
Noname manuscript No.
(will be inserted by the editor)

ProMeTA: A Taxonomy for Program Metamodels in
Program Reverse Engineering

Hironori Washizaki · Yann-Gaël
Guéhéneuc · Foutse Khomh

Received: date / Accepted: date

Abstract To support program comprehension, maintenance, and evolution,
metamodels are frequently used during program reverse engineering activities
to describe and analyze constituents of a program and their relations. Reverse
engineering tools often define their own metamodels according to the intended
purposes and features. Although each metamodel has its own advantages, its
limitations may be addressed by other metamodels. Existing works have eval-
uated and compared metamodels and tools, but none have considered all the
possible characteristics and limitations to provide a comprehensive guideline
for classifying, comparing, reusing, and extending program metamodels. To aid
practitioners and researchers in classifying, comparing, reusing, and extend-
ing program metamodels and their corresponding reverse engineering tools
according to the intended goals, we establish a conceptual framework with def-
initions of program metamodels and related concepts. We confirmed that any
reverse engineering activity can be clearly described as a pattern based on the
framework from the viewpoint of program metamodels. Then the framework is
used to provide a comprehensive taxonomy, named Program Metamodel TAx-
onomy (ProMeTA), which incorporates newly identified characteristics into
those stated in previous works, which were identified via a systematic litera-
ture review (SLR) on program metamodels, while keeping the orthogonality
of the entire taxonomy. Additionally, we validate the taxonomy in terms of its
orthogonality and usefulness through the classification of popular metamodels.

H. Washizaki
Dept. of Computer Science and Engineering, Waseda University / National Institute of
Informatics / SYSTEM INFORMATION CO., LTD., Tokyo, Japan
Tel.: +81-352863272
Fax: +81-352863272
E-mail: washizaki@waseda.jp

Y.G. Guéhéneuc and F. Khomh
PTIDEJ–SWAT, DGIGL, Polytechnique Montréal, Quebec, Canada
E-mail: {yann-gael.gueheneuc, foutse.khomh}@polymtl.ca

2 Hironori Washizaki et al.

Keywords Reverse engineering · Program metamodels · Program compre-
hension and analysis · Taxonomy

1 Introduction

Program reverse engineering plays an important role during software main-
tenance and evolution activities. This is because reliable information is often
only embedded in the source code when maintaining and–or evolving a soft-
ware system [21]. Program reverse engineering is the process of analyzing the
program source code written in general purpose programming languages [46,
19]), to identify program code elements and create representations of a pro-
gram at a certain level of abstraction.

Metamodels exist to describe and process software programs in program
reverse engineering for program comprehension, maintenance, and evolution.
They are essential for developing reverse engineering tools because they define
constituents and relations to be identified in programs, enabling and circum-
scribing the features of the tools.

Reverse engineering tools often define their own metamodels according
to their purposes and intended features [36]. The code representation (i.e.,
metamodel) depends on the actual reverse engineering problem and the aspired
program analysis technique. Each reverse engineering tool must choose the
appropriate abstraction level of the metamodel. For many reverse engineering
activities, only a broad overview of the system is necessary. Consequently,
the amount of extracted data by language analyzers (like compilers based on
low-level metamodels) may become too large to comprehend or analyze in a
reasonable amount of time [108]. On the other hand, some analysis requires
details to ensure high precision and recall in the analysis results.

Each metamodel has advantages as well as limitations, which may be re-
solved by other metamodels. By conducting a systematic literature review
(SLR) as a rigorous survey on program metamodels, we found that metamod-
els can be characterized by the following exhaustive orthogonal features: target
language, abstraction level, meta-metamodel, exchange format, processing en-
vironment, definition, program metadata and history data, and quality.

Regarding the abstraction level, low-level metamodels represent the com-
plete code syntax, high-level ones represent abstract architectural constituents,
while mid-level ones represent neither the complete code syntax nor the ar-
chitectural constituents [84]. Due to the differences between the metamodels,
it is difficult to compare reverse engineering tools. These differences also lead
to problems when exchanging information among tools [86]. For example, fact
extractors often disagree and emit different facts for the same source pro-
gram, undermining the users’ understanding of the program and decreasing
their confidence in the extractor [86]. For example, FAMOOS Information Ex-
change Model (FAMIX) [30] and Knowledge Discovery Metamodel (KDM)
[94], which are popular metamodels, are applicable to the same programs, but
have slightly different structures.

ProMeTA 3

To assist practitioners and researchers in classifying, comparing, reusing,
and extending program metamodels and the corresponding reverse engineer-
ing tools according to their goals, some works have evaluated and compared
metamodels and tools [67,64]. However, the comparisons and evaluations were
conducted independently and do not provide a comprehensive guide of all the
possible characteristics and limitations of metamodels.

The goal of this paper is to provide a comprehensive taxonomy and use this
taxonomy to classify some popular metamodels. Our taxonomy, named Pro-
gram Metamodel TAxonomy (ProMeTA), and the classification results sup-
port the classification, comparison, reuse, and extension of program metamod-
els and reverse engineering tools in various usage scenarios. To make the taxon-
omy and classification results consistent, we establish a conceptual framework
with definitions of program metamodels and related concepts. The framework
allows our taxonomy to incorporate newly identified characteristics into exist-
ing ones while keeping the orthogonality of the entire taxonomy.

We address the following research questions.

RQ1 Does ProMeTA cover all possible characteristics and limitations in ex-
isting works that evaluate and compare program metamodels?

RQ2 Does ProMeTA have orthogonality in its classification features?
RQ3 Is ProMeTA useful for guiding practitioners and researchers? Possible

usecases include creating or choosing reverse engineering tools, and, com-
municating or researching program metamodels and reverse engineering
tools.

This paper is an extended version of a paper presented at the 32nd Interna-
tional Conference on Software Maintenance and Evolution (ICSME) [125]. We
have substantially added explanations on the taxonomy construction process
and all of program metamodels found in the SLR. Moreover, we have added
a reverse engineering pattern to make the conceptual framework and related
terminology comprehensive. We summarize our contributions as follows:

– We developed a conceptual framework along with a pattern for program
reverse engineering from the viewpoint of metamodels.

