
these three categories: two creational patterns (Factory method and Prototype), two
structural patterns (Composite and Decorator), and two behavioral patterns (Com-
mand and Observer), which are defined briefly in Table 2 while complete definitions
are available elsewhere [16, 21]. In addition to belonging to different categories, we
chose these six design patterns because a preliminary study indicated that we could
identify enough of their instances to carry out our study. Indeed, some other design

6 Fehmi Jaafar et al.

patterns do not exist in the releases of the analyzed systems. Future work could repli-
cate our study on other design patterns if enough of their instances can be identified.

Table 2 List of design patterns considered in this study

Design patterns Specifications
Command An object encapsulates all the information needed to call a method. This informa-

tion includes the method name, the object and values for the method parameters.
Composite Compose objects into tree structures to represent whole-part hierarchies. Com-

posite lets clients treat individual objects and compositions of objects uniformly.
Decorator Extend the functionality of a certain object statically, or in some cases at run-

time, independently of other instances of the same class
Factory method Define an interface for creating an object, but let the classes that implement the

interface decide which class to instantiate
Observer An object, called the subject, maintains a list of its dependents, called observers,

and notifies them automatically of any state changes, usually by calling one of
their methods

Prototype Allows an object to create customized objects without knowing their class or any
details of how to create them

2.3 Identifying Anti-patterns and Design-Pattern Static Relationships

DeMIMA depends on a set of formalizations for unidirectional binary class relation-
ships [20]. The formalizations define the relationships in terms of four language-
independent properties that are derivable from static and dynamic analyses of sys-
tems: exclusivity, type of message receiver, lifetime, and multiplicity. Thus, we also
use DeMIMA to detect the relationships among classes (including anti-pattern classes).

We use the open-source Ptidej tool suite3 to identify anti-pattern and design pat-
tern classes as well as static relationships among classes. The Ptidej tool suite im-
plements DECOR and DeMIMA and uses the PADL [21] meta-model. It parses the
source code of systems to build models that include all of the constituents found
in any object-oriented system: class, interface, member class and interface, method,
field, inheritance and binary-class relationships.

First of all, we identify all the instances of the anti-patterns and design patterns
of interest in the different analyzed systems. Then, we detect the dependencies of
the classes in these instances with the rest of the classes. Thus, a class A having
dependencies with two classes B and C, which belong to an instance of an anti-pattern
or design pattern, is considered as having a dependency with the anti-pattern or design
pattern.

2.4 Identifying Anti-pattern and Design-pattern Co-changes

We use Macocha [28] to mine software repositories and identify classes that are co-
changing with instances of the anti-patterns or design patterns of interest. In Ma-

3 https://bitbucket.org/yann-gael/ptidej-5/overview

Evaluating the Impact of Design Pattern and Anti-pattern Dependencies on Changes and Faults 7

cocha, a change contains several attributes: the changed class names, the dates of
changes, the developers having committed the changes. Macocha takes as input a
CVS/SVN change log. First, it calculates the duration of different change periods
using the k-nearest neighbor algorithm [13]. Second, it groups changes in change
periods. Third, it creates a profile that describes the evolution of each class in each
change period. Fourth, it uses these profiles to compute the stability of the classes
and, then, to identify co-changed classes.

Similar to Aversano et al. [3], we assume that a class C co-changes with an in-
stance of a design pattern or an anti-pattern X, if C co-changes with at least one class
participating in X. We also assume that a class S has static relationships with a de-
sign pattern or an anti-pattern instance A, if S has use, association, aggregation, or
composition relationships with at least one class participating in A.

2.5 Identifying Faults in Classes

Fault-proneness refers to whether a class underwent at least one fault fix in the system
life cycle. Fault fixes are documented in bug reports that describe different types of
problems in a system. They are usually posted in issue-tracking systems, i.e., Bugzilla
for the three studied systems, by users and developers to warn their community about
pending issues with their functionalities; issues in these systems deal with different
types of change requests: fixing faults, restructuring, and so on.

We parse the CVS/SVN change logs of our subject systems and apply the heuris-
tics by Sliwersky et al. [54] to identify fault fix locations and changes: we parse
commit log messages using a Perl script and extract bug IDs and specific keywords,
such as “fixed” or “bug” to identify fault-related commits from which we extract the
list of files that were changed to fix the faults. Then, we use the commit log messages
of the identified faults to categorize them as data fault, interface fault, logic fault,
description fault, and syntax fault.

3 Study Definition Design

This section describes the design of our empirical study. We detail the approach and
the analyzed object systems in the study. Then, we discuss our research questions and
the analysis method.

The goal of our study is to assess whether classes having static or co-change de-
pendencies with anti-pattern or design pattern classes have a higher likelihood than
other classes to be involved in changes and faults. The quality focus is the improve-
ment of maintainability and the reduction of maintenance effort by detecting and
analyzing the impacts of anti-patterns and design patterns on faults and changes. The
context of our study is both the comprehension and the maintenance of systems.

8 Fehmi Jaafar et al.

Table 3 Descriptive statistics of the object systems

ArgoUML JFreeChart XercesJ
of classes 3,325 1,615 1,191
of snapshots 4,480 2,010 159,196
of releases 11 9 19
SLOC average 240,762 181,895 206,291
of AntiSingleton 3 38 24
of Blob 100 49 12
of ClassDataShouldBePrivate 51 3 6
of ComplexClass 158 52 7
of LongMethod 336 75 7
of LongParameterList 281 76 4
of MessageChains 162 59 8
of RefusedParentBequest 123 5 7
of SpeculativeGenerality 22 3 29
of SwissArmyKnife 13 26 29
of Command 126 118 72
of Composite 154 202 46
of Decorator 48 36 29
of Factory method 39 43 19
of Observer 24 26 7
of Prototype 38 29 16

3.1 Object Systems

We apply our study on three Java systems: ArgoUML4, JFreeChart5, and XercesJ6.
We use these systems because they are open source, are of different domains, span
several years and versions, and have between hundreds and thousands of classes.
Table 3 summarizes some statistics about these systems.

ArgoUML is a UML diagramming system in Java and released under the open-
source BSD License. For our study, we extracted a total number of 4,480 snapshots
in the time interval between September 27th, 2008 and December 15th, 2011.

JFreeChart is a Java open-source framework to create charts. For our study, we
considered an interval of observation ranging from June 15th, 2007 (release 1.0.6) to
November 20th, 2009 (release 1.0.13α) in which we extracted 2,010 snapshots.

XercesJ is a collection of software libraries to manipulate XML documents. It
is developed in Java and managed by the Apache Foundation. For our analysis, we
extracted a total number of 159,196 snapshots from release 1.0.4 to release 2.9.0 in
the time interval between October 14th, 2003 and November 23th, 2006.

Tables 4 and 5 show the proportions of co-changing classes and static relation-
ships among classes participating in the anti-patterns and design patterns considered
in this study. They show that the chosen systems are relevant for the study because
some classes of these systems do co-change and have static relationships with anti-
pattern and design-pattern classes.

4 http://ArgoUML.tigris.org
5 http://www.jfree.org
6 http://xerces.apache.org/xerces-j

Evaluating the Impact of Design Pattern and Anti-pattern Dependencies on Changes and Faults 9

Table 4 Proportion of the anti-pattern dependencies (CC: co-change dependencies of anti-pattern classes
with other classes; SR: anti-pattern static relationships)

Anti-patterns Systems # of CC # of SR
AntiSingleton ArgoUML 13 152

JFreeChart 20 201
XercesJ 18 188

Blob ArgoUML 51 304
JFreeChart 36 164
XercesJ 24 93

ClassDataShouldBePrivate ArgoUML 4 167
JFreeChart 0 82
XercesJ 0 113

ComplexClass ArgoUML 2 192
JFreeChart 0 146
XercesJ 0 96

LongMethod ArgoUML 42 282
JFreeChart 51 314
XercesJ 0 266

LongParameterList ArgoUML 12 344
JFreeChart 0 276
XercesJ 0 309

MessageChains ArgoUML 48 244
JFreeChart 8 196
XercesJ 16 183

RefusedParentBequest ArgoUML 47 326
JFreeChart 6 183
XercesJ 25 93

SpeculativeGenerality ArgoUML 13 128
JFreeChart 4 139
XercesJ 8 201

SwissArmyKnife ArgoUML 20 69
JFreeChart 9 142
XercesJ 18 108

3.2 Research Questions

We break down our study into three steps: first, we investigate whether classes co-
changing or having static relationships (use, association, aggregation, and composi-
tion relationships) with anti-pattern classes are more fault-prone than other classes in
the three analyzed systems:

– For RQ1: Are classes that have static relationships with anti-pattern classes more
fault-prone than other classes? We test the following null hypothesis:

– HRQ10 : The proportions of faults carried by classes having static relation-
ships with instances of anti-patterns and other classes are the same. If we
reject the null hypothesis HRQ10 , it means that the proportions of faults car-
ried by classes having static relationships with anti-patterns and faults carried
by other classes in the analyzed systems are not the same.

– For RQ2: Are classes that co-change with anti-pattern classes more fault-prone
than other classes? We test the following null hypotheses:

10 Fehmi Jaafar et al.

Table 5 Proportion of the design-pattern dependencies (CC: co-change dependencies of design-pattern
classes with other classes; SR: design-pattern static relationships)

Design patterns Systems # of CC # of SR
Command ArgoUML 63 269

JFreeChart 25 226
XercesJ 22 165

Composite ArgoUML 81 254
JFreeChart 66 144
XercesJ 34 89

Decorator ArgoUML 16 123
JFreeChart 14 184
XercesJ 10 86

Factory method ArgoUML 13 58
JFreeChart 15 37
XercesJ 9 26

Observer ArgoUML 42 69
JFreeChart 48 64
XercesJ 29 35

Prototype ArgoUML 12 39
JFreeChart 14 27
XercesJ 8 28

– HRQ20 : The proportions of faults involving classes having co-change depen-
dencies with instances of anti-pattern and other classes are the same. If we
reject the null hypothesis HRQ20 , the proportion of faults carried by classes
co-changing with anti-patterns is not the same as the proportion of faults car-
ried by classes not co-changing with anti-patterns.

Second, we investigate whether classes co-changing or having static relationships
with instances of design patterns are more fault-prone than other classes.

