Noname manuscript No.
(will be inserted by the editor)

Fragile Base-class Problem, Problem?

Aminata Sabané - Yann-Gaél Guéhéneuc -

Giuliano Antoniol

Received: date / Accepted: date

Abstract The fragile base-class problem (FBCP) has
been described in the literature as a consequence of
“misusing” inheritance and composition in object-orien-
ted programming when (re)using frameworks. Many re-
search works have focused on preventing the FBCP by
proposing alternative mechanisms for reuse, but, to the
best of our knowledge, there is no previous research
work studying the prevalence and impact of the FBCP
in real-world software systems. The goal of our work is
thus twofold: (1) assess, in different systems, the preva-
lence of micro-architectures, called FBCS, that could
lead to two aspects of the FBCP, (2) investigate the re-
lation between the detected occurrences and the quality
of the systems in terms of change and fault proneness,
and (3) assess whether there exist bugs in these systems
that are related to the FBCP.

We therefore perform a quantitative and a quali-
tative study. Quantitatively, we analyse multiple ver-
sions of seven different open-source systems that use
58 different frameworks, resulting in 301 configurations.
We detect in these systems 112,263 FBCS occurrences
and we analyse whether classes playing the role of sub-
classes in FBCS occurrences are more change and—or
fault prone than other classes. Results show that classes
participating in the analysed FBCS are neither more

A. Sabané - Y.-G. Guéhéneuc - G. Antoniol
DGIGL, Ecole Polytechnique de Montréal, Montreal, Canada
E-mail: aminata.sabane@polymtl.ca

Y .-G. Guéhéneuc
E-mail: yann-gael.gueheneuc@polymtl.ca

Giuliano Antoniol
E-mail: antoniol@ieee.org

V. Arnaoudova
Washington State University , USA
E-mail: Venera.Arnaoudova@wsu.edu

Venera Arnaoudova -

likely to change nor more likely to have faults. Qualita-
tively, we conduct a survey to confirm/infirm that some
bugs are related to the FBCP. The survey involves 41
participants that analyse a total of 104 bugs of three
open-source systems. Results indicate that none of the
analysed bugs is related to the FBCP.

Thus, despite large, rigorous quantitative and quali-
tative studies, we must conclude that the two aspects of
the FBCP that we analyse may not be as problematic
in terms of change and fault-proneness as previously
thought in the literature. We propose reasons why the
FBCP may not be so prevalent in the analysed systems
and in other systems in general.

Keywords Inheritance - Overriding - Composition -
Fragile base-class - Change proneness - Fault proneness -
Empirical study

From an API point of view defining that a method
can be overridden is a stronger commitment that
defining that a method can be called

—Erich Gamma, June 6, 2005.

1 Introduction

Inheritance is one of the fundamental principles of object-
oriented programming, with abstraction, encapsulation,
polymorphism, and typing. It provides a powerful mech-
anism to extend and reuse classes. However, many au-
thors pointed out some problems with the use of inher-
itance. One of the problems that has been raised is the
so-called fragile base-class problem (FBCP). The prob-
lem was initially described in the context of component-
based systems (IBM, 1994; Williams and Kinde, 1994)
although its origins have been spotted earlier (Snyder,

Aminata Sabané et al.

1986; Taenzer et al., 1989; Kiczales and Lamping, 1992;
Hirsch, 1994) without being named “FBCP”.

The FBCP occurs when three conditions are met:
(1) a framework-defined base-class is inherited by a user-
defined sub-class, i.e., a class on which the developers
of the base-class have not necessary the control, (2)
the sub-class overrides some methods of the base-class,
and (3) the base-class calls one or more of these over-
ridden methods. Then, changes to either the sub-class
or the base-class could cause the instances of either
classes to behave unexpectedly. Only a study of the
base-class and sub-class together could reveal the cause
of the unexpected behaviour (Bloch, 2008), thus defeat-
ing the purpose of providing base-classes in frameworks
to be extended by user-defined sub-classes. Given the
size and complexity of today’s systems, the user-defined
sub-classes need not to be external to the organisation
developing the base-classes, i.e., lying on the border be-
tween a framework and a client system: in large systems
and-or over time, developers may change base-classes
or sub-classes within a same system internally and still
break the behaviour of either one unwillingly.

Mikhajlov and Sekerinski (1998) performed an au-
thoritative theoretical study of the FBCP, in which
they expressed the problem in terms of a flexibility
property and showed that restricting the use of inheri-
tance could alleviate the FBCP. However, the proposed
four restrictions constrain the changes that developers
can apply to base-classes and their sub-classes and are,
therefore, impossible to impose in practice. To the best
of our knowledge, no current existing developers’ IDE
seeks to impose such restrictions. Other authors pro-
posed different strategies to achieve the same results as
inheritance—code reuse and typing—while avoiding the
FBCP. These strategies include, for example, chang-
ing the semantics of the dispatch in object-oriented
programming languages to distinguish between “open”
and “non-open” methods (Aldrich, 2004). They also in-
clude designing inheritance hierarchies to prevent the
FBCP altogether, as suggested for example by Gamma
et al. (1995) and Bloch (2008). Typically, these strate-
gies suggest to favour composition over inheritance by
having classes implement interfaces (or pure virtual clas-
ses) for typing and delegate to instances of classes whose
code they want to reuse. The classes would then dele-
gate any appropriate calls to the composing instances to
benefit from their behaviour without risking the FBCP.

These previous works described the FBCP and pro-
posed solutions to avoid it theoretically and practi-
cally but did not provide any evidence of the preva-
lence of the FBCP and of its impact on systems. There-
fore, the question remains whether solutions to
the FBCP should be applied extensively. Conse-

quently, we pursue two lines of study to answer this
question. Quantitatively, we investigate the preva-
lence and impact of two aspects of the FBCP (mu-
tual recursion and call to an overridden method) in
real-world systems. We detect these two aspects using
static analyses of the code to identify specific micro-
architectures called in the following “fragile base-class
structures” (FBCS). We formally define the FBCS while
also providing a tool to detect their occurrences in sys-
tems. We observe the prevalence of FBCS occurrences
in existing systems and the relation between these oc-
currences and the change and fault proneness of their
participating classes. Qualitatively, we collect from
three open-source systems bugs that could be due to
the FBCP and ask participants to assess these bugs
and confirm/infirm whether these bugs are indeed due
to the FBCP. We thus answer these research questions:

— RQ1: Do FBCS occur in real-world configurations?

— RQ2: Do FBCS impact the change- and fault-prone-
ness of their participating sub-classes?

— RQ3: Do bugs related to FBCP exist?

To answer these research questions, we performed
two quantitative studies and one qualitative study. A
preliminary quantitative study allows investigating the
prevalence of FBCS in multiple versions of seven dif-
ferent open-source systems that use 58 different frame-
works, resulting in 301 configurations. Using multiple
versions allows evaluating whether observations made
are version dependant or not. The following quanti-
tative study aims at evaluating the change and fault
proneness of sub-classes involved in the occurrences of
the FBCS. The qualitative study, designed as a survey,
intends to confirm/infirm the existence of bugs related
to the FBCP. The survey involves 41 participants that
analysed 104 bugs from three open-source systems.

Results suggest that there are few occurrences of
mutual recursion FBCS but there is a significant pro-
portion of call to an overridden method FBCS in most
of the analysed systems. Our analyses reveal that these
two aspects of the FBCP may not be as problematic as
previously thought in the literature regarding software
quality, defined in terms of change and fault proneness
of the classes involved (or not) in the occurrences of
the FBCS. Although, there is a significant proportion
of classes involved in FBCS occurrences, there is no
evidence that those classes, in particular classes play-
ing the role of sub-classes, are more change or fault
prone than other classes. Moreover, in the sample of
bugs analysed by participants, none was confirmed as
being caused by the FBCP.

We believe that many reasons to these results exist
and include a savvy use of inheritance by developers,

Fragile Base-class Problem, Problem?

the warnings available in IDEs to help developers avoid
some faults, the popularity of dependency-injection and
the use of interfaces over classes for typing, and thor-
ough testing by developers.

Section 2 presents previous works and expands the
motivation for our study. Section 3 provides the nec-
essary definitions and tooling to our studies. Section 4
describes the set up of the empirical study. Sections 5-
7 present the methodology and results of the studies.
Section 8 discusses our findings. Section 9 reports and
discusses the threats to the validity of our studies. Sec-
tion 10 concludes the paper and suggests future work.

2 The Fragile Base-class Problem

We first recall the various contexts in which the FBCP
can occur in Section 2.1, discuss related theoretical works
in Section 2.2, and show in Section 2.3 that no exten-
sive empirical works bring evidence of the prevalence
and impact of the FBCP.

2.1 Contexts

Many authors have discussed the FBCP in the litera-
ture. While all agree that the problem is bound to in-
heritance and method overriding, the contexts in which
the FBCP may occur vary among authors. Mikhajlov
and Sekerinski (1998) and Ghezzi and Monga (2002)
put the problem in the context of the maintenance of
an existing framework without being able or willing to
consider the clients of the framework:

— “Classes in the foundation of an object-oriented sys-
tem can be fragile. The slightest attempt to modify
these foundation classes may damage the whole sys-
tem [...] In a closed system, all extensions are under
control of system developers, who, in principle, can
analyse the effect of certain base class revisions on
the entire system. Although possible in principle, in
practice this becomes infeasible.” (Mikhajlov and
Sekerinski, 1998);

— “In general, [framework] developers are unaware of
extensions developed by the users and attempting
to improve the functionality of the [framework] they
may produce a seemingly acceptable revision of their
classes which may conflict with user extensions.”
(Ghezzi and Monga, 2002).

Differently, Mens (2002) discusses the FBCP in the
context of software merging: he argues that the FBCP
does not occur only when a base-class and its sub-
classes are developed by different developers but that

simple evolutions of a base-class may introduce unde-
sired behaviour in dependently-developed sub-classes,
i.e., within a same framework or client system.

These preceding works frame the FBCP in the con-
text of maintenance and evolution and, generally, rec-
ommend to change the design of the frameworks to pre-
vent any occurrence of the FBCP. We put our work in
the same general context. We consider both contexts in
which (1) the maintainers of some frameworks (respec-
tively client systems) modify a base-class (respectively
a sub-class) without being able or willing to consider
client systems (respectively frameworks) and in which
(2) the maintainers of an entire, large system mod-
ify some base-classes (respectively sub-classes) without
considering immediately the impact of this modification
on the rest of their system.

2.2 Theoretical Works

Many authors have discussed the FBCP from a theoret-
ical point of view and have proposed solutions to pre-
vent it. We divide previous works in three categories:
(1) works that proposed to solve the FBCP through
documentation; (2) works that proposed to prevent the
FBCP by imposing restrictions on the use of inheri-
tance; and, (3) works that proposed new inheritance-
like mechanisms that do not lend themselves to the
FBCP.

2.2.1 Prevention through Usage Documentation

Mens discussed two variants of the FBCP—syntactic
and semantic. The syntactic variant refers to the need
to recompile the sub-class if the base-class is changed
whereas the semantic variant refers to semantic incon-
sistencies, i.e., wrong behaviour. The syntactic variant
is addressed by IBM System Object Model (SOM) and
Microsoft Component Object Model (COM). In SOM,
upward binary compatibility is achieved by a complete
encapsulation of the implementation details of SOM
classes (IBM, 1994)—method dispatch tables are com-
puted at runtime—while Microsoft COM forbids inher-
itance and favours delegation. Steyaert et al. (1996)
addressed the semantic variants—they advocated docu-
menting the usages of inheritance using reuse contracts.

(Ruby and Leavens, 2000) used formal specifications
to ensure the safe overriding and calling of methods
defined in a base-class by methods of its sub-classes.
Part of the specifications (pre- and post-conditions and
invariants) are automatically generated and expressed
and checked using JML.

Ghezzi and Monga (2002) proposed to deal with the
FBCP by documenting class features using the .NET

Aminata Sabané et al.

support for attributes. They show how to use .NET
framework component metadata to document depen-
dencies between class features and thus provide infor-
mation on methods that developers can overridden with-
out undesired side effects. A design assistant or reflec-
tive mechanisms can then help to retrieve this informa-
tion and guide developers.

Parkinson and Bierman (2008) proposed a proof sys-
tem to formally specify and verify the behaviour of code
that uses inheritance. The system is based on a logic
separation that requires for each method two specifi-
cations: a static specification and a dynamic one. The
static specification describes the implementation and
direct calls to methods in base-classes while the dy-
namic specification indicates calls that are dynamically
dispatched. This proof system supports all forms of in-
heritance with low proof-obligation overheads and thus
can help developers to avoid inconsistencies when using
inheritance.

2.2.2 Prevention through Usage Restriction

As part of their authoritative work on the FBCP, in
which they expressed the problem in terms of a flexibil-
ity property, Mikhajlov and Sekerinski (1998) described
the FBCP as a problem that occurs in open OO sys-
tems employing inheritance as an implementation-reuse
mechanism. They argued that any open system using
inheritance and self-recursion presents a vulnerability
to this problem. They characterised the FBCP using
five aspects of the usage of inheritance: (1) unantici-
pated mutual recursion between a base-class and some
of its sub-classes; (2) unjustified assumptions in the new
revision of a base-class; (3) unjustified assumptions in
the methods of a sub-class extending a base-class (i.e.,
its modifier (Wegner and Zdonik, 1988)); (4) direct ac-
cess to the state of the base-class from a sub-class; and,
(5) unjustified assumption of the invariants maintained
by the base-class in the sub-classes. Based on these five
aspects of the FBCP, the authors proposed to impose
four restrictions on inheritance to prevent the FBCP
by forbidding these five aspects: (1) a base-class and its
sub-classes, taken together, should not introduce cycles;
(2) the methods in the revision of a base-class should
not make any additional assumption regarding other
methods; (3) sub-classes should consider only the be-
haviour of the methods defined in the base-class, even
if these methods can be overridden; and, (4) a sub-class
must not access the state of a base-class directly. The
authors showed that the proposed restrictions alleviate
the FBCP using refinement calculus.