– Using a SLR to identify necessary features, we created a comprehensive
taxonomy called ProMeTA. ProMeTA characterizes program metamodels
in reverse engineering based on our framework.

– We classified existing popular program metamodels based on our taxonomy.

The remainder of this paper is organized as follows. Section 2 provides
the background. Section 3 proposes our conceptual framework together with a
program reverse engineering pattern, while we show the taxonomy construction
process in Section 4. Section 5 shows our taxonomy. Section 6 validates and
discusses our work. Finally, we provide our conclusion and future work in
Section 7.

4 Hironori Washizaki et al.

2 Background

2.1 Program reverse engineering

Reverse engineering is the process of analyzing a subject system in order to
identify the system’s constituents and create representations in other forms
or at higher levels of abstraction [22]. Although reverse engineering can be
initiated from any level of abstraction, this paper focuses on program reverse
engineering, i.e., the process of analyzing a program source code to identify
the program’s constituents and create a representation of the program. This
work is motivated by the fact that, when maintaining a software system, only
the source code of the program often contains reliable information [21].

Moreover, this paper limits the target program codes to those written in
general purpose programming languages (GPLs) [46], such as C and Java.
Compared to domain specific languages (DSLs), which are used for a specific
problem, GPLs are used to solve a broad spectrum of problems [19]. DSLs
usually offer higher-level constructs (e.g., rules) in comparison to GPLs [69].
Thus, it is challenging for metamodels to describe GPL programs at appropri-
ate abstraction levels according to specific purposes, such as program analysis
[124], visualization [58], etc.

For example, the first author developed an automatic component-extraction
system with its visualization (shown in Figure 1) targeting Java source code
[124], which parses the Java source code, and selects only basic structural data
such as classes, methods, fields, and dependencies among them with respect
to a Java program metamodel.

Due to the above mentioned limitation, metamodels only handling domain
specific languages (DLSs) such as SQL and XML are out of scope of this pa-
per. Moreover the limitation leads to include metamodels and relevant reverse
engineering approaches handling program source codes into the SLR, and ex-
clude those handling only program bytecodes since bytecodes are not written
in GPLs but machine-executable language specifications such as Java bytecode
instructions1.

2.2 Program Metamodel

Fact extraction from source codes aims to find pieces of information about a
program (e.g., the name of a class or what function calls what function) [75].
Fact extraction is often the first step when analyzing a software system during
reverse engineering. Before performing any high-level reverse engineering ac-
tivity, the available information (i.e., facts) must be extracted and aggregated
in a fact base or repository [75]. The metamodel (i.e., schema), which specifies

1 Another reason to exclude those handling only bytecodes is because bytecodes often do
not contain all the source code information. For example, Java bytecodes lack information
on type parameters in generic types due to a mechanism called “Type Erasure”.

ProMeTA 5

Fig. 1 Example of a view of our component-extraction system

the constituents and relations to be extracted, is essential to a fact extractor
[75].

In addition, schemas are crucial to develop reverse engineering tools since
they also specify the underlying semantic model of various analysis services
[40]. From the viewpoint of modeling technology, herein schemas for fact ex-
traction from programs are regarded as program metamodels while the ex-
tracted facts are regarded as models of the programs that conform to the
corresponding schemas used for the extraction.

3 Terminology and Conceptual Framework

Although program metamodels are used under various contexts (e.g., forward
engineering and reverse engineering) and at different abstraction levels from
architecture to code, the concept of metamodels is not clearly defined. Indeed,
there are many synonyms for “metamodel” including “schema”, “representa-
tion”, “format”, and “form”. Moreover, metamodels are often discussed along
with standard exchange formats (SEFs) without a clear distinction between
the two. For example, Sim and Koschke [108] report that the workshop focused
on SEFs had a presentation addressing “a family of related SEFs including
MOF, XMI, UML, XML and CDIF”. However, a Meta Object Facility (MOF)
[95] is a meta-metamodel, whereas the others are SEFs, although a UML can
also serve as a program metamodel.

3.1 Terminology

To establish a common vocabulary, we first define the following core concepts:

6 Hironori Washizaki et al.

– A model is a simplification of a system with an intended goal [41]. For
example, a diagram showing only the program modules and their depen-
dencies is a model of a program created with the goal of understanding the
basic structure.

– A metamodel is a model of the language that captures the essential proper-
ties and features of a model [26]. In this context, a model is an abstraction
of an aspect of the real world, while a metamodel is a further abstraction to
describe the model. Although metamodels have primarily been developed
and advertised by the Object Management Group (OMG) with its MOF
standard [3] in the context of modelware, metamodels are not limited to
MOF-based models. Examples of metamodels include Program metamodels
in modelware, schemas (or exchange format) in dataware, and grammars in
grammarware [41], which are models of program modeling languages, data
languages, and programming languages, respectively in different technolog-
ical spaces [79,127]. By referring to the ISO/IEC 42010:2011 terminology
[61], a model is a “view” conforming to a “viewpoint” (i.e., metamodel)
[18] 2.

3.2 Conceptual Framework

According to the above concepts, program metamodels and related concepts
are defined below. Figure 2 shows the relationships among them following the
OMG four-layer metamodel hierarchy [95,79] with some modifications to make
it comparable with other model-driven engineering frameworks and views.

– A program metamodel is a model of a programming language grammar,
which represents target programs according to a specific purpose. The ele-
ments of any program metamodel must be mapped to (a set of) elements
of the corresponding grammar. As shown in Figure 2, “Program meta-
model” is mapped by “Grammar”. A program model must conform to its
program metamodel. In Figure 2, “Program model” conforms to “Program
metamodel”. Examples include KDM, FAMIX, and UML.

– A program metalanguage is a language to describe program metamodels.
In Figure 2, “Program metamodel” conforms to “Metalanguage”. Metalan-
guages can be classified asmetasyntaxes of grammar such as Extended BNF
(EBNF) [59] in textual presentation or meta-metamodels of metamodels at
certain abstraction levels such as MOF and Eclipse Modeling Framework
(EMF) meta model Ecore [116] usually in a graphic presentation3.

2 Usually a single viewpoint corresponds to a single metamodel. However, KDM is a multi-
viewpoint metamodel because a KDM specification provides a set of viewpoints that define
a set of metamodel elements.