– For RQ3: Are classes that have static relationships with design pattern classes
more fault-prone than other classes? We test the following null hypothesis:

– HRQ30 : The proportions of faults carried by classes having static relationships
with instances of design patterns and other classes are the same. If we reject
the null hypothesis HRQ30 , the proportions of faults carried by classes having
static relationships with design patterns and faults carried by other classes are
not the same.

– For RQ4: Are classes that co-change with design pattern classes more fault-prone
than other classes? We test the following null hypothesis:

– HRQ40 : The proportions of faults involving classes having co-change depen-
dencies with instances of design patterns and other classes are the same. If we
reject the null hypothesis HRQ40 , the proportion of faults carried by classes
co-changing with design patterns is not the same as that of other classes.

Third, we conduct a qualitative study to explore the types of changes and faults
carried by classes having dependencies with instances of anti-patterns or design pat-
terns. Thus, we answer the following research question:

Evaluating the Impact of Design Pattern and Anti-pattern Dependencies on Changes and Faults 11

– For RQ5: What types of changes and faults are propagated by static and co-
change dependencies? We study whether classes having dependencies with in-
stances of anti-patterns or design patterns undergo specific structural changes
[18] (addition/removal/change of/to attributes, addition/removal of methods, or
changes to the methods’ signatures) than non-structural changes, i.e., adding/dele-
ting/changing lines without changing the structure of the classes. We also study
whether such classes have specific types of faults (data faults, interface faults,
logic faults, description faults, and syntax faults).

3.3 Analysis Method

We perform the analyses reported in Section 4 using the R statistical environment7.
We use Fisher’s exact test [53] because it is a significance test that is considered
to be more appropriate for sparse and skewed samples of data than other statistical
tests, such as the log likelihood ratio or Pearson’s Chi-Squared test [46]. Indeed,
this test is useful for categorical data that results from classifying objects in two
different groups. In our study, we examine the significance of the relation between
the occurrence of a static or co-change dependency on anti-pattern or design pattern
class(es) and the risk of fault.

We also compute the odds ratio [53] that indicates the likelihood for an event to
occur. The odds ratio shows the strength of association between a predictor and the
response of interest. Indeed, its advantage is that it is invariable across case control,
follow-up, and cross-sectional studies and, thus, can be used to directly compare find-
ings of different study designs. Also, in the case of our study, the odds ratio can be
computed directly from the regression coefficients of logistic regressions. Finally, it
is a good estimator of risk ratio if the analyzed phenomena is rare and the cases and
controls are randomly selected from the population [51]. The odds ratio is defined
as the ratio of the odds p of an event occurring in one sample, i.e., the odds that
classes having static relationships with anti-patterns are identified as fault-prone to
the odds q of the same event occurring in the other sample, i.e., the odds that the rest
of classes are identified as fault-prone. Thus, if the probabilities of the event in each
of the groups are p (faulty classes for example) and q (not faulty classes), then the
odds ratio is: OR = p/(1−p)

q/(1−q) . An odds ratio greater than 1 indicates that the event is
more likely in the first sample, while an odds ratio less than 1 indicates that it is more
likely in the second sample.

4 Study Results

In this section, we answer each research question by reporting the empirical results
and some typical examples and other observations. Tables 6, 7, 8, and 9 summarize
our findings in term of fault-proneness.

7 http://www.r-project.org

12 Fehmi Jaafar et al.

4.1 RQ1: Are classes that have static relationships with anti-pattern classes more
fault-prone than other classes?

Table 6 Contingency table and Fisher test results for ArgoUML, JFreeChart, and XercesJ for classes
having static relationships with anti-patterns (SR: static relationship, AP: anti-pattern)

System Faulty Clean
Classes having SR with AP ArgoUML 1,062 1,003
Classes having SR with AP and not being part of anti-pattern ArgoUML 402 600
Class not having SR with AP ArgoUML 681 579
Class not having SR with AP and not being part of anti-pattern ArgoUML 205 456

Fisher’s test in ArgoUML 0.9336
Odd-ratio in ArgoUML 0.9002625

Fisher’s test for classes not being part of anti-patterns in ArgoUML 9.241e−05
Odd-ratio for classes not being part of anti-patterns in ArgoUML 1.489969

Classes having SR with AP JFreeChart 432 226
Classes having SR with AP and not being part of anti-pattern JFreeChart 281 103
Class not having SR with AP JFreeChart 310 647
Class not having SR with AP and not being part of anti-pattern JFreeChart 140 342

Fisher’s test in JFreeChart 2.2e−16
Odd-ratio in JFreeChart 3.98613

Fisher’s test for classes not being part of anti-patterns in JFreeChart 2.2e−16
Odd-ratio for classes not being part of anti-patterns in JFreeChart 6.647686

Classes having SR with AP XercesJ 445 121
Classes having SR with AP and not being part of anti-patterns XercesJ 262 75
Class not having SR with AP XercesJ 126 499
Class not having SR with AP and not being part of anti-patterns XercesJ 81 279

Fisher’s test in XercesJ 2.2e−16
Odd-ratio in XercesJ 14.5249

Fisher’s test for classes not being part of anti-patterns in XercesJ 2.2e−16
Odd-ratio for classes not being part of anti-patterns in XercesJ 11.97391

Table 6 reports for ArgoUML, JFreeChart, and XercesJ the numbers of (1) classes
having static relationships with anti-pattern classes and identified as faulty; (2) classes
having static relationships with anti-pattern classes and identified as clean (i.e., not
faulty); (3) classes without static relationships with anti-pattern classes and identified
as faulty; and (4) classes without static relationships with anti-pattern classes and
identified as clean. Considering all classes in the different analyzed systems, we also
separate the results in Table 6 between anti-pattern classes and other classes. We
perform this separation because it is difficult to tell whether the observations made
are caused by the fact that the classes belong to anti-patterns or by the fact that they
depend upon classes belonging to anti-patterns.

The results of the Fisher’s exact tests and odds ratios, when testing HRQ10 , are sig-
nificant for all three systems. For the three systems, the p-values are less then 0.05 and
the likelihood that a class with static relationship(s) with some anti-pattern class(es)
experiences a fault (i.e., odds ratio) is about two times higher than the likelihood that
other classes have faults.

Evaluating the Impact of Design Pattern and Anti-pattern Dependencies on Changes and Faults 13

We can thus positively answer RQ1 as follows: classes having static relationships
with anti-pattern classes are significantly more fault-prone than other classes.

Other observations: When we take as input the list of code and change metrics de-
scribed in Section 2 and study whether there is a statistically significant difference on
fault proneness between a model based only on these metrics and a model based on
these metrics plus anti-pattern static relationships, we found that it is impossible to
definitely exclude the possibility that there is no statistically significant differences
in fault prediction between classes having static relationships with anti-patterns and
other classes with similar complexity, change history, and code size. However, if we
group the results according to distinct anti-patterns (see Table 14 in Section 5), we
observe that classes having static relationships with classes belonging to the Blob,
ComplexClass, and SwissArmyKnife anti-patterns are significantly more fault prone
than other classes with similar complexity, change history, and code size. We provide
more details and discussions in Section 5.

4.2 RQ2: Are classes that co-change with anti-pattern classes more fault-prone than
other classes?

In the three systems, we detect co-change situations for the majority of anti-pattern
classes. In ArgoUML, we observe that classes participating in the Blob, LongMethod,
and RefusedParentBequest anti-patterns co-change with other classes more than the
rest of the anti-pattern classes. During the evolution of JFreeChart and XercesJ,
classes participating in the Blob anti-pattern co-change the most with other classes.

Table 7 presents a contingency table for ArgoUML, JFreeChart, and XercesJ that
reports the number of (1) classes co-changing with anti-pattern classes and identified
as faulty; (2) classes co-changing with anti-pattern classes and identified as clean; (3)
other classes identified as faulty; and (4) other classes identified as clean.

The results of the Fisher’s exact tests and odds ratios when testing HRQ20 are
significant. For all three systems, the p-values are less than 0.05 and the likelihood
that a class co-changing with some anti-pattern class(es) experiences a fault is about
two and half times higher than the likelihood that other classes experience faults.

We can also positively answer RQ2 as follows: classes co-changing with anti-pattern
classes are significantly more fault-prone than other classes.

Other observations: In ArgoUML, we detect some instances of the ClassDataShould-
BePrivate, ComplexClass, and LongParameterList anti-patterns whose classes co-
change with other classes. However, we do not detect any class belonging in these
anti-patterns which are co-changing with other classes in JFreeChart and XercesJ.
We do not detect, also, classes that are co-changing with LongMethod classes in
XercesJ.

14 Fehmi Jaafar et al.

Table 7 Contingency table and Fisher test results for ArgoUML, JFreeChart and XercesJ for classes that
co-changed with anti-patterns (AP: anti-pattern)

System Faulty Clean
Classes co-changing with AP ArgoUML 241 102
Classes co-changing with AP and and not being part of anti-patterns ArgoUML 120 59
Class not co-changing with AP ArgoUML 1,502 1,480
Classes not co-changing with AP and and not being part of anti-patterns ArgoUML 1,023 852

Fisher’s test in ArgoUML 1.005e−12
Odd-ratio in ArgoUML 2.32758

Fisher’s test for classes not being part of anti-patterns in ArgoUML 0.0007733
Odd-ratio for classes not being part of anti-patterns in ArgoUML 1.693495

Classes co-changing with AP JFreeChart 68 26
Classes co-changing with AP and and not being part of anti-patterns JFreeChart 33 10
Class not co-changing with AP JFreeChart 674 847
Classes not co-changing with AP and and not being part of anti-patterns JFreeChart 357 482

Fisher’s test in JFreeChart 8.556e−08
Odd-ratio in JFreeChart 3.284357

Fisher’s test for classes not being part of anti-patterns in JFreeChart 9.158e−06
Odd-ratio for classes not being part of anti-patterns in JFreeChart 4.4483

Classes co-changing with AP XercesJ 37 21
Classes co-changing with AP and and not being part of anti-patterns XercesJ 20 12
Class not co-changing with AP XercesJ 534 599
Classes not co-changing with AP and and not being part of anti-patterns XercesJ 343 401

Fisher’s test in XercesJ 0.009414
Odd-ratio in XercesJ 1.975234

Fisher’s test for classes not being part of anti-patterns in XercesJ 0.02696
Odd-ratio for classes not being part of anti-patterns in XercesJ 2.160657

Finally, we observe that classes that are co-changing with anti-pattern classes
are significantly more fault-prone than other classes with similar complexity, change
history, and code size (see Table 14 in Section 5).