Gamma et al. (1995) and Bloch (2008) proposed
design solutions to prevent the FBCP. Typically, these

solutions favour composition over inheritance to dis-
tinguish clearly between typing on the one hand and
reuse on the other. They suggested that developers type
classes using interfaces (or pure virtual classes) in which
methods are declared but not defined and build their
classes as compositions of instances of classes whose be-
haviours they want to reuse. A typical example is that
of a Java class that wants to behave generally like a set
but wants to count the numbers of items added to its
instances (Bloch, 2008, p.81-86). Rather than having
class CountingSet inherit directly from HashSet, these
works suggest to have CountingSet implement the in-
terface Set and be composed of an instance of HashSet
to which it would delegate any appropriate calls.

2.2.3 Prevention through New Mechanism Definitions

As a solution to evolution problems, including the FBCP,
Mezini (1997) enhanced the semantics of sub-classing
with a smart composition. A smart composition is a
composition mechanism in which the contract implied
by the base class is made explicit and available at the
client site. This contract that includes design and imple-
mentation properties allows developers to monitor base
classes and identify modifications that may invalidate
existing sub-classes. As a proof of concept, the author
showed a prototypical extension in Smalltalk-80.

Biberstein et al. (2002) introduced the concept of
class sealing as a mean to control sub-classing and,
thus, as a solution to the FBCP. To show that their
new mechanism could be integrated in mainstream OO
programming languages, the authors analysed the Java
runtime library, combining it with 45 client systems,
and showed that more than 80% of the classes are “sealed”
even if only developers should decide whether a class
must be sealed.

Ozaki et al. (2003) suggested to prohibit method
redefinition and proposed to prevent the FBCP by de-
composing inheritance into class addition and class re-
finement (corresponding to method overriding).

Aldrich (2004), following Biberstein et al. (2002)
and Ozaki et al. (2003), proposed to distinguish be-
tween open methods (which can be overridden) and
“non-open” methods that cannot be overridden and
to change the dispatch mechanism to dispatch “non-
open” methods statically if called on this to prevent
the FBCP.

Ducasse et al. (2006) proposed traits to overcome
the limitations of single and multiple inheritances and
to promote the reuse of unrelated classes. A trait is
a stateless programming construct that groups a set
of methods that can be reused orthogonally from in-
heritance. This mechanism is an improvement over in-

Fragile Base-class Problem, Problem?

heritance in code reuse and thus helps solve problems
related to inheritance including the FBCP.

Although they do not explicitly introduced a new
mechanism, Kegel and Steimann (2008) proposed to
prevent the FBCP by systematically refactoring inher-
itance usages into delegations, thus effectively favour-
ing composition over inheritance. They built a tool that
performs the refactoring based on a set of pre- and post-
conditions and applied on several open-source systems.
They highlighted that the results are to be interpreted
from a technical perspective, i.e., applying the refac-
toring does not mean a better design but prevents the
FBCP.

2.2.4 Discussion

Different from these works, in the context of software
maintenance during which documentation and specifi-
cations may be missing or outdated, we want to observe
the prevalence of occurrences of the FBCP to warn
developers and possibly focus research work towards
proposing “after the fact” solutions to the problem.
We argue that restricting the usage of inheritance
or imposing the usage of new mechanisms cannot be
justified for most developers or cannot be imposed on
developers, who cannot or do not want to choose or
change the programming languages that they use and
who cannot impose such restrictions on their clients,
unless empirical evidence show that the prevalence of
the FBCP cannot be ignored by their managers.
Delegation and dependency injection are possible
mechanisms to avoid the FBCP. Developers use these
mechanisms, which may be one of the reasons that
explain our results, as discussed in Section 8. How-
ever, for example, no programming language imposes
the use of delegation instead of inheritance for typ-
ing and, thus, developers may not systematically use it.
Showing evidence of the FBCP could encourage devel-
opers to change their development habits by using del-
egation systematically and researchers to propose new
programming languages that enforce using delegation.

2.3 Empirical Works

To the best of our knowledge, there is no strong empir-
ical evidence regarding the prevalence of the FBCP in
real-world software systems. The most closely related
empirical works, by Tempero et al. (2008), studied in-
heritance and method overriding. They studied inher-
itance in 93 open-source Java systems and found that
a large proportion of user-defined classes mostly in-
herited from other user-defined classes. Focussing on
three of the studied systems, they also showed that

the number of inheritance relationships remained con-
stant over time. However, they observed that, as sys-
tems evolved, inheritance relationships connected more
user-defined classes, i.e., the proportion of classes inher-
iting from user-defined classes increased while that of
classes inheriting from framework decreased. Following
this study, Tempero et al. (2010) empirically studied
method overriding in 100 open-source systems. They
showed that, in half of the systems, at least 53% of
the sub-classes used method overriding internally. The
authors did not consider method defined in third-party
and standard frameworks and overridden in the studied
systems. We share with these two previous works our
interest of method overriding and will consider method
overriding within systems but also across the borders
between systems and the frameworks that they use.

Another related work is the empirical study per-
formed by Robbes et al. (2015) on the prevalence of
data and operation extensions in a large number of
open-source Smalltalk systems. The authors also stud-
ied the change proneness of methods involved in these
extensions. They found that inheritance is prevalent
in systems during software evolution and that the two
kinds of extensions are equally common. They also found
that methods involved in these extensions tend to be
less change prone than others. We share with this study
our interest for the use of inheritance and its side ef-
fects on software quality but we focus on a specific use
of inheritance. Moreover, our granularity to measure
the change proneness is at class level.

Few other works studied the relation between inher-
itance and fault proneness. Briand et al. (2000) studied
the relationship between different software metrics (11
of which are related to inheritance) and fault-proneness
in eight C++ implementations of a medium-sized man-
agement information system software. They showed that
the higher the number of overriding methods in a class,
the higher the probability of the class being fault-prone.
However, they did not distinguish between inheritance
from system classes and inheritance from framework
classes because they showed that there is few occur-
rences of the latter in the studied implementations. We
get inspiration from this work in our study by compar-
ing the change- and fault-proneness of classes partici-
pating to possible occurrence of the FBCP with that
of classes elsewhere in the systems. However, contrary
to Briand et al. (2000), who used student implementa-
tions, we consider real systems.

Daly et al. (1996) performed a study on the ef-
fect of inheritance depth on maintainability. They stud-
ied two C++ systems and asked students and recent
graduates to perform maintenance tasks. They observed
that maintaining a system with a depth of inheritance

Aminata Sabané et al.

equal to three is faster than maintaining a system with
no inheritance but slower than maintaining a system
with five levels of inheritance. However, Harrison et al.
(2000) later conducted a similar study and concluded
that systems with no inheritance relationships are eas-
ier to modify and understand. They explained the con-
tradictory results by arguing that sizes and functional-
ities have a greater impact on program understanding
than the depth of the inheritance trees. Different from
these studies, we focus on possible occurrences of the
FBCP and compare classes participating in such occur-
rences with other classes with inheritance relationships
without focussing on their depths in their inheritance
trees but rather on their location in the systems wrt.
the frameworks (i.e., border classes vs. internal classes).

3 Definition and Detection

Table 1 provides an overview of two aspects of the
FBCP that are common to previous works in the lit-
erature and that are the focus of our empirical study:
mutual recursion and call to an overridden method. We
choose these two aspects because they can be defined
and detected through static analyses. We do not study
the other aspects because:

— Behavioural conflict, as defined by Mens (2002), would

require studying the behaviour of the methods in the
base-class and its sub-classes, which would require
either formal specifications or dynamic analyses, the
first being usually unavailable in most real-world
systems and the second requiring accurate and com-
plete test suites;

— Direct access to the base-class state, as presented
by Mikhajlov and Sekerinski (1998), in general, is
strongly discouraged and can be refactored semi-
automatically by adding getters and setters and re-
placing any direct access by calls to these getters
and setters.

— Conflict in the method interfaces as introduced by
Steyaert et al. (1996), and specifically the case where
the new or modified method of the base class is not
invoked by other methods in the base class, does not
cause a wrong behaviour but the developer’s inten-
tion can be lost. Checking intention would require
studying the behaviour of the methods in the base-
class and its sub-classes.

— Unimplemented methods, as described by Steyaert
et al. (1996), are usually catch by the compilers
in most mainstream, OO, strongly-typed program-
ming languages. The compiler raises an error when
a concrete sub-class does not implement all of the
abstract methods of its base-classes.

Table 1 also illustrates the two studied aspects with
two typical structures that are the subjects of our em-
pirical study: these two typical FBCS illustrate, using
UML-like models, the aspects of a mutual recursion be-
tween the methods m() and n() and of a call to an
overridden method n() by the base-class method m().

3.1 Definitions

From the two aspects subject of our study, we extracted
the characteristics of the concrete inheritance-related
micro-architectures that can lead to the FBCP and
which could be identified through static analyses of
the source code. We call these structures Fragile Base
Class Structures (FBCS). We define an FBCS as two
classes in an inheritance relationship, not necessarily a
direct relationship, and with specific method declara-
tions and definitions. An FBCS is the location where
the FBCP can occur if, for example, the sub-class over-
rides a method of the base-class and introduces a mu-
tual recursion.

An FBCS is a quadruplet (B,C,m,n) where B is a
base-class, C' a sub-class of B, m a method or a con-
structor of B, and n an overriding method of C. m
is the caller method and n the overriding/overridden
method (n is overridden in the base-class B; it is over-
riding in the sub-class C' (Tempero et al., 2010)). Thus,
following our definition, two classes can be involved in
more than one FBCS occurrences with different pairs of
methods. An FBCS class is a class that appears at least
in one occurrence of an FBCS, as a base-class or as a
sub-class. An FBCS class can be the base-class in one
FBCS occurrence and a sub-class in another. We call
direct FBCS any FBCS occurrence in which the two
classes defining the structure have a direct inheritance
relation, else we say that it is indirect.

3.1.1 Contexts

To consider the different contexts discussed in the liter-
ature and summarised in Section 2.1, we define a client
as a piece of code relying on some framework to function
and a configuration as a pair of a client and a frame-
work. We then can distinguish between border FBCS
occurrences, in which the base-class is defined in the
framework and the sub-class in the client, and internal
FBCS occurrences, in which the base-class and sub-
class are both defined in the same client or framework.
Following this naming convention, when a sub-class in-
herits from a framework base-class, we refer to the for-
mer as border sub-class while we call internal sub-class
any sub-class inheriting from a base-class defined in the
same client or framework.

Fragile Base-class Problem, Problem?

Table 1 FBCP: studied aspects, relationships with the aspects in the literature, and typical FBCS.

Aspects Previous Works Typical FBCS
Mutual Recursion Ghezzi and Monga (2002):
— Mutual recursion. B
Mikhajlov and Sekerinski (1998): :‘(g)fv‘gf [mOin0s}
— Unanticipated mutual recursion.
Ruby and Leavens (2000): [r
; C
— Mutual recursion.
0 vord B AnOImOES
Call to an Overridden | Mens (2002):
Method — Inconsistent methods. B
Mikhajlov and Sekerinski (1998): nmtg),’v‘;ﬁ'dd L {motn0s3
— Unjustified assumption in revision class;
— Unjustified assumption in modifier class; lﬁ
— Unjustified assumption of binding invariant in modi- C
fier. —
n() : void
Ozaki et al. (2003):
— Downcall.
Steyaert et al. (1996):
— Conflict in the method interfaces;
— Method capture;
— Inconsistent methods.

We now present the 12 variants of the two typical
FBCS shown in Table 1. We will focus on nine of them
as concrete subjects of our study.

8.1.2 Mutual Recursion, Four Variants

An occurrence of typical mutual recursion FBCS, as
shown in Figure 1(a), is a quadruplet (B, C, m, n) where
B is a base-class and C is one of its sub-classes, m is
declared and defined in B as invoking n, n is overridden
in C but m is not, and m is invoked in n in C. We define
three other variants of this FBCS, which correspond to
the structures in which:

— The method n is not defined in B but inherited from
one of its own super-class, as in Figure 1(b);

— The sub-class C' is not a direct sub-class of B but
an arbitrary number of intermediate sub-classes T'
exist between B and C, as illustrated in Figure 1(c);

— The class playing the role of sub-class is a child of
C and does not itself override the method n but
inherit the method from C, as in Figure 1(d).

The FBCS defined by (B, C, m,n) and shown in Fig-
ures 1(a) and 1(b) are direct FBCS while the one shown
in Figures 1(c) and 1(d) are indirect.

8.1.8 Call to an Overridden Method, Fight Variants

An occurrence of a typical call to an overridden method

FBCS, as shown in Figure 2(a), is a quadruplet (B, C, m, n)

where B is a base-class and C' a sub-class of B, m is
declared and defined in B and n is invoked from m, n
is overridden in C but m is not, and m is not invoked
from n in C. This FBCS has a “main” variant where
the overridden method n is called from the constructor
B, as depicted in Figure 2(b).

As with the mutual recursion FBCS, from both the
typical FBCS (Figure 2(a)) and the variant with the
constructor (Figure 2(b)), we derive three variants in
which method n is declared, called, and overridden in
different classes: Figures 2(c) and 2(f) in which method
n is defined not in B but in one of the base-class of B;
Figures 2(g) and 2(d) in which an arbitrary number of
intermediate classes exist between B and C' and Figures
2(e) and 2(h) in which a sub-class CC of C is considered
in the occurrence of the FBCS.

3.1.4 Analysed FBCS Variants

The variants CC in the different FBCS aspects inherit
the FBCS structure: the sub-class CC does not itself
override the method n but inherits it. The FBCP can
then arise when using the class CC' but the problem

8 Aminata Sabané et al.
B A PADL model contains all the information needed to
:][?::v\gdd Fmoin0:y perform the detection of the occurrences of the two
typical FBCS and of their variants. Any meta-model
l‘l that contains enough information about inheritance re-
¢ _ lations between classes and about method invocations
nosver | : in methods could be used for the detection. We only
(a) Typical FBCS of mutual recursion use PADL because it is known to us, (Guéhéneuc and
. Antoniol, 2008), and its models contain all the required
0: \Sfowd oy F om0 nformation. . fons usi
n) : void We obtain PADL models of configurations using the
T - Ptidej tool-suite. The tool is available on-line !. The
5 ijid | Tmomom™ T detection process is as follows:
% 75 — Build the PADL model of a configuration;
c c — Identify all super-classes;
w0 ved L [romon n0void § - 0mOi — Identify all their sub-classes;
— For each couple of super-class and sub-class, check
(b) Variant 8 (c) Variant T whether a method m of the super-class invokes an-
B T other method n (declared or inherited) of the super-
n"”(g):’\:’o‘?"ijd i class and n is overridden in the sub-class;
ﬁ) — If the previous condition is true, check whether
< the quadruplet (B, C, m,n) fulfils one of the FBCS
w0 vord FAn0mo;N variants.
ﬁ) — When n in C invokes m, the occurrence is a mu-
cc tual recursion; Otherwise, it is a call to an over-
ridden method. In both cases, m should not be

(d) Variant CC

Fig. 1 The four variants of mutual recursion.

cannot be fixed in class C'C': the fix should be done in
B or C. For this reason, we do not include the variant
CC in our study. We will then limit our investigation
to nine variants among the 12 described above.