3 In some environments [5,90,99], a graphical (i.e., visual) syntax can be used to define
meta-models. However, such graphical syntax is usually intended to define domain specific
modeling languages, which are graphical DSLs.

ProMeTA 7

M0

Execution rule

conforms

Execution of program

M3

Metasyntax of grammar Meta-metamodel

maps to

Metalanguage

M2

Abstract grammar

conforms

Grammar

describes

Grammar metamodel

maps to maps to

conforms

Program metamodel
is mapped by

Architecture / design metamodel

Metasyntax of schema

Exchange format

conforms

conforms

M1

Program model

conforms

maps to

Architecture / design model

maps to

describes

conforms

Program (text / CST)

describes

conforms

Abstract syntax (tree/graph) model

conforms

conforms

Abstract syntax (tree)

Model data

conforms

describes

conforms

might be mapped by

Modelware DatawareGrammarware

Fig. 2 Conceptual framework of program metamodels

– A context-free grammar (or simply grammar) is a formal device to specify
which strings are part of the language, where the language is a set of strings
over a finite set of symbols [34].

– A concrete syntax tree (CST) is a parse tree that pictorially shows how a
string in a language is derived from the start symbol of the grammar [2].

– An abstract syntax tree (AST), is a simplified syntactic representation of
the source code, excluding superficial distinctions of form and constituents
that are unimportant for translation from the tree [2]. An AST follows
an abstract grammar, which is a representation of the original concrete
grammar at a higher-level of abstraction.

– An abstract syntax model is a graphical representation of an abstract syn-
tax (tree). Abstract syntax models can be seen as low-level program meta-
models. Examples include programming-language-independent AST mod-
els such as ASTM [93] 4 and programming-language-specific AST models
such as Java Metamodel [76].

– A standard exchange format (SEF) (or simply an exchange format) is a
metamodel (i.e., schema) of model data used to store the program models
exchangeable among different tools (Figure 2). For example, “Model data”
conforms to “Exchange format”. Most of the elements in the exchange for-
mat can be mapped to (a set of) elements in the corresponding program
metamodel. The exchange format may contain additional information (e.g.,
visual layout information) that is not included in the corresponding pro-
gram model. Thus, “Exchange format” might be mapped by “Program
metamodel” in Figure 2. Examples include XML, XML Metadata Inter-
change format (XMI), Resource Descriptor Format (RDF), Rigi Standard

4 ASTM can also be a basis for deriving programming-language-specific AST models.

8 Hironori Washizaki et al.

Base

Transformation

Meta

Lower-meta Higher-meta

Lower-base Higher-base

conformsconforms

- range- domain

- source - target

describes

Map

Fig. 3 Structure of Transformation to higher abstraction levels

Form (RSF), Tuple-Attribute Language (TA), GraX [108], CASE Data In-
terchange Format (CDIF) [57] and MSE [31]. Some of these (e.g., XMI
and RDF) are general-purpose exchange formats that can be adapted to
software, while others are specific to software [108].

3.3 Program Reverse Engineering as a Pattern

Based on the conceptual framework, now we can clearly explain any program
reverse engineering activity and tool from the viewpoint of program metamod-
els. Program reverse engineering consists of various transformations such as
extraction and abstraction.

Table 1 shows the pattern Transformation to higher abstraction lev-
els that describes a common fundamental process of software transformation
in any reverse engineering activity [126]. The pattern is described in the pat-
tern form consisting of an Alias name (if necessary), a specific Context, a re-
current Problem under the context, its corresponding Solution, and a Known
implementation.

The pattern gives specific reverse engineering activities (i.e., Integrated
program reverse engineering, Fact extraction and Architecture re-
covery [126]) a common context, problem, and solution. By referring to this
pattern, practitioners and researchers can recognize when, why, and how to
perform reverse engineering together with underlying metamodels.

For example, by referring to the pattern, maintainers may develop a new
tool or use an existing tool environment such as MOOSE [32] to comprehend
Java source code. MOOSE can extract program entities and their relation-
ships from Java source code by dealing with the abstract grammar of Java
and FAMIX as a Lower-meta and a Higher-meta, respectively. MOOSE can
visualize the extracted information in various forms such as the graph repre-
sentation. Moreover, MOOSE can store the information in the form a compact
serialization format called MSE.

ProMeTA 9

Table 1 Pattern: Transformation to higher abstraction levels

Section Description
Name Transformation to higher abstraction levels
Context You are analyzing software to comprehend or maintain it.
Problem The description of the software contains too much data to be compre-

hended or analyzed in a reasonable amount of time. You have some in-
terest in certain aspects on the software; however, its description is too
complex to focus on particular aspects of the interest.

Solution Transform the software (i.e., Lower-base in Figure 3) as a source to an-
other as a target at a higher or the same level of abstraction (Higher-base).
This is usually done by defining rules mapping from a metamodel at a
lower level (i.e., Lower-meta) as the domain to another metamodel at a
higher or the same level (i.e., Higher-meta) as the range. Figure 3 shows
the elements involved in the transformation. Concrete transformations
can be classified into four types: Extraction, Abstraction, View and Store.

– Extraction transforms code artifacts based on a certain grammar to
a set of program facts based on a certain program metamodel. It is
usually done by a parser that parses code artifacts.

– Abstraction transforms program models based on a certain lower
metamodel to another model based on a certain higher metamodel. It
is usually done by a filter component that queries, selects, and joins
necessary data with respect to the higher metamodel; target higher
metamodels are sometimes implicitly declared for the purpose of in-
teractive ad hoc abstraction.

– View transforms program models based on a metamodel to another
model based on another visualization metamodel at a similar or al-
most the same abstraction level. The transformation results are then
displayed. Typical examples are HTML tables, UML diagrams, and
any general graph representation.

– Store transforms program models based on a metamodel to model
data according to an exchange format at a similar or almost the same
abstraction level. Then the results are stored in a repository. Typical
examples are XMI files, RDF files, and relational database.

Known
implemen-
tation

Any reverse engineering tool.

Related
patterns

The following patterns are based on combinations of multiple concrete
transformations.

– Integrated program reverse engineering performs Extraction,
Abstraction, Store, and View in its solution.

