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Abstract

Context: Interaction traces (ITs) are developers’ logs collected while de-
velopers maintain or evolve software systems. Researchers use ITs to study
developers’ editing styles and recommend relevant program entities when de-
velopers perform changes on source code. However, when using ITs, they make
assumptions that may not necessarily be true.
Objective: This article assesses the extent to which researchers’ assumptions
are true and examines noise in ITs. It also investigates the impact of noise on
previous studies.
Method: This article describes a quasi-experiment collecting both Mylyn ITs
and video-screen captures while 15 participants performed four realistic soft-
ware maintenance tasks. It assesses the noise in ITs by comparing Mylyn ITs
and the ITs obtained from the video captures. It proposes an approach to
correct noise and uses this approach to revisit previous studies.
Results: The collected data show that Mylyn ITs can miss, on average, about
6% of the time spent by participants performing tasks and can contain, on av-
erage, about 85% of false edit events, which are not real changes to the source
code. The approach to correct noise reveals about 45% of misclassification of
ITs. It can improve the precision and recall of recommendation systems from
the literature by up to 56% and 62%, respectively.
Conclusion: Mylyn ITs include noise that biases subsequent studies and,
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Table 1: Example of Mylyn Events

StartDate EndDate OriginId StructureHandle Kind

2013-12-19 16:43:37.818 EST 2013-12-19 16:43:40.101 EST PackageExplorer SelectionManager.java selection

2013-12-19 16:51:00.189 EST 2013-12-19 16:55:43.956 EST CompilationUnitEditor SelectLineRange.createFieldPanel() edit

thus, can prevent researchers from assisting developers effectively. They must
be cleaned before use in studies and recommendation systems. The results on
Mylyn ITs open new perspectives for the investigation of noise in ITs gener-
ated by other monitoring tools such as DFlow, FeedBag, and Mimec, and for
future studies based on ITs.

Keywords Software maintenance · Mylyn Interaction traces · Noise · Editing
behaviour · Recommendation systems

1 Introduction

Developers must find where and how to change relevant program entities to
successfully perform software evolution. They usually interact with program
entities through their Integrated Development Environments (IDEs). They
perform several kind of activities in their IDEs, such as opening files, navi-
gating static relations, searching program entities, changing the code. These
activities form a valuable source of information to understand developers’
behaviour, to develop recommendation systems, and to improve productiv-
ity [10].

Developers’ activities are recorded in the form of developers’ logs or de-
velopers’ interaction traces (ITs). ITs have been used to study developers’
preferred views in an IDE [19], editing styles [36, 38], and exploration strate-
gies [31] as well as work fragmentation [27], maintenance effort [23,30], and to
predict changes [2] and their impact [37]. ITs have also been used to provide
code completion [22] and recommendations of program entities [9, 16,17].

ITs are ordered lists of events triggered by developers while performing
their tasks. Each event has a kind (e.g., command, edit, selection), has a
start and end timestamps, and is triggered on a program entity (e.g., project,
package, file, class, field, or method). Table 1 shows an example of two events
collected by Mylyn. The first event shows the start and end timestamps and
indicates that the developer triggered a selection event on the file Selection-

Manager.java through the PackageExplorer. The second event shows an
edit event on the method SelectLineRange.createFieldPanel() through
the compilation-unit editor (i.e., CompilationUnitEditor).

ITs are usually collected by monitoring tools. Many monitoring tools exist
to collect ITs, such as Blaze [7], DFlow [18], FeebBaG [1], Mimec [15], Mylyn
[20], and WatchDog [3]. However, they differ in their goals and the exact data



Noise in Mylyn Interaction Traces 3

that they collect. Developers use these monitoring tools to collect and provide1

ITs to researchers.
Hence, ITs depend on the developers’ tasks but also on developers’ work

processes. Indeed, ITs will record any and all events preformed in the IDEs,
even if these events are not directly related to the tasks. The timestamps of
the events will reflect any and all interruptions that the developers receive.
Yet, researchers use ITs assuming that (1) the times mined from ITs are the
times spent by developers to perform their tasks [23, 31] and (2) edit events
are modifications of the code [17,36,38].

This article shows that these assumptions are not true and describes an
approach to clean ITs, which could help the software-engineering community
to better assist developers. It uses Mylyn ITs because (1) Mylyn is the tool
most used for collecting ITs in industrial projects and (2) Mylyn ITs are
available and have been used by other researchers in previous work. For the
sake of simplicity, we use “interaction traces” and “ITs” in the following to
refer to Mylyn interaction traces.

In our previous work published at the 9th International Symposium on
Empirical Software Engineering and Measurement (ESEM) [29], we studied
noise in ITs and we proposed a threshold-based approach to correct false edit
events in ITs, i.e., edit events that are considered to be changes while they
are not. In this article, we propose a prediction-based approach to improve the
correction of false edit events. We also use the data-set from Lee et al. [17] to
investigate how noise affects the recommendation of program entities. Thus,
this article answers the following research questions:

RQ1: Is there any noise in Mylyn interaction traces?
We conduct a quasi-experiment and collect both Mylyn RITs (Raw ITs)
and video captures. We transcribe the video captures into VITs (Video-
based ITs). We compare RITs and VITs and observe that RITs miss on
average about 6% of the time spent by participants on their tasks and
contain about 85% of false edit events.

RQ2: How can we address the noise in Mylyn interaction traces?
First, we align RITs and VITs to identify VITs events corresponding to
RITs events. We observe that false edit events take on average about 24
seconds. Second, we propose a threshold-based approach consisting of rules
to automatically generate CITs (Corrected ITs) corresponding to RITs.
Third, we model the prediction of false edit events and derive a prediction-
based approach for correcting RITs, which outperforms the threshold-based
approach by about 5% precision (98% vs. 93%) and 34% recall (98% vs.
64%) when classifying false edit events.

RQ3: What is the effect of the noise on editing styles and exploration strategies?
Developers’ editing styles model when developers edit their code during
their tasks [36] while their exploration strategies model how they explore

1 Example of IT shared in December 2015 by a developer when fixing a bug: https:

//bugs.eclipse.org/bugs/show\_bug.cgi?id=483421
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their code [31]. By applying our threshold-based noise correction approach,
we observe that the edit ratio is correlated with the time spent by develop-
ers on their tasks, contrary to what has been reported in previous studies
of exploration strategies. We also report that noise in ITs led researchers
to mislabel editing styles for about 45% of the developers ITs.

RQ4: What is the effect of noise on recommendation systems?
Recommendation systems can use edit events to recommend program en-
tities to developers during their tasks [17]. By applying our threshold- and
prediction-based noise correction approaches, we revisit the work by Lee et
al. [17] and report that correcting noise in ITs can improve the precision
and recall of the recommendations by up to 56% and 62%, respectively.

In our previous work [29], we identified and quantified time-related and
edit-related noise in ITs collected by Mylyn; proposed a threshold-based ap-
proach to correct edit-related noise; and assessed how noise affect edit-ratios
[9, 27, 31] and the classification of developers’ editing styles [36]. With this
article, we propose a prediction-based approach to improve the correction of
false edit events; compare the threshold- and prediction-based approaches on
editing styles and edit-ratios; evaluate the effect of edit-related noise on the
accuracy of a recommendation system.

The rest of the article is organized as follow: Section 2 provides background
details. Section 3 to Section 6 answer our four research questions followed by
a discussion of threats to their validity in Section 7. Section 8 summarises the
related work. Section 9 concludes and proposes future works.

2 Background

We now present background information about interaction traces and noise
and the recommendation approaches based on interaction traces.

2.1 Interaction Traces and Noise

An interaction trace is a set of interaction events. An interaction event records
an action performed by a developer in the IDE. The information contained in
an interaction event includes its start (i.e., startDate) and end (i.e., endDate)
timestamps, the program entity on which it occurred (i.e., StructureHandle),
the part of the IDE interface used to generate it (i.e., originID), its kind (i.e.,
kind), and its Degree Of Interest (DOI) [9], which measures the degree to
which the program entity is relevant to the task at hand.

Researchers use start and end timestamps to compute the time spent on
a task. They use the kind of event to compare edit vs. other actions, e.g.,
selection. Consequently, noise in interaction traces divides into time-related
noise and edit-related noise. Time-related noise may come from delays be-
tween a developer’s first activity and the first event recorded in the IT, idle
times/interruptions between activities not reflected in the events, aggregation
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of events by the monitoring tool. Edit-related noise are due to edit events that
may not correspond to real modifications to the source code. We define My-
lyn edit events as events in Mylyn ITs that are labeled as edit events. These
events may be true edit events when they correspond to real modifications of
the source code or false edit events when they do not.

Table 2 summarises the two kinds of noise, their possible sources, and their
consequences. The main sources of noise in ITs are:

– The intent of the collected ITs: in some studies, authors use ITs for pur-
poses for which they were not intended. The intent of ITs collected by
Mylyn is to reduce the information overload in the developers’ IDEs. My-
lyn uses the collected ITs to identify program entities that are relevant to
the task at hand. Then, it filters the project explorer view of the IDE and
shows only relevant program entities. Mylyn considers a program entity
relevant if developers spent a certain amount of time on the entity in the
editor, by selecting some text, for example. It labels these non-edit activ-
ities as edit events to increase the relevance of a program entity. It thus
may introduce edit-related noise as these edit events are not true modifi-
cations of the source code. Mylyn also aggregates events when computing
their degree of interest when they are triggered on a same program entity
several times in a row. The timestamps of the resulting, aggregate event
encompasses the timestamps of the aggregated events even if developers
performed other activities between these events.

– The inherent limit of logging: ITs are collected when developers trigger
events on program entities. For example, when developers start their tasks
by navigating in the package explorer or by searching without interact-
ing with any program entity, Mylyn cannot collect related events, which
causes delays between the start times of the tasks and the times of the first
recorded events. Moreover, as any tool that monitor developers’ activities,
Mylyn cannot collect developers’ cognitive activities, such as thinking and
reading, which yield to idle times in Mylyn ITs. The delays and idle times
introduce time-related noise when computing the times spent on tasks. My-
lyn also defines several levels of relevance that map to each kind of events,
with edit events being at the highest level. Mylyn considers both edit event
and the selection of text in the editor as highly relevant to the degree of
interest of a program entity.

2.2 Interaction Traces and Editing Styles and Exploration Strategies

An editing style captures how a developer edits code during a programming
session [36]. An editing style is induced from and qualify an interaction trace.
There are three types of editing styles based on the fraction of edit events at
different points in the ITs: edit-first, edit-last, and edit-throughout. An IT is
categorized as edit-first if a high fraction of edit events occurs in the first half
of the trace. The edit-last as if a lower fraction of edit events occurs in the
first half of the IT, and edit-throughout if the IT is not edit-first or edit-last.
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Table 2: Kind of Noise, their Sources and their Consequences

Noise
Causes

Consequences
Intent of collected
ITs

Inherent limit of
logging

Edit-related
noise

Misinterpretation of
edit events (actual use
is different from the
intended use)

Mislabeling of different
high level of relevance

false posi-
tive of edit
events

Time-related
noise

Misuse of timestamp
(overlap of events
sometimes due to
aggregation of events)

Inability to log some
activities (delay — no
interaction with pro-
gram entities, thinking,
reading)

under/over
estimation
of the time

e
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e

N
e
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Timepoint i

Fig. 1: Illustration of Recommendation based on Interaction Traces

An exploration strategy describes how developers navigate through pro-
gram entities [31]. In a previous work, we studied exploration strategies and
identified two types of strategies: referenced and unreferenced explorations.
With referenced explorations, developers radiate from one set of files and keep
on returning to the same set while, with unreferenced explorations, devel-
opers explore various seemingly unrelated files. We found that unreferenced
explorations require more effort but are less time consuming than referenced
explorations.

2.3 Interaction Traces and Recommendation Systems

A typical recommendation approach [17] includes the following steps: (1) min-
ing interaction traces on the fly, (2) forming context at each timepoint (i.e.,
event), and (3) using association rules to recommend files to edit. Similar to
Lee et al. [17] and for the sake of simplicity in the following, we use the terms
“edited files” to denote the files on which edit actions occurred and “viewed
files” to denote files on which selection actions occurred. Figure 1 summarises
the steps of a recommendation approach where a recommendation is made at
each timepoint i, i.e., when the developer triggers an event ei on a program
entity.