3.2 Detection

We cannot use existing tools to detect the occurrences
of FBCS that we study because none is publicly avail-
able and-or conforms strictly to our definitions. We
could have adapted some existing tools but we esti-
mated that the amount of effort was quite large be-
cause of the age of the tools and our lack of knowledge
about their designs and implementations. For example,
in 1999, Mezini et al. (1999) built a framework to de-
tect incompatibly problems based on binaries, but their
tool was not maintained since then.

Therefore, we built our own tool to detect the occur-
rences of FBCS. The tool is based on the PADL meta-
model (Guéhéneuc and Antoniol, 2008), a representa-
tion of an OO system that includes all classes, meth-
ods, fields, and binary-class relationships Guéhéneuc
and Albin-Amiot (2004) as well as method invocations.

also overridden in the sub-class C.

We thus extract all classes involved in FBCS occur-
rences as well as all classes involved in inheritance rela-
tionships and all classes overriding at least one method
of another class. We obtain the following sets:

— Selasses, the set of all classes in a configuration;

— SrBcs, the set of all occurrences of the detected
FBCS;

— SFBCSyora.r» the set of all FBCS occurrences in which
the base-class belongs to a framework and the sub-
class to a client;

— SFBCSvoraer.airecss the set of all FBCS occurrences
with a direct inheritance relationship and included
N SFBCS,order;

— SFBCSvorder.inaireet» the set of all FBCS occurrences
in Srpcs,,, 4., that have an indirect inheritance re-
lationship;

— SFBCS;mierna» the set of all FBCS occurrences in
which both base-class and sub-class belong to the
same framework or the same client;

— SFBCSinternat.airect s the set of all FBCS occurrences
in SrBcS;, 10 ad having a direct inheritance re-
lationship;

— SFBCSiniernatindireet» the set of all FBCS occurrences
in SFBCS;1emma @0d having an indirect inheritance
relationship;

1 http://www.ptidej.net/download /experiments/emsel5a/

Fragile Base-class Problem, Problem?

B

me) : void | <|m(){n();}5

ni) : woid
C
ni) : woid

(a) Typical FBCS of call to an overridden method

B B

° L 1
m() : void | —n |m0 7 void mO{n0;}

ni) : void mOn0;} ni) : void

T T T

B
R T c
m(): void r mixn0;} nl) : void
T r T
ni) : void ni) : void

(c¢) Variant S (d) Variant T (e) Variant CC

Fig. 2 The eight variants of overridden method.

— Sinheritance, the set of all pairs of classes I = (C1, C2)
in which C2 inherits directly from C1;

— Soverriding, the set of all pairs of classes O = (C1, C2)
in which at least one method of C2 overrides a
method of C1.

For each set defined above but S.usses, we define
a corresponding set of classes playing the role of sub-
classes. Thus, the notation SSubx will be used to name
the sub-classes of occurrences of the set X. For exam-
ple, the set SSubg, . represents the set of sub-classes
in all FBCS occurrences while the set SSubs,,.., . 4:n,
represents the set of sub-classes in Soyerriding. We sum-
marise in Table 2 the relations existing between the
different sets.

4 Studies Definitions

The context of our quantitative and qualitative stud-
ies is the maintenance of OO systems, which combine
frameworks and clients code. Our main goal is to in-
fer the prevalence and impact of the FBCP through
some related FBCS, (1) by detecting the occurrences of
the FBCS defined in the previous section, (2) by com-
paring the change- and fault-proneness of the classes
participating in these occurrences with respect to that
of other classes, and (3) by assessing whether there ex-
ist bugs whose cause is the FBCP. The quality focus
is the changeability and faultiness of classes as well as
the prevalence of the FBCP in bugs, which both have
a concrete effect on developers’ effort and on the cost
and time of maintenance. The perspective of our study
is that of researchers, interested in the relationship be-
tween the FBCP, FBCS, and characteristics of classes

B

B) @ void
n() : void

T

C
ni) @ void

L B0

(b) Variant C

S B ° 5
: = {E0(n0;
— B : void B void
n() : void no:‘\’f;'id FEO0 S [n0 : void

T s T

B C
TN T
B):void B0} n() : void
T T T
C C cc
n() : void n() ¢ void

(f) Variant C-S (g) Variant C-T (h) Variant C-CC

impacting maintenance and bugs. Also, our study is of
interest to developers, who perform development and
maintenance activities and must target and forecast
their effort, for example by focussing part of their activ-
ities on replacing inheritance by composition to remove
FBCS and thus prevent FBCP. They can also be of in-
terest to managers or quality assurance personnel, who
could use the results of our study to assess the likeli-
hood of changes and faults when extending frameworks
or maintaining systems using frameworks and, thus, to
better assess their quality.

4.1 Studies Sub-goals

We perform three studies with the following sub-goals
that compose our main goal defined above:

— A preliminary quantitative study to investigate the
prevalence of occurrences of the FBCS in real-world
systems classified into three groups: clients, frame-
works, and configurations that are combination of
clients and frameworks. We show that occurrences
of the nine variants do exist, which motivates the
two following studies;

— A quantitative study to compare the change and
fault proneness of classes, particularly sub-classes,
in FBCS and that of other classes. The results re-
veals any evidence about the fault proneness of FBCS
sub-classes but shows a correlation between change
proneness and FBCS sub-classes in two systems out
of the four analysed. However, the analysis of pos-
sible confounding factors suggests that the change
proneness of FBCS sub-classes observed in these

10

Aminata Sabané et al.

Table 2 Relations between the Defined Sets.

SFBCSbov'der.d'irect C SFBCSborder
SFBCSypraerindirecs © SFBCSyoraer
SFBCSpiernatairecs © SFBCS ipiernal
SFBCSiniernat indirect © SFBCS nierna
SFBCS,yaer C SFBCS, SFBCS;nierma C SFBCS

The different kinds of occurrences compose the overall set of occurrences

SFBCSyoraerdirect S SFBCSyoraeringirect = SFBC Syoraer

SFBCSyoraer YSFBCS nierna = SFBCS

SFBCSnernatyairect O SFBC S iniernat indirect = OFBC Sinterna

The different kinds of occurrences compose the overall set of occurrences

An occurrence is either direct or indirect

SFBCS praenairect [V OFBC Sporaeringirect = @
SFBCSznfernuLd7rect N SFBCS7nternal,7nd77‘ect =0

An occurrence is either border or internal

SFBCS,oracraivect NV SFBCSinternat,irec: = @
SFBcsl;urtlur,?n,d'rruz,t N SFBC'Su.,f,w-n,ul,mduucr, =0

which in turn is a subset of classes that extend other classes

SSUbsFBCS C SSubgs C SSubg.

overriding inheritance

The set of classes playing the role of sub-classes in FBCS occurrences is a subset of classes in which a method overrides another,

systems is due to the fact that these classes are also
overriding sub-classes;

— A qualitative study to identify whether some bugs
are due to the FBCP. The results show that none of
the bugs in the sample of bugs analysed by partici-
pants is caused by the FBCP.

To perform the two first studies, we detect the nine
variants of the two types of FBCS defined in the pre-
vious section in real-world Java systems. We use the
change and fault data provided by Khombh et al. (2011)
to assess the change- and fault-proneness of classes in
these configurations. For the qualitative study, we con-
duct a survey in which participants must analyse bugs
and assess whether these bugs are caused by the FBCP.

The follow subsections describe the systems, frame-
works, and configurations of systems that we use in
these three studies. The next three Sections 5-7 de-
scribe each study independently: first introducing the
research questions, then the analysis procedures and
methods, then the results, and finally some conclusions
and discussions on each sub-goal. Section 8 discusses
our main goal generally wrt. the results of the three
studies.

4.2 Pool of Systems

We must choose frameworks and clients for internal
FBCS and associate frameworks with clients into con-
figurations border FBCS. We choose clients and frame-
works for which bug tracking systems are available so
that we can mine bugs and ask developers to assess
whether some of these bugs are caused by the FBCP.

4.2.1 Clients

We choose seven clients that represent a wide range
of application domains, maturities, and sizes. Many of
those chosen systems have been used in previous stud-
ies regarding inheritance or overriding (Tempero et al.,
2008, 2010). These clients are all open-source. They
form a convenient sample because we did not choose
them randomly from the (nonexisting) set of all possi-
ble systems but, rather, based on previous works and
our own use of some of these systems (Wohlin et al.,
2000, p.52).

ArgoUML is an open-source software for modeling
UML diagrams. Barcode4J is a flexible generator for
barcodes in Java. CheckStyle Eclipse Plugin is an im-
plementation of the CheckStyle tool to enforce coding

Fragile Base-class Problem, Problem?

11

Table 3 Clients.

Table 4 Frameworks.

- I
Clients Versions (nﬁﬂf:zi) Frameworks Versions (rfli:frsue;i)
ArgoUML 0.10.1, 0.12, 0.14, 0.16, | 908-1,444 activation 101,102, 1.1, 1.1.0 29-38
0.18.1, 0.20 ant 1.7.0 1,151
Barcoded] 1.0, 2.0, 2.1.0 104178 antlx 122, 141 (2003), [147-1,515
CheckStyle 110,432,442, 500,530 | 300 368 30702*13 2005, 2.7.2, 2.7.6,
Eclipse Plugin argouml-model 2665 - 41
B —C ‘ =
Eclipse—C°7¢ | 1.0, 2.0, 2.1.1, 2.1.2, 2.1.3 7,103-14,236 e 11 5brow 415 420 e
JBoss Server 3.2.7, 3.2.8, 4.0.5, 4‘.2.2] 2,36?—4,7().8. boel 5.1, 5.1brew 373
Mylyn 2.0.0, 2.1, 2.2.0, 2.3.0, 2.3.1, | 1,403-2,366 bef 2.3.0, 2.3.0brow 140145
2.3.2,3.0.0,3.0.1,3.0.2,3.0.3, bsh 1.3.0, 1.3.0brew 133-135
3.04, 3.0.5, 3.1.0 cglib 2.1.3brew, 2.1.3nodep 258
Rhino 1.4R3, 1.5R1, 1.5R2, 1.5R3, | 100-318 checkstyle-core 4.2,4.3,4.4,5.0,5.3 326-360
1.5R4, 1.5R5, 1.6R1, 1.6R2, com-sun-syndication 0.9.0 120
1.6R3, 1.6R4, 1.6R5, 1.6R6 commons-cli 1.0 20
Total: 7 Ranges #versions: 3-13, #classes: 100-14,236 commons-codec 1.3 25
commons-collections 3.1-brew 446
commons-discovery 0.2.0 58
commons-httpclient 3.0.1 148
standards. Eclipse is an open-source OSGi implementa- commons-io L2 44
X . K K X commons-lang 2.1,2.3 110-124
tion on which several plugins are built. We considered commons-logging 1.0.2, 1.0.3 (2004), 2005, | 16-21
. . 1.0.4,1.0.4.1,1.0.5, 5.0.28
the “core” of Eclipse as a framework and all of its other Tomdi 161 190
plugins as clients of this framework. It is used both in el-servlet-api 2.0.1 £7
o A . gef 0.9.5, 0.9.6 (2002), 2003, | 264321
open-source communities and in industry. We distin- 0.10.14, 0.10.4, 0.11.2
. : hibernate-ejb3 3.2.1 162
guish Eclipse core packages from other packages of the ihernated 390,394 13031343
system by the prefix ”org.eclipse.core” in their names. hsqldb 1.8.0.8brew, 1.8.0RC3, | 286-305
. 1.8.0.2, 1.8.0.2jdk13
JBoss Server is an application server implementing the i8n T.41.02606, 1.4.2.09503 | 32-36
. . . (2004), 2005
EJB API from J2EE. Mylyn' is an Eclipse plugin that — ot ——
records developers’ tasks. Rhino is an open-source Java jacorb 22,2232, 230 4,53375,026
. 1 tati fal Seript int " javassist 3.3.0GA, 3.6.0GA 254-305
implementation of a JavaScript interpreter. TvarmTpe 110 =
Jjavax-xml-soap 1.2.0 27
jaxen v1.1beta9 221
jeert-jnet-jsse 1.0.3 400
4.2.2 Frameworks jcommon 1.0.0, 1.0.9, 1.0.16 203-209
jdom 1.0, 1.0.0, 1.0b8 5375
. . . jfreechart-swt 1.0.5 34
The seven clients use 58 different third-party frame- jfreechart 1.0.1, 1.0.13, 1.05 182611
: : : : . jgroups 2.2.7SP1 835
works. We consider the Java runtime libraries (rt. jar) o o (3003 20052005 o
as a framework because Tempero et al. (2008) showed oesnmp 0.34, 0.3.4brew 56
. . . l-pattern-util 1.0 26
that developers treat standard libraries and third-party Tt CXRTETY =
libraries alike from the point of view of inheritance. logdj ;bldg’ 216?)5721(5356 (2002), | 101-244
Our choice of the frameworks as well as their versions mail 13, 131, 14, 140 | 200250
. . . . (2008)
is guided by the dependencies with the seven chosen T 0419 (2000), 2003, | 299550
clients. The chosen frameworks thus also form a conve- (2)6%284 (2004), 200501,
. . . O
nient sample and some of them are quite old but still ockargo 1.1, 2001, 2003, 2004, | 518
. . . 2005
required by clients, like antlr 2.7.6. org eclipse.core 10,20, 2.1.1, 2.1.2, 2.1.3 | 388 449
org-apache-axis 1.4.0 (200806), 200807 785
quartz 1.5.2brew 149
. Tt 1.21, 1.3, 1.3.1, 1.4.0, | 4,250-17,058
4.2.3 Configurations 1.4.2, 1.4.2ud, 1.5, 1.5u4,
1.5u6, 1.5u8, 1.5ul2,
. . . . 1.6, 1.6u4, 1.6u7, 1.6ul4,
In total, we analyse 48 clients (seven different clients in L.6u22
multiple versions), 158 frameworks (58 different frame- serializer 2.7.0 89
K . .) servlet 2.2,2.4.0 42
works in multiple versions), and 301 client—framework swidgets 0.1.1 (20050422), | 42
. . . 20050523
configurations. We choose to analyse different versions toolbar 5004, 1.1.1 (2005), 2005 | 1936
of the clients and frameworks to evaluate whether our wsdld] 151,162 1197143
)) xalan 252, 2.6.0,2.6.0j, 27.0 | 687-1,495
observations are version-dependent or could be gener- Xerces 2001, 1.2.3 (2003), 2004, | 513-887
. . . 2.6.0, 2.6.2, 2.9.0
alised to multiple versions. *mlapis 1.3.04, 1.3.1 207-303
Total: 58 Ranges #versions: 1-16, #classes: 16—-17,058

We treat each configuration independently and as
unique regardless whether two configurations include
the same client or frameworks in different versions. Thus,
we do not seek to study the evolution of occurrences of
FBCS across versions.