– Fact extraction performs Extraction and Store in its solution.
– Architecture recovery performs Extraction, Abstraction and View

in its solution.

4 Taxonomy Construction

Based on the background described in Section 2 and the vocabulary presented
in Section 3, we identify various characteristics to distinguish existing pro-
gram metamodels. We propose a comprehensive taxonomy, called the Pro-
gram Metamodel TAxonomy (ProMeTA), to classify program metamodels in

10 Hironori Washizaki et al.

��������	
��	�����

�	������

����	���

������	���

�
�
��
�
�
�
�
�	

� �

� �

�

�
�

�

���

��

��

��

���

�����	
	

���		
�
��
��

Search query

�	 �� ��

��� ��� ���!

	��

Fig. 4 Overview of taxonomy construction process

the form of feature diagrams based on our conceptual framework. ProMeTA
integrates the characteristics stated in existing works with those newly iden-
tified, while maintaining the orthogonality of the entire taxonomy. Below its
construction process is described in detail.

4.1 Construction Process

The development of a taxonomy can be approached in two different ways:
top-down and bottom-up [121,48]. In the top-down approach, the taxonomy
is built upon existing knowledge structures, allowing established definitions
and categorizations to be reused, increasing the probability of achieving an
objective classification procedure [121].

As previously mentioned, existing works have evaluated and compared pro-
gram metamodels and tools, but none have provided a comprehensive guide
that takes all possible characteristics into account. Therefore, we adopt a top-
down approach to design ProMeTA based on our conceptual framework as
follows. Figure 4 outlines the process.

1. A specific taxonomy is designed to accommodate a single, well-defined pur-
pose, which is applicable to various circumstances [121]. First, we clearly
define the specific purpose of ProMeTA – to support stakeholders in classi-
fying, comparing, reusing, and extending program metamodels in program
reverse engineering. Additionally, the taxonomy should support commu-
nications among stakeholders, improving the accessibility of the research
results in program metamodels and reverse engineering.

2. Evidence-based Software Engineering (EBSE)[74] has been used to provide
detailed insights regarding different topics in software engineering research
and practice. A Systematic Literature Review (SLR) is known as the recom-
mended EBSE method for aggregating evidence [73]. Using a SLR, existing
works on classification and quality properties of program metamodels and
tools are identified. Regarding the paper selection process within the SLR,
we referred to the process adopted in another successful SLR [107]. The aim

ProMeTA 11

of an SLR is to aggregate existing evidence on the research questions and
to support the development of evidence-based guidelines for researchers
and practitioners [73]. During the SLR, several popular metamodels are
also identified.

3. Then, existing classifications, comparisons of program metamodels and re-
lated concepts [84,67,64,13,12,83,109,44,43,10,6] are analyzed. This in-
formation is merged into one structure in the form of feature diagrams [70]
by referring to the basic term classification defined in our conceptual frame-
work. Feature diagrams are trees that visualize the following relationships
between a parent feature and its subfeatures (i.e., child features): “Manda-
tory”, “Optional”, “Or”, and “Alternative”. Mandatory means that sub-
features are required. Optional indicates subfeatuers do not have to be
selected. Or implies at least one subfeature must be selected. Alternative
denotes only one subfeature must be selected. A feature diagram essen-
tially defines a taxonomy [28]. Additionally, the quality properties of pro-
gram metamodels and related concepts discussed in papers [40,79,26,109,
43,119,103,65,66,28,25,128] as identified by the SLR are combined.

4. Then by referring to the basic term classification defined in the framework,
all the identified characteristics in existing metamodels are added to the
taxonomy while maintaining the orthogonality.

5. Finally, the taxonomy is validated in terms of its orthogonality, coverage,
and usefulness by using it to classify the five popular metamodels identified
in the SLR.

4.2 Systematic Literature Review

We searched for papers about program metamodels in reverse engineering us-
ing Engineering Village5, which is a search platform providing access to 12
trusted engineering document databases, such as Ei Compendex and Inspec.
The Engineering Village gives us the ability to search in all recognized schol-
arly engineering journals, conference, and workshop proceedings over different
databases with a unique search query. Moreover the Engineering Village allows
us to detect and remove most of duplicates in the search results automatically.

Because our main goal is to study characteristics of GPL-based program
metamodels, and advantages and limitations that they offer to reverse engi-
neering tools, metamodels dealing with program source code are regarded as
study subjects while performing reverse engineering tasks processing pro-
gram source codes as stimuli. Thus, we define the following three sets of
keywords for defining our search query shown in Figure 5. In our search query,
“*” at the end of each word is a truncation and can be replaced with zero or
more characters.

– Subject: “meta model”6 OR “meta models” OR metamodel* . We use this
category to find papers that define and/or use a metamodel.

5 http://www.engineeringvillage.com/
6 It also finds papers having a keyword “meta-model”.

12 Hironori Washizaki et al.� �
(‘‘meta model" OR ‘‘meta models" OR metamodel*)

AND

(‘‘source code" OR ‘‘source codes" OR program*)

AND

(extract* OR transform* OR generat*)� �
Fig. 5 Search query

– Stimuli: “source code” OR “source codes” OR program* . We define this
set to find studies based on the types of stimuli that are usually use in
program metamodels studies.

– Task: extract* OR transform* OR generat* . These are simple yet suffi-
cient to identify relevant papers since any reverse engineering objective and
application must employ some sort of transformation; For example, extrac-
tion and generation can be regarded as types of vertical transformations
[51].

4.3 Inclusion and Exclusion Criteria

We defined the following inclusion and exclusion criteria for the SLR. The
relevance was verified by reviewing the title, the abstract, and if necessary,
the body.

Inclusion criteria:

a). Studies published in journals or conference proceedings in the form of pa-
pers employing metamodels for program reverse engineering targeting pro-
gram source code written in GPLs. For example, we included studies on
program reengineering such as modernization and refactoring only if they
employed program metamodels for the explicit reverse engineering phase
as part of the entire reengineering process.

b). Studies that present details and–or complete results if a group reported
more than one study on the same topic.