The key basis of the recommendation approach is the context used to trig-
ger the recommendations. For example, the context can be built by considering
any combination of three viewed files within the last 100 events. Lee et al. [17]
provides more details about interaction-based recommendation. In Figure 1,
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at timepoint i, the context consists of the most recently-viewed and edited
files. The context is also considered as a query that is used to trigger a recom-
mendation.

After forming the context, association rules can be built in the database
(traces that are already used for training, then for testing) to find traces that
contain the viewed files Vk and the edited files Ek in their context. An asso-
ciation rule corresponds to a trace in the database, which is an implication
in the form Antecedent⇒ Consequence where Antecedent is a set of viewed
files and Consequence is a set of edited files. The edited files found in the
association rules are considered candidates for recommendation. The support
and confidence of the association rules are used to rank and select the associ-
ation rules. The recommended candidates are ranked using their confidence.
The support is the number of traces in the database containing both the an-
tecedent and the consequence. The confidence is the support divided by the
number of traces in the database containing the antecedent [32].

3 RQ1: Is there any noise in Mylyn interaction traces?

To answer this research question, we perform a quasi-experiment [35] to collect
RITs and the video-captures necessary to obtain VITs. In this section, we
present how we design the experiment (See Section 3.1), collect and process the
data (See Section 3.2), and study noise in interaction traces (See Sections 3.3
and 3.4).

3.1 Experiment Setup

3.1.1 Subject Systems

We choose four Java open-source systems2 because we need their source code,
which the participants will modify to accomplish their tasks. We choose two
Eclipse-based (plugin) systems (ECF and PDE) and two non-Eclipse systems
(jEdit and JHotDraw). ECF (Eclipse Communication Framework) is a set of
frameworks for building communications into applications and services. PDE
(Plug-in Development Environment) provides tools to create, develop, test,
debug, build, and deploy Eclipse plug-ins. JEdit is an open-source text editor.
JHotDraw is a Java GUI framework for technical and structured Graphics. We
choose these two kinds of systems because (1) we want to decrease threats to
generalisability by using two Eclipse-based systems and two other non-Eclipse
systems; (2) their source code is open; (3) they belong to different application
domains; and, (4) they are well-known and studied in the software engineering
community. We also choose these systems because there are RITs available in

2 https://eclipse.org/ecf/, https://eclipse.org/pde/, http://www.jedit.org/, and
http://www.jhotdraw.org/
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Table 3: Systems, Tasks Used for the Experiment and their Descriptions

Systems Tasks Descriptions

ECF
irc channel output
copy/select all works
incorrectly

Enter IRC channel (e.g. #eclipse-dev). Right
click on the chat output text area to bring up
“Copy/Clear/Select All” menu. Choose “Se-
lect All”.
Expected: That channel’s text would be se-
lected.
Actual: The root container’s (irc.freenode.net)
output is selected rather than the channel’s
output.

jEdit
Add lines number and
error messages in the
select line range dialog

Display next to the “Select line range:” label
the number of lines contained in the file and if
the user enter a wrong character (everything
that’s not a number) or a wrong interval you
have to display the error message if the user
press the “OK” button.

JHotDraw

Change the color of la-
bels and background of
the FontChooser appli-
cation

The “Collections” label will be in blue, the
“Family” label in yellow and the “Typeface”
label in red. The background of the window
will be in black.

PDE
Autostart values are
not persisted correctly
in the product file

On the Configuration page of the product edi-
tor, add a plug-in and set autostart to “true”.
Save the file. Open the file in a text editor, and
see how the value of the “autostart” attribute
is still set to false.

the bug reports of the two first ones while the other two have no relation with
Mylyn.

3.1.2 Object Tasks

We seek concrete maintenance tasks. Thus, for each Eclipse-based system
(ECF and PDE), we consider one of their bugs3: 202958 and 265931, respec-
tively for ECF and PDE. We consider these bugs because (1) they are already
fixed so we know that a solution exist and (2) these solutions can be imple-
mented in reasonable times, about 45 minutes, which we estimated through a
pilot study.

For the non-Eclipse systems, we choose one of their version randomly and
define one task for each system so that each task requires around 45 minutes.
The tasks were defined by exploring the two systems and identifying a pos-
sible need. Table 3 presents the tasks and the descriptions provided to the
participants. We also provide a tutorial about the tasks.

3 https://bugs.eclipse.org/bugs/show bug.cgi?id=202958 and id=265931
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3.1.3 Participants

We recruit participants via emails, which we send to the authors’ research
groups and individual contacts. We provide potential participants with a link4

to an online form for registration, collecting information about their level of
study, gender, numbers of years of Java and Eclipse experiences. We use this
information to assign participants to systems so that participants with different
profiles work on a same system to minimise threats to internal validity. To
avoid learning bias, each participant perform only one task.

In total, 19 participants answered our emails. Out of 19, four did not com-
plete the tasks because (1) three did not have enough Java knowledge and
(2) one abandoned the experiment. Thus, we consider only 15 participants: 13
are Ph.D. students in the Department of Computer and Software Engineer-
ing of Polytechnique Montréal; one is M.Sc. student at the Czech Technical
University in Prague; and, one is a professional software developer.

We perform a Kruskal-Wallis rank-sum test to assess whether the numbers
of years of Java and Eclipse experience differ between groups of participants
performing the tasks on different systems and found that the differences are
not statistically significant (p-values of 0.67 and 0.96). Tasks are performed by
participants with similar numbers of years of Java and Eclipse experience.

We use a checklist of the steps of the experiment to consistently provide the
same (and only the same) information to each participant. We let each partici-
pant know before the experiment that s/he will perform one maintenance task
on one Java system for about 45 minutes, although there is no time limit. We
also inform he/r that the collected data is anonymous. We ask the participants
to try their best to complete the tasks but also tell them that they can leave
the experiment at any time for any reason without penalty whatsoever.

3.2 Data Collection and Processing

Participants performed their tasks using the Eclipse IDE together with the
Mylyn plugin to collect RITs. The subject systems were hosted in our SVN
repository5. We imported the systems into the participants’ environments and
collected their RITs at the end of the tasks (as well as patches for future
studies). To collect RITs, we create the task in the IDE. Mylyn starts collecting
RITs when the participant activates the task. All participants performed the
assigned tasks without any interruption. After the participant completes the
task, s/he deactivates the task to stop collecting RITs. More details regarding
how Mylyn collects RITs can be found in [10].

During the tasks, we also captured video recordings of the participants’
screens using VLC Media Player 2.0.56 at 15 images per second. We tran-
scribed the video captures into ITs manually. The first author and two intern

4 http://goo.gl/DyQu6j
5 The archived systems are available in the replication package.
6 http://www.videolan.org/vlc/releases/2.0.5.html



10 Zéphyrin Soh et al.

students from the Ptidej Team defined a transcription template after viewing
the videos once to minimise subjectivity. Then, they transcribed the videos
into CSV files (i.e., VITs), including the following information (All the data
is available online7):

– Start (hh:mm:ss): The timestamp when the event starts.

– End (hh:mm:ss): The timestamp when the event ends.

– EntityName (string): The name of the entity concerned by the event.

– EntityType (project, package, or file): The type of the entity concerned by
the event.

– Origin (Package Explorer, Outline View, Search Result, etc): The part of
the IDE where the event was triggered.

– Activity (Selection, Open, Search, Run, Edit, Close, Other): The activity
performed by the participants such as selecting a file (in the package ex-
plorer), opening a file, searching through a keyword, running the system,
editing the code, or closing an opened file.

– Technique (Visual, Static Relation, Text Search, Reference): The method
used by the participants to move from the previous event to the current
event. For example, “visual” is when the participant is visually searching
a relevant entity by scrolling the package explorer or the code editor, then
open a file through the package explorer. We consider that the partici-
pant reaches the opened file through visual search. “Static relation” is for
example the navigation from a method call to its declaration.

– Comments (string): Other information that the transcriber found useful
for further analysis.

Table 4 shows an excerpt of the activities of participant S09 from the video
recorded during our experiment (Column “Activities from video”), the corre-
sponding RITs (Column “Mylyn Recorded Activities”) and VITs (Column
“Video-based Interaction”). For the sake of simplicity, we only show the start-
Date, endDate, kind, and StructureHandle for RITs and the fields relevant
to time-related noise (i.e., “Start” and “End”) and edit-related noise (i.e.,
“Activity”) for VITs.

Table 4 shows that the participant started to perform the task at event E1
while the first event recorded by Mylyn is E8. Thus, Mylyn would miss the
time between E1 to E7 (about one minute and 20 seconds). Moreover, using
the activities collected by Mylyn (in Column “Mylyn Recorded Activities”
in Table 4), the table shows that there are sometimes idle times and overlap
times between Mylyn events (e.g., idle time between E11 and E14 and overlap
time between E33 and E35). These overlap and idle times would bias time
analyses based on ITs. Also, some events (e.g., E33 and E35) are labeled as
edit activities wrongly according to the video captures.

After collecting data, we study noise at both trace and event levels. In fact,
noise can be at the trace-level and–or at the event-level: at the trace-level, the

7 http://www.ptidej.net/downloads/replications/emse15b/
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Table 4: Sample of Video, the Corresponding Mylyn, and the Transcribed
Activities

ID

E1 00:04:24
00:04:24 00:04:24

00:04:24 00:04:34 scrolling

E2 00:04:34
00:04:34 00:04:34

00:04:34 00:04:41 scrolling

E3 00:04:41 00:04:41 00:04:42

E4 00:04:42
00:04:41 00:04:42

00:04:42 00:05:12

E5 00:05:12 00:05:12 00:05:29

E6 00:05:29 00:05:29 00:05:48

E7 00:05:48 00:05:48 00:05:56

E8 00:05:56

16:40:37.618 16:40:37.618

00:05:56 00:06:01 open
16:40:37.645 16:40:44.616

E9 00:06:01 00:06:01 00:06:20

E10 00:06:20
16:41:02.409 16:41:02.409

00:06:20 00:06:20 open
16:41:02.424 16:41:03.15

E11 00:06:20 00:06:20 00:06:43

E12 00:06:43 00:06:43 00:06:51

E13 00:06:51 00:06:51 00:07:06

E14 00:07:06 00:07:06 00:08:55

E15 00:08:55
16:43:37.818 16:43:40.101

00:08:55 00:08:55 open
16:43:39.141 16:43:39.141

E16 00:08:55 00:08:55 00:09:00

E17 00:09:00 00:09:00 00:09:19

E18 00:09:19 00:09:19 00:09:34

E19 00:09:34 00:09:34 00:09:53 scrolling

E20 00:09:53 00:09:53 00:10:01

E21 00:10:01 00:10:01 00:10:28

E22 00:10:28

16:45:11.926 16:45:11.926

00:10:28 00:10:39 open
16:45:12.627 16:45:12.627

E23 00:10:28 00:10:39 00:10:55 scrolling

E24 00:10:39

E25 00:10:55

16:45:37.887 16:45:37.887
00:10:55 00:11:00 open

16:45:38.565 16:45:38.565

E26 00:10:55 00:11:00 00:11:14

E27 00:11:00 00:11:14 00:11:21

E28 00:11:14 00:11:21 00:11:33

E29 00:11:21 00:11:33 00:11:43 scrolling

E30 00:11:33

E31 00:11:43
16:46:24.659 17:07:23.534

00:11:43 00:12:16 open
16:46:25.387 16:56:13.867

E32 00:11:43 00:12:16 00:12:33

E33 00:12:16 16:46:58.390 17:00:06.484 00:12:33 00:12:36 scrolling

E34 00:12:33 00:12:36 00:15:12

E35 00:12:36 16:47:43.450 17:08:47.639 00:15:12 00:15:12

E36 00:15:12 00:15:12 00:15:21

E37 00:15:21 00:15:21 00:15:38

E38 00:15:38 16:50:31.132 16:50:31.132 00:15:38 00:16:01

E39 00:16:01 00:16:01 00:16:18

E40 00:16:18 16:51:00.189 16:55:43.956 00:16:18 00:16:46

E41 00:16:46 00:16:46 00:16:57

Activities from video Mylyn Recorded Activities Video-based Interaction (VIT)
Timestamp Description of Activities StartDate EndDate kind StructureHandle Start End Activity