12

Aminata Sabané et al.

Studying the evolution of FBCS is future work be-
cause, in this study, we want to assess whether classes
participating in FBCS are more change- or fault-prone
than others. If we answer positively, then it would be-
come interesting to study the evolution of FBCS.

4.3 Object Systems of the Quantitative Studies

For the preliminary study, we analyse all the 48 clients,
the 158 frameworks, and the 301 configurations com-
bining each client and one of its frameworks.

For the quantitative study, Khomh et al. (2011)
provide data for change and fault proneness for mul-
tiple versions of ArgoUML, Eclipse JDT, Mylyn, and
Rhino. Thus, we analyse only the subset of clients (or
part of a client in the case of Eclipse JDT included in
Eclipse~“°"¢) for which this data is available: 36 ver-
sions and 166 configurations.

4.4 Object Systems of the Qualitative Study

In the qualitative study, we conduct a survey to identify
bugs related to the FBCP. For that purpose, we mine
bugs repositories of three out of the the four analysed in
the quantitative study namely Eclipse JDT, Mylyn, and
Rhino. The survey involved 41 participants who anal-
ysed 104 bugs to assess if some are due to the FBCP.

5 Preliminary Quantitative Study

Table 5 Number of FBCS Occurrences

Direct | Indirect Total

Itornal |_Client 17,328 | 10,902 | 28,230
A Framework 54,1901 | 26,023 | 81,114
Total Internal 71,519 | 37,825 | 109,344
Total Border 899 2,020 2,019

| Total Internal and Border | 72,418 | 39,845 | 112,263

The goal of this preliminary study is to investigate
the prevalence of the occurrences of the nine FBCS vari-
ants defined in Section 3 in the real-world systems pre-
sented in Section 4.

5.1 Research Question

We want to answer the following research question:
RQ1: Do FBCS occur in real-world configura-
tions? FBCS must occur for two reasons: first, the
main characteristics of FBCS are the use of inheritance

E Internal Direct ® Internal Indirect -~ Border Direct ® Border Indirect

1% 29

(a) FBCS

(b) Internal FBCS

(c) BoderFBCS

Fig. 3 Repartition of Kind of FBCS.

Fragile Base-class Problem, Problem?

13

Table 6 FBCS Classes Proportions to Classes

FBCS Classes Direct FBCS Classes | Indirect FBCS Classes

min avg max | min avg max | min avg max

Internal Client 0.00 | 13.25 | 32.09 | 0.00 | 11.19 | 27.88 | 0.00 | 4.12 12.50
Framework | 0.00 | 12.17 | 69.93 | 0.00 9.02 | 30.07 | 0.00 | 5.21 66.43

Internal 0.00 | 12.42 | 69.93 | 0.00 9.53 | 30.07 | 0.00 | 4.95 66.43
Border 0.00 0.15 7.07 | 0.00 0.06 1.75 | 0.00 | 0.10 6.27

Table 7 FBCS Sub-classes Proportions to Classes

FBCS Classes

Direct FBCS Classes | Indirect FBCS Classes

min avg max | min | avg max | min avg max

Internal Client 0.00 | 11.04 | 29.33 | 0.00 | 8.99 25.36 | 0.00 | 3.28 11.09
Framework | 0.00 9.74 | 69.23 | 0.00 | 6.55 25.17 | 0.00 | 4.52 65.73

Internal 0.00 | 10.04 | 69.23 | 0.00 | 7.12 25.36 | 0.00 | 4.23 65.73
Border 0.00 0.11 6.00 | 0.00 | 0.03 0.88 | 0.00 | 0.09 5.47

Table 8 FBCS Sub-classes Proportions to Inheritance Sub-classes

FBCS Classes Direct FBCS Classes | Indirect FBCS Classes

min avg max | min avg max | min avg max

Internal Client 0.00 | 22.01 | 45.86 | 0.00 | 18.12 | 39.66 | 0.00 | 6.04 16.90
Framework 0 | 16.53 | 81.15 0 | 11.90 | 57.14 0 | 6.60 77.05

Internal 0.00 | 17.81 | 81.15 0 | 13.35 | 57.14 | 0.00 | 6.47 77.05
Border 0.00 0.17 7.69 | 0.00 0.06 1.75 | 0.00 | 0.12 7.01

Table 9 FBCS Sub-classes Proportions to Overriding Sub-classes

FBCS Classes Direct FBCS Classes Indirect FBCS Classes

min avg max | min avg max | min avg max

Internal Client 0.00 | 44.05 73.70 | 0.00 | 36.18 64.71 | 0.00 | 11.81 28.37
Framework 0 | 35.17 | 100.00 0 | 27.13 | 100.00 0 | 11.47 87.04

Internal 0 | 37.24 | 100.00 0 | 29.24 | 100.00 0 | 11.55 87.04
Border 0.00 0.35 16.61 | 0.00 0.13 4.76 | 0.00 0.23 15.13

and overriding, two mechanisms that are at the core of
OO programming and, second, a significant number of
related works investigating the FBCP suggested the ex-
istence of FBCS. With this research question, we want
to infer how prevalent is the FBCS and therefore op-
portunities to have the FBCP.

Therefore, to answer RQ1, we detect the nine FBCS
variants in the seven clients, their 58 frameworks, and
the 301 configurations resulting from their association.
We then observe the detected occurrences to study their
numbers and the proportions of classes involved in these
occurrences. We distinguish between border and inter-
nal as well as direct and indirect FBCS.

Consequently, we define the following four research
sub-questions.

— RQ1.1: What is the cardinality of Sppcs
and its proportion to Sppcg?

— RQ1.2: What is the cardinality of Sppcs
and its proportion to Sppcg?

— RQ1.3: What is the cardinality of SpBcs,opgersairect
and its proportion to Sppcg?

— RQ1.4: What is the cardinality of SFBcs,0,gertindireet

and its proportion to Sppcg?

internal+tdirect

internal+indirect

5.2 Procedure and Method

To answer RQ1 and have a complete picture, we com-
pute the number of the variants of FBCS and their pro-
portion wrt. to all the detected FBCS (Srpcs). We also
analyse the proportion of classes involved in FBCS oc-
currences wrt. to all analysed classes. Finally, we anal-
yse the proportion of sub-classes in FBCS occurrences
wrt. to sub-classes in Sinheritance and in Soyerriding-

5.3 Results
5.3.1 FBCS Occurrences

We summarise the results of the FBCS detection in
Figure 3 and in Table 5. Table 5 presents the num-
bers of different kinds of FBCS while Figure 3(a) repre-
sents their proportions to the total number of detected
FBCS. Thus, we found 17,328 and 54,191 direct FBCS
respectively in the clients and frameworks, resulting in
a total of 71,519 internal direct FBCS. Regarding the
internal indirect FBCS, we found a total of 37,825 oc-
currences with 10,902 in clients and 26,923 in frame-

14

Aminata Sabané et al.

works. Except Barcode4j 1.0, each client contains direct
FBCS. The number of occurrences goes from three to
2,695. Out of the 47 clients, six clients do not contain
any indirect FBCS; they are Barcode4j 1.0 and all ver-
sions of Checkstyle-Eclipse. In Checkstyle Eclipse ver-
sions, this fact can be explained by the low depth of
inheritance (DIT): all classes have 1 or 2 as DIT value
but three classes with a DIT of 3. Barcode4j 1.0 does
not contain any FBCS occurrence. After long investiga-
tions, we could not find any reason why Barcoded4j 1.0
does not contain any FBCS occurrence. Barcode4j 1.0,
although small (only 88 classes), is not the smallest,
the smallest being rhino that contains 83 classes and
12 FBCS occurrences. Moreover, about 40% and 21% of
classes are respectively sub-classes or overriding classes.
Future work will investigate this issue. The number of
occurrences of indirect FBCS in clients is between one
and 2,049. Direct FBCS occur in 124 frameworks out
of 158 and the indirect ones in 93. Most of the frame-
works that do not contain FBCS occurrences are small
in size (they contain less than 50 classes) and have no or
very limited use of inheritance and-or overriding mech-
anisms. When FBCS exist, the number of occurrences
in frameworks goes from one to 1,827 for direct FBCS
while it is between two and 3,614 for the indirect ones.

We detected a total of 2,919 border FBCS with 899
border direct FBCS and 2,020 border indirect FBCS.
The border direct FBCS occur in 63 and the indirect
ones in 31 out of 301 configurations. The number of oc-
currences varies from one to 68 for border direct FBCS
and from one to 382 for the indirect ones. The internal
and the border FBCS represent respectively 97% and
3% of the total number of FBCS occurrences as shown
in Figure 3(a). The direct FBCS count for 65% of the
internal FBCS while they represent only 31% of the
border FBCS (Figures 3(b) and 3(c)).

5.3.2 FBCS Classes

Table 5 shows the proportions of classes involved in
FBCS occurrences (FBCS classes) either as base-classes
(FBCS base-classes) or sub-classes (FBCS sub-classes)
in comparison to all classes. It is worthwhile to remind
that a class can be part of many occurrences of direct
and—or indirect FBCS. When considering only clients in
which direct FBCS exist, the proportion of participat-
ing classes is, in average, close to 11% with a maximum
about 28%. When indirect FBCS exist, the proportion
of participating classes is about 4% and the maximum
is close to 13%.

When considering only frameworks, the average pro-
portion of classes in direct FBCS is consistent with the
observations in the clients: 9% of classes, in average, are

involved in direct FBCS with a maximum close to 30%.
Regarding the indirect FBCS, the proportion of partic-
ipating classes, in average, is lower, about 5% while the
maximum is higher, about 60%. The high value of the
maximum proportion is due to the versions of nsuml
that act as outlier: 95 classes out of 143 participate in
indirect FBCS. Indeed, when removing nsuml versions,
the maximum proportion drops to 25%. nsuml stands
for Novosoft UML Library for Java. It is a code genera-
tor library from UML to Java. We analysed five versions
of nsuml and all have 143 classes. In those versions,
there is an intensive use of inheritance and overriding:
only 20 classes inherit from java.lang.Object, the DIT of
91 classes is at least equal to 4, and there are 1098 over-
riding methods. 108 classes play the role of sub-classes
in the indirect FBCS. When looking the indirect FBCS,
we observe that all are based on only two base-classes:
ru.novosoft.uml.foundation.core.MModelElement-
Impl and ru.novosoft.uml.MBaseImpl. ru.novosoft.
uml . foundation.core.MModelElementImpl overrides

toString() of java.lang.Object and in its imple-
mentation, the method toString() calls the method
getUMLClassName () that is overridden in 67 classes
leading to 67 indirect FBCS. A similar scenario hap-
pens with the class ru.novosoft.uml.MBaseImpl that
has a method remove() that invokes cleanup(java.

util.Collection), which, in turn, is overridden by 95
classes. The intensive use of inheritance and overriding
mechanisms increases the occurrences of FBCS. More-
over, implementation of some ”util methods” that are
systematically overridden in the sub-classes of the in-
heritance hierarchy can explode the number of occur-
rences with the same pairs of methods.

When border direct FBCS exist, the proportion of
participating classes is less than 2% of the total number
of classes with an average less than 0.1%. When bor-
der indirect FBCS occur, the maximum proportion of
FBCS classes is less than 7% with an average of 0.1%.

5.8.83 FBCS Sub-classes

As explained in Section 3, the manifestation of the
FBCP is visible in sub-classes. Thus, classes playing
the role of sub-classes in FBCS are of great of concern.
We analysed those classes relatively to all classes (Table
5), to inheritance classes (Table 5), and to overriding
classes (Table 5).

In general, the proportions of FBCS sub-classes to
classes are not so far from that of FBCS classes to
classes because as observe in the indirect FBCS oc-
currences of "nsuml”, a same FBCS base-class can ap-
pear in multiple FBCS occurrences with different sub-
classes. With respect to all classes, the average propor-

Fragile Base-class Problem, Problem?

15

tion of FBCS sub-classes is about 9% and the maximum
about 26% for direct FBCS in clients. When consider-
ing indirect FBCS in clients, FBCS sub-classes count,
in average, for 3% of classes with a maximum at 11%.
Regarding frameworks, the proportion of FBCS sub-
classes to all classes is, in average, about 7% in direct
FBCS with a maximum at 25%. For indirect FBCS, the
proportion of FBCS sub-classes to all classes is about
5% and the maximum is about 66% because of the out-
lier nsuml. Without the versions of nsuml, the maxi-
mum proportion is about 20%. For border FBCS, the
proportion of FBCS sub-classes to all classes varies from
0 to less than 1% (with an average of 0.03%) for direct
FBCS and from 0 to 6.27% (with an average of 0.1%)
for indirect FBCS.

When taking as reference all sub-classes, in the clients,

the average proportion of FBCS sub-classes is 18% with
a maximum of 40% in direct FBCS. For indirect FBCS,
the proportion of FBCS sub-classes is maximum 17%
with an average of 6%. In frameworks, the proportion of
FBCS sub-classes to all sub-classes varies between 0%
and 58% with an average of 12% for direct FBCS. For
indirect FBCS, the average proportion is about 7% and
the maximum is 38% when excluding nsuml versions.
The proportion of FBCS sub-classes to all sub-classes
for border direct FBCS is in average less than 0.1% with
a maximum at about 2%. For border indirect FBCS, the
average proportion is slightly higher than 0.1% while
the maximum proportion is about 7%.