4.3 RQ3: Are classes that have static relationships with design pattern classes more
fault-prone than other classes?

Table 8 reports, for ArgoUML, JFreeChart, and XercesJ, the numbers of (1) classes
having static relationships with design patterns and identified as faulty; (2) classes
having static relationships with design patterns and identified as clean; (3) classes
without static relationships with design patterns and identified as faulty; and (4)
classes without static relationships with design patterns and identified as clean. Con-
sidering all classes in the different analyzed systems, we also also separate the results
in Table 6 between classes in design pattern instances and the rest of classes. We per-
form this distinction because it is difficult to tell whether our observations are caused
by the fact that the classes themselves belong to design pattern instances or by the
fact that they depend upon design pattern instances.

The results of the Fisher’s exact tests and odds ratios when testing HRQ30 are not
significant for all three systems for classes having static relationships with design
patterns and not being part of design patterns. For the three systems, the p-values

Evaluating the Impact of Design Pattern and Anti-pattern Dependencies on Changes and Faults 15

Table 8 Contingency table and Fisher test results for ArgoUML, JFreeChart and XercesJ for classes hav-
ing static relationships with design patterns (SR: static relationship, DP: design pattern)

System Faulty Clean
Classes having SR with DP ArgoUML 1,174 1,217
Classes having SR with DP and not being part of design patterns ArgoUML 165 198
Classes not having SR with DP ArgoUML 569 365
Classes not having SR with DP and not being part of design patterns ArgoUML 326 263

Fisher’s test in ArgoUML 1
Odd-ratio in ArgoUML 0.618911

Fisher’s test for classes not being part of design patterns in ArgoUML 0.9988
Odd-ratio for classes not being part of design patterns in ArgoUML 0.6725882

Classes having SR with DP JFreeChart 539 440
Classes having SR with DP and not being part of design patterns JFreeChart 145 132
Classes not having SR with DP JFreeChart 203 433
Classes not having SR with DP and not being part of design patterns JFreeChart 258 228

Fisher’s test in JFreeChart 2.2e−16
Odd-ratio in JFreeChart 2.611343

Fisher’s test for classes not being part of design patterns in JFreeChart 0.6074
Odd-ratio for classes not being part of design patterns in JFreeChart 0.9707799

Classes having SR with DP XercesJ 341 407
Classes having SR with DP and not being part of design patterns XercesJ 16 18
Classes not having SR with DP XercesJ 230 213
Classes not having SR with DP and not being part of design patterns XercesJ 156 148

Fisher’s test in XercesJ 0.9851
Odd-ratio in XercesJ 0.7760848

Fisher’s for classes not being part of design patterns in XercesJ 0.7426
Odd-ratio for classes not being part of design patterns in XercesJ 0.8437318

are more then 0.05: the likelihood that a class with static relationship(s) with design
pattern class(es) experiences a fault is almost equal to the likelihood of other classes
to experience faults.

We therefore answer RQ3 as follows: classes having static relationships with design-
pattern classes are not significantly more fault-prone than other classes.

Other observations: Design pattern classes can have static relationships with anti-
pattern classes. We believe that developers attempt to overcome the negative impact
of anti-patterns by relating their classes with specific design pattern classes. This
method can reduce the impacts of anti-patterns on software systems so that, in the
long term, developers could eliminate these anti-patterns. Future studies should ana-
lyze the benefits and disadvantages of such design choices on changes and faults.

For example, in XercesJ v1.0.4, class org.apache.xerces.validators.com-
mon.XMLValidator.java is an excessively complex class. The developers attempt
to provide services for all possible uses of this class. In their attempt, they added
a large number of interface signatures to meet all possible needs. The developers
may not have a clear abstraction or purpose for XMLValidator.java, which is rep-
resented by the lack of focus in its interface. Thus, this class is a SwissArmyKnife.
This anti-pattern is problematic because the complicated interface is difficult for other

16 Fehmi Jaafar et al.

developers to understand and it obscures the class intent and use. It also makes it dif-
ficult to debug, document, and maintain the class.

We observe that this class has a use-relationship with class org.apache.xer-
ces.validators.dtd.DTDImporter.java, which belongs to the Command de-
sign pattern. Using Command classes makes it easier to construct general compo-
nents that delegate or execute method calls at a time of their choosing without the
need to know the owner of the method or the method parameters. Thus, a developer
may use XMLValidator.java through the related Command, which encapsulates
all the needed information, to overcome the SwissArmyKnife.

4.4 RQ4: Are classes that co-change with design pattern classes more fault-prone
than other classes?

Table 9 Contingency table and Fisher test results for ArgoUML, JFreeChart and XercesJ for classes co-
changing with design patterns (DP: design pattern)

System Faulty Clean
Classes co-changing with DP ArgoUML 139 93
Classes co-changing with DP and not being part of design patterns ArgoUML 62 24
Classes not co-changing with DP ArgoUML 1,604 1,489
Classes not co-changing with DP and not being part of design patterns ArgoUML 1,308 1,056

Fisher’s test in ArgoUML 0.01049
Odd-ratio in ArgoUML 1.387325

Fisher’s test for classes not being part of design patterns in ArgoUML 0.001258
Odd-ratio for classes not being part of design patterns in ArgoUML 2.085003

Classes co-changing with DP JFreeChart 61 72
Classes co-changing with DP and not being part of design patterns JFreeChart 49 52
Classes not co-changing with DP JFreeChart 681 801
Classes not co-changing with DP and not being part of design patterns JFreeChart 410 662

Fisher’s test in JFreeChart 0.543
Odd-ratio in JFreeChart 0.9965146

Fisher’s test for classes not being part of design patterns in JFreeChart 0.02861
Odd-ratio for classes not being part of design patterns in JFreeChart 1.520868

Classes co-changing with DP XercesJ 34 34
Classes co-changing with DP and not being part of design patterns XercesJ 19 16
Classes not co-changing with DP XercesJ 537 586
Classes not co-changing with DP and not being part of design patterns XercesJ 301 486

Fisher’s test in XercesJ 0.4106
Odd-ratio in XercesJ 1.091165

Fisher’s test for classes not being part of design patterns in XercesJ 0.0435
Odd-ratio for classes not being part of design patterns in XercesJ 1.915825

Table 9 presents a contingency table for ArgoUML, JFreeChart, and XercesJ that
reports the number of (1) classes co-changing with design patterns and identified as
faulty; (2) classes co-changing with design patterns and identified as clean; (3) other
classes identified as faulty; and (4) other classes identified as clean.

The results of the Fisher’s exact tests and odds ratios when testing HRQ40 are
significant for the set of classes co-changing with design patterns and not being part

Evaluating the Impact of Design Pattern and Anti-pattern Dependencies on Changes and Faults 17

of design patterns. For all three systems, the p-values are less than 0.05 and the
likelihood that a class co-changing with some design-pattern class(es) experiences
a fault is about one and half times higher than that for other classes.

We consequently positively answer RQ4 as follows: classes co-changing with
design-pattern class(es) are more fault-prone than other classes.

Other observations: In the three systems, we observe that if co-change dependencies
with design patterns are not properly maintained, they can lead to faults in the sys-
tems. For example, class chart.Title.java belongs to an Observer design pattern
in JFreeChart. This class is co-changing with class chart.event.ChartChange-

Event.java. In the Bugzilla database of JFreeChart, the bug ID7728 reported that
“a problem occurs when JFreeChart is created with constructor parameter title set
to null [...] As a result, no ChartChangeEvent is sent when title is modified”. These
results could help providing developers with lists of classes that they should carefully
consider to ensure proper change propagation and to increase maintainability.

The findings of our analysis also indicate a relation between classes having de-
pendencies with design patterns and their fault-proneness during the evolution of sys-
tems. This connection was expected from previous work, such as [17, 58]. However,
design-pattern static relationships did not improve the precision of a fault prediction
model based on complexity metrics and change metrics. We will discuss this point
with more explanations in Section 5.

We detect co-change situations for all studied design patterns. Particularly, we ob-
serve that Composite and Observer classes co-changed with other classes more than
classes in the other instances of the analyzed design patterns. The specifications and
uses of these two design patterns promote co-change dependencies between subjects
and observers and composite and components, respectively. The Observer design
pattern defines an object, called the subject, that maintains a list of its dependents,
called observers, and notifies them automatically of any state changes, usually by call-
ing one of their methods. Class chart.Title.java belongs to an Observer design
pattern in JFreeChart and co-changes with the class chart.event.ChartChange-
Event.java. The composite class maintains a collection of components. Typically,
composite methods are implemented by iterating over that collection and invoking
the appropriate method for each Component in the collection, as in ArgoUML for
CrNodeInsideElement.java (a composite class) that co-changes with WizAssoc-
Composite.java

4.5 RQ5: What types of changes and faults are propagated by static and co-change
dependencies?

To determine the types of changes and faults that are propagated by dependencies on
anti-patterns and design patterns, we mine software repositories, such as change logs
and Bugzilla. We query the SVN of each studied system using diff, which is a tool

8 http://sourceforge.net/p/jfreechart/bugs/772/

18 Fehmi Jaafar et al.

to compare files and generate a list of differences. We record the lines of code that
have been added, deleted, or changed, as reported by diff. We identified the type
of change by analyzing this list of differences and the log-message in the different
commits manually. We also investigate the types of faults by analyzing the messages
logs and the corresponding comments in Bugzilla. This method is simple to imple-
ment because it is easy to extract the deltas from a version control system, such SVN.
Then, we report the types of changes and faults propagating through dependencies on
anti-patterns and design patterns.