Exclusion criteria:

a). Studies that do not employ a program metamodel.
b). Studies that are not directly related to program reverse engineering tar-

geting program source codes written in GPLs. For example, we exclude
studies on model refactoring or transformation if they do not include any
reverse engineering phase in the proposed refactoring or transformation
process. We also exclude studies on parsers just for program compilation
even though these parsers such as javac and the Eclipse Java Development
Tools (JDT) in Java have internal metamodels [54]. For the same reason,
we exclude studies just focusing on program transformations such as [16].
None of these implementations does provide an integration with standard

ProMeTA 13

metamodelling tools [54]; i.e., these are not originally intended for program
reverse engineering objectives.

c). Elements of “grey” literature that are not published by trusted, well-known
publishers, and do not use a well-defined referee process [20].

d). Articles not published in English.

4.4 Paper Selection Process

The process that we adopt to select the relevant papers is presented in Figure
6. In the figure, we present the set of activities that we undertook on the left
while we present the number of remaining papers after each activity on the
right as of October 13th 2015. In below, we explain each activity in detail.

a). Initial search: we execute our query in the Engineering Village. The search
engine searches into the title, the abstract, and the keywords section of
the papers looking for the keywords that are defined in our query to find
the matching papers. The original set of papers provided by our proposed
search query contains 1587 papers.

b). Automatic duplicate removal: we apply the Engineering Village’s duplicate
removal feature to automatically find and remove duplicate papers for first
1000 results7.
1462 papers remain in the list.

c). Manual duplicate removal: we find and remove duplicates manually. Look-
ing at the title, abstract and source (such as the conference name), we
check whether the paper is duplicated or not. Although the Engineering
Village search engine performed the duplicate removal process, there are
still some duplicates in the result because different publishers use different
formats to save and display the name of the authors, e.g., using initials
instead of full names.
1234 papers remain in the list.

d). Apply inclusion and exclusion criteria: we perform this activity to check
whether the paper is relevant or not by using the criteria. For each selected
paper, one author conducts the initial check, while another author confirms
the result of the initial check. In case of disagreement, there is a discussion
among all authors until agreement.
We apply the inclusion/exclusion criteria and reduce the number of papers
to 50. We use the title, the abstract and the body of the papers to remove
irrelevant papers such as model-driven development works without any
program metamodels for reverse engineering. 51 non-English papers are
removed. 11 proceedings and books are also removed, because they list all
of the accepted papers or chapters; we have already selected those related
to the study.

e). Full analysis: we check whether there are multiple papers on the same
approach reported by authors belonging a same group; in that case we

7 The Engineering Village performs duplicate removal only for first 1000 results.

14 Hironori Washizaki et al.

����������	�
��
���

���	
�

���������

��������	�
	�����
���

������ ���

������

��������	�
	�����
���

������ ����

���� ����������!

	"���������
��	
��
�#

������ ���

$	
%�
��

%�������� ���
��

��#�� ��

$	
%�
��

���&'�����(��
��	��
��

����)���

��*�

��*�

��*�

'�*

	�*�

%�*�

Fig. 6 The selection process with numbers showing number of papers remaining after each
activity

include only a paper that represents most details. Moreover, we replace
work summary papers such as a summary of a Ph.D. work with their
complete version papers.
We perform the full analysis and remove 6 more papers from the list, leaving
44 papers [35,14,91,23,64,87,98,63,111,8,122,117,84,86,75,17,120,80,101,
89,118,7,50,102,88,24,54,76,42,100,104,33,63,87,11,52,53,128,49,4,97,71,
1,77,112,113]. We remove two papers because [23] presents details about
the proposed reverse engineering approach employing the logic-based pro-
gram representation that is common in those three papers. We also remove
[62] because [64] is its corresponding complete journal paper. There are
three papers whose text we could not find online.

f). Perform the focused-snowballing process: for each selected paper, one au-
thor is assigned to go through the list of all references in order to find
additional papers about classifications and quality properties of program
metamodels.
By performing the snowballing process, we additionally identified 9 papers
about classification and comparisons of program metamodels and related
concepts [67,64,13,12,109,44,43,10,6] and 11 about quality properties [40,
26,79,109,43,119,103,65,66,28,25].

ProMeTA 15

5 Program Metamodel TAxonomy (ProMeTA)

ProMeTA consists of nine features that represent major points of variation
(Fig. 7). Each feature is described below. Some of the features are designed
to include concrete artifacts such as concrete programming languages if those
are well known and accepted.

Fig. 7 Feature diagram for the program metamodels

5.1 Feature: Target Language

Language independence varies by metamodel; it depends on what kind of
“Grammars” are supported and mapped by the “Program metamodel” as
shown in Figure 2. Some metamodels only handle a certain language, while
others handle multiple languages in a specific or any category; In later case,
usually only common concepts among multiple languages are addressed. Even
if a metamodel is stated to be “language independent”, our analysis reveals
that it often supports only a very limited number of languages. To define
these characteristics precisely, the target language feature consists of two parts:
language independence and current supported languages (Fig. 8)8.

5.2 Feature: Abstraction Level

A representation (i.e., model) conforming to a metamodel must be as abstract
as possible [78] within the limits of its reverse engineering objectives. Meta-
models can be classified into three abstraction levels (Fig. 9): 1) low where
the metamodel represents the complete syntax of a code, 2) high where the
metamodel represents abstract architectural elements, and 3) middle where

8 For simplification and comprehension, possible exclusion dependencies between subfea-
tures of Category Specific and subfeatures of Supported Language are omitted. For exam-
ple, if Java is selected as the Supported Language and Category Specific is selected as the
Language Independence, then Object-Oriented must be also selected as Category Specific.
However, listing all such dependencies makes the taxonomy complex.

16 Hironori Washizaki et al.

Fig. 8 Feature diagram for the target languages

the metamodel represents neither of the above [84]. In Figure 2, “Grammar
metamodel” corresponds to 1), while “Architecture / design metamodel” cor-
responds to 2) and 3).

According to the requirements [83], SEFs should address classes (i.e., mod-
ules)9, associations (i.e., relationships), and attributes. The same requirements
can commonly be applied to high- or mid-level program metamodels; the do-
main ontology for integrating several reverse engineering tools (based on high-
or mid-level metamodels) [67] specifies these characteristics. The ontology also
contains other concepts such as System, Module (i.e., self-contained entity),
SubProgram (i.e., non-self-contained entity), Variable, Containment relation-
ship, and Use relationship [67], which are applicable to mid-level metamodels.