When compared to overriding sub-classes, the aver-
age proportion of direct FBCS sub-classes in clients is
about 36% and the maximum about 65%. For indirect
FBCS, the proportion is about 12% in average with a
maximum about 29%. Regarding frameworks, the pro-
portion of FBCS sub-classes to overriding sub-classes
for direct FBCS is 27% in average with a maximum
at 100%. In one or more versions of three frameworks
namely el-servlet-api, joesnmp, and servlet, all overrid-
ing classes participate to a direct FBCS. The versions of
these frameworks contain between zero and six occur-
rences of direct FBCS. For indirect FBCS, the average
proportion is about 12% with a maximum of about 60%
when removing nsuml versions. In border direct FBCS,
the average proportion of sub-classes to overriding sub-
classes is 0.13% and the maximum about 5%. For bor-
der indirect FBCS, the proportion is about 0.20% in
average with a maximum about 15%.

5.4 Conclusions and Discussions

We thus answer our research question as follows:

RQ1: FBCS occurrences exist in most of the systems
using inheritance. Internal FBCS occur much more of-
ten than border FBCS.

We detected very few occurrences of mutual recur-
sion be it in clients and frameworks (internal FBCS).
In configurations (border FBCS), we did not detect any
occurrence of mutual recursion in all configurations.
In clients, three versions of Eclipse without core con-
tain one occurrence (the same in the three versions) of
indirect mutual recursion out of 2,049 indirect occur-
rences. 20 frameworks consisting in multiple versions of
rt, Hibernate, and Checkstyle"“°"¢ and one version of
itext contain between one and 12 direct occurrences of
mutual recursion. These occurrences represent a pro-
portion to direct FBCS occurrences of less than 0.5%.
Concerning the indirect mutual recursion occurrences,
15 frameworks including 13 versions of rt and two of
hibernate contain between one and six occurrences ac-
counting for a proportion to indirect FBCS between 0.1
and 1.16%. The rare occurrences of mutual recursion is
expected and can be explained by the fact that mutual
recursion occurrences lead to an infinite loop that are
easily detectable when running the code. When looking
to the detected occurrences, we observe that in the base
class and-or in the sub-class, if statements prevent the
execution to enter in an infinite loop. This shows that
developers are aware when using this kind of structure.
Most of occurrences of all the detected FBCS occur-
rences are then of type call to an overridden method
from a method or a constructor.

The proportion of border FBCS to all FBCS is neg-
ligible. We observe that classes do not often inherit from
third-party libraries classes, confirming the findings in
(Tempero et al., 2008). When they inherit from them,
they rarely override their methods, thus reducing the
opportunity to give rise to a border FBCS. The low
proportion of border FBCS and consequently of classes
playing the role of sub-class in border FBCS reduce
the opportunity for the FBCP, as defined in the liter-
ature, to occur. However, today’s systems are so large
that even in the same system, the conditions that make
inheritance from third part libraries less-safe can be
encountered. Moreover, sub-classes involved in internal
FBCS represent a significant proportion to all classes:
in average about 10%. The next study will then investi-
gate to what extent those classes can impact the quality
of the system in terms of change and fault proneness.

We performed a correlation test between number of
occurrences and size (number of classes or LOC) and,
as expected, we observed that the larger the systems,

16

Aminata Sabané et al.

the greater the numbers of occurrences of the FBCS. We
expected this correlation because, intuitively, the larger
a system, the more chance to have pairs of classes with
an inheritance relationship and consequently the more
chance to have FBCS to occur.

6 Quantitative Study

The previous study showed that FBCS occur and that
their numbers and proportions cannot be ignored. The
goal of this quantitative study is to investigate the im-
pact of the FBCS on the class change and fault prone-
ness. We perform this study from the researchers’ point
of view. We found in the literature many papers about
the use of inheritance, its potential drawbacks, and the
fragile base-class problem. Yet, none provided empiri-
cal evidence on the impact of the FBCP. This study is
also useful to developers who should be aware whether
FBCS have negative impact on their classes and, thus,
decide whether to refactor them or not.

6.1 Research Question

Following the literature on the FBCP and our defini-
tion of an FBCS, we focus on the classes playing the
role of sub-classes because these are the classes whose
behaviour is, by definition, under the control of clients
(be them external clients or internal clients from an-
other group in a same organisation) and whose be-
haviour may be modified by a change to either their
base-classes or themselves. Thus, we formulate our re-
search question as follows: RQ2: Do FBCS impact
the change- and fault-proneness of their partici-
pating sub-classes? We want to observe whether sub-
classes involved in FBCS occurrences are more change-
prone and-or fault-prone than other classes. We divide
this question as follows:

— RQ2.0: Are FBCS sub-classes, i.e., in SSubs, o5,
more change- or fault-prone than other classes, i.e.,
classes in Seiasses \ SSUbSppes?

— RQ2.1: Are classes in SSubs o5, . more change-
or fault-prone than classes belonging to Sciasses \
SSubsypes?

— RQ2.2: Are classes in SSubs,pes, |

— RQ2.3: Are sub-classes in internal FBCS occur-
rences (SSubs,pes.) more change- or fault-

internal

prone than classes in border FBCS occurrences
(SSUbSFBcstMM)?

more change-
or fault-prone than sub-classes in S¢jgsses \SSUbs,pog?

6.2 Procedure and Method

For all our research questions, we compute the differ-
ent sets and test whether the proportion of classes ex-
hibiting (or not) at least one change (respectively, one
fault), significantly varies between classes with a spe-
cific role and another set of classes. For example, in
RQ2.1, the two sets of classes are SSubs, zcq, . —and
Sclasses \ SSUbSFBCS .

We use Fishers exact test (Sheskin, 2007b) to check
whether the proportion varies between the two pop-
ulations. The Fisher’s exact test is a non-parametric
statistical test designed to determine if there are non-
random associations between two categorical variables.
This test works by testing the independence of rows
and columns in a 2 X 2 contingency table based on the
exact sampling distribution of the observed frequen-
cies. We also compute the odds ratio (OR) (Sheskin,
2007b) that indicates the likelihood for an event to oc-
cur. The odds ratio is defined as the ratio of the odds
p of an event occurring in one sample, i.e., the odds
that classes participating in one population underwent
a change (experimental group, e.g., in RQ2.1, classes
belonging to SSubs,pcs,, ,), to the odds ¢ of the
same event occurring in the other population, i.e., the
odds that classes that do not belong to the experimen-
tal group change (control group, in RQ2.1, classes in
Setasses \SSUbspes): OR = (p/(1=p))/(q/(1—q)). An
odds ratio of 1 indicates that the event is equally likely
in both samples. An OR greater than 1 indicates that
the event is more likely in the first sample (e.g., classes
belonging to SSubs.pcs,, .), while an OR less than
1 indicates that the event is more likely in the second
sample (e.g., classes in Sejgsses \ SSUbSppos)-

Thus, we consider the following independent and
dependent variables.

6.2.1 Independent Variables

Each sub-research question RQ2 has different indepen-
dent variables, consisting of two sets:

— RQ2.0 SSUbSFBCS and Scigsses \ SSUbSFBcs;
RQ2.11 SSUbSFBCSbordeT‘ and Seiasses \SSUbSFBcs;
— RQ2.2 SSUbSFBcsv and Sclasses\SSUbSFBcs;

internal

- RQ2.3: SSUbSFBcsmmml and SSUbSFBCSbomM;

When investigating the subset direct and indirect
in RQ2.1 to RQ2.3, we consider the corresponding sub-
sets as independent variable. For example, the indepen-
dent variable for sub-classes in internal direct FBCS (cf.
RQ2.2) is SSubsppes.

internal,direct

Fragile Base-class Problem, Problem?

17

6.2.2 Dependant Variables

For change proneness, our dependant variable is a boolean

variable indicating if a particular class has changed at
least once between two successive versions. To deter-
mine whether a class has changed, we rely on the com-
mits in their version control systems (CVS or SVN).
For fault proneness, our dependant variable is a boolean
variable indicating if there exists a bug involving a par-
ticular class between two successive considered versions.
For further details on the computations of class change-
and fault-proneness, we refer to the work by Khomh
et al. (2011).

6.2.3 Objects

We analysed several versions of ArgoUML, Eclipse JDT,
Mylyn, and Rhino, i.e., four different clients that cor-
respond to 36 versions. Those clients are associated
with 26 frameworks resulting in 166 configurations. We
choose these clients because we have independently-
computed change and fault data for their classes.

6.2.4 Populations

Figure 4 describes the proportions of the different anal-
ysed populations in the present study per version and
per system. In particular, the graphs report the pro-
portions relatively to classes of FBCS sub-classes, of
classes that override a method without being FBCS
sub-classes, and finally of sub-classes that do not over-
ride any method. Thus, we can infer from those graphs
the proportion of sub-classes as well as the proportion
of overriding classes in each version. In general, the dif-
ferent proportions are similar across the versions within
a system but different from one system to another.

ArgoUML exhibits the highest proportions of classes
in each category. At least three out of four classes in-
herit from a class that is not java.lang.Object. The pro-
portions of overriding classes are between 40 and 50%
while the proportions of FBCS sub-classes between 24
to 32%.

In the versions of Eclipse JDT, almost half of the
classes are sub-classes. The proportions of overriding
classes is around 33% and that of FBCS sub-classes
19% in all versions except in Eclipse JDT 1.0 where it
is about 24%.

Mylyn presents the smallest proportions of each kind.

The proportion of sub-classes is about 28% except in
Mylyn 3.1.0 where it is about 35%. The proportions of
overriding classes are between 10% and 16% and the
proportions of FBCS sub-classes do not exceed 5%.
Rhino has similar proportions than Eclipse JDT. In
most of the versions, sub-classes count for about 50% of

the classes. The proportions of overriding classes vary
from 25% to 40%. FBCS sub-classes account for about
20% of the classes.

At least 18% of classes play the role of FBCS sub-
classes in all analysed versions except in Mylyn ver-
sions where the proportions of FBCS sub-classes do
not exceed 5%. However, ArgoUML versions present
higher proportions of FBCS sub-classes, between 24%
and 32%. Thus, in general, FBCS sub-classes represent
a significant proportion of classes.

6.3 Results

We now report the results of our analyses and answers
to the research questions.

Table 10 summarises the results of Fisher’s exact
test for the different RQ2 and gives for each of them
the number of versions where the test is significant out
of the total number of versions per system. The detailed
results with the p-values and the odd ratio are reported
on-line!.

6.3.1 RQ2.0: Are FBCS sub-classes, i.e., classes in
SSubs, gy, more change- or fault-prone than other
classes, i.e., classes in Scigsses \ SSUbSp s ¢

Regarding the change proneness of FBCS sub-classes,
the results show that in 15 versions out of 36, FBCS
sub-classes are more change prone than other classes.
In most of the versions of ArgoUML (five out of six)
and in all Eclipse JDT versions, the test is significant
with an odds ratio varying from 1.93 to 5.38 but in one
case, where the odds ratio is infinite. Thus, in those
versions, FBCS sub-classes are at least 2 times more
change prone than other classes. In contrast, in only few
versions (no more than a third) of Mylyn and Rhino the
test is significant: FBCS sub-classes are more change
prone than the other sub-classes in three versions of
Mylyn out of 13 and four versions of Rhino out of 12.

With respect to fault proneness, the test is signifi-
cant in only seven out of 36 versions, i.e., about 20%
of the analysed versions. FBCS sub-classes are more
fault prone than the other classes in three versions of
ArgoUML, one version of Eclipse JDT, and three ver-
sions of Rhino. In those versions, the odd ratio varies
between 0.38 and and 7.85.

6.53.2 RQ2.1: Are classes in SSubrpcs,,, ., more
change- or fault-prone than classes belonging to
Sclasses \ SSubrpcs ?

As shown in Table 10, compared to non FBCS sub-
classes, Border FBCS sub-classes are more change prone

18

Aminata Sabané et al.

100% 100%
el W0
B B
To% 0% Different Populations
Different Populations
4_NonSubclasses
0% 4_NonSubclasses 0%
3_Subclassas 3_Subclasses
0% \Cverriding_Subclasses 080 \Owverriding_Subclasses
Vo S 2 Overdng
A% 1_FBCS_Subelassas 0% ' -
1_FBCS_Subclasses
0% 30%
20% 20%
10% 10%
%
€101 0120 0140 0160 0181 0.200 1.0 20 211 212 213
(a) ArgoUML (b) Eclipse JDT
00 100%
Chart Area
0% 70%
Different Populations
Different Populations. 4_NonSubclasses
o 4_NonSubclasses 6%
- 3_subclasses
3_Subclasses \Qverriding_Subclasses
0% \Gverriding_Subelasses 50% 2 overndin
2_Overriding\FBCS Subelasses \Eacs,s\mc\gasses
a0 1_FBCS_Subciasses 20% 1_FBCS_Subclasses.
0% 30%
2% 20%
10% 10%
0% 0%
(c) Mylyn (d) Rhino
Fig. 4 Repartion of Kind of FBCS.
Table 10 Results RQ2: FBCS Sub-classes vs Non FBCS Sub-classes
ArgoUML Eclipse JDT Mylyn Rhino
Change | Bug | Change | Bug | Change | Bug | Change | Bug
SSubs,pes VS Sciasses \ OSUDS . pes 4/6 3/6 4/5 1/5 3/13 0/13 | 4/12 3/12
SSU’bSFBCSb L. VS Sclasses \ SSUbs,5oq 3/6 2/6 1/5 0/5 3/13 0/13 | 0/12 1/12
SS“bSFBcs.m ., V8 Sclasses \ SSUbs L 0 | 4/6 3/6 4/5 1/5 4/13 0/13 | 7/12 3/12
SSubs, ;o rorns, VS SSUbSmcsb . 4/6 3/6 1/5 0/5 3/13 0/13 | 5/12 4/12

in only seven versions (three versions of ArgoUML, one
version of Eclipse JDT, and three versions of Mylyn)
and more fault prone in only three versions (two ver-

sions of ArgoUML and one version of Rhino).

6.3.3 RQ2.2: Are classes in SSubppcs

more

internal

change- or fault-prone than sub-classes in
Sclasses \SSUbFBCS ¢

Internal FBCS sub-classes are more change prone than
non FBCS sub-classes in 19 versions representing about
53% of the analysed versions: seven versions of Rhino

Fragile Base-class Problem, Problem?