Expand the project, explore the package explorer, then 
collapse the project

expand

Expand the project, then scroll the package explorer
expand

Expand then collapse the package “doclet” expand

Expand another package, then explore the content of 
the package

expand

search

Java search through the menu Search -> Java using the 
keyword "range". Then no results found

search

Second search through the menu Search -> search using 
the keyword "select line range"

search

Resize the search result view search

Open the file "shortcuts.xml". First interaction with the 
program entity (file) "shortcuts.xml" through the search 
result view. The keystroke is detected in the opened file 
in the editor.

selection shortcuts.xml

edit shortcuts.xml

Expand many result entries in the search result view search

Open the file "jedit_gui.props" through the search result 
view.The keystroke is detected in the opened file in the 
editor.

selection jedit_gui.props

edit jedit_gui.props

Resize the code editor, then read the content of the 
opened file

read

Select an entry in the search result view selection

Search through the menu Search -> search using the 
keyword "range".

search

Explore (scroll, expand and collapse many entries) the 
search result view

search

Open the file "SelectionManager.java" through the 
search result view. The keyword is selected in the 
method "invertSelection()"

selection SelectionManager.java

selection invertSelection()

Scroll the opened file in the editor search
Scroll the package explorer search
Scroll the opened file in the editor search

Expand the class to view the field and method names in 
the package explorer
Scroll the editor to read the content of the opened file read

Explore (scroll, expand, resize) the content of the search 
result view

search

Open the file "ExtensionManager.java" through the 
search result view. The previewsly used keyword (range) 
is selected in the method "paintScreenLineRange()"

selection ExtensionManager.java

selection paintScreenLineRange()

Scroll the opened file in the editor
Explore (scroll) the content of the search result view

Open the file "BufferHandler.java" through the search 
result view. The previewsly used keyword (range) is 
selected in the method "foldLevelChanged()"

selection contentInserted()

selection foldLevelChanged()

Explore the content of the editor search
Explore the content of the search result view search

Search -> search using the keyword "linerange" after 
setting the search option for searching method. Then no 
results found.

search

Search -> File using the keyword "linerange"
Scroll the results in the search result view

Open the file "SelectLineRange.java" through the search 
result view. The keyword is selected in the method 
"SelectLineRange()"

selection ok()

selection SelectLineRange()

Scroll the content of the opened file in the editor read

Select some variables in the method "SelectLineRange()" edit SelectLineRange()
Scroll the package explorer read

Scroll the content of the opened file in the editor. Select 
some variables in the method "ok()". Then scroll and 
select another statement

edit ok() selection

Select variables in the method "SelectLineRange()" read

Explore the content of the editor and try to use the 
contextual menu, then does not use it.

read

Internal search in the opened file using the shortcut (the 
Find/replace window is open instantly). The key word 
"startField" is found and selected in the method 
"createFieldPanel()"

selection createFieldPanel() search

Close the Find/Replace window and scroll the content of 
the file in the editor

read

Change the method "createFieldPanel()" by adding two 
empty lines. Then a statement. edit createFieldPanel() edit

Scroll the content of the file in the editor read

noise would impact the overall time spent on the task (i.e., time-related noise)
while at the event-level, the noise impacts the characterisation of edit events
(i.e., time- and edit-related noise).
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Fig. 2: Illustration of idle time (it) and overlap time (ot)

3.3 Trace Level

We consider and compare both VITs and RITs. At trace level, we study the
possible noise introduced by the reasons discussed in Section 2.1 (i.e., inability
to log some events and misuse of timestamps). In fact, some researchers com-
puted the times spent on tasks by participants considering the start and end
timestamps of the whole ITs, e.g., [23], while others aggregated and cleaned
the times spent for each event, e.g., [31].

3.3.1 Approach

We consider the times spent performing the tasks as defined below and illus-
trated in Figure 2, which is an IT involving three events e1, e2, and e3. We
study the mismatches between VITs time (TV ITs) and RITs time (TRITs). For
the sake of simplicity, we use Start(e) and End(e) where e is an event in VITs
or RITs to denote the start time and the end time of the event e. We compute
both TV ITs and TRITs in two ways:

– Global time: we compute the global time using the start and end times-
tamps of the ITs as GT = End(IT ) − Start(IT ). The global time of the
IT in Figure 2 would be GT = End(e3)− Start(e1)

– Accumulated time: we compute the accumulated time in an IT as the sum
of the times spent on each event:
AT =

∑
event∈IT End(event)− Start(event).

The accumulated time of the IT in Figure 2 would be:
AT =

∑
ei∈{e1,e2,e3} End(ei)− Start(ei) = d1 + d2 + d3

To assess if there is noise in the times computed from ITs, we first com-
pare the global and accumulated time of VITs, on the one hand, and RITs,
on the other hand. Then, we compare the global times of VITs and RITs,
and finally, the accumulated times of VITs and RITs. We use the two-sided
Wilcoxon unpaired test to assess the differences stated above because we are
not interested in the direction of the difference; we only want to know if there
is a difference. We consider that the difference is significant at α = 0.05 and
we measure the magnitude of the difference using the Cliff’s d non-parametric
effect size. Following Romano et al. [25], we consider that the effect size is
negligible if |d| < 0.147, small if |d| < 0.33, medium if |d| < 0.474, and large if
|d| >= 0.474.
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(a) Video (VITs) time (b) Mylyn (RITs) time

Fig. 3: Difference in global and accumulated times

Table 5: p-values and effect size (Cliff |d|) of the comparison between GT and
AT, and between RITs and VITs

p-values (Cliff |d|)
GT vs. AT RITs vs. VITs RITs vs. VITs

VITs RITs GT AT Idle Overlap
ECF 0.88 (0.12) 0.02 (0.75) 0.68 (0.25) 0.02 (0.75) 0.02 (0.75) 0.02 (0.75)
jEdit 1 (0) 0.1 (0.66) 0.4 (0.55) 0.1 (0.66) 0.06 (0.66) 0.06 (0.66)

JHotDraw 0.68 (0.25) 0.02 (0.75) 1 (0) 0.02 (0.75) 0.02 (0.75) 0.02 (0.75)
PDE 0.77 (0.18) 0.05 (0.68) 0.68 (0.25) 0.05 (0.68) 0.02 (0.75) 0.02 (0.75)

3.3.2 Results

Figure 3 presents the average GT and AT computed from VITs (see Figure
3a) and RITs (see Figure 3b). Regarding RITs, the difference between GT
and AT is statistically significant for two systems (ECF and JHotDraw) and
borderline for PDE system (p-value exactly 0.05), as shown in Table 5 (first
part). The observed difference is due to overlap times taken into account when
computing the AT. For example, while the average AT for ECF is about 1,900
minutes, the average GT for the same system is about 57 minutes. For this
particular system, the large difference is due to the overlap between several
selection events (on the sub-projects) that lasted about one hour each. The
difference between GT and AT suggests that the two ways of computing time
from RITs do not provide the same results. Thus, the way the time spent on
a task is computed in the previous studies may affect the results found. For
VITs, the difference between GT and AT is not statistically significant: both
GT and AT provide the same result. Table 5 also reveals a large effect size
when the difference is not statistically significant. This large effect size is due
to the small size of the data-set.

Figure 4 presents the average GT (Figure 4a) and AT (Figure 4b) from
VITs and RITs. Figure 4a shows that GTV ITs is higher than GTRITs. On the
contrary, ATRITs is higher than ATV ITs in Figure 4b. We studied whether
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(a) Global time (b) Accumulated time

Fig. 4: Difference in task resolution times between RITs and VITs

the differences are statistically significant. Table 5 (second part) shows that
for ECF and JHotDraw, there are statistically significant differences between
ATV ITs and ATRITs. For PDE, the difference is not statistically significant,
but is close, with p-values of exactly 0.05. The absence of significant differences
for global times between RITs and VITs hints that global time is closer to the
actual time spent.

3.3.3 Discussions

The comparison between GTV ITs vs. ATV ITs (see Figure 3a) that does not
show the significant difference is expected by definition. In fact, when tran-
scribing the videos into VITs, we know exactly when the participants start the
task and when they end (i.e., the global time is the exact time spent on the
task). Moreover, the videos do not show any interruption of the work nor any
overlapping of activities. Thus, the reported activities in VITs are sequential
and prevent VITs from overlapping between activities (i.e., AT is the time
spent on the task).

The absence of significant difference between GTRITs vs. GTV ITs (see Fig-
ure 4a) is due to the fact that GT includes idle time and removes overlap time
from the time spent on the task. Indeed, in the experiment, the included idle
time is the part of the time spent on the task as our participants performed
the task without interruptions and the excluded overlap time must not be
considered twice. The differences observed in Figure 4a, even not statistically
significant, indicate a mismatch between GTRITs and GTV ITs. We explain that
this mismatch may be caused by the tool used to gather ITs and the delays
between the developers’ actions and the collection of the data. For example,
as shown in the sample from Table 4 (column “Mylyn Recorded Activities”),
we observe that Mylyn starts collecting data when the participants interact
with the first program entity, e.g., if a participant starts the task by scrolling
without interacting with any entity, Mylyn will not collect any data (the par-
ticipant started to perform the task at event E1 while the first event recorded
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by Mylyn is E8). This noise does not concern only Mylyn, any monitoring
tool may be subject to this noise. Overall, RITs miss on average 2.91 minutes
(about 6%). Hence the following observation:�

�

�



Observation 1: Developers may start a maintenance task by per-
forming activities that monitoring tools may not be able to collect
(e.g., scrolling, searching), which cause for example Mylyn to start
logging late (first interaction with a program entity) in the task and
miss on average about 6% of the times spent on the task.

In addition to the observation above, in real-work settings, developers may
interrupt their work [21]. Thus, idle times are not always the time spent on
the tasks and some idle times may be real interruptions. Using Mylyn ITs,
Sanchez et al. [27] reported that interruptions can last more than 12 min-
utes (some interruptions reached 8 hours). This result show that in real world
situations, interruptions may occur more often than those observed in exper-
iment. Therefore, GT (which includes idle times) may not reflect the time
spent on the tasks. Thus, even without statistical significant differences be-
tween GTV ITs and GTRITs, we claim that global times are not reliable for
RITs gathered by developers in their daily work. GT seems reliable in our
data-set because they come from an experiment.

The comparisons GTRITs vs. ATRITs (see Figure 3b) and ATRITs vs.
ATV ITs (see Figure 4b) show some differences because AT computed from
RITs includes overlap times and excludes idle. Yet, according to RITs col-
lected during our experiment, idle times are actually the part of the time
spent on the task (as participants did not interrupted their work) and overlap
times are considered twice. The fact that RITs contain idle and overlap times
calls for the analysis of these times.

Table 5 (third part) shows that the differences between idle and overlap
times in RITs and VITs are statistically significant (with large effect sizes) for
three systems (ECF, JHotDraw and PDE) while it is closed to be significant
(p-value = 0.06) for JEdit.

The RITs contain an average cumulative idle and overlap times of 26.08
(median 27.55) minutes and 579.3 (median = 250.4) minutes, respectively.
We compute the proportion of idle and overlap times wrt. the global time by
dividing the mean duration of idle and overlap times by the global time spent
on the task and observe that:�

�
�
�

Observation 2: The collected Mylyn ITs involve on average about
53% of idle times and 1,171% of overlap times.

Overall, idle times in RITs can reach more than five minutes and individual
idle times lasted in average 0.5 (median = 0.07) minutes.
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Observation 3: The collected ITs from our study reveal that idle
times in ITs are not always interruptions and that the average idle
time is half a minute. Moreover, our data-set shows that comput-
ing the time spent on the task required to remove overlap times
from accumulated times and consider the idle times that are not
interruptions as part of the time spent during maintenance task.

We qualitatively analyse the reasons of idle and overlap times from the
sample of collected RITs. These reasons and the illustration examples (from
Table 4) are summarised in Table 6 and explained in the following:

– Idle times: we found three reasons for idle times. (1) Inability of Mylyn to
collect some activities: Mylyn does not collect activities that do not involve
a program entity such as expand/collapse a node in the package explorer
or search view, resize windows, search through keywords (using shortcut or
menu), scrolling; (2) Inactivity periods: sometimes developers are inactive
while reading code, thinking, reading task description. These inactivity pe-
riods8 cause idle times in RITs; (3) Breakdown of activities: Mylyn breaks
down activities performed by developers. When the developers open a file
for example, Mylyn generates two events corresponding to the selection of
the opened file and the detection of the keystroke in the opened file. The
delay from the selection of the file to the detection of the keystroke in the
file sometimes causes an idle time.