Table 10 Most frequent types of changes for classes having static and co-change dependencies with anti-
patterns

Types of changes Descriptions Examples
Blob, AntiSingleton Refactoring Extract class Moving part of code

(92%) into a new class
ClassDataShouldBePrivate Code addition Encapsulation Forcing access fields

(63%) with getter/setter
LongMethod, ComplexClass, Refactoring Extract method Breaking down code
LongParameterList (86%) in smaller pieces
MessageChains, Refactoring Move method/field Moving method to
SwissArmyKnife (100%) appropriate classes
RefusedParentBequest, Refactoring Generalize type Creating more
SpeculativeGenerality (72%) general types

Table 10 reports for ArgoUML, JFreeChart, and XercesJ, the most frequent (more
than 50% of the cases) types of changes for classes having dependencies with anti-
patterns. We observe that the majority of classes having dependencies with anti-
patterns share structural changes. In fact, classes having dependencies with anti-
patterns are usually subject to changes impacting their interfaces. For example, classes
having static relationships with the LongMethod, ComplexClass, and LongParame-
terList anti-patterns undergo more refactoring operations than any other change op-
erations, possibly because such classes are too large and automated tools must be
applied to divide them and make them manageable. We also observe that classes hav-
ing static relationships with the MessageChains and SwissArmyKnife anti-patterns,
which are complex and provide or call too many services, are more likely to undergo
structural changes, possibly to break down their complexity.

Table 11 reports for ArgoUML, JFreeChart, and XercesJ the more frequent (more
than 50% of classes) types of faults for classes having static and co-change dependen-
cies with anti-patterns. The majority of classes having dependencies with anti-pattern
classes and having faults share specific types of faults. For example: Blob, Complex-
Class, and LongParameterList anti-patterns characterize classes with a higher number
of complex methods than the average classes. Thus, developers adding new features

9 http://sourceforge.net/p/jfreechart/bugs/1049/
10 http://sourceforge.net/p/jfreechart/bugs/1122/
11 http://sourceforge.net/p/jfreechart/bugs/1094/
12 http://sourceforge.net/p/jfreechart/bugs/950/
13 http://sourceforge.net/p/jfreechart/bugs/332/

Evaluating the Impact of Design Pattern and Anti-pattern Dependencies on Changes and Faults 19

Table 11 Most frequent types of faults for classes having static and co-change dependencies with anti-
patterns

Types of faults Descriptions Examples
AntiSingleton Interface Concurrency errors Race condition 9

fault (61%) in critical sections
Blob, ComplexClass, Logic High computational Infinite loops 10

LongParameterList fault (73%) complexity
ClassDataShouldBePrivate, Data Uninitialized variable Null pointer 11

MessageChains faults (52%) or a wrong type
SwissArmyKnife Interface Incorrect Incorrect

fault (64%) implementation API usage 12

RefusedParentBequest, Description Incorrect Incorrect
SpeculativeGenerality fault (60%) Design assumption 13

or fixing issues are more likely to touch these classes and their dependencies. Such
maintenance activities increases the risk of these classes to be involved on logic faults,
such as infinite loops and infinite recursion (more than 50% of faults). This observa-
tion confirms Fowler and Brown’s warnings about such classes [10].

Table 12 Most frequent types of changes for classes having static and co-change dependencies with design
patterns

Changes types Descriptions Examples
Command, Composite, Factory Code Adding code to add features Method
method, Observer, Prototype, Decorator addition (93%) or implement requirements addition

Table 12 reports for ArgoUML, JFreeChart, and XercesJ, that the more frequent
types of changes for classes having static relationships and co-change dependencies
with the six analyzed design patterns was method addition/removal. Design patterns
are solutions to recurring problems in software design that help in improving reusabil-
ity, maintainability, comprehensibility, and robustness [16]. Thus, classes having de-
pendencies to design patterns are less subject to structural changes, such as refac-
toring. For example, the Command design pattern interface defines usually only one
method, typically execute(), and therefore can be expected to not be subject to
structural changes.

Table 13 Most frequent types of faults for classes having static and co-change dependencies with design
patterns

Fault types Descriptions Examples
Composite and Observer Logic Programmer changes a class but forgets Late propagation,

fault (54%) another class which uses the same code missing co-change
Decorator, Factory method Syntax Using an invalid instruction Using and displaying
Prototype and Command fault (96%) or a wrong data type null values as zero.

Design patterns do not always improve the quality of systems, thus they should be
used with caution. In RQ3 we observe that static relationships with design patterns do

20 Fehmi Jaafar et al.

not impact fault-proneness. In RQ4 we observe that co-change dependencies have an
impact on fault proneness. We report also that these co-change dependencies concern
mainly the Composite and Observer design patterns. Table 13 reports for ArgoUML,
JFreeChart, and XercesJ, that the more frequent types of faults for classes having
dependencies with the Composite and Observer design patterns are logic faults. We
observe also that the more frequent types of faults for classes having dependencies
with Decorator, Factory method, Prototype, and Command are syntax errors. For
the rest of the design patterns, we found that faults on dependent classes are mostly
related to the internal quality of these classes, such as invalid instructions or wrong
data types.

Thus, we answer RQ5 as follows: classes with dependencies on anti-pattern classes
are more subject to logic faults and structural changes. Classes with dependencies
on design pattern classes are more subject to code addition and syntax faults.

Other observations: Based on the finding of this study, it is impossible to categorize
the types of faults and changes for classes having static relationships or co-change
dependencies with LongMethod. Two observations could explain this fact. First, we
observe the low number of classes participating in the instances of this anti-pattern.
Second, this anti-pattern characterizes classes with long methods and using global
variables for processing. Thus, classes having dependencies with such anti-pattern
instances are often too few and have the structure of Lazy classes, i.e., with little
reasons to change.

4.6 Improvement in fault prediction models

Previous studies [24,66] showed that size, complexity, and historical metrics are good
predictors of faults in systems. Thus, we decide to study whether static and/or co-
change dependencies could provide additional useful information, complementary to
these traditional fault-prediction metrics. Our investigation compares two models for
predicting the presence or absence of faults in classes: (1) one using only static code
metrics and (2) one using static code metrics and dependencies with anti-patterns or
design patterns.

First, we use seven metrics to build a fault-prediction model using Support Vec-
tor Machines (SVM). There are various machine learning techniques available to
build such models. We use Support Vector Machines because this technique has been
widely used in literature and has shown good results [41, 45].

The metrics are: (1) the number of lines of code per class; (2) the number of
method calls of a class; (3) the depth of nested blocks in the methods in a class;
(4) the number of parameters of the methods in a class; (5) the McCabe cyclomatic
complexity of the methods in a class; (6) the number of fields of a class; and (7) the
number of methods of a class. We chose these seven metrics because they have been
successfully used in the past [42] to predict faults.

Second, we added to the previous model metrics based on the static and co-change
dependencies of classes with anti-pattern and design-pattern classes to investigate

Evaluating the Impact of Design Pattern and Anti-pattern Dependencies on Changes and Faults 21

whether such dependencies could improve fault prediction. The metrics consist of
four variables that must take an integer value (0, 1, 2, ...). The first variable indicates
the number of static relationships between a class and design-pattern classes. The
second variable indicates the number of co-change dependencies between a class and
design-pattern classes. The third variable indicates the number of static relationships
between a class and anti-pattern classes. The fourth variable indicates the number of
co-change dependencies between a class and anti-pattern classes. The models output
the likelihood of a class to having one or more post-release faults.

Table 14 Difference in fault prediction between a model based on only static code metrics and a model
based on static code metrics plus anti-pattern and design-pattern dependencies

Static relationships Co-change
of AntiSingleton No No
of Blob Yes (+3%) Yes (+8%)
of ClassDataShouldBePrivate No No
of ComplexClass Yes (+4%) No
of LongMethod No Yes (+6%)
of LongParameterList No No
of MessageChains No Yes (+5%)
of RefusedParentBequest No Yes (+2%)
of SpeculativeGenerality No Yes (+2%)
of SwissArmyKnife Yes (+2%) Yes (+3%)
of Command No No
of Composite No No
of Decorator No No
of Factory method No No
of Observer No No
of Prototype No No

We use the significance test based on a likelihood ratio test [26], commonly used
for logistic regressions, to examine (the significance of) the difference between the
performance of the two models when predicting faults. Table 14 reports the cases
in which fault prediction was improved using anti-pattern or design pattern depen-
dencies. It shows that dependencies with different anti-patterns and design patterns
do not consistently bring improvements. If all anti-patterns and design patterns are
considered, it is impossible to definitely exclude the possibility that there is no sta-
tistically significant differences in fault prediction. However, if we consider specific
anti-patterns, we observe that using static and co-change dependencies improve the
precision of the model. In fact, we observe that for anti-patterns that have a high
complexity in term of LOC, such as Blob and ComplexClass, adding the analysis of
static relationships improves the precision of the model. Similarly, when consider-
ing anti-patterns that have a high number of method calls, such as MessageChains
and SwissArmyKnife, adding the analysis of co-change relationships improves the
precision of the model.

These results are encouraging because they show that even with a naive model,
built using only static code metrics, considering anti-pattern dependencies improves
the prediction of fault-prone classes. Thus, we conclude with this conservative and

22 Fehmi Jaafar et al.

simplistic investigation that the knowledge about the propagation of faults through
static and co-change dependencies is useful to improve the prediction of faults in
classes and should be studied further in future work.

5 Discussion

We now discuss the results of our empirical study. For each research question, we re-
port explanations about our findings and we compare them with related work. Finally,
we discuss threats to validity of our study.

First of all, we observe with Tables 4 and 5 that different anti-patterns and design
patterns have different proportions of static relationships with other classes in the
analyzed systems. These differences are not surprising because these systems have
been developed in three unrelated contexts, under different processes, and by different
developers. Tables 4 and 5 highlight the importance of analyzing and reporting anti-
pattern and design-pattern dependencies when assessing the quality of systems.

The fact that we cannot find a correlation between having static relationships with
the six design patterns analyzed in this study and fault-proneness is not surprising.
It confirms that the key benefit of using design patterns is their positive impact on
software quality, such as reusability, flexibility, and maintainability [16].

5.1 Dependencies between Anti-patterns and Design patterns

We observed that many dependencies from anti-pattern classes are with design-pattern
classes. We believe that developers use design patterns, possibly unintentionally, as
proven solutions to recurring design problems [27], i.e., when there is a proliferation
of similar methods and/or the user-interface code becomes difficult to maintain.