Regarding low-level metamodels, we follow the three representation aspects
[44]: Lexical Structure, Syntax, and Semantics. Moreover, we add Dialects such
as non-standard language specifiers as well as Preprocessor Artifacts [43] and
Static/Dynamic semantics [6], taken from existing schema comparisons [43,
6]. For example, ASTM supports creating AST models for specific general
purpose languages and DSLs as well as dialects and preprocessor artifacts of
these languages.

5.3 Feature: Metalanguage

The data structures of SEFs used to represent software are classified as a
Tree, a Graph, or Structured Data (i.e., data that is not a tree or a graph)
[65]. We adopt the same classification for classifying metalanguages with our
conceptual framework.

Based on the classification shown in Fig. 10, several well-accepted stan-
dard meta-metamodels together with the metasyntax of grammar, including
MOF, EMF/Ecore, Kernel MetaMetaModel (KM3) [68], UML, and EBNF,
are listed. In Figure 2, EBNF corresponds to “Metasyntax of grammar”, while
others correspond to “Meta-metamodel”. KM3 is a meta-metamodel that has

9 “Abstraction level” does not discriminate methods and classes from functions and mod-
ules since the former pair is applied on objects; “language independent” specifies whether
metamodels cope with objects.

ProMeTA 17

Fig. 9 Feature diagram for the abstraction levels

concepts similar to those found in MOF but is simpler than MOF [69]. Al-
though UML is originally a modeling language classified in the M2 layer of
the OMG four-layer metamodel hierarchy, it is often used to model program
metamodels.

Fig. 10 Feature diagram for the metalanguages

5.4 Feature: Exchange Format

Program metamodels may depend on or have a high affinity with specific SEFs
(i.e., “Exchange format” in Figure 2). However, it is preferable if program
metamodels are independent from any SEF in order to exchange models among
tools. For example, a reverse engineering tool environment called MOOSE [32]
defines its own program metamodel called FAMIX, but it adopts CDIF (and
later XMI and MSE) to exchange FAMIX-based information between different
tools [92,65].

Figure 11 shows the characteristic properties and considerations of SEFs
[65,66]. Among them, most quality characteristics, including scalability, sim-
plicity, neutrality, formality, flexibility, evolvability, identity, solution reuse,

18 Hironori Washizaki et al.

and legibility, are examined according to the exchange patterns [66] (i.e., com-
binations of clarity and locality of the exchange format on which the meta-
model depends).

The exchange format satisfies integrity only if a special mechanism to en-
sure an errorless exchange is provided [66]. If supported by many different
tools, it satisfies popularity [66]. The exchange format satisfies completeness
only if all the information in the metamodel can be included. On the other
hand, the exchange format satisfies transparency only if no loss, alteration,
or gain in the transferred information occurs due to the use of encoders and
decoders [66].

As for the Abstract Syntax property, we list well-accepted SEFs, includ-
ing Annotated Terms (ATerms) [15], InterMediate Language (IML), and Re-
source Graph (RG) [29], Multi-Layer, and Multi-Edge-Set (MLMES) graph
[85], CASE Data Interchange Format (CDIF) [57], Tuple-Attribute Language
(TA) [55], TA++ [83], and Datrix-TA [81], PROgramming with Graph Rewrit-
ing Systems (PROGRES) graph specification [106], GraX/TGraph [37], Graph
Exchange Language (GXL) [56], Rigi Standard Form (RSF) [72], and MSE
[31], along with general-purpose exchange formats, including XML [123] and
XMI [96].

Fig. 11 Feature diagram for the exchange formats

ProMeTA 19

5.5 Feature: Processing Environment

By providing mechanisms to query (i.e., navigate) and transform program
models, language toolkits, including reverse engineering tools, can fulfill anal-
ysis and comprehension tasks as well as maintenance and source code trans-
formation tasks [9]. All these tasks follow the fundamental process of transfor-
mation as described in the Transformation to higher abstraction levels
pattern. Specific processing environments to provide such mechanisms for nav-
igation, transformation, analysis, and extraction are often provided together
with the program metamodels. Figure 12 represents the major points of vari-
ations in the processing environment.

Fig. 12 Feature diagram for the processing environments

5.6 Feature: Definition

Typically, program metamodels are defined manually. Some approaches exist
to automatically generate program metamodels from grammars [78,14], but
they were originally intended for DSLs. Regarding the clarity and locality of
the definitions, program metamodels can be classified into four exchange pat-
terns similar to SEFs [65,66]: implicitly-internally defined, implicitly-externally
defined, explicitly-internally defined, and explicitly-externally defined (Fig.
13).

5.7 Feature: Program Metadata and History Data

According to the requirements for SEFs [83], they should be able to store basic
data (i.e., metadata) about the software systems they represent, including
programming language versions, software system versions, file creation dates,

20 Hironori Washizaki et al.

Fig. 13 Feature diagram for the definition

and file versions. We believe that program metamodels should handle such
metadata together with the name of the programming languages.

Moreover, several program metamodels such as Ring [49] directly support
the history data, allowing reverse engineering tools to work easily with source
code versioning systems to conduct history analysis at some abstraction level.
Figure 14 shows these characteristic properties.

Fig. 14 Feature diagram for the program metadata and history data

5.8 Feature: Quality

We use the standard quality model ISO/IEC 25010:2011 [60] as the basis to
specify the quality properties of the program metamodels in a comprehensive
and consistent manner. During the SLR, we found 12 papers discussing quality
properties that are applicable to program metamodels. They are requirements
for SEFs [103,65,66], requirements for C++ schemas [43], requirements for
reverse engineering tools enabled by schemas [40,119], comparative consider-
ations for program comprehension tools [109], evaluation properties for static
analysis frameworks [25], comparative issues for technological spaces [79], trac-
ing features for model transformations [28], formality levels of metamodeling
[26], and correctness of metamodels [128].