– Overlap times: Overlaps between events may occur in two cases. (1) Multi
selection/highlight of program entities: opening the file through the search
view (after text-based search) for example causes the selection of the enti-
ties in other views (e.g., package explorer, outline) and–or the highlight of
the searched keywords in the opened file. In addition to the break down of
activities, this behaviour sometimes causes the overlap between the gener-
ated events. The illustration corresponding to the activity E15 (from Table
4) is shown in Figure 5); (2) Aggregation of events: as mentioned in Sec-
tion 2.1, according to the intent of the collection of ITs, Mylyn sometimes
aggregates events. For example, there is overlap between E33 and E34, and
E35. The selection of variables in the method SelectLineRange() (activity
E33 in Table 4) causes an edit event. After E34 and E35, there is another
selection of variables in the same program entity i.e., SelectLineRange()
(activity E36 in Table 4). The aggregation of E33 and E36 causes Mylyn
to keep only E33 with the timestamps expanded from E33 to E36.

8 The inactivity periods is practically impossible to monitor. Even being able to identify
these inactivity periods from the videos, it’s still hard to know what developers were doing
(e.g., thinking vs. reading the description of the task). However, we mainly use the detection
of the mouse focus to know whether developers were reading (visual exploration) the code.
Sometimes, developers were reading code when scrolling. Thus, reading code and scrolling
the editor could be interchangeably and this does not affect our study regarding the kind
of activity performed by the developers as the kind of activity that is mainly used in the
following is the edit activity which is easy to identify.
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Table 6: Reasons and Example of Activities that Cause Idle and Overlap times

Reasons Example (from Table 4)

Idle Times
Inability to collect some activities E9, E12 to E14, E16 to E21
Inactivity periods E11
Breakdown of activities E8, E10, E25

Overlap Times
Multi selection/highlight E15
Aggregation of events E33, E36

Fig. 5: Illustration of the Breakdown of Activities and the Multi-selection
(Activity E15 from Table 4)

Beside the aggregation of events, the possibility of missing the end times-
tamp of some events could be another source of overlap time that should be
investigated in future work.

3.4 Event Level

At the event level, we focus on the noise for edit events because (1) edit events
are more accurately identifiable from video data than other events as it is
trivial to see in the videos if the code is being changed and (2) edit events
are subject to several assumptions, such as being representative of the activity
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(a) Numbers of edit events (b) Durations of edit events

Fig. 6: Difference in edit events between RITs and VITs

of changing source code [17, 27, 31]. Also, edit events have been used to build
code recommendation tools [9,17] and as proxy to productivity [10,27]. Thus,
any noise related to edit events would impact such previous studies.

3.4.1 Approach

We consider the numbers of edit events and the times spent performing edit
events to investigate noise in the identification of edit events, i.e., any differ-
ences between VITs and RITs in numbers of edit events and the times spent
performing edit events.

– Numbers of edit events: we count the edit events after removing events
whose start and end timestamps are equal (i.e., 0-duration), which were
considered to be selection-events in previous studies [17,27].

– Edit duration: we compute the edit durations after removing overlap times.

To evaluate the difference between VITs and RITs for the numbers of edit
events and edit durations, we use the same statistical test as at trace level
(Section 3.3.1).

3.4.2 Results and Discussions

We compute the number of edit events and the duration of these edit events
for each participant. Figure 6 shows the average number of edit events and
the average duration of edit events. We observe a difference in the number of
edit events between VITs and RITs (Figure 6a) and in the durations of the
edit events between VITs and RITs (Figure 6b). Using the number and the
duration of edit events for each participant, we compare each of them between
VITs and RITs. The differences are not statistically significant as revealed by



Noise in Mylyn Interaction Traces 19

Table 7: Comparison between TV ITs and TRITs edit events

Number edit Edit duration
p-value Cliff |d| p-value Cliff |d|

ECF 0.13 0.5 0.26 0.37
jEdit 0.8 0 0.4 0.33

JHotDraw 0.34 0.37 1 0.06
PDE 0.66 0.25 0.34 0.37

the Wilcoxon test results from Table 7. However, Table 7 shows a medium
effect size because of the small size of data-set obtained from the experiment.

The lack of statistical significant difference in the numbers and durations
of edit events is the consequence of the task resolution i.e., how successfully
participants resolved the tasks. Indeed, participants performed few changes.
Twelve out of the 15 participants (80%) performed at least one true edit event.
Among them, eight participants (53.33%) provided a patch while the other
four did not provide any patch. Among the eight who provided a patch, five of
them successfully completed the task: their patches fixed the bug. As resolving
the task requires to change the code, results of the statistical tests would be
different if all participants performed changes. Also, the absence of statistical
significant difference in the numbers and durations of edit events between VITs
and RITs is likely due to the low number of participants to our study and the
fact that our study was not performed in a real world environment.

However, even though they are not statistically different, the observed dif-
ference in Figure 6 reveals that there are some edit events that are not real
changes to the code (See Section 4.1.2 for the details about these edit events).
We call these edit events “false edit events”. For example in Figure 6a, the
large difference in the numbers of edit events between RITs and VITs for ECF
is due to the purpose of Mylyn, which directs the way Mylyn labels and ag-
gregates events. Mylyn labels some selection of text or keystrokes detected in
the editor as edit events because edit events are meant to be used to compute
the relevance of a target program entity to a task. Thus, the more (false) edit
events on an entity, the most it is relevant to the task, even if some of these
edit events are not true edit events but related events (selection, keystrokes).
Participants performing tasks on ECF performed a lot of code navigation to
external libraries classes, which lead to the detection of keystrokes in the editor
and resulted in false edit events.

To quantify9 the proportion of false edit events, we manually investigate
edit events in RITs by checking the video to identify what is the activity that
generate each edit event in RITs. During manual identification of false edit
events in RITs, in case of aggregation (i.e., from the video, an edit event
occurs on a program entity several times and reported once in RITs), we
consider that an edit event is a false edit event if all the aggregated edit events

9 The original version of this article [29] includes a mistake in quantifying the proportion
of false edit events, which we corrected in this version. This correction affects only the
proportion of the false edit events and does not affect our conclusions.
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(c) False vs. True Edit Events

Fig. 7: Proportion of the Events

are false edit events. We observe that RITs contain overall about 36% of edit
events vs. 74% of selection events (See Figure 7a). About 33% of these edit
events are edit events with 0-duration (See Figure 7b). Considering the edit
events with non 0-duration (about 67%), 85% of them are false edit events and
only 15% are true edit events (See Figure 7c). This proportion contradicts the
assumption that all non 0-duration edit events correspond to changes to the
code.�




�

	
Observation 4: The comparison between the amount of edit per-
formed by the developers and the edit events in the collected Mylyn
interaction traces shows that collected ITs contain about 85% of
false edit events.

We reported our observation to the Mylyn community to have their opinion
on these false edit events. The feedback we got from the Mylyn community
confirms our observation. One leading developer of Mylyn stated that “... the
argument that there is noise in the edit events makes sense to me.”. They
justify the prevalence of false edit events by the original premise of Mylyn
edit events. “The original premise of the edit events was that time spent in
the editor is more productive than time spent looking around the structure
views that eventually get you to the editor. The edit events don’t have to be
textual edits, which is why we decided not to base this event on something like
keystrokes in the editor. For example, selecting a bunch of text, then copying
and pasting it, could produce a number of edit events, and be more meaningful
work than 30 keystrokes”. However, when considering selections of text as true
“edit” events as suggested by the Mylyn developers, we could still find about
75% of false edit events in the studied ITs.
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Overall, both time- and edit-related noise are mainly due to the monitoring
tool and the kind of activity performed by the developers. The presence of
noise (and in some case the significant difference between VITs and RITs)
is not attributed to the variation in the participants because we observe the
studied noise for all developers and tasks used in our study. The noise cannot
be attributed to the task because two of the tasks used in the study were real
tasks from bug repository of the systems. However, the noise discussed in this
article concerns Mylyn interaction traces. We do not pretend that other tools
may have the same prevalence and type of noise. In Section 8.1, we discuss
other tools in comparison to Mylyn and highlight their aspects that may be
subject to less/more noise. However, more studies are needed to assess if the
data collected by these tools effectively contain noise and the type of noise
that they may contain.

The noise observed in Mylyn ITs is relevant knowledge only if the uses
of ITs with and without noise provide different results, i.e., noise affects the
results of studies that use ITs. Hence, we address the noise in Section 4 before
studying their effect on previous work in Section 5 and 6.

4 RQ2: How can we address the noise in Mylyn interaction traces?

We now address edit-related noise, i.e., false edit events. We first present
a threshold-based approach [29] and then a prediction-based approach that
outperforms the previous approach.

4.1 Threshold-based Approach

The threshold-based approach consists (1) to align RITs and VITs, (2) to use
the alignment to identify false edit events in RITs, and (3) to define a threshold
and rules to classify RITs edit events as false or true edit events.

4.1.1 Alignment

We align VITs with RITs to generate corrected ITs (CITs) corresponding to
RITs. The alignment consists in identifying VITs events corresponding to RITs
events. We use the timestamps as keys for traces alignment. First, we manually
align the first event of a RIT with the corresponding event in the VIT using
the RIT timestamp (“reference timestamps” in the remainder) corresponding
to the start timestamp of the VIT.

Second, we use the reference timestamps to compute the exact time when
event start and end. Let us consider an event e starting at timestamp d1
and ending at timestamp d2. The start and end times of e are Start(e) =
time(d1)− time(d) and End(e) = time(d2)− time(d), where d is the reference
timestamp and time(x) is the number of milliseconds to reach x.

Once we have start and end times for all events in VITs and RITs, we can
align their events if they ideally start and end at the same times. However, the
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Table 8: Number of Edit and Selection Events

(a) Raw Dataset

Systems #Selection #Edit Total
ECF 519 183 702
jEdit 168 47 215
JHotDraw 211 118 329
PDE 201 45 246

Total 1099 393 1492

(b) After Alignment

#False Edit #True Edit
179 4
43 4

115 3
36 9

373 20

(c) Threshold-based Correction

#False Edit #True Edit
179 4
44 3

116 2
37 8

376 17

Table 9: Distribution of the Time spent on Edit Events with non 0-duration

Time (in seconds)
Min Q1 Median Q3 Max Mean

False Edits 0.001 0.52 4.14 28.33 371.00 24.01
True Edits 1.14 62.6 114.4 221.8 341.2 143.7

alignment is not always ideal and we remove overlap time intervals before align-
ing the events, e.g., for consecutive events e1 and e2, if End(e1) > Start(e2),
we consider that End(e1) = Start(e2). Then, the alignment consists in search-
ing the events in VITs corresponding to events in RITs. We consider that an
event in a RIT aligned to an event in a VIT if the intersection of their time
period is not empty. For example, if an edit event e in a RIT is aligned with
n events {e1, e2, ..., en} in a VIT, we consider that the edit event e is aligned
to the first edit event in {e1, e2, ..., en}.

4.1.2 Identification of False Edit Events

We consider that all edit events with non 0-duration in RITs that are not
aligned with any edit event in VITs are false edit events. An edit event in RITs
aligned with an edit event in VITs is a true edit event. Figure 9 presents the
classified true and false edit events from RITs and the time spent performing
each edit events. It shows that there are few true edit events because VITs
transcribed from videos are more fine-grained than RITs, leading to fewer
true edit events. Some RITs events could correspond to many VITs events.
For example, if a participant changes the code, scrolls the editor, performs
a text-based search in the opened file, and then changes the code again, a
VIT would contain two true edit events separated by one scroll event and one
search event while the corresponding RIT would contain only one edit event.

Table 8a presents the numbers of selection and edit events in the RITs and
Table 8b these after removing the edit events with 0-duration and aligning
RITs and VITs. Table 9 shows the distribution of the times spent on false and
true edit events. It reveals that false edit events with non 0-duration take on
average 24.01 seconds (median = 4.14), while true edit events take on average
143.7 seconds (median = 114.4).
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Table 10: Confusion Matrices for the Evaluation of False and True Edits

(a) Identification of false edit events

Actual Label
Classified as true edit false edit

true edit TN FN
false edit FP TP

(b) Identification of true edit events

Actual Label
Classified as true edit false edit

true edit TP FP
false edit FN TN

4.1.3 Threshold for False Edit Events

We must define a threshold to accurately classify false and true edit events. We
assess different threshold values, then evaluate their precision and recall, and,
finally, choose the most accurate threshold. We increase the threshold values
per steps of ±5 seconds from the rounded mean duration of false edit events,
i.e., 24 seconds in Table 9. We compute precision, recall, and F-measure to
evaluate the classification using the confusion matrices in Table 10.