In our previous study [29], we observe that anti-patterns do have static relation-
ships with design patterns, but that these relationships are temporary. Yet, anti-pattern
classes participating in such relationships are more change-prone but less fault-prone
than other anti-pattern classes. Therefore, it seems that developers sometimes use
design patterns as a temporary fix for anti-patterns because both the anti-patterns
and their dependencies on design pattern classes are removed later from the systems.
The fix seems to be working because the fault-proneness of anti-patterns is reduced.
Detecting and analyzing static relationships of anti-pattern classes is thus important
from the points of view of both researchers and practitioners.

We bring evidence in our previous work [29] that (1) anti-patterns do statically
relate to some design patterns, (2) some anti-patterns have more relationships with
design pattern classes than (with) other classes. We confirm with this study that (3)
these relationships indicate specific trends for the evolution of classes in term of fault-
proneness and change-proneness. For example, we observe in our previous work [29]
that 50% of static relationships among SpeculativeGenerality and design patterns in
ArgoUML are with the Command design pattern. In XercesJ, we observe that 41% of
relationships among ClassDataShouldBePrivate was with the Command design pat-
tern. In all releases, except ArgoUML 28.1, we observe a significant difference of

Evaluating the Impact of Design Pattern and Anti-pattern Dependencies on Changes and Faults 23

proportions of changes among classes participating and not participating in a rela-
tionship between anti-patterns and design patterns. Indeed, the change-proneness of
classes participating in static relationships between anti-patterns and design patterns
are, in most cases, higher than those of other classes with anti-patterns and design
patterns.

5.2 Impact of the Dependencies

Observing that classes having static relationships with anti-patterns undergo specific
kind of changes or faults support claims in previous work [32, 62]. Indeed, Khomh
et al. [32] show that classes participating in anti-patterns undergo more structural
changes than others changes (e.g., changes in the method implementations). Thus, it
is no surprising that classes sharing dependencies with anti-pattern classes also un-
dergo structural changes. Similarly, Yamashita and Moonen [62] show that specific
maintenance problems, such as undesired behavior or unavailability of functionali-
ties, are correlated with bad smells. We complement this previous work by also show-
ing that classes having co-change dependencies with anti-pattern and design-pattern
classes are more fault-prone than other classes.

We also confirm that class co-changes imply the existence of (hidden) dependen-
cies between these two classes. If these dependencies are not properly maintained,
they can introduce faults in a system [67]. We find that classes that co-change with
anti-patterns and design patterns can be more fault-prone than other co-changing
classes in ArgoUML, JFreechart, and XercesJ. Thus, by knowing the sets of classes
that co-changed with anti-pattern and design-pattern classes, we could explain and
possibly prevent faults. If co-change dependencies with anti-patterns and design pat-
terns are not properly followed, they can lead to faults in the system. As an exam-
ple, the class GoClassToNavigableClass.java belongs to a Blob anti-pattern in
ArgoUML v0.26. Concretely, this class is co-changing with class GoClassToAsso-
ciatedClass.java. However, these two classes are not always maintained together.
Indeed, when the developer makes some changes to GoClassToNavigableClass-

.java, she should also assess GoClassToAssociatedClass.java for change. In
the Bugzilla database of ArgoUML, the bug ID550514 confirms that the two classes
are related but were not maintained together, leading to a fault. Our approach could
thus warn developers based on the system history and point out risky classes that are
co-changing with anti-patterns and design patterns. In addition, with the availability
of such information, a tester could decide to focus on classes having dependencies
with anti-pattern and design-pattern classes, because she knows that such classes are
likely to contain more faults.

5.3 Threats to Validity

We now discuss threats to the validity of our results [63].

14 http://ArgoUML.tigris.org/issues/show_bug.cgi?id=5505

24 Fehmi Jaafar et al.

Construct validity threats concern the relation between theory and observation. In
our context, they are mainly due to errors introduced in measurements. We are aware
that the detection approaches used in our study include some subjective understand-
ing of the definitions of anti-patterns and design patterns. However, we are interested
in analyzing anti-patterns “as they are defined in DECOR” [40] and design patterns
“as they are defined in DeMIMA” [21]. Similarly, our approach to identify macro
co-changes may have missed real and report wrong co-changes.

Yet, the precision and recall values of the anti-pattern, design-pattern, and co-
changes detection approaches are concerns that we agree to accept. Moha et al. [40]
reported that the current DECOR detection algorithms for anti-patterns ensure 100%
recall and have a precision greater than 31% in the worst case, with an average pre-
cision greater than 60%. Guéhéneuc and Antoniol [21] reported that DeMIMA can
detect design patterns with a recall of 100% and a precision greater than 34%. While,
for the detection of relationships among classes, DeMIMA guarantees 100% recall
and precision by definitions of the relationships [20]. Macocha approach for macro
co-change ensures 96% recall and has a precision greater than 85% [28]. Future inves-
tigations aimed at assessing the extent to which the choice of the detection approaches
impact our results are needed.

Classes participating in an anti-pattern instance (respectively, a design pattern
instance) can have dependencies (static relationships and/or co-change dependencies)
with classes participating in other anti-pattern instances (or design pattern instances).
Thus, the tests reported in this paper cover classes that have a dependency with an
anti-pattern instance (or design patterns instance), regardless of the fact that these
classes could belong to other patterns. Nevertheless, we present in Section 4 the result
of our analysis of the impact of dependencies, for classes participating in anti-patterns
or design patterns, and other classes separately. If the analyzed class has dependencies
with more than one pattern/anti-pattern, it will be avoided by the analysis to minimize
the noise of the interaction effects. In this context, Yamashita et al. [62] reported
that such interactions affect the maintenance and the code quality. For example, they
revealed how smells that were co-located in the same artifact interacted with each
other, and affected maintainability.

We computed the fault-proneness of a class by relating fault reports and commits
to the class. Fault-fixing changes are documented in fault reports that describe differ-
ent types of problems in a system. We match faults/issues to changes using their IDs
and their dates in the change-log files and in the fault reports. We check independent
changes that were accidentally combined in the same commit. We also manually in-
vestigated the code to be sure that the fault fixes documented in the commit message
were related to the class changes reported in the SVN/CVS log files.

Internal validity threats concern the extent to which a causal conclusion based on
a study is warranted. First of all, the study presented in this paper is an exploratory
study. Thus, we do not claim causation [65], but relate the presence of anti-pattern and
design pattern dependencies with the occurrences of changes and faults. Nevertheless,
we tried to explain by looking at specific changes, commit notes, and change histories
why some of these dependencies could have been the cause of changes/issues/faults.
We are also aware that, on the one hand, anti-patterns can be dependent on each other
and relied on the logistic regression model-building procedure to select the subset of

Evaluating the Impact of Design Pattern and Anti-pattern Dependencies on Changes and Faults 25

non-correlated anti-patterns. On the other hand, having a fault is a temporary prop-
erty, whereas being involved in an anti-pattern or design pattern is a rather some-
what long-term, persistent property. In previous work [29], we analyzed the volatility
of anti-pattern and design pattern dependencies in the same software systems (Ar-
goUML, JFreeChar, and XercesJ) and we concluded that they continued to exist in
all versions of these systems. Thus, there will be times when an anti-pattern having
dependencies with a class will have no fault and times when it will have faults. In this
study, and as in previous work [32] analyzing change- and fault-proneness, we de-
clared that a class is a faulty class if it was involved in at least one fault-fixing change.
Indeed, we considered changes and faults that occurred after the structural/co-change
dependencies are detected. For instance, we cannot definitively claim that the co-
changes are the result of a defect fix or are causing the defect. But we reported the
presence of these dependencies with the next occurrences of changes and faults.

Conclusion validity threats concern the relation between the treatment and the
outcome. We paid attention not to violate the assumptions of the statistical test that
we used, i.e., the Fisher’s exact test, which is a non-parametric test.

Reliability validity threats concern the possibility of replicating this study. We
attempted to provide all the necessary details to replicate our study. Moreover, the
source code repositories of ArgoUML, JFreeChart, and XercesJ are publicly available
as well as the anti-pattern and design pattern detection approaches used in this study.
The analysis process is described in detail in Section 2. All the data used in this study
are available on-line15.

External validity threats concern the possibility of generalizing our observations.
First, although we performed our study on three different, real systems belonging to
different domains and with different sizes and histories, we cannot assert that our
results and observations are generalizable to any other systems. All the analyzed sys-
tems were in Java and open-source, which may also reduce the generalizability of
our findings. In the future, we plan to analyze more systems, written in different pro-
gramming languages, to draw more general conclusions.

Second, we used particular, yet representative, sets of anti-patterns and design
patterns. Different anti-patterns and design patterns could have lead to different re-
sults, which are part of our future work. In addition, the list of metrics used in our
study is by no means complete. Therefore, using other metrics may yield different
results. However, we believe that the same approach can be applied to any list of met-
rics. The odds ratio and p-value thresholds used in our study were chosen because
they proved to be successful in previous work [32].

6 Related Work

During the past years, different approaches have been developed to address the prob-
lem of detecting design patterns, specifying anti-patterns, and studying their impact
on change- and fault-proneness.

15 http://www.ptidej.net/download/experiments/emse14a/

26 Fehmi Jaafar et al.

6.1 Anti-patterns Definition and Detection

Code smells and anti-patterns both describe re-occurring software problems. Code
smells are symptoms of problems existing in the source code [40]. There are large
overlaps between many definitions of anti-patterns and code smells and they both
span abstraction levels that go from attributes associated to inner workings of the
class to more design/micro-architectural-related attributes [59] [10]. Concretely, code
smells give warnings to software developers that the source code has some problems,
while anti-patterns provide software managers, architects, designers, and developers
a common vocabulary for recognizing possible sources of problems in advance.We
noted that some of the definitions of code smells are equivalent to many of the anti-
patterns. For example: Blob can be interpreted as God Class, Long method can be
interpreted as God Method, etc. In this paper, we consider the specification of 10 anti-
patterns described in Brown et al. [10] and follow several previous work [40], [32],
etc.