We categorized these properties along with those newly identified such
as available form and verification into seven quality characteristics and their
sub-characteristics defined in the ISO/IEC 25010:2011 quality model. Figure
15 shows the feature diagram for functional suitability, while Fig. 16 shows the

ProMeTA 21

feature diagram for the other quality characteristics. They can be summarized
as follows:

– Functional suitability consists of three sub-characteristics: 1) functional
appropriateness, which is mostly concerned with traceability [79,28] from
model elements to the corresponding portion of the source code, 2) func-
tional correctness regarding how the program metamodel is verified [128],
and 3) functional completeness regarding the applicability of the meta-
model (i.e., general purpose metamodels or task-specific ones) [119]. In gen-
eral, low-level metamodels are good for executability since any GPL should
provide executable semantics, whereas most mid- or high-level metamodels
lack executable semantics.

– Performance efficiency addresses the quantity of extracted data [109] and
primarily depends on the granularity of the metamodel. A metamodel sac-
rifices such resource utilization if the ratio of the extracted information to
code is very high.

– Compatibility addresses the interoperability among different tools and en-
vironments, which is broken down into several concrete properties. The
identity (i.e., the identity preservation during transformation), solution
reuse, and neutrality are primarily determined by the exchange patterns
[66]. A metamodel satisfies integrity only if some special mechanism to
ensure an errorless exchange has been provided with the metamodel [66].
A metamodel satisfies the instance representation [43] if a model can be
easily represented in any SEF. This property is almost identical to the
content-presentation separation [79].

– Usability addresses the learnability that is supported by the existence of
documentations, samples, and user communities [25].

– Reliability addresses the availability of the program metamodel in terms
of licensing [25]. Although metamodels should be fully available through
websites or other means, sometimes only parts of a metamodel are pro-
vided.

– Maintainability encompasses five sub-characteristics. Among them, sim-
plicity and evolvability are primarily determined by the exchange patterns
[66]. Some metamodels have specific modularity mechanisms (such as pack-
ages) and–or reuse mechanisms (such as the inheritance and logical com-
position of metamodel elements) [28] to improve maintainability. The for-
mality is specified as partially formalized or completely formalized [26]
according to the available metamodel definition.

– Portability addresses adaptability and is composed of three concrete prop-
erties: flexibility and scalability are primarily determined by the exchange
patterns [66]. A metamodel satisfies popularity if many different organiza-
tions beside the original developers have used it.

22 Hironori Washizaki et al.

Fig. 15 Feature diagram for the functional suitability

Fig. 16 Feature diagram for the performance efficiency, compatibility, usability, reliability,
maintainability, and portability

ProMeTA 23

6 Validation of ProMeTA

A taxonomy can be validated by demonstrating the orthogonality of its clas-
sification features, benchmarking against existing classification schemes, and
demonstrating its utility to classify existing knowledge [110]. In our case, or-
thogonality means that a metamodel is classified as only one category of pos-
sible combinations of concrete features in the feature diagram. For example,
the feature diagram of Definition yields 12 possible combinations of concrete
features10. Each metamodel is classified into only one category such as (Man-
ually, Implicit, Internal). We validated ProMeTA by classifying the popular
metamodels identified in the SLR.

6.1 Target Popular Metamodels

For the concrete reverse engineering techniques or tools described in the set of
44 original papers obtained during the SLR, a total of 35 named and unnamed
program metamodels were adopted11. Table 2 shows the list of the metamodels
and corresponding papers. Surprisingly, most of papers adopted their own
metamodels although there is not so much difference in characteristics and
objectives. For example, there are seven similar AST-based metamodels (i.e.,
“Abstract Syntax *” in the table) defined independently. Moreover, there are
four similar metamodels specific to the Java language (i.e., “Java * Model” in
the table) but defined independently.

In Table 2, we identified that there are five program metamodels adopted
in multiple papers12:

– M1. Abstract Syntax Tree Metamodel (ASTM): four papers [64,87,98,63]
– M2. Knowledge Discovery Meta-Model (KDM): five papers [100,104,33,

63,87]
– M3. FAMOOS Information Exchange Model (FAMIX): eight papers [17,

120,80,101,89,118,7,50]
– M4. SPOOL Metamodel: two papers [71,1] 13

– M5. UNIQ-ART Metamodel: two papers [112,113] 14

10 These are the product of three subfeature sets: { Automatically, Manually, Automati-
cally & Manually } × { Implicit, Explicit } × { Internal, External }.
11 For illustrative purposes, we named the “unnamed” metamodels by a combination of
concepts in our conceptual framework and metalanguages such as the “Abstract Syntax
Tree Model in UML” in Table 2.
12 This selection does not necessarily reflect actual adoption in program reverse engineering
tools and projects.
13 A more comprehensive paper [105] using the SPOOL Metamodel that is excluded from
the SLR result.
14 Some recent papers [114,115] using the UNIQ-ART Metamodel are not included in the
SLR result.

24 Hironori Washizaki et al.

Table 2 List of metamodels found in SLR

Metamodel List of papers
Abstract Syntax Graph in TGraph [35]
Abstract Syntax Metamodel in ECORE/EMF [14]
Abstract Syntax Model in a graph grammar [91]
Abstract Syntax Tree in logic representation [23]
Abstract Syntax Tree Metamodel (ASTM) [64,87,98,63]
Abstract Syntax Tree Model in MOF [111]
Abstract Syntax Tree Model in UML [8]
Architecture Model in TGraph [35]
Columbus Schema [122]
Common Meta-Model in common tree grammar [117]
Daghstul Middle Metamodel [84]
Datrix schema [86]
Delphi metamodel in UML [75]
Generic AST model in MOF [102]
Grammar by EBNF [14]
GXL schema in UML [88]
Hismo [50]
Integrated Meta-model of Reengineering in UML [24]
JaMoPP Java Model [54]
Java Meta Model in UML [76]
Java MetaModel in grUML [35]
Java Metamodel in MOF [42]
KDM [100,104,33,63,87]
FAMIX [17,120,80,101,89,118,7,50]
MARPLE model in ECORE/EMF [11]
Meta-model for design patterns and source code [52]
Program entities and relationships in RDB [53]
Program Metamodel in UML [128]
Ring meta-model [49]
Source Code Meta-Model in UML [4]
SourcererDB Metamodel [97]
SPOOL repository schema [71,1]
System Engineering Technology Interface metamodel [77]
UNIQ-ART Meta-model [112,113]

6.2 Classification Results

We classified the aforementioned metamodels M1–M5 using ProMeTA (Fig.
17). The findings and corresponding suggestions for practitioners and researchers
are summarized as follows:

– Target language: Of the five metamodels, three are language independent,
while two handle object-oriented source code. Regardless of the language
independence, all support the Java language since it seems to be the most
common, especially in the context of reverse engineering research and prac-
tice. The second most common language is C++.
If the target language is a major one like Java or C++, existing pro-
gram metamodels and their corresponding reverse engineering tools may
be reused, but if the target language is a minor one, a specific metamodel
must be selected or a new one must be created.