Figure 8a shows the precision, recall, and F-measure of false edit events
while Figure 8b shows the precision, recall, and F-measure of true edit events.
We observe that the threshold of 189 seconds maximises the F-measure of false
and true edit events. However, it also results in the misclassification of most
of the true edit events (gray horizontal line in Figure 9).

Yet, we want to prioritise true edit events to minimise the chance to miss
them. Some true edit events may last for only a short time, e.g., a refactoring.
Using the mean duration of false edit events misclassifies only three true edit
events (blue horizontal line in Figure 9). Thus, we consider the mean duration
of false edit events as the threshold that achieves 93% precision and 64% recall
for false edit events, and 18% precision and 81% recall for true edit events.
Using both the mean and third quartile (28.33 seconds) of the times of false
edit events as thresholds does not yield major differences on the precision and
recall of false edit events.�

�
�
�

Observation 5: The average duration of false edit events is 24
seconds. Thus, we consider that an edit event is a false edit event
if it takes less than 24 seconds but more than 0 second.

Most false edit events correspond to the opening of files, the navigation
between program entities, and text-based search in files. We studied RITs
to distinguish which false edit event corresponds to events in the VITs. We
identified one case of open event, e.g., a false edit event occurring after an event
triggered through the search view. Then, we built our correction approach with
the annotation rules in Table 11. For example, the first row in the table means
that if an event is an edit event that lasted less than or 24 seconds and if
the previous event was triggered through a search view, the event should be
considered an open event.

With the threshold, the precision of true edit is low compared to that of
false edit events as shown in Figure 8. This relative low precision is due to (1)
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(a) False Edit (b) True Edit

Fig. 8: Precision, Recall, and F-measure of False and True Edit Events

Fig. 9: Time Spent on False and True Edit Events

Table 11: Rules for annotation of edit events

RITs events Times Previous event Annotated events
Edit time ≤ 24sec Search view Open
Edit time ≤ 24sec Other Navigation
Edit time > 24sec N/A Edit

the number and kinds of false edit events and (2) the small number of true
edit events. For the classification of false edit events, most of the false edit
events are developers’ actions that lasted few seconds, such as opening a file
or selecting an identifier (names of variables, methods, classes).

The alignment reveals that selection events can occur through different
views (package explorer, outline view, search view, editor). While RITs equally
considers these selection events, the video captures show that developers per-
formed selection events in the editor and type hierarchy view when the entities
were relevant. This observation is consistent with that by Ko et al. [11], who
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Table 12: Rules for annotation of selection events

RITs events Origin Annotated events
Selection Editor Inspection
Selection Other Selection

Table 13: Size of the Training and Testing Sets

#False Edit #True Edit Total
Training Set 225 12 237
Testing Set 148 8 156

Total 373 20 393

stated that the selection in the editor view indicates a perception of relevance.
Hence, we annotate the selection event as indicated in Table 12.

4.2 Prediction-based Approach

The threshold-based approach improves accuracy but has a low recall for true
edit events. We propose a novel approach for the classification of edit events
based on both supervised and unsupervised algorithms.

4.2.1 Supervised Classification

We use several classification algorithms from Weka (Naive Bayes, J48, Random
Forest) to classify edit events as true or false. We first compute the following
metrics that we use to classify edit events:

– Element type: The type of the element on which the event occurred.
– Origin ID: The part of the IDE on which the event was triggered.
– Interest: The degree of interest of the entity source of the event.
– Raw duration: The duration of the event, including overlaps if any.
– Clean duration: The duration of the event, after removing any overlaps.

To classify edit events, we first split the data into training and test sets.
We use the random sampling method without replacement. The training set
contains 60% of the data and test set 40% of the data. We obtain an imbalanced
training set i.e., the classification categories (false and true edit events) are
not equally represented in the training set (225 = 95% of false edit events vs.
12 = 5% of true edit events). In our training set, false edit events form the
largest class while true edit events are minority, which biases our classification.
We avoid such bias by under sampling and over sampling the training set.

Under sampling consists in removing false edit events (majority class) from
the training set while over sampling consists in adding true edit events (mi-
nority class) to the training set [8].

We apply random under sampling using the SpreadSubSample method in
Weka, sampling majority class from 225 instances to 12 instances. We apply
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Table 14: Feature Selection for Edit Prediction

Methods Descriptions Features

CfsSubsetEval

Evaluates the worth of a subset of attributes by considering

the individual predictive ability of each feature along

with the degree of redundancy between them [34]

Interest
Clean duration
Origin ID

ChiSquaredAttributeEval

Evaluates the worth of an attribute by computing

the value of the chi-squared statistic with respect

to the class [34]

Interest
Clean duration
Raw duration
Element type
Origin ID

FilteredAttributeEval Evaluate the features individually through an arbitrary filter [4]

Interest
Clean duration
Raw duration
Element type
Origin ID

FilteredSubsetEval Evaluate subset of features through an arbitrary filter [4]
Interest
Clean duration

Table 15: Evaluation of the Prediction Algorithms (under sampling)

Algorithm FS Accuracy Precision Recall F-measure

NaiveBayes
FS1 83.64 (98.4, 22.6) (84, 77.8) (90.6, 35)
FS2 83.64 (98.4, 22.6) (84, 77.8) (90.6, 35)
FS3 86.79 (98.5, 26.9) (87.3, 77.8) (92.6, 40)

J48
FS1 64.77 (99, 12.7) (63.3, 88.9) (72.2, 22.2)
FS2 64.77 (99, 12.7) (63.3, 88.9) (72.2, 22.2)
FS3 64.77 (99, 12.7) (63.3, 88.9) (72.2, 22.2)

Random Forest
FS1 71.69 (99.1, 15.4) (70.7, 88.9) (82.5, 26.2)
FS2 71.69 (99.1, 15.4) (70.7, 88.9) (82.5, 26.2)
FS3 73.58 (98.2, 14.9) (73.3, 77.8) (84, 25)

FS= Feature Selection approach (See Table 14)
FS1:FilteredSubsetEval, FS2:CfsSubsetEval
FS3=ChiSquaredAttributeEval or FilteredAttributeEval
(x, y) = (false edit events, true edit events)

the over sampling using the implementation of SMOTE (Synthetic Minority
Over-sampling Technique) method [5] in Weka, sampling the minority class
from 12 instances to 224 instances.

To evaluate the relevance of the features used to classify edit events, we
apply different feature selection approaches. Table 14 shows the feature eval-
uation methods used and the selected features. The order of the features in
Column “Features” is their order of relevance according to the selection ap-
proaches. The four approaches select “Interest” and “Clean duration” as rel-
evant. The “Chi Square Attribute Eval” and “Filtered Attribute Eval” reveal
that all the features are relevant while “Filtered Subset Eval” shows that only
“Interest” and “Clean duration” are relevant.

Table 15 and 16 show the evaluation of the classification algorithms for
under sampling and over sampling together with the selected features. The
gray lines in each table show the better models in term of accuracy and F-
measure. Table 17 shows the number of true and false edit events obtained
after applying the best models of under sampling and over sampling. We can
observe that NaiveBayes (using under sampling) and J48 (using over sampling)
produce the best models. Moreover, these best models are obtained using all
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Table 16: Evaluation of the Prediction Algorithms (over sampling)

Algorithm FS Accuracy Precision Recall F-measure

NaiveBayes
FS1 84.90 (96.3, 17.4) (87.3, 44.4) (91.6, 25)
FS2 84.90 (97, 20) (86.7, 55.6) (91.5, 29.4)
FS3 88.05 (97.1, 25) (90, 55.6) (93.4, 34.5)

J48
FS1 83.01 (97.7, 20) (84, 66.7) (90.3, 30.8)
FS2 86.79 (98.5, 29.6) (87.3, 77.8) (92.6, 40)
FS3 89.93 (97.9, 31.6) (91.3, 66.7) (94.5, 42.9)

Random Forest
FS1 84.27 (96.3, 16.7) (86.7, 44.4) (91.2, 24.2)
FS2 88.05 (97.1, 25) (90, 55.6) (93.4, 34.5)
FS3 87.42 (97.1, 23.8) (89.3, 55.6) (93.1, 33.3)

FS= Feature Selection approach (See Table 14)
FS1:FilteredSubsetEval, FS2:CfsSubsetEval
FS3=ChiSquaredAttributeEval or FilteredAttributeEval
(x, y) = (false edit events, true edit events)

Table 17: Number of False and True Edit using the best J48 Over Sampling
and NaiveBayes Under Sampling

#False Edit #True Edit Total
J48 Over Sampling 139 17 156

NaiveBayes Under Sampling 132 24 156

the features. Considering both over and under sampling best models, J48 using
over sampling provides the best results for the classification of edit events. The
most important features revealed by J48 are: Interest, Clean duration, Raw
duration, Element type, and Origin ID.

We evaluate the classification of false edits using 10-folds cross validation on
the whole data-set. Table 18 shows that applying 10-folds cross validation using
J48 and the “Filtered Subset Eval” feature selection approach provides better
accuracy and F-measure (gray line in Table 18) compared to the classification
with training and testing sets.

However, the resulting models (after splitting data and using 10-folds cross-
validation) are not optimized. To optimize our classification model, we use the
caret R package [12] for automatic parameter optimization [33]. We use the
function train from Caret to generate the candidates parameter settings and
tune the parameters using five repeated 10-folds cross validations. We define
the number of levels for each tuning parameter to five [13]. To evaluate the
candidates parameter settings, Caret uses all the combinations of candidates
parameter settings. By default, Caret considers the parameter settings that
achieve higher accuracy as the optimized parameter settings.

Table 19 shows the parameter settings for each classification algorithms
(the optimal parameter settings provided by Caret is in bold). Figure 10 shows
the distribution of the accuracy for the parameters. Overall, J48 performs
better with the median accuracy of 95% (average 94.9%) compared to Random
Forest (median accuracy = 94.8% and average accuracy = 94.8%) and Naive
Bayes (median accuracy = 93.7% and average accuracy = 93.3%). Figure 11
shows that Cleaned duration, Interest, Raw duration, and Element type are
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Table 18: Evaluation of the Prediction Using 10-folds Cross Validation

Algorithm FS Accuracy Precision Recall F-measure

NaiveBayes
FS1 93.43 (96.2, 36.8) (96.8, 33.3) (96.5, 35)
FS2 93.43 (96.3, 36.8) (96.8, 33.3) (96.5, 35)
FS3 93.68 (96.3, 38.9) (97.1, 33.3) (96.7, 35.9)

J48
FS1 95.7 (96.1, 75) (99.5, 28.6) (97.8, 41.4)
FS2 95.2 (95.6, 66.7) (99.5, 19) (97.5, 29.6)
FS3 93.6 (94.9, 16.7) (98.7, 04.8) (96.7, 07.4)

Random Forest
FS1 93.18 (95.5, 28.6) (97.3, 19) (96.4, 22.9)
FS2 93.68 (95.3, 30) (98.1, 14.3) (96.7, 19.4)
FS3 94.4 (95.8, 45.5) (98.4, 23.8) (97.1, 31.2)

FS= Feature Selection approach (See Table 14)
FS1:FilteredSubsetEval, FS2:CfsSubsetEval
FS3=ChiSquaredAttributeEval or FilteredAttributeEval
(x, y) = (false edit events, true edit events)

Table 19: Tuning Parameters with Caret

Algorithm Tuning Parameters Candidate Settings

NaiveBayes
fL: Laplace Correction 0
usekernel: Distribution Type TRUE, FALSE
adjust: Bandwidth Adjustment 1

J48
C: Confidence Threshold 0.01, 0.1325, 0.2555, 0.3775, 0.5
M: Minimum Instances Per Leaf 1, 2, 3, 4, 5

Random Forest mtry: #Randomly Selected Predictors 2, 4, 6, 8, 11

NaiveBayes J48 RandomForest
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Fig. 10: Distribution of the Accuracy of Parameters tuning using Caret

the most important features to classify edit events. The final model of J48
using the optimised parameters achieves an accuracy of 96.9% for both false
and true edit events, and the equal precision, recall, and F-measure of 98.4%
(false edit events) and 71.4% (true edit events).