Vokac [58] analyzed the corrective maintenance of a large commercial program,
comparing the defect rates of classes participating in design motifs against those that
did not. He found that the Observer and Singleton motifs are correlated with larger
classes; classes playing roles in Factory Method were more compact, less coupled,
and less defect prone than other classes; and, no clear tendency existed for Template
Method. Their approach showed correlation between some design patterns and smells
like LargeClass but did not report an exhaustive investigation of possible correlations
between these patterns and anti-patterns. Pietrzak and Walter [47] defined and ana-
lyzed the different relationships that exist among smells and provided tips about how
they could be exploited to alleviate the detection of anti-patterns. The authors per-
formed an experiment to show that the use of knowledge about identified smells in
Jakarta Tomcat code supports the detection process. They found examples of several
smell dependencies, including aggregate relationships. The certainty factor for those
relations in that code suggested the existence of correlation among the dependent
smells and applicability of this approach to anti-patterns detection.

The first book on “anti-patterns” in object-oriented development was written in
1995 by Webster [59]. In this book, the author reported that an anti-pattern describes a
frequently used solution to a problem that generates ineffective or decidedly negative
consequences. Brown et al. [10] presented 40 anti-patterns, which are often described
in terms of lower-level code smells. These books provide in-depth views on heuris-
tics, code smells, and anti-patterns aimed at a wide academic audience. They are the
basis of all the approaches to detect anti-patterns.

The study presented in this paper relies on the anti-pattern detection approach
DECOR [40]. However several other approaches have been proposed in the past. For
example, Van Emden et al. [14] developed the JCosmo tool, which parsed source
code into an abstract model (similar to the Famix meta-model). JCosmo used rules
to detect the presence of smells and anti-patterns. It could visualize the code layout
and display anti-pattern locations to help developers assess code quality and perform
refactorings.

Marinescu et al. developed a set of detection strategies to detect anti-patterns
based on metrics [49]. They defined history measurements which summarize the

Evaluating the Impact of Design Pattern and Anti-pattern Dependencies on Changes and Faults 27

evolution of the suspect parts of code. Then, they showed that the detection of God
Classes and Data Classes can become more accurate by using historical information
of the suspected flawed structures.

Settas et al. explored the ways in which an anti-pattern ontology, a representa-
tion of anti-pattern specification in the form of a set of concepts, can be enhanced
using Bayesian networks [52]. Their approach allowed developers to quantify the ex-
istence of an anti-pattern using Bayesian networks, based on probabilistic knowledge
contained in an anti-pattern ontology.

The Integrated Platform for Software Modeling and Analysis (iPlasma) described
in previous work [35] can be used for anti-pattern detection. This platform calculates
metrics from C++ or Java source code and applies rules to detect anti-patterns. The
rules combine the metrics and are used to find code fragments that exceed thresholds.

We share with all the above authors the idea that anti-pattern detection is an in-
teresting approach to assess code quality, in particular to study whether the existence
of anti-patterns and their relationships make the source code more difficult to main-
tain. This previous work significantly contributed to the specification and detection of
anti-patterns. The approach used in this study, DECOR [40], builds on this previous
work to offer a method to specify and automatically detect anti-patterns. It has appro-
priate performance, precision, and recall for our study. In addition, DECOR can be
applied on any object-oriented system through the use of the PADL [21] meta-model
and POM framework [22]. PADL describes the structure of systems and a subset of
their behavior, i.e., classes and their relationships. POM is a PADL-based framework
that implements more than 60 structural metrics.

6.2 Design Pattern Definition and Detection

The first book on “design patterns” in object-oriented development was written in
1996 by Gamma et al. [16]. Since this book, several workshops and conferences have
emerged to propose new patterns. Many papers have been published studying the use
and impact of design patterns.

The study presented in this paper relies on the design-pattern detection approach
DeMIMA [21]. However, several other approaches have been proposed in the past.
For example, one of the first papers about detecting design patterns was written by
Krämer et al. [33] in 1996. It introduced an approach for detecting design informa-
tion directly from C++ header files. This information was stored in a repository. The
design patterns were expressed as Prolog rules to query the repository and detect five
structural design patterns: Adapter, Bridge, Composite, Decorator, and Proxy.

Several other approaches have been proposed, using different representations of
both the design patterns and the systems in which to detect their occurrences and var-
ious algorithms with different trade-offs between simplicity, performance, precision,
and recall. Algorithms used for the first time to detect design pattern include logic
programming [60], constraint programming [48], queries [34], fuzzy networks [31],
graph transformations [2]. Some dedicated algorithms have also been introduced,
e.g., [1, 9, 36, 56].

28 Fehmi Jaafar et al.

Recently, an approach based on similarity scoring has also been proposed by
Tsantalis et al. [57], which provides an efficient means to compute the similarity be-
tween the graph of a design pattern and the graph of a system to identify classes
potentially participating in the design pattern. The authors proposed an approach to
exploit the fact that each design pattern resides in one or more inheritance hierarchies
because most design patterns involve at least one abstract class/interface and its de-
scendants. Consequently, the system is partitioned into clusters of hierarchies (pairs
of communicating hierarchies), so that the similarity algorithm is applied to smaller
subsystems rather than to the entire system.

We concur with this previous work on the importance of identifying design pat-
terns in systems as a means to aid program comprehension, to assess code quality as
well as to study their impact. The approach used in this study, DeMIMA [21], fol-
lows previous work on using constraint programming to automatically identify de-
sign patterns and some of their variants with reasonable performance, precision, and
recall. Indeed, DeMIMA makes it possible to recover two kinds of design choices
from source code: idioms pertaining to the relationships among classes and design
motifs characterizing the organization of the classes. DeMIMA depends on a set
of definitions for unidirectional binary class relationships. The formalizations define
the relationships in terms of four language-independent properties that are derivable
from static and dynamic analyses of systems: exclusivity, type of message receiver,
lifetime, and multiplicity. DeMIMA keeps track of data and links to identify and
ensure the traceability of these relationships. DeMIMA also uses explanation-based
constraint programming to identify microarchitectures similar to design motifs. This
technique makes it possible to identify microarchitectures similar to a model of a
design motif without having to describe all possible variants explicitly. We also use
DeMIMA to detect motifs’s relationships. In fact, DeMIMA distinguishes use, asso-
ciation, aggregation, and composition relationships because such relationships exist
in most notations used to model systems, for example, in UML.

6.3 Anti-patterns and Design Patterns Static Relationships

Binkley [7] et al. defined the Dependence anti-patterns which indicated potential
problems for ongoing software maintenance and evolution. They showed how these
anti-patterns can be identified using techniques for dependence analysis and visual-
ization. While it is hard to define what a “bad” dependence structure looks like, we
believe that it is comparatively easy to identify dependence between anti-patterns and
others classes. In this paper, we investigate the impact of such dependencies in terms
of fault proneness.

Oliveto et al. [44] reported that analyzing smell relationships could help to refac-
tor the code and, in particular, to remove the Feature Envy smell. Indeed, this bad
smell can be considered as the most common symptom related to problems with
class coupling and cohesion. Our work differs in the studied objects (the anti-patterns
and design patterns), the analyzed parameters (static relationships and co-changes),
and its goals (detecting the impact on fault-proneness and the types of changes).

Evaluating the Impact of Design Pattern and Anti-pattern Dependencies on Changes and Faults 29

Marinescu and Marinescu [38] reported that if a class makes use of a class that
reveals design flaws, that class is more likely to exhibit faults. Thus, when a developer
is aware of a class revealing design flaws within a system, she should also monitor
the clients of this class because they are likely to also exhibit faults. They consid-
ered four design flaws called Identity Disharmonies and that a class use an Identity
Disharmonies if that class calls at least one method from a flawed class. Our work
differs from this previous work in that we analyze different types of dependencies
with both anti-patterns and design patterns. Thus, we claim that our study is the first
detailed analysis of the impact of different relationships (including calls, i.e., use rela-
tionship), co-change dependencies, and fault-proneness. We also analyzed six design
patterns and 10 anti-patterns in comparison to four Identity disharmonies.

Vokac [58] analyzed the corrective maintenance of a large commercial system,
comparing the fault rates of design pattern classes with others. Their approach showed
a correlation between some design patterns and smells such as LargeClass but did not
report an exhaustive investigation of possible correlations between these design pat-
terns and anti-patterns.

Yamashita and Moonen in [61] reported maintainability factors that are important
from the software maintainer’s perspective, and provided an overview of the capabil-
ity of code smell definitions to evaluate the overall maintainability of a system. They
also found that code smell interactions occurred across coupled artifacts, with com-
parable negative effects such as same artifact co-location. Pietrzak and Walter [47]
defined and analyzed the different relationships that exist among smells and provided
suggestions to exploit these relationships to improve the detection of anti-patterns.
They proposed six coarse relations: plain support, mutual support, rejection aggre-
gate support, transitive support, and inclusion. Indeed, the authors found examples
of several smell dependencies, including simple, aggregate and transitive support and
rejection relation. The authors noticed that the certainty factor for those relations
suggested the existence of correlation among the dependent smells.

Rather than focusing on the relationships among code smells and anti-patterns
to increase the accuracy of anti-pattern detection, our study focused on analyzing
anti-pattern and design pattern dependencies to understand their impact on fault-
proneness.

6.4 Co-change Dependencies

Bouktif et al. [8] defined the general concept of change patterns and described one
such pattern, Synchrony, that highlights co-changing groups of classes. Their ap-
proach used a sliding window algorithm [68] to identify occurrences of the Synchrony
change pattern. This pattern models the fact that a change to one artifact may imply
a large number of changes to various other artifacts. Macro co-changes are another
kind of change pattern of interest to developers [29, 30].

Ying et al. [64] and Zimmermann et al. [68] applied association rules to identify
co-changing files, i.e., occurrences of the Asynchrony change pattern. They used past
co-changed files to recommend source code files potentially relevant to a change re-
quest. An association-rule algorithm extracts frequently co-changing files of a trans-

30 Fehmi Jaafar et al.

action into sets that are regarded as change patterns to guide future changes. Such
an algorithm uses co-change history in CVS and avoids the source code dependency
parsing process. Other approaches to detect co-changing files exist [3, 15, 19, 68].
They all are intrinsically limited in their definition of co-change. They cannot express
change patterns in long time intervals and–or performed by different developers.