19

and four versions in each of the three other systems.
Regarding the fault proneness, the test is significant in
only seven versions: three versions of ArgoUML, one
version of Eclipse JDT, and three versions of Mylyn.

6.3.4 RQ2.3: Are sub-classes in internal FBCS
occurrences (SSUbFBCS,, o) MOTE Change- or
fault-prone than classes in border FBCS occurrences
(SSUbFBCSbaneT) ?

According with the results reported in Table 10, in-
ternal FBCS sub-classes are more change prone than
border FBCS sub-classes in 13 versions out of 36: four
versions of ArgoUML, one version of Eclipse JDT, three
versions of Mylyn, and five versions of Rhino. Regarding
the fault proneness, the test is significant in only seven
versions: three versions of ArgoUML and four versions
of Rhino.

In almost half of the versions, FBCS sub-classes are
more change prone than other classes, particularly the
internal FBCS sub-classes as suggested by the results
of RQ2.1 and RQ2.2. We can distinguish two groups
based on the trends regarding the change proneness.
In most versions of ArgoUML and Eclipse JDT, FBCS
sub-classes are more change prone while in Mylyn and
Rhino, there is rarely more than one third of the ver-
sions with a significant test.

Regarding fault proneness, the results show that in
most versions, there is no evidence that FBCS sub-
classes are more fault prone than other classes. Except
in ArgoUML where the test is significant in half of the
versions, in the other systems, in general, there is no
more than 25% of versions with a significant test. More-
over, results suggest that internal direct FBCS sub-
classes are the ones that are more fault prone than the
non FBCS sub-classes.

6.4 Conclusions and Discussions

We thus answer our research question as follows:

RQ2: There is no evidence that the sub-classes in the
two typical FBCS considered in this study—mutual
recursion and call to an overridden method—are more
fault prone than other classes. Our results suggest that
sub-classes in these FBCS are more change prone in
two systems out of the four analysed but the con-
founding factors discussed in Section 8 infirm these
results: the change proneness of FBCS sub-classes in
these systems may due to them being also overriding
sub-classes, which are generally more change prone in
these systems.

The results presented above and the ones in Section
8 suggest that FBCS sub-classes are neither change nor

fault prone than other classes. The analysis of possi-
ble confounding factors in Section 8 points out that
the change proneness of FBCS sub-classes observed in
ArgoUML and Eclipse JDT may be due to the over-
riding feature. The results suggest that being an over-
riding sub-class can increase the likelihood of a class to
change. However, this trend is not consistent through
the analysed systems. In ArgoUML and Eclipse JDT,
overriding classes and therefore FBCS sub-classes are
more change prone but in Mylyn and Rhino, they are
not. Future work should investigate the impact of over-
riding on change proneness with more systems to study
this difference.

Regarding sub-classes in general, we can see that
they are not more change-or fault prone than other
classes. The previous studies that show that using in-
heritance can be problematic use a specific characteris-
tic of that use. For example, inheritance depth in (Daly
et al., 1996) and (Harrison et al., 2000).

For each research question, from RQ2.1 to RQ2.3,
we also investigate separately the change or fault prone-
ness of the subsets of direct and indirect FBCS sub-
classes compared to that of non FBCS sub-classes. The
results again do not show any evidence of a correlation
between those subsets and change or fault proneness.

7 Qualitative Study

The quantitative study that we presented in the previ-
ous section does not show that FBCS sub-classes are
more change or fault prone than other classes. Yet,
FBCS could still impact, positively or negatively, the
design of systems: FBCP could impact systems but
be solved immediately by developers and, thus, hinder
development without increasing the change and fault
proneness of involved classes. We contacted some de-
velopers of the systems under study in the previous
section but received little feedback. Consequently, we
decided to study the bugs issued against some of the
systems in the previous quantitative study to perform
a qualitative study.

We choose to do a survey because a quantitative, au-
tomatic study would not fully answer our research ques-
tion below: we could automatically analyse whether
classes involved in faults are part of some FBCS but
even if classes in the fault-fixes are part of some FBCS,
it would not prove that the faults are caused by the
FBCP and, conversely, there could exist faults in which
fixed classes do not belong to known occurrences of the
FBCS but still relate to the FBCP. Thus, we perform a
survey hoping that some participants will identify faults
due to the FBCP (possibly without base and—or sub-

20

Aminata Sabané et al.

classes in some FBCS being involved directly in the
description of the faults).

7.1 Research Question

The aim of the qualitative study is to gather subjec-
tive evidence that supports or not previous results on
the lack of negative impact of FBCS on change or fault
proneness. We conducted an on-line survey asking par-
ticipants to analyse a representative sample of real bugs
and their fixes to answer the research question:

RQ1: Do bugs related to FBCP exist?

The existence of such bugs would reveal that the
FBCP actually exists, although our quantitative study

fails to provide evidence of the negative impact of FBCS.

7.2 Procedure and Method

The design of our study is a survey of a random sam-
ple of bugs within the studied systems. The sample is
representative in terms of size with a confidence level
of 95% and a confidence interval of 10%.

7.2.1 Objects

The systems that we use for this qualitative study are:
Eclipse JDT Core, Mylyn, and Rhino. We mine bug
repositories of the three systems to extract bugs that
could relate to the FBCP problem. Because FBCP is
a problem related to certain uses of inheritance and
overriding, we use keywords that refer to these fea-
tures to identify bugs of interest. Table 11 summarises
these keywords and the corresponding regular expres-
sions used during bugs repositories mining. We selected
only resolved bugs to ensure that accurate informa-
tion about the causes and the resolutions of the bugs
are available and also to allow participants to anal-
yse the classes involved in the fix. Using the technique
described in (An et al., 2014), we retrieved the fixing
commits of each bug and provided to participants the
classes in those commits as source of analysis.

Table 12 describes the results of the mining of bugs
repositories giving the total number of resolved bugs
per systems and the number of bugs retrieved based on
the keywords. We randomly sampled bugs to analyse
among all bugs related to inheritance and overriding.
The size of each sample is statistically significant with
a confidence level of 95% and a confidence interval of
10% (Sheskin, 2007a). Information about the sample of
each system is given in Table 12.

7.2.2 Questionnaires

The survey was designed as an on-line questionnaire.
Each questionnaire contains six pages. The first page
describes the FBCP and the goal of the study. The re-
maining pages are analysis forms, one per bug. Each
form contains seven questions listed in Table 13. All
questions require an answer except the last one. The
first question ensures that the participant read and un-
derstood the bug. It also serves to check the validity of
an answer. Questions 2 to 5 evaluate the link between
the bug and inheritance, polymorphism, and overriding.
These questions serve to guide the participant towards
the answer to the sixth question: “Do you think that
this bug is related to the FBCP?”. Questions 2 to 6
are multiple choice questions whose possible answers
are “Yes”, “No”, or “I do not know”. However, par-
ticipants are encouraged to support their answers by
comments. The last question gives the opportunity to
the participants to leave any other comment regarding
the analysed bugs. We randomly group bugs to analyse
in packages, each package containing five bugs. To in-
crease the chance to have more than one analysis per
bug, each bug appears in two packages. Thus, we cre-
ated 43 packages; each randomly assigned to at least
two participants.

7.2.3 Participants

We invited a total of 121 participants via e-mail to anal-
yse the selected bugs using the questionnaires presented
in the previous section. The participants include stu-
dents (Ph.D. and M.Sc.) and professionals (developers
and researchers) with enough knowledge of OO pro-
gramming and Java. None of the participants belongs
to the developers’ team of the analysed systems. We
chose participants from authors contacts list, old and
current student contacts lists of our research labs, and
also contacts in industry. Although participants do not
know the systems under analysis neither the bugs to
analyse, inspecting many of the bugs to analyse shows
that they generally have enough information from the
description of the bug and its solution to answer the
questions. They can also analyse the classes that have
been committed to fix the bug if needed. We remind
participants at least three times before closing the sur-
vey that run for two months.

7.3 Results

Out of the 121 invited participants, 41 participants an-
swered a total of 33 packages. The response rate is
about 34%, higher than what is usually reported in

Fragile Base-class Problem, Problem?

21

Table 11 Keywords Used to Extract Identify Reports of Interest.

Feature Keywords Regular Expression
Inheritance child, children child*
base class, super-class base[|—]class, super[|—]class
sub-class sub[|—]class
inheritance, extension, inherits, extends | inherit¥*, exten*
Overriding overrid, overriding, overriden overrid*

Table 12 Bugs Repositories Mining Results.

can see in Tables 17 and 18, in most cases, participants
answered "No” to one or more of the preliminary ques-
tions and positively to the question relating the bugs to

System # resolved bugs # Bugs of interest Sample Size
Eclipse JDT 2530 177 62
Mylyn 868 11 10
Rhino 520 55 35

the literature (R. M. et al., 2009). All bugs have been
analysed at least once. A preliminary check helps us to
discard irrelevant or incomplete responses. For exam-
ple, we discarded bug analyses without an answer to
the first question. Because, the answer to this question
is mandatory, we use the following heuristic to iden-
tify those cases: if the length of the answer is smaller
than 10 then the bug analysis is discarded. We also dis-
carded bug analyses whose answers to questions 2 to 6
are all ”I do not know”. We discarded 22 bugs analysis.
The remaining 183 bug analysis concern 104 bugs; 34
of them have been analysed by one participant, 61 by
two participants, and nine by three participants. Table
15 gives the details of this distribution per system. As
explained before, to increase the chance to have more
than one analysis per bug, each bug appears in two
packages and each package has been assigned to at least
two participants. Because not all participants have an-
swered to the survey and also not all packages have
been analysed, we end up with differences in the num-
ber of times each bug has been analysed. Moreover the
fact that we discarded some bugs analysis also reduces
the total number of analysed bugs and-or the number
of times they have been analysed. Tables 15 and 16
respectively summarise the responses of bugs analysed
by one participant and bugs analysed by at least two
participants.

As shown in Table 15, participants identified nine
bugs possibly related to the FBCP: seven in Eclipse,
one in Rhino, and one in Mylyn. We summarise the par-
ticipants’ answers to the analyses of these bugs in Table
17. Regarding bugs analysed more than once, partici-
pants identified 38 of them as potentially related to the
FBCP. Among them, participants agreed on five bugs
whose analyses are summarised in Table 18.

A bug is related to the FBCP if it is related to in-
heritance and overriding. Moreover, answers to ques-
tions 3 and 4 should not be "No”. Answering "No” to
one of the questions from 2 to 5 dismisses one of the
necessary conditions to have a FBCP. However, as we

the FBCP. Surprisingly, one of the participants answer
negatively to all the preliminary questions but conclude
that the bug is caused by the FBCP. Because we are
aware that the answers to these questions may not be
obvious by analysing the bugs and fixes, we chose to
manually check each of these 14 bugs. One of the au-
thors manually checked the bugs. In most of the cases,
from the description of the problem, it is clear that the
bug is not related to the FBCP but to one or both of its
characteristics without satisfying the other conditions.
For instance, the fix to the bug 123514 in Eclipse JDT
is described as follows:” CompletionParser must over-
ride consumeTypeParameterl() and not consumeType-
Parameters1()”. It is then clear from this comment that
the bug is caused by the fact that the sub-class overrides
the wrong method. The bug is indeed related to inher-
itance and overriding but not to the FBCP. In other
cases which we identified as false positive, participants
answer positively to all the preliminary questions. For
instance, the bug 80063 in Eclipse JDT is such case.
The participant answers ”Yes” to all the preliminary
questions but the description of the bug says: ”Code
assist allows overriding super class private method. Su-
perclass’ private members should be omitted instead.”.
It is clear from this description and the following com-
ments that this bug concerns the code assist that should
not propose to override private classes. This bug is not
caused by the use of inheritance or overriding and thus
far from being due to the FBCP. However, some cases
were more tricky. For those cases, at least two authors
check the bugs to decide whether or not they are related
to the FBCP. An example of such case is the bug 28064
in Eclipse JDT. The summary of this bug is the follow-
ing: ”the compilation unit CU had definite compilation
errors, and it had an anonymous subclass declaration in
a field initialiser that probably caused an infinite loop.”.
Looking to the classes and the fix, we saw that the er-
ror is not due to the anonymous subclass and therefore
not to the use of inheritance. The results of the analysis
finally revealed that none of these 14 bugs are actually
due to the FBCP.

Regarding the remaining 32 bugs on which partici-
pants disagreed whether they are or not related to the

22 Aminata Sabané et al.
Table 13 Bug Analysis Questions.
Id Question
1 Please, give in your own words a summary of the cause of this bug?
2 Is the bug related to inheritance?
3 Is the bug related to polymorphism?
4 Is the bug related to a method being overridden in a sub-class?
5 Is the bug related to a method being overriden in a sub-class and calling (or not) a method of the super-class?
6 Do you think that this bug is related to the FBCP?
7 Please, feel free to share with us any other comments you judge interesting about this bug.
Table 14 Distribution of responses. Besides the survey, we also manually checked bugs
System Z Total Z Bugs Z Bugs Z Bugs involving the border FBCS sub-classes of all versions
bugs | Analysed | Analysed analysed of Barcode4J and CheckStyle Eclipse plugin in config-
analysed Once twice three times . .
Eclipse JDT 59 39 30 0 urations with Checkstyle-core. We could not analyse
DRA}?}Y“ 32 411 2‘51 2 all border FBCS because of their sheer numbers. We
mo
choose Barcode4J and CheckStyle because they have
Table 15 R ¢ Buss Analveed b b lows numbers of classes: Barcode4j (104-178) and Check-
able esponses of Bugs Analyse one Participant. .
P & Y Y P Style (300-368), which allow manual analyses. The re-
System # bugs | # Bugs related sults of this manual check go along with the results of
analysed to FBCP) .
Eclipse JDT 29 7 the survey and the quantitative study: In none of the
ggﬁgg : : 66 bugs analysed, the issue is related to the FBCP.
Table 16 Responses of Bugs Analysed by at least Two Par- . .
ticipants. 8 General Discussions
System # bugs # Bugs related # Bugs related X . .
analysed at to the FBCP to the FBCP |Our main goal was to infer the prevalence and impact
least twice | with Agreement | with Disagreement f the FBCP nsiderin rticular FB o
Eclipss JDT " - eof the C 'by considering two pa ticula CS
Mylyn 7 0 7z |mutual recursion and call to an overridden method and:
Rhino 31 3 11 J(1) by detecting FBCS occurrences, (2) by comparing

FBCP, following the process described above, we per-
formed a manual check that indicated that none of them
is caused by the FBCP.