Overall, the optimized J48 model outperforms previous models and we
investigate in Section 4.2.2 whether the unsupervised clustering could be an
alternative to classify edit events.
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Fig. 11: The Importance of Predictors Revealed by the Parameters Tuning

4.2.2 Unsupervised Classification

We use two unsupervised classifiers for clustering edit events: K-means and
spectral clustering [39]. We choose K-means because it is one of the most
frequently applied unsupervised classifier and spectral clustering because it
competes with supervised classifiers [39]. We applied K-means using the func-
tion kmeans in R. We define the number of cluster as two because we want
to classify edit events as false or true. We use the R implementation of the
spectral clustering provided by Zhang et al. [39].

For kmeans clustering, we use the silhouette index to evaluate the cluster-
ing. The silhouette index measures the tightness and separation of clusters [26].
The silhouette ranges from -1 to 1 and a larger silhouette index indicates a
better quality of the clustering results. We use the function silhouette in the
R package cluster to compute the silhouette index. The clustering achieves
a silhouette index of 0.84, which reveals that the clusters are well separated.

The spectral clustering shows two clusters of size 136 and 260 instances
respectively. Based on the size of the clusters of K-means (63 vs. 333) and the
fact that our data-set contains less true edit events, we argue that K-means
outperforms spectral clustering. Unsupervised techniques do not perform as
well as the supervised technique with optimised parameters (which reach 98.4%
of precision and recall for false edit events and 71.4% precision and recall for
true edit events)

In conclusion, considering both supervised and unsupervised techniques
for the prediction of edit events, we observe that the optimised supervised
technique outperforms any other classifier. Thus, we consider the optimised
J48 model in the following as the best model (i.e., prediction-based approach)
to predict edit events.
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5 RQ3: What is the effect of the noise on editing styles and
exploration strategies?

We now assess whether applying our approach impacts the results from two
previous studies. We consider the study on editing style by Ying and Robillard
[36] and the study on exploration strategies by Soh et al. [31].

We revisit these previous studies by applying their approaches on two data-
sets. The first data-set contains the RITs and VITs collected during our ex-
periment in Section 3. The second data-set contains ITs collected from bugs
reports in Bugzilla for the ECF, Mylyn, PDE and Platform, called bRITs in
the following and containing 1,970 ITs. We correct RITs and bRITs using the
two approaches described in Section 4 to obtain CITs and bCITs, respectively.
Even the ITs collected from Bugzilla (e.g., in realistic situation) could be dif-
ferent (in term of noise) to ITs collected in the experiment, we assume that if
there is noise in ITs collected in the experiment, the real ITs from real situa-
tions are likely to contain noise (and maybe more because, in real situations,
developers may have interruption, check their email, etc.). Thus, we apply the
findings from the experiment (i.e., correction approaches) to Bugzilla ITs.

5.1 Effect of Noise on the Classification of Editing Styles

We use the script10 provided by the authors of a previous work [36] to compute
our participants’ editing styles. For the experiment data-set, we use precision
and recall to compare the editing styles identified in RITs and CITs with the
editing styles identified in VITs (considering VITs as oracle).

Precision(s) =
# traces correctly identified as style s

# traces identified as style s

Recall(s) =
# traces correctly identified as style s

# traces of style s

where s ∈ {edit-first, edit-throughout, edit-last}
For Bugzilla ITs, we compute the numbers of miscategorisation between

ITs, e.g., when an IT categorised as edit-first (using bRIT) becomes edit-
throughout or edit-last (using the corresponding bCITs), which we note “style X→
others” with styleX ∈ {edit-first, edit-throughout, edit-last}. Similarly, an IT
may change the editing style from other style (e.g., edit-throughout or edit-last)
to a style X (e.g., edit-first).

For Bugzilla ITs, we compute the numbers of miscategorisation between
ITs. For example, if an IT is categorised as edit-first using bRIT and the
same IT is categorised as edit-throughout or edit-last using the corresponding
bCITs, we consider that there is miscategorisation. We note “style→ others”
with style ∈ {edit-first, edit-throughout, edit-last} to denote that there is a
miscategorisation from “style” to a different style.

10 http://www.cs.mcgill.ca/aying1/2011-icpc-editing-style-data.zip
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Table 20: Editing styles betwwen VITs, RITs, and CITs

VITs
RITs CITs

Classified TP P(%) R(%) Classified TP P(%) R(%)
edit-first 1 0 0 NA 0 0 0 NA 0
edit-last 9 1 1 100 11.11 3 3 100 33.33
edit-throughout 2 11 2 18.18 100 9 2 22.22 100
Classified = # traces identified as the corresponding style
TP = True Positive

Table 21: Editing styles between bRITs and bCITs

bRITs bCITs bRITs ∩ bCITs style → others others → style
edit-first 163 521 142 21 (1.06%) 379 (19.23%)
edit-last 546 438 279 267 (13.55%) 159 (8.07%)
edit-throughout 1,261 1,011 872 389 (19.74%) 139 (7.05%)

All 1,970 1,970 1,293 (65.63%) 677 (34.36%) 677 (34.36%)

5.1.1 Results

Table 20 presents the results of identified editing styles for VITs, RITs and
CITs (using the threshold-based approach) for the 12 participants who per-
formed at least one edit event in our experiment. The table shows that one,
nine, and two traces are identified in VITs as edit-first, edit-last, and edit-
throughout, respectively. The classification of editing styles from VITs shows
that most of the participants (9 out of 12) follow the edit-last style. This re-
sult is expected because the participants were not familiar with the systems
on which they worked and they spent more than half of their working time
exploring the systems and performed most of the true edit events (changes) in
the second half of their working time. Compared to editing styles identified in
RITs, nine traces (11− 2) are wrongly identified as edit-throughout. The nine
traces are one edit-first and eight edit-last. Similarly, seven traces (9− 2) are
wrongly identified as edit-throughout using CITs. The seven traces are one edit-
first and six edit-last. These results show that both RITs and CITs contains
noise that affect the identification of editing styles. However, when compar-
ing RITs with CITs, using CITs improves the precision and recall by about
4% (edit-throughout) and 22% ( edit-last), respectively. The use of precision-
based approach to correct ITs improves the classification of edit-first style
from 0% to 50% for precision and from 0% to 100% for recall. On the contrary,
the prediction-based approach decreases the precision of edit-throughout style
from 22% to 14% and the recall from 100% to 50%. The precision and recall
of edit-last style remains unchanged. We compare the average precision and
recall of the two correction approaches (threshold-based vs. prediction-based)
and observe on the experiment data-set that the prediction-based approach
improves the precision by about 14% (40.74% vs. 54.76%) and recall by about
7% (44.44% vs. 61.11%).

Table 21 shows similar trends for bRITs and bCITs. About 66% of the
ITs conserve their editing style in both bRITs and bCITs (column “bRITs ∩
bCITs”) while editing styles changed for 34% (column “style→ others”). These
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results show that our approach (modification of traces) yields in some cases
different categorisation of ITs and, hence, that noise impacts the results of
this previous study. Using the prediction-based approach on Bugzilla data-set,
55.11% of traces conserve their editing styles, while 44.88% change their editing
styles. Thus, the prediction-based approach of trace correction increases by 9%
the number of traces that change their editing styles.�

�
�
�

Observation 6: Using the prediction-based approach to correct
noise in Mylyn interaction traces reveals a misclassification of about
45% of ITs in previous study by Ying and Robillard [36].

5.1.2 Discussions

Using our experiment data-set and the two trace correction approaches shows a
small difference in the identification of editing styles. We use the categorisation
technique from the original work, which is based on the percentage of edit
events in the first half of an IT [36]. The considered threshold to identify editing
style was inferred from a large set of ITs. We explain the small difference on the
experiment data-set by the small size of the data-set as the threshold used may
not be suitable for this amount of IT. However, the use of Bugzilla data-set,
which may be more suitable for the threshold due to the size of the data-set,
shows about 34% and 45% of changes in editing styles using the threshold-
and prediction-based approach, respectively.

As example of differences between ITs, we observe that the trace of partic-
ipant S06 is categorised as edit-first when using VITs because, as expected, it
has only edit events in its first half. Using RITs and CITs of participant S06
shows 29% and 50% of edit events in the first half, respectively. We assumed
that applying our correction approaches, which improve the categorisation of
RITs wrt. VITs for the experiment data-set would also improve the categori-
sation of RITs from the Bugzilla data-set. We cannot verify this assumption
because we do not know the true categorisation for the Bugzilla data-set.

5.2 Effect of the Noise on Exploration Strategies

To assess the effect of noise on edit ratio and time spent used by Soh et al. [31]
to evaluate exploration strategies, we compute the edit ratio (i.e., the number
of edit events in an IT divided by the total number of events) in RITs, VITs,
CITs as well as bRITs and bCITs and compare these ratios using the Wilcoxon
unpaired test. We consider that a difference is significant at α = 0.05. We also
compute the durations of the ITs to obtain the times spent by participants on
the tasks. We include idle times (less or equal to 0.5 min) in the time spent on
the tasks as discussed in Section 3.3.2. Thus, for VITs, we consider their global
times while, for RITs, CITs, bRITs, and bCITs, we consider the accumulated
times of all the events after removing overlap and adding idle times. We use the
Spearman coefficient to assess the relation between edit ratios and the times
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Table 22: Comparison of Edit ratios between VITs, RITs, and CITs

VITs vs. RITs VITs vs. CITs RITs vs. CITs
p-values Cliff |d| p-values Cliff |d| p-values Cliff |d|

ECF 0.02 0.75 0.46 0.31 0.02 1
jEdit 0.1 0.66 1 0.11 0.1 1

JHotDraw 0.02 0.75 0.68 0.18 0.02 1
PDE 0.02 0.75 0.68 0.12 0.11 0.75

spent on tasks. This relation is evaluated because Soh et al. [31] observed that
edit ratio and the time spent was related to different exploration strategies,
i.e., edit ratios and times spent were not correlated.

5.2.1 Results and Discussions for Edit Ratios

The analysis of the edit ratios shows significant difference between VITs and
RITs, except for jEdit, in Table 22 (first column). The differences between
VITs and CITs (using threshold-based approach) are not statistically signifi-
cant for all systems, see Table 22 (second column). The results is the same (ex-
cept JHotDraw) using prediction-based approach (p-values 0.64, 0.5, 0.02, and
0.34 for ECF, jEdit, JHotDraw, and PDE, respectively). The differences be-
tween RITs and CITs (using threshold-based approach) are system-dependent
(statistically significant for two systems out of four) for the experiment data-
set, in Table 22 (third column). The prediction-based approach improves this
result as the difference is statistically significant for three systems out of four.
Applying our approaches on the Bugzilla data-set shows significant differences
for all systems.

The significant differences between VITs and RITs show that using RITs
may result in inaccurate findings. Applying our correction approaches reduces
the mismatch between VITs and RITs as there are differences between VITs
and RITs but not between VITs and CITs. The system-dependent differences
between RITs and CITs could indicate that our correction approaches may not
fully address the noise in RITs or that other characteristics of the VITs and
RITs reduce the efficiency of our approaches. Future works include studying
in details this observation.

5.2.2 Results and Discussions for Times Spent

Tables 23 show the relations between edit ratios and times spent. Computing
the correlation on VITs shows that the edit ratios tend to be weak or inversely
correlated with the times spent, Table 23a, first column while on RITs and
bRITs, it shows positive correlations (except for the ECF system), second col-
umn of Table 23a and first column of Table 23b. After applying our correction
approaches, the correlations increase for both threshold- and prediction-based
approaches, except for jEdit system in the experiment data-set.