We introduced the novel change patterns of macro co-changes (MCCs) and de-
phase macro co-changes (DMCCs) [28], inspired from co-changes and using the con-
cept of change periods. A MCC describes a set of classes that always change together
in the same periods of time (of duration much greater than 200 ms). A DMCC de-
scribes a set of classes that always change together with some shift in time in their
periods of change. We proposed an approach, Macocha [29, 30], to mine software
repositories (CVS and SVN) and identify (dephase) macro co-changing classes. We
showed that Macocha has a better precision and recall for co-changes detection than
an approach based on association rules. We used external information provided by
bugs reports, mailing lists, and requirement descriptions to show that detected MCCs
and DMCCs explain real, important evolution phenomena. In this paper, we use Ma-
cocha to mine software repositories and identify classes that are co-changing with
anti-patterns or design patterns.

Aversano et al. [3] presented results from an empirical study analyzing the evo-
lution of design patterns in three open-source programs (JHotDraw, ArgoUML, and
Eclipse-JDT). The study analyzed the frequency of the modification of design pattern
classes, the type of changes that they undergo, and co-changing classes. Results sug-
gested that developers should carefully consider design pattern usage to support cru-
cial features because the design pattern classes will likely undergo frequent changes
and be involved in large maintenance activities. While Aversano et al. focused on
design patterns, our study analyzed classes that co-changed with anti-patterns and
design patterns.

Khomh et al. [32] investigated the impact of anti-patterns on classes in object-
oriented systems by studying the relation between the presence of anti-patterns and
the change- and fault-proneness of the classes. The authors showed that in 50 out
of 54 releases of the four analysed systems, classes participating in anti-patterns are
more change and fault-prone than others. In this paper, we showed that detecting
classes that are co-changing with anti-pattern classes help to identify which classes
are more likely to be fault prone. Similarly, Aversano et al. [4] investigated the impact
of design patterns on crosscutting code spread across classes using the patterns as
well as its fault proneness.

Similar to this previous work, we investigate fault proneness of classes to analyze
the impact of anti-pattern and design pattern dependencies. We aim to understand if
the negative effects of anti-patterns can propagate to other classes through static and
co-change dependencies.

6.5 Fault-proneness

The most studied approach for fault prediction is to relate software faults with size
and complexity metrics [23, 39]. Chidamber and Kemerer [11] proposed a suite of

Evaluating the Impact of Design Pattern and Anti-pattern Dependencies on Changes and Faults 31

object-oriented design metrics that has been supported by several theoretical and em-
pirical studies [5, 55]. Results show that (1) the more complex the code is, the more
faults exist in it and (2) size is one of the best indicators for fault proneness. How-
ever, other measures can provide interesting, complementary information to further
improve our understanding of fault-proneness and its propagation. Thus, Hassan and
Holt [25] proposed heuristics to analyze fault proneness. They found that recently
modified and fixed classes were the most fault-prone.

D’Ambros et al. [12] reported that there was a correlation between change cou-
pling and defects that is higher than the one observed with complexity metrics. Fur-
ther, defects with a high severity seem to exhibit a correlation with change coupling
which, in some classes, is higher than the change rate of the classes. They also used
change coupling information in fault prediction models based on complexity metrics.

Marcus et al. [37] used a cohesion metric based on Latent semantic indexing
(LSI), an indexing and retrieval method, to relate the terms and concepts contained
in an unstructured collection of source code. LSI is based on the principle that words
that are used in the same contexts tend to have similar meanings. The authors used
LSI for fault prediction and reported that structural and semantic cohesion impacts the
understandability and readability of the source code and, hence, its fault-proneness.

Ostrand et al. [45], Bernstein et al. [6], and Neuhaus et al. [43] predict faults
in systems using historical change and fault data. Moser et al. [41] used code and
historical metrics (e.g., code churn, past faults, and refactorings, etc.) to predict the
presence/absence of faults in files of Eclipse.

We share with all this previous work its interest in the fault-proneness of classes
and we reuse the traditional algorithms to assign faults to classes in the literature by
mining software repositories and issues tracking systems and relating the issues-ID
in the tracking systems with the changes in the repositories.

Previous Work Capitulation: These previous works raised the awareness of the com-
munity towards the impact of anti-patterns and design patterns on software develop-
ment and maintenance activities. In this paper, we build on these previous works and
analyze the existence and the impact of anti-pattern and design-pattern dependen-
cies. We studied the negative effects of anti-patterns and design patterns and their
propagation through co-change and static dependencies. We also performed a qual-
itative study to investigate the types of changes and faults impacting classes having
dependencies with anti-pattern and design pattern classes.

7 Conclusion

Our conjecture was that classes having static and co-change dependencies with anti-
pattern and design-pattern classes could be involved in changes and faults more often
than other classes because the changes and faults could propagate from anti-pattern
and design-pattern classes to other classes through their dependencies.

We conducted a quantitative study to answer four research questions and we re-
ported that:

32 Fehmi Jaafar et al.

– Classes having static or co-change dependencies with anti-pattern classes have
significantly more faults than other classes.

– Classes having co-change dependencies with design-pattern classes also have sig-
nificantly more faults than other classes, but not than classes having static rela-
tionships with design pattern classes.

– Structural changes are more likely to occur in classes having dependencies with
anti-pattern classes than other classes.

– Code addition changes are more likely to occur in classes having dependencies
with design pattern classes than in classes.

– Specific types of faults are more prevalent with certain anti-patterns and design
patterns: for examples, Blob and Complex Class propagate mostly logic faults.

We confirmed that our conjecture is valid within the context of this study, and
thus, researchers can use these results (1) to improve fault prediction models, as we
briefly illustrated in Section 5, (2) to understand the evolution of software systems,
and (3) to detect the types of faults and changes that possibly affect classes having
such dependencies. Developers could use these observations to assign maintenance
tasks and focus testing efforts on classes having dependencies with anti-pattern and
design pattern classes.

As limitation of this study, we used a particular, yet representative, set of design
patterns and anti-patterns. Different design patterns and anti-patterns could have lead
to different results. In addition, the list of metrics used in our study is not complete.
Therefore, using other metrics may yield different results. However, we believe that
the same approach can be tested on any list of patterns and metrics. Thus, future work
includes (1) replicating our study on other systems to assess the generalizability of its
results, (2) studying change log files, mailing lists, and issue reports to seek evidence
of cause-effect relationships between the presence of anti-patterns or design patterns
and issues, and (3) analyzing the evolution of such dependencies among different
releases of a system.

Acknowledgements This research was partially supported by FQRNT, NSERC, the Canada Research
Chair in Software Patterns and Patterns of Software, and the Canada Research Chair in Software Depend-
ability.

References

1. Alencar, P.S.C., Cowan, D.D., Morales-Germán, D., Lichtner, K.J., Pereira de Lucena, C.J., Nova,
L.C.: A formal approach to design pattern definition and application. Tech. Rep. CS-95-29, Computer
Systems Group, University of Waterloo (1995)

2. Antoniol, G., Fiutem, R., Cristoforetti, L.: Design pattern recovery in object-oriented software. In:
S. Tilley, G. Visaggio (eds.) Proceedings of the 6th International Workshop on Program Comprehen-
sion, pp. 153–160. IEEE Computer Society Press (1998)

3. Aversano, L., Canfora, G., Cerulo, L., Del Grosso, C., Di Penta, M.: An empirical study on the evo-
lution of design patterns. In: Foundations of Software Engineering, pp. 385–394. ACM Press, New
York, NY, USA (2007)

4. Aversano, L., Cerulo, L., Di Penta, M.: Relationship between design patterns defects and crosscutting
concern scattering degree: an empirical study. The Institution of Engineering and Technology 3(5),
395–409 (2009)

Evaluating the Impact of Design Pattern and Anti-pattern Dependencies on Changes and Faults 33

5. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design metrics as quality indi-
cators. IEEE Transaction On Software Engineering 22(10), 751–761 (1996)

6. Bernstein, A., Ekanayake, J., Pinzger, M.: Improving defect prediction using temporal features and
non linear models. In: Ninth International Workshop on Principles of Software Evolution, pp. 11–18.
ACM (2007)

7. Binkley, D., Gold, N., Harman, M., Li, Z., Mahdavi, K., Wegener, J.: Dependence anti patterns. In:
4th International ERCIM Workshop on Software Evolution and Evolvability, pp. 25–34 (2008)

8. Bouktif, S., Antoniol, G., Merlo, E., Neteler, M.: A plugin based architecture for software main-
tenance. Tech. Rep. EPM-RT-2006-03, Department of Computer Science École Polytechnique de
Montréal (2006)

9. Brown, K.: Design reverse-engineering and automated design pattern detection in Smalltalk. Tech.
Rep. TR-96-07, Department of Computer Science, University of Illinois at Urbana-Champaign (1996)

10. Brown, W.J., Malveau, R.C., Brown, W.H., McCormick III, H.W., Mowbray, T.J.: Anti Patterns:
Refactoring Software, Architectures, and Projects in Crisis, 1st edn. John Wiley and Sons (1998)

11. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Transaction Soft-
ware Engineering 20(6), 476–493 (1994)

12. D’Ambros, M., Lanza, M., Robbes, R.: On the relationship between change coupling and software
defects. In: Proceedings of the 16th Working Conference on Reverse Engineering, pp. 135–144. IEEE
Computer Society, Washington, DC, USA (2009)

13. Dasarathy, B.: Nearest Neighbor ({NN}) Norms:{NN} Pattern Classification Techniques. IEEE Com-
puter Society Press, Washington, DC, USA (1991)

14. Emden, E.V., Moonen, L.: Java quality assurance by detecting code smells. In: The 9th Working
Conference on Reverse Engineering. IEEE Computer, pp. 97–107. Society Press (2002)

15. Gall, H., Hajek, K., Jazayeri, M.: Detection of logical coupling based on product release history.
In: The International Conference on Software Maintenance, pp. 190–200. IEEE Computer Society,
Washington, DC, USA (1998)

16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns – Elements of Reusable Object-
Oriented Software, 1st edn. Addison-Wesley (1994)

17. Gatrell, M., Counsell, S.: Design patterns and fault-proneness a study of commercial C# software. In:
Research Challenges in Information Science (RCIS), pp. 1–8. IEEE (2011)

18. Gerlec, C., Hericko, M.: Analyzing structural software changes: A case study. In: The 5th Balkan
Conference in Informatics, pp. 117–120 (2012)