7.4 Conclusions and Discussions

We thus answer our research question as follows:

RQ3: none of the bugs that participants analysed is
due to the FBCP although some of them have been
wrongly identified as such.

Participants identified some of the analysed bugs
as related to the FBCP although they are actually not.
These participants made their decisions based on one or
two of the conditions and not all required ones. Indeed,
when a bug is related to inheritance or overriding, they
identified such bugs as related to the FBCP. Other par-
ticipants answer ”Yes” to all questions but the manual
check or other participants contradict them. These false
positive could be also caused by an experiment learning
bias. Because, participants were asked to analyse bugs
to identify bugs related to the FBCP, they could think
that at least one bug in the set they analyse should be
related to the FBCP.

the change and fault-proneness of the classes partici-
pating in these occurrences as sub-classes with respect
to that of other classes, and (3) by assessing whether
there exist bugs whose cause is the FBCP.

The results of the preliminary study show that there
exists a significant proportion of call to an overridden
method FBCS occurrences in most of the analysed sys-
tems but few mutual recursion FBCS occurrences. How-
ever, the study of sub-classes involved in these FBCS
does not indicate that those classes are more fault prone
than other classes. However, the analysis performed to
answer RQ2 in Section 6 shows that, in most versions
of two systems out of the four analysed, they are more
change prone than the other classes.

In this section, we analyse these results in the light
of possible confounding factors that could affect the
outcome of our studies.

8.1 Confounding Factors for the Quantitative Study

Inheritance and overriding are two characteristics of
FBCS classes. Thus, they can be confounding factors
when answering RQ2 in Section 6. Therefore, to avoid
a false inference about the relation between FBCS sub-
classes and change and fault proneness, we also consider

Fragile Base-class Problem, Problem?

23

Table 17 Summary of Responses of Bugs Identified as Related to the FBCP by One Participant.

Bugld System Q1 Q2 Q3 Q4 Q5 Q6
1 80063 Eclipse JDT The code Assist suggests overriding a pri- Yes Yes Yes Yes Yes
vate method. Although the implementa-
tion leads to have a new method that is
unrelated to the one in the base class.
2 93396 Eclipse JDT Abstract method not implemented Yes Yes I don’t know Yes Yes
3 160652 Eclipse JDT The class can not be sub-classed by clients Yes No No No Yes
but it is
4 162026 Eclipse JDT calling of the method fetch is not explicit Yes Yes No No Yes
5 191247 Eclipse JD API breakage Yes No Yes No Yes
6 210681 Eclipse JDT inheritance issue Yes No No No Yes
7 426048 Eclipse JDT My understanding is that a class had its Yes Idon’t know Idon’t know I don’t know Yes
variables not initialised, which ended up
causing NPE once they were used indi-
rectly by a subclass.
8 352933 Mylyn this error is based on interaction events No No Yes No Yes
and coupled to the context framework.
To improve modularity and reuse of tasks
task activity related classes should be ex-
tracted to a separate bundle and injected
through an extension point.
9 328924 Rhino classes are package protected and can’t be Yes No Yes Yes Yes

reused. need to duplicate all of the classes

the following two research questions: MF1: What is the
relation between sub-classes involved in any inheritance
relations, belonging to SSubs, ., .;un..» a1d change and
fault proneness? We want to observe whether sub-classes
are more change- or fault-prone than other classes in
general. Similarly, we ask: MF2: What is the relation
between sub-classes involved in any overriding relations,
belonging to SSubs,,,., 4., and change and fault prone-
ness? We want to observe whether overriding classes
are more change- or fault-prone than other classes in
general. For both confounding factors, we compare the
change- and fault-proneness of classes belonging to ei-
ther SSubs;, . .iianee. OF SSubg with that of
classes not belonging to these sets. Thus, we can con-
firm whether any differences among sub-classes and other
classes observed while answering RQ2 are due to their
role in FBCS occurrences or to them being sub-classes
or sub-classes overriding some methods.

We thus ask the following questions:

— MF1: SSubg and Seiasses \SSubg
— MF2: SSubg and S¢igsses \SSubg

overridding

inheritance inheritance?

overridding overridding *

8.1.1 MF1: Are sub-classes (SSubs,,,, . .iane.) MOTE
change- or fault-prone than other
classesSclasses \ SSubg

inheritance

Table 19 shows that in 10 versions out of 36, sub-classes
are more change prone than other classes. These ver-
sions include two versions of ArgoUML and Mylyn and
three versions of Eclipse JDT and Rhino. The odd ra-
tio in these cases vary from 0.54 to 5.1. These results

suggest that the change-proneness of FBCS sub-classes
may not due to the fact that they are sub-classes.

Regarding the fault proneness, only five versions out
of 36 show a significant difference between sub-classes
and other classes with a odd ratio going from 0.53 to
3.08. The concerned versions comprise three versions
of Eclipse JDT and two versions of Rhino. FBCS sub-
classes are, like sub-classes in general, not more fault-
prone than other classes.

8.1.2 MF2: Are sub-classes (SSubs,,.,,.4in,) MOTE
change- or fault-prone than other
classesSclasses \ SSUbs .., i4ing ¢

As shown in Table 19, overriding sub-classes are more
likely to change than other classes in 17 versions: three
versions of ArgoUML, all versions of Eclipse JDT, five
versions of Mylyn, and four versions of Rhino. These
results are similar to that of FBCS sub-classes. To iden-
tify the predominant factor that trigger these results,
between being an overriding sub-class or being an FBCS
sub-class, we compare the change proneness of FBCS
sub-classes to that of other overriding sub-classes. Re-
sults show that FBCS sub-classes are more change-
prone than other overriding sub-classes in only eight
systems out of 36. Moreover, the odd ratio in these
cases is less than 1. Thus, these results suggest that
the change-proneness of FBCS sub-classes may be due
to the fact that they are overriding sub-classes.
Overriding sub-classes are likely to be faulty more
than other classes in only eight systems out of 36 with a

24

Aminata Sabané et al.

Table 18 Summary of Responses of Bugs Identified as Related to the FBCP by at least Two Participants.

Bugld System Q1 Q2 Q3 Q4 Q5 Q6
1 83600 Eclipse JDT Signature construct not well respected Yes Yes Yes I don’t know Yes
2 83600 Eclipse JDT The List types verificator does not perform well Yes No Yes Yes Yes

when is has to accept subtypes with the 7 extends
Number notation
3 123514 Eclipse JDT The autocompletion feature crash because the Yes Yes Yes Yes Yes
implementation for this specific case override the
wrong methods

4 123514 Eclipse JDT Wrongly override the method of parent class. Yes No Yes No Yes
5 271401 Rhino Classes that extend ScriptableObject can- No No No No Yes

not use polymorphism to define.JavaScript-
accessible properties and functions because
Class.getDeclaredMethods() is used instead of
Class.getMethods()

6 271401 Rhino Probably a problem with casting objects during Yes Yes Idon’t know Yes Yes

its lifecycle

7 42097 Rhino a global property overwrite is occuring instead of Yes Yes Yes No Yes

a local prop being.created in function now
8 42097 Rhino Rédéfinition involontaire de la superclasse. Yes Yes Yes Yes Yes
9 462827 Rhino The main is to allow JavaAdapter class to extend Yes No Yes Yes Yes
Scriptable objects without additional wrapping.

10 462827 Rhino Baseclass is responsible for wrapping the instance Yes No Yes No Yes

of Scriptable wrapper in the subclass..

11 462827 Rhino Tis is an extension to allow JavaAdapter to to Yes No No No Yes

extend Scriptable objects directly, without addi-
tional wrapping as NativeJavaObject..
Table 19 Results RQ2: Confounding Factors
Argouml Eclipse JDT Mylyn Rhino
Change | Bug | Change | Bug | Change | Bug | Change | Bug
SSUbS,,,iranee VS Sclasses \ SSubs, | 2/6 0/6 | 3/5 3/5 | 2/13 0/13 | 3/12 2/12
SSUbS,, .11 iaing VS Sclasses \ SSUbS, i, | 3/6 4/6 | 5/5 2/5 | 5/13 0/13 | 4/12 2/12
SSubs o5 V8 SSUbS, .1 viaaing \ SSUPSppes 4/6 2/6 | 4/5 0/5 | 0/13 0/13 | 0/12 0/12

odd ratio varying between 0.22 and 2.64. These results
are similar to that of FBCS sub-classes. When looking
to the fault proneness of FBCS sub-classes compared to
that of other overriding classes, we can see that FBCS
sub-classes are more fault prone than other overriding
sub-classes in only two versions of ArgoUML with a odd
ratio of 0.5 and 2.8. These results suggest again that the
few cases where FBCS sub-classes are more fault prone
than other sub-classes may be due to the fact they are
overriding sub-classes.

The analysis of the possible confounding factors that
are inheritance and overriding shows that the results
observed could be due to overriding. Thus, FBCS sub-
classes are more change prone than other classes in Ar-
goUML and Eclipse JDT because they are also overrid-
ing sub-classes. Finally, we conclude that FBCS sub-
classes are not more change or fault prone than other
classes. The results of the qualitative study supports
also these findings: none of the analysed bugs is caused
by the FBCP. The present section presents the analy-
sis of the confounding factors and discusses the reasons
that could explain our findings.

8.2 Confounding Factors for the Qualitative Study

Some factors related to both the bugs and the partic-
ipants could mitigate our results and conclusions. The
choice of the bugs and the mean to administer the sur-
vey could impact the participants’ answers. We tried
to have as many participants as possible and also care-
fully studied manually the bugs in which more than one
participants indicated the presence of the FBCP.

Participants’ demographics and characteristics could
also impact the results and conclusions of our survey.
For example, their knowledge (or lack thereof) of Java
and-or of the systems and—or of the FBCP would im-
pact their answers. We believe that these factors ex-
ist but do not negatively impact our results and con-
clusions because we contacted 121 participants, out of
which 41 provided answers, without choosing and—or
disciminating against participants. Hence, our partici-
pants include a variety of knowledge.

Fragile Base-class Problem, Problem?

25

8.3 Reasons for Lack of Impact and Causes

Although the significant proportion of the considered
FBCS in the analysed systems, the quantitative study

failed to establish a correlation between FBCS and change

or fault proneness. The results of the qualitative study
also support the results of the quantitative one. None
of the 104 bugs that participants analysed is related to
the FBCP. We explain in the following the main rea-
sons which we believe can explain this lack of impact
and causes. All the reasons could explain the results of
our studies and are all means that can help to prevent
the occurrence of the FBCP.

8.3.1 Savvy use of inheritance and overriding

The observation that FBCS occurrences are not more
change or fault prone than other classes may suggest
that developers are careful when using inheritance and
overriding even from third-party libraries. The fact that
a significant proportion of classes participate in FBCS
occurrences also indicates that FBCS are usual and that
developers use them frequently in their code.

Moreover, many participants of the survey, which
included professional and students with a good knowl-
edge and practice of Java and OO programming, identi-
fied some bugs as related to the FBCP albeit they were
not. This observation shows that participants may not
be aware of the FBCP and do not encounter this kind
of problem in their work.

8.3.2 IDEs Assistance

Current IDEs help developers by detecting some incon-
sistencies when coding. This assistance may also explain
why FBCS occurrences seem not to be harmful and are
adequately used. Although there is no specific warning
detecting a FBCS, many warnings exist regarding over-
riding. For example, the option Missing ’@0verride’
annotation in Eclipse IDE will require to explicitly an-
notate an overriding method. Thus, accidental naming,
which is one of the possible cause of the FBCP, is pre-
vented by current IDEs.

8.3.83 Testing

Testing is one of the main means for developer to find
bugs in their systems and ensure software quality. The
development of xUnit frameworks (such as JUnit) and
their integration into most IDEs increase testing ac-
tivities and allow developers to catch “coarse” errors,
which could explain our results and conclusions. Indeed,
all the analysed systems are accompanied by test cases

that could help (and have helped) developers to detect
bugs related to the FBCP early during development.

8.3.4 Dependency Injection

One of the proposed solutions to prevent the FBCP con-
sists in favouring composition over inheritance (Gamma
et al., 1995; Bloch, 2008). This solution is nowadays
easy to use thanks to the introduction of the concept
of interfaces for typing as well as to the prevalence of
frameworks using “dependency-injection”. Dependency
injection is a programming idiom (or a design pattern
depending on the researcher) that implements inversion
of control. Instead of having an inflexible dependency
between classes, this idiom allows injecting the depen-
dencies when needed into the framework and thus facil-
itate the use of composition by clients and is a means
to prevent the FBCP.

9 Threats to validity

This section discusses the threats to validity that can
affect our studies.

Construct validity threats concern the relationship
between theory and observation. In our quantitative
study, these threats are due to the detection of FBCS
occurrences. Our detection tool is based on Ptidej (Gue-
heneuc, 2007), a tool suite for the analysis of code and
design models, which is actively maintained and which
has been used in many previous studies. Ptidej forms
a proven framework on which to build our analysis
tool. Yet, it is possible that errors in our analysis tool
would bias the detected occurrences. We thoroughly re-
viewed our code and tested it and, also, we perform
several manual validations. Thus, we accept this threat.
We also provide our analysis tool on-line' for other re-
searchers to use and—or review.

Another threat concerns the identification of faulty
and changed classes. We relied on change and fault data
independently computed and published in a previous
work (Khomh et al., 2011). Therefore, we believe that
this threat is minimal even though different faults and
changes would impact our results and conclusions.

Another threat is the use of FBCS as proxy to mea-
sure the existence of the FBCP in the quantitative
studies. FBCS occurrences are defined as opportuni-
ties for the FBCP, but notwithstanding the results and
conclusions of our studies, not all FBCS would lead
to the FBCP. We did not find any significant correla-
tion between FBCS occurrences and change and fault
proneness, and discussed whether this lack of corre-
lation is due to the FBCP or other confounding fac-
tors. Yet, as mentioned in Section 3, there are other

26

Aminata Sabané et al.

aspects of the FBCP problem that are not captured by
the FBCS in general and by the FBCS considered in
our studies—mutual recursion and call to an overrid-
den method, such as conflicts in the method interfaces
and behavioural conflicts. Those other aspects of the
FBCP are out of the scope of this paper and will be
subject to a future work.