The correlations between edit ratios and times spent in VITs have no
common trend, while those in RITs are positive for three out of four systems.
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Table 23: Spearman coefficient between edit ratios and times spent

(a) VITs, RITs, and CITs

Spearman correlations
VITs RITs CITs (T) CITs (P)

ECF 0.31 -0.4 0.6 0.73
jEdit -0.5 0.5 -1 0.5

JHotDraw -0.4 0.8 1 1
PDE 0.2 0.8 1 1

(T)=Threshold-based
(P)=Prediction-based

(b) bRITs and bCITs

Spearman correlations
bRITs bCITs (T) bCITs (P)

ECF 0.11 0.6 0.57
Mylyn 0.07 0.52 0.60
PDE 0.30 0.66 0.63

Platform 0.08 0.60 0.64
(T)=Threshold-based
(P)=Prediction-based

For the systems that have a common trend, we observe that the correlation
is more pronounced for RITs than for VITs. The corrected ITs, which show
positive correlations (except for jEdit for threshold-based correction), indicate
that the more time is spent by participants, the more they perform edit events
over other events. Contrary to the study of Soh et al. [31] that reported an
absence of correlation between edit ratio and the time spent on tasks, the result
of CITs is realistic because the changes to code take more time than other
activities. The observed contradiction with the result of VITs (no correlation)
can be explained by the number of events in RITs. While the transcription of
the videos in the VITs resulted in more events than RITs, CITs correct RITs
and have the same number of edit events as VITs, although the total numbers
of events are less than those of VITs. This difference in the number of events
increase the edit ratios of CITs that may correlate with the time spent.

In addition to the use of ITs by researchers, ITs are mostly used on-the-fly
by developers for reducing the information overload in the IDE. Our correction
of noise may contribute to ease the developers’ life by improving the informa-
tion overload reduction through the high consideration of true edit events
compared to false edit events. Thus, we investigate how noise may impact the
accuracy of the recommendation of program entities (e.g., filtering the package
explorer to reduce information overload).

6 RQ4: What is the effect of noise on recommendation systems?

This research question complements RQ3 by investigating the impact of false
edit events on the accuracy of recommendation systems built using ITs.

6.1 Motivating Example

To exemplify the recommendation system based on ITs by Lee et al. [17],
let us consider two ITs belonging to two maintenance tasks T1 and T2 where
T1 is completed and the developer is performing T2. Figure 12 shows the
sequence of files involved in T1 and T2. The files in the circle are those that
the developer edited. Thus, the context of T1 is (V1, E1) with V1 = {a, b, c, f}
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Fig. 12: Example of Recommendation

and E1 = {d, e}. When mining T2, the set of viewed files in the context of T1
is used to identify the file to recommend.

Now, let us assume that the files to edit to resolve T2 are E′2 = {h, e, d}.
When the developer performing T2 interacts with f , the current context is
(V2, E2) with V2 = {b, a, f} and E2 = ∅. The recommendation systems uses
the context and the previous association rule, whose antecedent contains the
context, e.g., V2 ⊂ V1, to recommend E1 = E2 = {d, e} ⊂ E′2.

As explained in Section 6.4, the precision and recall at the timepoint when
the developer edits f in T2 are respectively:

|Recommended∩Expected
|Recommended| = |{d,e}∩{h,e,d}|

|{d,e}| = 1 and

|Recommended∩Expected
|Expected| = |{d,e}∩{h,e,d}|

|{h,e,d}| = 2/3

The precision and recall are computed at each timepoint and averaged by
the number of recommendations. The fact that some edit events may be false
edit events impacts the precision and recall of the recommendation.

6.2 Approach

To answer RQ4, we replicate the approach described in Section 2.3, which we
use as baseline approach. We correct the false edit events using the threshold-
based approach described in Section 4.1 and the prediction-based approach
proposed in Section 4.2 and consider both as the approaches with correction.
For a fair comparison between the baseline approach and the approaches with
correction, we use the default parameters values of the baseline approach. We
set the maximum number of recommended files to 10 and the support and
confidence of the association rules to 1 and 0.1, respectively.

The baseline approach orders the traces using both the bug IDs for which
the traces were collected and the trace IDs. This ordering does not reflect the
order in which the traces were collected by developers. Therefore, we order the
traces using the start timestamps of the first events in the traces. The events
are by definition ordered by their start timestamps. Thus, we ensure that the
recommendations are made in the chronological order of the events.
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Table 24: Subject Systems

#T
Baseline Correction

Difference#V
#T

#E
#T

#V
#T

#E
#T

Mylyn 2,726 14.39 2.75 14.40 1.64 1.10 (40%)
Platform 582 24.23 2.67 24.23 1.55 1.12 (42%)
PDE 536 6.36 1.07 6.36 0.45 0.62 (58%)
ECF 308 9.30 0.72 9.30 0.33 0.39 (54%)
MDT 245 54.48 0.71 54.48 0.39 0.32 (44%)
Others (67) 1,367 22.81 1.41 22.82 0.78 0.63 (44%)
#T = number of Traces
#V = number of viewed files
#E = number of edited files

6.3 Subjects Systems

We use the Mylyn ITs collected and shared by the developers involved in
Eclipse projects and provided by Lee et al. [17]. The data-set involves 72
projects and contains 5,764 interaction traces. Mylyn, Platform, PDE, ECF,
and MDT are the systems with most interaction traces while the 67 other
projects have an average of 20 interaction traces.

Table 24 shows the number of traces (#T), the number of viewed files per
trace (#V

#T ), and the number of edited files (#E
#T ). For example, for Mylyn,

there are 2,726 traces in which, on average, 14 files are viewed and 3 files are
edited per trace while, after correction, 14 files are still viewed and 2 files are
edited per trace. Column “Difference” indicates the numbers and percentages
of false edit events, e.g., 40% of the files per trace in Mylyn were not edited.

6.4 Dependent and Independent Variables

We use the following variables to assess the impact of the corrections of false
edit events on the accuracy of the recommendations. As independent vari-
able, we have the considered approach: either the baseline approach or the
approaches with correction. As dependent variables, we evaluate the recom-
mendations using the set A of recommended files and the set E of expected
files at each timepoint in the traces and using the following measures:

– Precision: P = |A∩E|
|A| . The higher the precision, the lower is the number of

incorrectly recommended files.

– Recall: R = |A∩E|
|E| . The higher the recall, the higher the number of edited

files that are recommended
– F-measure: F-measure = 2∗P∗R

P+R . The higher the F-measure, the more ac-
curate are the recommendations.

– Feedback: Fb = #Recommendations
#Query [40]. The higher the feedback, the more

efficient is the recommendation system with respect to the number of
queries [17].
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Table 25: Recommendations Accuracy for the Baseline Approach

Baseline Approach
P R Fb #Rs #Qs

Mylyn 0.69 0.55 0.24 8,920 36,563
Platform 0.88 0.39 0.22 2,722 12,020
PDE 0.49 0.73 0.07 176 2,240
ECF 0.30 0.72 0.04 43 966
MDT 1.0 0.29 0.09 194 2,041
Others 0.77 0.36 0.11 1,817 16,356

Table 26: Recommendations Accuracy for the Correction Approaches

(a) Threshold-based Approach

P R Fb #Rs #Qs
Mylyn 0.75 ↑ 0.64 ↑ 0.32 ↑ 8,104 25,156
Platform 0.87 ↓ 0.54 ↑ 0.35 ↑ 2,861 8,099
PDE 0.78 ↑ 0.71 ↓ 0.15 ↑ 196 1,271
ECF 0.81 ↑ 0.95 ↑ 0.11 ↑ 80 705
MDT 1.0 → 0.62 ↑ 0.12 ↑ 211 1,742
Others 0.79 ↑ 0.60 ↑ 0.16 ↑ 1,559 9,441

(b) Prediction-based Approach

P R Fb #Rs #Qs
Mylyn 0.79 ↑ 0.72 ↑ 0.30 ↑ 5,341 17,594
Platform 0.83 ↓ 0.66 ↑ 0.33 ↑ 2,132 6,451
PDE 0.96 ↑ 0.84 ↑ 0.08 ↑ 81 968
ECF 0.86 ↑ 1 ↑ 0.05 ↑ 23 423
MDT 1.0 → 0.91 ↑ 0.11 ↑ 121 1,019
Others 0.93 ↑ 0.72 ↑ 0.16 ↑ 1,114 6,948

Table 27: Differences in Accuracy (F-measure) between the Baseline and Cor-
rection Approaches

Threshold-based Prediction-based
p-value Cliff |d| p-value Cliff |d|

Mylyn < 2.2e-16 0.15 < 2.2e-16 0.31
Platform < 2.2e-16 0.40 < 2.2e-16 0.66
PDE 0.30 0.05 0.001 0.19
ECF 1.8e-12 0.74 2.8e-10 0.93
MDT < 2.2e-16 0.99 < 2.2e-16 1
Others < 2.2e-16 0.49 < 2.2e-16 0.66

6.5 Analysis Method

To assess the impact of the correction approaches, we first simulate the recom-
mendations without any corrections and compute the values of the dependent
variables. Then, we correct the traces, simulate the recommendations again,
and recompute the variables. Finally, we compare the three sets of values us-
ing the non-parametric Mann-Whitney Wilcoxon test with a 95% confidence
level. If differences exist, we measure their magnitudes using the Cliff’s d non-
parametric effect size described in Section 3.3.1).

6.6 Results and Discussions

Table 25 shows the results obtained with the baseline approach including pre-
cision (P), recall (R), Feedback (Fb), numbers of recommendations (#Rs)
and query (#Qs). Table 26a shows the results obtained after applying the
threshold-based correction approach. We observe that the precision and re-
call increased after correction, except for the precision of Platform (which
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Fig. 13: Difference in F-Measure Between the Baseline Approach and
Threshold-based Approach

decreased by 1%), the recall of PDE (which decreased by 2%), and the pre-
cision of MDT (which remained constant at 100%). Precision and recall for
Mylyn increased from 69% to 75% and from 55% to 64%, respectively. Table
26b shows the results after applying the prediction-based approach: the recall
increases by 29% when compared to the threshold-based approach.

We apply Mann-Whitney Wilcoxon test on the F-measure because it com-
bines and represents the tradeoff between precision and recall. The test con-
firms that the differences are statistically significant, except for PDE using the
threshold-based approach, as shown in Table 27. Figure 13 illustrates the mag-
nitude of the differences in F-measure. The threshold-based approach yields
large effect sizes for ECF, MDT, and Other systems, medium for Platform,
and small Mylyn. The prediction-based approach yields the same trends as
the threshold-based approach. From these results, we conclude that correct-
ing false edit actions in interaction traces data can improve the accuracy of
recommendation systems.�

�
�
�

Observation 7: Correcting noise in Mylyn interaction traces with
the prediction-based approach can improve the precision and recall
of recommendation systems by up to 56% and 62%, respectively.

Beside the increase in accuracy, after corrections, the recommendation sys-
tem provides more recommendations than with the baseline approach. For ex-
ample for Platform, the baseline approach provides about 22 recommendations
out of 100 queries (Feedback = 0.22 in Table 25) while after corrections, there
are 35 and 33 recommendations out of 100 queries, respectively for threshold-
and prediction-based approach (Feedback = 0.35 and 0.33). Thus, the correc-
tions approaches decrease the numbers of queries and–or increase the number
of recommendations. They allow the recommendation system to make more
recommendations with respect to the number of queries.

We used the parameter values used by Lee et al. [17]. However, tuning the
parameters may further increase accuracy. We varied the maximum numbers
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Fig. 14: F-Measure of the combination of Confidence and the number of Can-
didate for Support = 1.

of recommended candidates from 5 to 25 per step of 5, the support from 1 to
9 per step of 2, and the confidence from 0.1 to 0.5 per step of 0.1. We used
the F-Measure to evaluate the combinations of parameters values. Figure 14
shows the distribution of the accuracy for each combination of confidence
and maximum number of candidates for support equal to one. Other values
of support yielded empty recommendations that we excluded. We observed
that the higher the number of candidates, the higher the accuracy. When the
number of candidates is 5, the variation of the confidence does not change
the accuracy of the recommendations. When the number of candidates is 25,
confidence values of 0.3, 0.4, and 0.5 provide high accuracy.

Table 28 shows the precision and recall of the recommendations using 25, 1,
and 0.5 as number of candidates, support, and confidence, respectively. Both
threshold- and prediction-based correction approaches yield improved accu-
racy, except for Platform as with the default parameters values in Tables 26a
and 26b. For MDT, accuracy is 100% because the MDT system has many more
viewed files than other systems as shown in Table 24. Thus, each association
rule has a large antecedent with a large number of viewed files and it is always
possible to find a rule which antecedent contains the current context.

In conclusion, the best parameter combination does not compensate for
the noise in ITs. Correcting noise provides more accurate recommendations.