19. Gı̂rba, T., Ducasse, S., Kuhn, A., Marinescu, R., Daniel, R.: Using concept analysis to detect co-
change patterns. In: International Workshop on Principles of Software Evolution, pp. 83–89. ACM,
New York, NY, USA (2007)

20. Guéhéneuc, Y.G., Albin-Amiot, H.: Recovering binary class relationships: Putting icing on the UML
cake. In: D.C. Schmidt (ed.) Proceedings of the 19th Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pp. 301–314. ACM Press (2004)

21. Guéhéneuc, Y.G., Antoniol, G.: DeMIMA: A multi-layered framework for design pattern identifica-
tion. IEEE Transaction On Software Engineering 34(5), 667–684 (2008)

22. Guéhéneuc, Y.G., Sahraoui, H., Zaidi, F.: Fingerprinting design patterns. In: Proceedings of the 11th
Working Conference on Reverse Engineering, pp. 172–181. IEEE Computer Society, Washington,
DC, USA (2004)

23. Halstead, M.H.: Elements of Software Science (Operating and Programming Systems Series). Else-
vier Science Inc., New York, NY, USA (1977)

24. Hassan, A.E.: Predicting faults using the complexity of code changes. In: Proceedings of the 31st
International Conference on Software Engineering, pp. 78–88. IEEE Computer Society, Washington,
DC, USA (2009)

25. Hassan, A.E., Holt, R.C.: The top ten list: Dynamic fault prediction. In: Proceedings of the 21st IEEE
International Conference on Software Maintenance, pp. 263–272. IEEE Computer Society (2005)

26. Hosmer, D.W., Lemeshow, S.: Applied logistic regression (Wiley Series in probability and statistics).
Wiley-Interscience Publication (2000)

27. Iacob, C.: A design pattern mining method for interaction design. In: The 3rd ACM SIGCHI Sympo-
sium on Engineering Interactive Computing Systems, pp. 217–222. ACM (2011)

28. Jaafar, F., Guéhéneuc, Y.G., Hamel, S., Antoniol, G.: An exploratory study of macro co-changes. In:
Proceedings of the 18th Working Conference on Reverse Engineering, pp. 325–334 (2011)

29. Jaafar, F., Guéhéneuc, Y.G., Hamel, S., Khomh, F.: Analysing anti-patterns static relationships with
design patterns. Electronic Communications of the European Association of Software Science and
Technology 59, 1–26 (2013)

34 Fehmi Jaafar et al.

30. Jaafar, F., Guéhéneuc, Y.G., Hamel, S., Khomh, F.: Mining the relationship between anti-patterns
dependencies and fault-proneness. In: Proceedings of the 20th Working Conference on Reverse Engi-
neering, pp. 351–360 (2013)

31. Jahnke, J.H., Schäfer, W., Zündorf, A.: Generic fuzzy reasoning nets as a basis for reverse engineering
relational database applications. In: M. Jazayeri (ed.) Proceedings of the 6th European Software
Engineering Conference, pp. 193–210. ACM Press (1997)

32. Khomh, F., Penta, M.D., Guéhéneuc, Y.G., Antoniol, G.: An exploratory study of the impact of an-
tipatterns on class change- and fault-proneness. Empirical Software Engineering pp. 243–275 (2012)

33. Krämer, C., Prechelt, L.: Design recovery by automated search for structural design patterns in object-
oriented software. In: L.M. Wills, I. Baxter (eds.) Proceedings of the 3rd Working Conference on
Reverse Engineering, pp. 208–215. IEEE Computer Society Press (1996)

34. Kullbach, B., Winter, A.: Querying as an enabling technology in software reengineering. In: P. Nesi,
C. Verhoef (eds.) Proceedings of the 3rd Conference on Software Maintenance and Reengineering,
pp. 42–50. IEEE Computer Society Press (1999)

35. Lanza, M., Marinescu, R.: Object-Oriented Metrics in Practice. Springer-Verlag (2006)
36. Lethbridge, N.A.T.: Extracting concepts from file names; a new file clustering criterion. In: Proceed-

ings of the International Conference on Software Engineering, pp. 84–93 (1998)
37. Marcus, A., Poshyvanyk, D., Ferenc, R.: Using the conceptual cohesion of classes for fault prediction

in object-oriented systems. IEEE Transactions On Software Engineering pp. 287–300 (2008)
38. Marinescu, R., Marinescu, C.: Are the clients of flawed classes (also) defect prone? In: Proceedings

of the IEEE 11th International Working Conference on Source Code Analysis and Manipulation, pp.
65–74. IEEE Computer Society, Washington, DC, USA (2011)

39. McCabe, T.J.: A complexity measure. In: Proceedings of the 2Nd International Conference on Soft-
ware Engineering, pp. 407–417. IEEE Computer Society Press, Los Alamitos, CA, USA (1976)

40. Moha, N., Guéhéneuc, Y.G., Duchien, L., Le Meur, A.F.: DECOR: A method for the specification and
detection of code and design smells. Transactions On Software Engineering pp. 20–36 (2010)

41. Moser, R., Pedrycz, W., Succi, G.: A comparative analysis of the efficiency of change metrics and
static code attributes for defect prediction. In: The 30th International Conference on Software Engi-
neering, pp. 181–190. ACM, New York, NY, USA (2008)

42. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system defect density. In: The
27th International Conference on Software Engineering, pp. 284–292. ACM (2005)

43. Neuhaus, S., Zimmermann, T., Holler, C., Zeller, A.: Predicting vulnerable software components. In:
The 14th Conference on Computer and Communications Security, pp. 529–540. ACM (2007)

44. Oliveto, R., Gethers, M., Bavota, G., Poshyvanyk, D., De Lucia, A.: Identifying method friendships to
remove the feature envy bad smell (nier track). In: Proceedings of the 33rd International Conference
on Software Engineering, pp. 820–823. ACM, New York, NY, USA (2011)

45. Ostrand, T., Weyuker, E., Bell, R.: Predicting the location and number of faults in large software
systems. IEEE Transactions on Software Engineering pp. 340–355 (2005)

46. Pedersen, T.: Fishing for exactness. In Proceedings of the South-Central SAS Users Group Conference
cmp-lg/9608010, 188–200 (1996)

47. Pietrzak, B., Walter, B.: Leveraging code smell detection with inter-smell relations. Extreme Pro-
gramming and Agile Processes in Software Engineering pp. 75–84 (2006)

48. Quilici, A., Yang, Q., Woods, S.: Applying plan recognition algorithms to program understanding.
journal of Automated Software Engineering 5(3), 347–372 (1997)

49. Ratiu, D., Ducasse, S., Gı̂rba, T., Marinescu, R.: Using history information to improve design flaws
detection. In: Proceedings of the Eighth Euromicro Working Conference on Software Maintenance
and Reengineering, pp. 223–233. IEEE Computer Society (2004)

50. Romano, D., Raila, P., Pinzger, M., Khomh, F.: Analyzing the impact of antipatterns on change-
proneness using fine-grained source code changes. Working Conference on Reverse Engineering pp.
437–446 (2012)

51. Rothman, K.J., Lanes, S., Sacks, S.T.: The reporting odds ratio and its advantages over the propor-
tional reporting ratio. Pharmacoepidemiology and drug safety 13(8), 519–523 (2004)

52. Settas, D., Cerone, A., Fenz, S.: Enhancing ontology-based antipattern detection using bayesian net-
works. Expert Systems with Applications 39(10), 9041–9053 (2012)

53. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures. Chapman &
Hall/CRC (2007)

54. Sliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? SIGSOFT Software Engi-
neering Notes 30(4), 1–5 (2005)

Evaluating the Impact of Design Pattern and Anti-pattern Dependencies on Changes and Faults 35

55. Subramanyam, R., Krishnan, M.S.: Empirical analysis of ck metrics for object-oriented design com-
plexity: Implications for software defects. IEEE Transaction On Software Engineering 29(4), 297–310
(2003)

56. Tatsubori, M., Chiba, S.: Programming support of design patterns with compile-time reflection. In:
J.C. Fabre, S. Chiba (eds.) Proceedings of the 1st OOPSLA workshop on Reflective Programming in
C++ and Java, pp. 56–60. Center for Computational Physics, University of Tsukuba (1998). UTCCP
Report 98-4.

57. Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., Halkidis, S.: Design pattern detection using simi-
larity scoring. IEEE Transaction On Software Engineering 32(11), 896–909 (2006)

58. Vokac, M.: Defect frequency and design patterns: An empirical study of industrial code. IEEE Trans-
action on Software Engineering pp. 904–917 (2004)

59. Webster, B.F.: Pitfalls of Object Oriented Development, 1st edn. M & T Books (1995)
60. Wuyts, R.: Declarative reasoning about the structure of object-oriented systems. Proceedings of Tech-

nology of Object-Oriented Systems (TOOLS’98) pp. 112–124 (1998)
61. Yamashita, A., Moonen, L.: Do code smells reflect important maintainability aspects? In: Software

Maintenance (ICSM), 2012 28th IEEE International Conference on, pp. 306–315. IEEE (2012)
62. Yamashita, A., Moonen, L.: To what extent can maintenance problems be predicted by code smell

detection? - an empirical study. Information Software Technology 55(12), 2223–2242 (2013)
63. Yin, R.K.: Case Study Research: Design and Methods - Third Edition. SAGE Publications, London

(2002)
64. Ying, A.T.T., Murphy, G.C., Ng, R., Chu-Carroll, M.C.: Predicting source code changes by mining

change history. IEEE Transaction On Software Engineering 30(9), 574–586 (2004)
65. Yinn, R.K.: Case study research: design and methods. SAGE, London, England (2002)
66. Zimmermann, T., Nagappan, N.: Predicting defects using network analysis on dependency graphs.

In: Proceedings of the 30th International Conference on Software Engineering, pp. 531–540. ACM
(2008)

67. Zimmermann, T., Premraj, R., Zeller, A.: Predicting defects for eclipse. In: Proceedings of the Third
International Workshop on Predictor Models in Software Engineering, pp. 9–16. IEEE Computer
Society, Washington, DC, USA (2007)

68. Zimmermann, T., Weisgerber, P., Diehl, S., Zeller, A.: Mining version histories to guide software
changes. In: Proceedings of the 26th International Conference on Software Engineering, pp. 563–
572. IEEE Computer Society (2004)