Finally, the FBCP is thought in the literature to im-
pact software development and reduce software quality
if and only if changes are made to the base- or sub-
classes participating to related FBCS. In our studies,
we assumed that we could measure this impact a pos-
teriori, by measuring the change and fault-proneness of
classes that were committed in the control-version sys-
tems of the analysed systems. Our assumption does not
and cannot simply consider other impact, such as devel-
opers introducing faults due to the FBCP but identify-
ing these faults through testing and fixing them before
committing their changes or such as developers revert-
ing their changes before committing them because the
presence of the FBCP make them too difficult to per-
form successfully. Such threats exist and should be the
subject of future work.

Internal validity threats concern confounding fac-
tors that can affect our dependant variables. Regarding
the quantitative study on change and fault proneness
of FBCS sub-classes, we dealt with these threats by
analysing two possible confounding factors: inheritance
and overriding.

Another such threat is related to the particular choice
of the systems and the versions that we analysed. We
tried to mitigate this threat in the preliminary study
by using multiple versions of seven systems from differ-
ent application domains, with different sizes, and which
have been used in previous studies (Tempero et al.,
2008, 2010). Moreover, these seven systems led to the
analyses of a wide variety of frameworks. Regarding the
second quantitative study, we used a subset of this pool
of systems guided by the availability of change and fault
data. The four chosen systems are also from different
application domains and have different sizes.

Conclusion validity threats deal with the relation be-
tween the treatment and the outcome. We used proper
statistical tests to answer our research questions. We
used the non-parametric statistical Fisher test to assess
the differences in terms of change and fault proneness of
the analysed populations. We also computed the odd-
ratios to evaluate the magnitudes of the differences.

Another such concern is related to the representa-
tiveness of the sample of bug that we used in the sur-
vey. To mitigate this threat, we performed a random
sampling across bugs containing terms related to in-
heritance and—or overriding. To have a representative

sample in terms of size, we considered a confidence level
of 95% and a confidence interval of 10%. Although we
cannot guarantee to have a representative sample in
terms of relevance of bugs, the random sampling makes
it unlikely that we accidentally excluded all relevant
bugs.

Another threat concern the manual checking that
we performed to evaluate the responses of the partici-
pants. This manual checking could be affected by sub-
jectiveness or human error. To mitigate this threat, we
took in consideration more than one opinion when the
bugs were not easy to understand.

Ezxternal validity threats concern the generalisability
of our results. The preliminary study involved multiple
versions of seven clients and 58 frameworks from dif-
ferent application domains and different sizes. We thus
could expect that our results and conclusions about the
existence of FBCS occurrences could be generalised to
other Java open-source systems.

The second quantitative study is limited to multiple
versions of four different systems. The trends in the
change and fault-proneness of the FBCS sub-classes are
not the same in all the systems. Therefore, we would
need to perform larger studies with more systems to
generalise our conclusions. Such larger studies are part
of future work.

Regarding the qualitative study, the survey involved
samples of bugs from three systems. Future work should
target more systems to generalise the results and con-
clusions. Yet, this survey is the first of such survey and
it involved 41 participants (out of 121 invited partic-
ipants), which makes it the largest survey about the
FBCP.

10 Conclusion and Future Work

The fragile-base class problem (FBCP) has been de-
fined and studied in the literature for many years (IBM,
1994; Mikhajlov and Sekerinski, 1998; Aldrich, 2004).
Previous works proposed various solutions to prevent
or alleviate the FBCP when designing and developing
object-oriented systems. Yet, the question remains
whether solutions to the FBCP should be ap-
plied extensively. To answer this question, we per-
formed qualitative and quantitative studies.

First, we performed a preliminary quantitative study
that confirms the existence of occurrences of some fragile-
base class structures (FBCS) in open-source systems.
These FBCS are some of the opportunities in systems
architectures that can lead to two aspects of the FBCP:
the mutual recursion and the call to an overridden method.
Second, we performed another quantitative study on

Fragile Base-class Problem, Problem?

27

the relation between FBCS occurrences and change and
fault proneness to assess the impact of these occur-
rences on system and, indirectly, the impact of these
tow aspects of the FBCP. Using our detection tool,
we analysed multiple versions of seven different open-
source Java systems (clients), 58 different frameworks,
and 301 configurations resulting from the combination
of clients and frameworks. Our results showed that there
exists a significant proportion of call to an overrid-
den method FBCS occurrences in most of the analysed
frameworks, clients, and configurations but few mutual
recursion FBCS occurrences. Our results also showed
that there is no statistical evidence that classes partic-
ipating in these FBCS as sub-classes are more change-
prone or fault-prone than classes not participating in
any FBCS. Third, we performed a qualitative analy-
sis by the means of a survey. We select 104 bugs from
three systems, namely Eclipse JDT, Mylyn, and Rhino,
and asked participants to analyse these bugs to assess
whether they are caused by the FBCP. We received
answers from 41 participants and, although some par-
ticipants identified some of the bugs as related to the
FBCP, a further manual validation revealed that none
of the bugs was due to the FBCP.

Thus, to the extent of the threats to the validity of
our studies, we concluded that the two aspects of the
FBCP that we analysed—mutual recursion and call to
an overridden method—may not be as problematic as
thought in previous works, in terms of change and fault
proneness. Generally, our results suggested that it may
not be worth the effort to implement the solu-
tions proposed in the literature to prevent ex-
tensively and systematically the FBCP related
to mutual recursion and call to an overridden
method. Yet, we also discussed that many reasons
could justify the lack of negative impact of the FBCP
on systems. In particular, we argued that a savvy use
of inheritance by developers, the warnings available in
IDEs to help developers avoid some faults, the popu-
larity of dependency-injection and the use of interfaces
over classes for typing, and thorough testing by devel-
opers all help prevent the FBCP. Among these reasons,
dependency injection, which is very popular in frame-
works, was introduced by Gamma et al. (1995) and
Bloch (2008) as a means to avoid the FBCP. Thus, we
believe that it is not so surprising that FBCS do not
have a negative impact on systems.

Future work should investigate in more details mu-
tual recursion and call to an overridden method FBCS
as well as other FBCS and should also use more systems
to generalise our findings. Investigating other aspects
of the FBCP may lead to other results regarding the
change and fault proneness of their participating classes

for which we currently cannot say anything. A survey
with developers of the analysed systems could help to
understand whether the FBCP could impact other as-
pects of software development that cannot be measured
by a post-hoc analyses of releases. Future work also in-
clude another survey to observe, organise, and study
the measures that developers take when writing code
containing FBCS, especially when third party libraries
are involved. Other aspects of the FBCP, such as con-
flicts in the method interfaces and behavioural conflicts,
should also be studied.

Finally, as several of the clients and frameworks con-
sidered in our studies come with tests, we could use
these available tests to assess whether classes and meth-
ods participating into FBCS have been tested and, in
particular, if some tests have been designed particularly
to avoid a possible fault related to the FBCP.

Acknowledgements This work has been partly funded by
the NSERC Research Chairs in Software Change and Evolu-
tion and in Software Patterns and Patterns of Software. The
authors are grateful to all the anonymous participants.

References

Aldrich, J. (2004). Selective open recursion: A solution
to the fragile base class problem. School of Computer
Science Carnegie Mellon University.

An, L., Khomh, F., and Adams, B. (2014). Supplemen-
tary bug fixes vs. re-opened bugs. In Source Code
Analysis and Manipulation (SCAM), 2014 IEEE
14th International Working Conference on.

Biberstein, M., Sreedhar, V. C., and Zaks, A. (2002). A
case for sealing classes in Java. In Israeli Workshop
on Programming Languages & Development Environ-
ments.

Bloch, J. (2008).
edition.

Briand, L. C., Wiist, J., Daly, J. W., and Porter, D. V.
(2000). Exploring the relationship between design
measures and software quality in object-oriented sys-
tems. Journal of Systems and Software, 51:245-273.

Daly, J., Brooks, A., Miller, J., Roper, M., and Wood,
M. (1996). Evaluating inheritance depth on the main-
tainability of object-oriented software. Journal of
Empirical Software Engineering, 1:109-132.

Ducasse, S., Nierstrasz, O., Scharli, N., Wuyts, R., and
Black, A. P. (2006). Traits: A mechanism for fine-
grained reuse. ACM Trans. Program. Lang. Syst.,
28(2):331-388.

Gamma, E., Helm, R., R.Johnson, and Vlissides, J.
(1995). Design Patterns: Elements of Reusable Object

Effective Java. Addison-Wesley, 2

28

Aminata Sabané et al.

Oriented Software.
USA.

Ghezzi, C. and Monga, M. (2002). Fostering compo-
nent evolution with C+# attributes. In Proceedings of
the International Workshop on Principles of Software
Evolution, pages 22—-28. ACM.

Gueheneuc, Y. (2007). Ptidej: A flexible reverse
engineering tool suite. In Software Maintenance,
2007. ICSM 2007. IEEE International Conference
on, pages 529-530.

Guéhéneuc, Y.-G. and Albin-Amiot, H. (2004). Re-
covering binary class relationships: Putting icing on
the uml cake. In Schmidt, D. C., editor, Pro-
ceedings of the International Conference on Object-
Oriented Programming, Systems, Languages, and
Applications. ACM Press.

Guéhéneuc, Y.-G. and Antoniol, G. (2008). DeMIMA:
A multi-layered framework for design pattern identi-
fication. IEEFE Transactions on Software Engineer-
ing, 34.

Harrison, R., Counsell, S., and Nithi, R. (2000). Exper-
imental assessment of the effect of inheritance on the
maintainability of object-oriented systems. Journal
of Systems and Software, 52:173-179.

Hiirsch, W. (1994). Should superclasses be abstract?
In Tokoro, M. and Pareschi, R., editors, Proceedings
of the European Conference on Object-Oriented Pro-
gramming, volume 821 of Lecture Notes in Computer
Science, pages 12-31. Springer.

IBM (1994). IBM’s System Object Model (SOM): Mak-
ing reuse a reality. White paper, IBM Corporation,
Object Technology Products Group.

Kegel, H. and Steimann, F. (2008). Systematically
refactoring inheritance to delegation in Java. In Pro-
ceedings of the International Conference on Software
Engineering, pages 431-440. ACM.

Khomh, F., Penta, M. D., Guéhéneuc, Y.-G., and An-
toniol, G. (2011). An exploratory study of the impact
of antipatterns on class change- and fault-proneness.
Empirical Software Engineering (EMSE).

Kiczales, G. and Lamping, J. (1992). Issues in the de-
sign and speci
cation of class libraries. In Proceedings of the In-
ternational Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages
435-451.

Mens, T. (2002). A state-of-the-art survey on software
merging. IEEE Transactions on Software Engineer-
ing, 28:449-462.

Mezini, M. (1997). Maintaining the consistency of class
libraries during their evolution. SIGPLAN Notices,
32:1-21.

Addison-Wesley, Boston, MA,

Mezini, M., Pipka, J. U., Dittmar, T., and Boot, W.
(1999). Detecting evolution incompatibilities by an-
alyzing java binaries. In Proceedings of the Technol-
ogy of Object-Oriented Languages and Systems, pages
126-135. IEEE CS Press.

Mikhajlov, L. and Sekerinski, E. (1998). A study of the
fragile base class problem. In Proceedings of the Eu-
ropean Conference on Object-Oriented Programming,
pages 355-382.

Ozaki, H., Gondow, K., and Katayama, T. (2003). Class
refinement for software evolution. In Proceedings of
the International Workshop on Principles of Software
FEvolution, pages 51-56. IEEE CS Press.

Parkinson, M. J. and Bierman, G. M. (2008). Sepa-
ration logic, abstraction and inheritance. SIGPLAN
Notices, 43:75-86.

R. M., G., F. J., Fowler, J., M. P., C., J. M., L., E.
S., and R., T. (2009). Survey Methodology. Wiley, 2
edition.

Robbes, R., Rthlisberger, D., and Tanter, r. (2015).
Empirical Software Engineering, 20(3):745-782.

Ruby, C. and Leavens, G. T. (2000). Safely creating cor-
rect subclasses without seeing superclass code. SIG-
PLAN Notices, 35:208-228.

Sheskin, D. J. (2007a). Handbook of Parametric and
Nonparametric Statistical Procedures. Chapman &
Hall/CRC, 4 edition.

Sheskin, D. J. (2007b). Handbook of Parametric
and Nonparametric Statistical Procedures (fourth edi-
tion). Chapman & All

Snyder, A. (1986). Encapsulation and inheritance in
object-oriented programming languages. In Pro-
ceedings of the International Conference on Object-
Oriented Programming, Systems, Languages, and
Applications, pages 38—45.

Steyaert, P., Lucas, C., Mens, K., and D’Hondt, T.
(1996). Reuse contracts: Managing the evolution of
reusable assets. SIGPLAN Notices, 31:268-285.

Taenzer, D., Gandi, M., and Podar, S. (1989). Prob-
lems in object-oriented software reuse. In Proceedings
of the European Conference on Object-Oriented Pro-
gramming, pages 25—38. Cambridge University Press.

Tempero, E., Counsell, S., and Noble, J. (2010). An
empirical study of overriding in open source java.
In Proceedings of the Australasian Computer Science
Conference, pages 3-12. Australian Computer Soci-
ety, Inc.

Tempero, E., Noble, J., and Melton, H. (2008). How do
java programs use inheritance? An empirical study of
inheritance in java software. In Proceedings of the Eu-
ropean Conference on Object-Oriented Programming,
pages 667—691. Springer.

Fragile Base-class Problem, Problem?

29

Wegner, P. and Zdonik, S. (1988). Inheritance as an
incremental modification mechanism or what like is
and isnt like. In Proceedings of the European Confer-
ence on Object-Oriented Programming, volume 322
of Lecture Notes in Computer Science, pages 55-77.
Springer Berlin Heidelberg.

Williams, S. and Kinde, C. (1994). The Component
Object Model: Technical overview. Dr. Dobbs Jour-
nal.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Reg-
nell, B., and Wesslén, A. (2000). Ezperimentation in
Software Engineering - An Introduction. Kluwer Aca-
demic Publishers.