7 Threats to Validity

This section discusses the threats to the validity of our study.
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Table 28: Precision and Recall of the Recommendation using the better Pa-
rameters (Maximum Candidate = 25, Support = 1, Confidence = 0.5).

Baseline Threshold-based Prediction-based
Precision Recall Precision Recall Precision Recall

Mylyn 0.68 0.67 0.75 ↑ 0.71 ↑ 0.79 ↑ 0.77 ↑
Platform 0.88 0.70 0.79 ↓ 0.78 ↑ 0.77 ↓ 0.83 ↑
PDE 0.49 0.73 0.79 ↑ 0.71 ↓ 0.96 ↑ 0.84 ↑
ECF 0.27 0.90 0.81 ↑ 0.96 ↑ 0.86 ↑ 1 ↑
MDT 1 0.73 1 → 1 ↑ 1 → 1 ↑
Others 0.77 0.59 0.79 ↑ 0.77 ↑ 0.93 ↑ 0.79 ↑

7.1 Interaction Traces

We used interaction traces collected by the Mylyn Eclipse plugin [20]. Thus,
the studied noise, the correction approaches, and the impact of the noise on
previous work only applied to Mylyn ITs. The same noise may be more or
less prevalent in the ITs collected by other monitoring tools. Section 8.1 sum-
marises the difference between Mylyn and other tools and discusses the pos-
sibility for less/more noise in the data collected by other tools. Yet, more
studies should be performed with other tools to assess the presence of the
same or other noises and their impact in their collected data.

Another threat when using Mylyn was the version of the tool. During our
experiment, we used different versions of Eclipse and, consequently, different
versions of Mylyn, for different tasks. We were constrained in our experiment to
use specific versions of the Eclipse-based systems (i.e., ECF, PDE) because we
used the versions against which the bugs were reported. Using different versions
meant that ITs could be different. However, as features are not significantly
different between versions of Mylyn, the differences between the ITs of two
versions of Mylyn were negligible.

The overlap phenomenon could also affect our results. We considered the
overlap between two consecutive events but not among several events, which
could affect our results and is future work.

7.2 Transcription of the Video

The first author and two intern students in the Ptidej Team independently
translated the videos into ITs. Because some actions were difficult to interpret
and because the exact start and end timestamps of some actions were difficult
to identify, different transcriptions of a video may provide different results. To
mitigate this threat, we defined a common template for video transcription.
Moreover, the noise studied in this article are related to timestamps and edit
events, which are easy to identify on video captures.
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7.3 Alignment of Mylyn and Video ITs

To identify the mismatch between RITs and VITs, we aligned both Mylyn
and video captures ITs. The alignment consisted of identifying the events
corresponding to one another in the two sets of ITs. As the alignment was
based on the times when the events occurred, any shift may result in the lost
of alignment between two corresponding events. To mitigate this threat, we
manually checked some alignments and observed that false edit events, for
example, were not due to shifts in alignments.

We also evaluated the accuracy of our alignment approach by manually
classifying edit events as true or false edit events. We computed the precision,
recall, and F-measure of the alignment. Our alignment approach achieved 91%
to 100% precision and 91% to 98% recall for false edit events. To identify true
edit events, our alignment approach achieved 25% to 75% precision and 14%
to 100% recall. The accuracy of our alignment of false edit events supported
the limited impact of the alignment on our results.

7.4 Correction of ITs

We corrected ITs using two correction approaches. The accuracy of the threshold-
based approach depends on the alignment and timestamps of false edit events.
The timestamps may be different for other systems and–or other developers
(e.g., developers’ experience and speed when triggering events). We introduced
the prediction-based approach to mitigate this threat from the threshold-based
approach and observed that the two approaches provided the same trends. Our
correction approaches may also result in corrected traces without any edit
events, which may happen, for example, if developers performed refactorings
in the last seconds of an IT or explored source code without making changes.

Other approaches to improve the use of ITs exist that combine ITs with
other data source, such as change history. Although the combination of ITs
with other data source could mitigate the impact of noise in ITs, it could
also make the prediction less accurate: it could increase the level of noise.
Future work must assess the benefits of our noise correction approaches over
approaches that combined ITs with other data source.

To quantify the benefit of our correction approaches on recommendation
systems, we used the data-set with and without correction and compared the
accuracy values of the resulting recommendations using the same recommen-
dation techniques. While the corrected and uncorrected data-sets may seem
different, the only difference is the correction applied to the raw data-set.
Hence, any difference in the recommendation accuracy values between uncor-
rected and corrected data-sets was due to the correction of the data.
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7.5 Participants, Task, and Systems

Participants performed maintenance tasks on Java systems only. Hence, we
cannot guarantee that using other systems and other programming languages
would yield the same results. We chose the tasks to last about 45 mins. We
chose tasks that may not be representative of tasks performed by developers
in industrial settings.

We cannot guarantee that the 15 participants found all possible source of
noises in ITs. In addition, the small number of true edit events in the data-sets
could affect the performance of our prediction-based approach. Hence, a study
that uses larger data-sets could observe and report a different prevalence and–
or kind of noises and result in different performance of the prediction-based
approach of trace correction.

7.6 Reliability

We provided all the data online. We defined a video transcription template and
three people transcribed the videos. Thus, the transcriptions by other people
should not be significantly different from ours (e.g., identifying edit events
from the video is not challenging). Moreover, we automated the alignment of
events between RITs and VITs. Our tool can be used after video transcription
without any manual work if the replication setting allows videos and RITs
collection to start at the same time.

8 Related Work

While some previous studies focused on the analysis of ITs to understand
developers’ behaviour, others used ITs to study software engineering activities.
Some other studies built tools to support developers in their daily work. These
three uses of ITs are complementary and want to empower developers.

8.1 Monitoring Developers’ Interactions

In addition to Mylyn, other tools exist to monitor and collect ITs. These tools
differ in their goals, the collected data, and the supported IDE.

Mimec is an Eclipse plugin to collect and use ITs to improve fault notifi-
cation [15]. Mimec extends Mylyn to collect more fine-grained data concerning
edit and navigation activities but exclude scrolling events. Mimec data is es-
sentially similar to that of Mylyn [14, p.23]. Thus, Mimec may suffer from the
same type of edit-related noise than Mylyn as reported in Table 2. However,
without excluding scrolling events may reduce event-related noise.

Blaze is an extension of Visual Studio to collect ITs including names and
types of events, file names and selected lines in the files, and users’ unique
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IDs [7]. Blaze collects search and navigation events but not edit events. Thus,
it is not suitable to study edit-related noise and time-related noise.

FeedBaG is another extension of Visual Studio to collect ITs including
event timestamps, selection and edit events. FeedBaG aggregates edit events
on the same program entity when the time between edit events is less than
2 seconds and the duration of the resulting event equals the time between
the first and the last aggregated events [1]. This aggregation may cause less
time-related noise than in Mylyn.

DFlow is an extension of Pharo to collect ITs including the start time
of the events, the program entities, and the editing session start and end
times [18]. It distinguishes between exploration, inspection, and editing events.
DFlow includes a model to estimate the duration of edit events, which may
lead to time-related noise.

WatchDog is an Eclipse plugin that monitors developers’ testing activi-
ties. It groups coherent events to form intervals containing the type and the
start and end times of the events [3]. Types includes read, modify, and execute
a test. It does not provide individual events with start and end times.

Other monitoring tools may contain less or different edit- and time-related
noise. Our study shows the need to study noise in these tools in future work.

8.2 Uses of Interaction Traces to Understand Developers’ Behaviour

Ying and Robillard [36] studied developers’ editing styles as edit-first, edit-last,
and edit-throughout. They observed that enhancement tasks are associated
with edit-first. Zhang et al. [38] studied developers concurrently editing a file
and identified concurrent, parallel, extended, and interrupted editing patterns.
Editing patterns impact software quality because they relate to future bugs.

Soh et al. [31] classified developers’ exploration strategies as referenced
exploration (i.e., revisitation of a set of entities) and unreferenced exploration
(i.e., program entities are almost equally visited). Unreferenced explorations
require more effort but are less time consuming than referenced ones. Murphy
et al. [19] studied Eclipse views and perspectives and reported that developers
use the views differently, e.g., none used the declaration view.

8.3 Uses of Interaction Traces to Study Software Engineering Activities

Sanchez et al. [27] related work fragmentation (due to interruptions) and de-
velopers’ productivity: work fragmentation correlated with low productivity.
Robbes and Röthlisberger [23] correlated developers’ expertise and their ef-
fort on their tasks: a negative correlation between the time spent on a task
and the developer’s expertise. Soh et al. [30] correlated the complexity of task
resolutions (i.e., using submitted patches) and the time spent on the tasks:
effort and implementation complexity are not correlated. Bantelay et al. [2]
combined ITs with commit data to identify evolutionary couplings: combining
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ITs and commit data improved the recall of prediction models by up to 13%,
with a decrease in precision of less than 2%. Zanjani et al. [37] improved a
change-impact analysis using ITs.

8.4 Uses of Interaction Traces for Recommendation Purposes

Tools exist to build the context of a task [10] and reduce the developers’ in-
formation space. Yet, developers still must look into the reduced information
space to find relevant program entities. Recommendation systems exist to pro-
vide developers with this relevant information in a given context [24]. They
include TeamTrack [6], which uses the association between previously-visited
program entities to recommend the next entity, NavTrack [28], which uses
selection- and open-actions on files to discover hidden dependencies between
files and recommend next files, NavClus [16], which improves previous sys-
tems using navigation information, and MI [17], which includes view/selection
histories of program entities to recommend entities that have not yet been
edited.

Kersten and Murphy [10] used interaction traces to build task contexts and
recommend program entities based on the principle of frequency and recency,
e.g., the more frequently and recently developers interacted with an entity, the
more the entity is relevant. Robbes and Lanza [22] also used change history
to reduces developers’ scrolling effort and to complete code. Zimmermann et
al. [40] mined the version histories and used co-change relations among entities
to recommend entities to be changed.

Instead of studying developers’ behaviour and activities, our study inves-
tigated noise in ITs and assessed its impact on developers’ editing styles and
exploration strategies and on recommendation systems. Our study relates to
the works above because it provides insights to improve tools based on ITs.

9 Conclusion and Future Work

Developers’ interaction traces (ITs) have been used for several purposes, e.g.,
assessing how developers’ editing stules [38] and recommending program enti-
ties [17]. However, ITs are subject to several assumptions: edit events caused
by changes to the code and the times mined from ITs reflect the times spent
by developers on their tasks. Yet, ITs collected by different tools and in non-
controlled environments may be subject to noise.

In this article, we studied the noise in ITs collected by Mylyn, an Eclipse
plugin, and the impact of this noise on the studies of developers’ editing
styles and the accuracy of recommendation systems. We conducted a quasi-
experiment and asked 15 participants to perform four maintenance tasks on
Java-based systems. We collected both ITs and video captures of the partic-
ipants’ screens. We compared the collected ITs (RITs) and video captures
(VITs) and observed that Mylyn ITs miss up to 6% of the times spent per-
forming tasks and that they contain about 85% of false edit events.
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Then, we proposed to predict false edit events using a threshold- and a
prediction-based approach. The prediction-based approach outperforms our
previous threshold-based approach, achieving up to 98% precision and 98%
recall. We performed an experiment using ITs collected from Eclipse Bugzilla
issue tracker system. We reported that noise may have led researchers to misla-
bel some participants’ editing styles for about 45% of the ITs. Correcting false
edit events can significantly improve the accuracy of the recommendations of
program entities by up to 56% for precision and up to 62% for recall.

We thus recommend that researchers interested in building new recommen-
dation systems based on Mylyn ITs and developers using these recommenda-
tion systems to guide their maintenance activities correct existing traces data
prior to their usage. Our results are specific to Mylyn interaction traces and
similar studies should be performed on data collected by other monitoring
tools (e.g., Mimec, FeedBaG, DFlow) to assess whether they contain noise,
the types of noise, and their prevalence, and the sources of the noise.

Future work includes leveraging our knowledge of noise in ITs to improve
monitoring tools, such as Mylyn. One of Mylyn developers suggested that we
clean the identified noise during the creation of events as we “can capture
more information at that point, for example, whether there was a keystroke
performed that correlates to the edit selection”. We also plan to extend our
study to include more complex tasks and investigate other possible noise in
ITs (e.g., noise in the program entities involved in the ITs), as well as using
corrected ITs to assess developers’ expertises.
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