ProMeTA 25

– Abstraction level: All of the five metamodels can be used as mid-level
metamodels, but only one metamodel (M2) can be used as a high-level
one. According to the coverage of the low-level metamodel features, M1
and M2 are more useful even though they still miss some lexical structure
features such as Token, Separator, and Layout. There are limited supports
for language dialects.
Practitioners and researchers can choose an appropriate metamodel and
its corresponding reverse engineering tool according to their abstraction
level requirements. However, our classification results indicate that none
of the existing metamodels supports all of the required features at certain
abstraction levels; in this case, it may be necessary to extend existing
metamodels or create new one to cover the missing features.

– Metalanguage: Four of the five metamodels adopt the standard meta-
metamodel MOF or the unified language UML, which are explicitly and
externally defined, while only M5 adopts a specific implicitly-internally
definition.
If practitioners and researchers adopt various tools for long-term usage, it
may be better to choose or create program metamodels (like M1–M4) de-
fined by widely accepted, explicitly-externally defined metalanguages (es-
pecially MOF and UML).
In addition, the existence of user communities of metamodels could con-
tribute to the ease of usage of their metalanguages; for example, since M3
has a large user community as identified regarding the feature Q9: Learn-
ability, its metalanguage UML could be a good choice for creating (or
selecting) program metamodels.

– Exchange format: Corresponding to the metalanguage used, three of the
five metamodels adopt standard SEFs such as XMI, which are explicitly-
externally defined, while M5 supports a specific binary-based implicitly-
internally defined data exchange.
If practitioners and researchers consider utilizing various tools for long-term
usage, selecting or creating program metamodels with a good exchange
format quality (like M1, M2 and M4), which support the widely accepted,
explicitly-externally defined SEFs (especially XMI) may be a better choice;
however, its impact on selection or creation could be less than those of other
features (such as the abstraction level) since specific exchange formats can
be additionally supported by preparing convertors among exchange for-
mats, unless the metamodel originally supports explicitly-externally de-
fined SEFs.

– Processing environment: Due to their popularity, all of the five metamod-
els have dedicated extractors and navigation supports. It is obvious that
extractors and navigation supports should be prepared to improve the ease
of use of any program metamodels.
There are dedicated transformation supports including refactoring facilities
for three of five. Most of the metamodels (except for M5) are suitable for
transformations and program analysis. Practitioners and researchers should

26 Hironori Washizaki et al.

check whether the processing environment and facilities are available to
meet their reverse engineering objectives.

– Definition: All of the five metamodels are manually defined. All except M5
are explicitly defined, leading to high quality metamodels with high com-
patibility, maintainability, and portability. Three of which are externally
and fully formalized. The other two (M4 and M5) are internally defined.
If practitioners and researchers utilize various tools for long-term usage,
selecting or creating explicitly-externally defined metamodels (like M1–
M3) is a better choice.

– Program metadata and history data: There are few supports to describe
meta and history data in metamodels; only the programming language
name and the file version are supported by M1 and M2, respectively 15.
During the SLR, several history-aware metamodels were found to explicitly
address the version history: Ring [49], Hismo [47,50], FAMIX-based RHDB
code model [7] and FAMIX-based ArchEvoDB schema [101]. If practition-
ers and researchers conduct reverse engineering in which history analysis
is taken into account, selecting a history-aware metamodel, especially the
RHDB code model and the ArchEvoDB schema, may be better since these
are defined as extensions of FAMIX, which is a widely accepted popular
metamodel.

– Functionality: Two metamodels (M1 and M2) support most of the func-
tional suitability features, including executability, traceability, and trans-
formability, since these are low-level metamodels supporting static and
dynamic semantics shown in the abstraction level features. None explicitly
state how these have been verified. Although most can be used for vari-
ous purposes, only M5 is for several specific tasks such as the dependency
analysis.
Practitioners and researchers should verify whether the potential program
metamodels satisfy their reverse engineering functionality requirements. If
a metamodel is used for various reverse engineering purposes, selecting a
general one (like M1–M4) is better.

– Non-functionality: Only M1 sacrifices the performance efficiency since it
contains all of the statement-level code descriptions. Three (M1–M3) have
a good usability since documents and samples with communities are well
prepared. These three metamodels also have good compatibility, maintain-
ability, and portability since these are explicitly-externally defined, fully
formalized, and fully available. Unfortunately the definitions of M4 and
M5 seem to be unavailable elsewhere on the Internet or in the literature.
Most of the metamodels (except M5) support inheritance and logical com-
position as reuse mechanism. However, only M2 supports the dedicated
modularity mechanism.
Practitioners and researchers should check whether potential programmeta-
models satisfy their non-functionality requirements. If existing metamodels

15 Some of the metamodels (especially M1) can be extended to include metadata and
history data.

ProMeTA 27

are to be reused, they must select fully available and formalized metamod-
els (like M1–M3).

The above-mentioned findings and suggestions can be summarized as fol-
lows. Existing program metamodels can be reused for major languages such
as Java and C++. It is better to choose and/or create program metamod-
els defined by explicitly-externally defined major metalanguages. It is bet-
ter to choose and/or create program metamodels associated with explicitly-
externally defined SEFs. Most of popular program metamodels are suitable
for transformations and program analysis; however, few support to describe
meta and history data.

�

�������	�
����� ��� ����� 	��������������� ��
��� ����
��� �������

�� �� �� �� �� �� �� �� �� � �! ��" ��� ��� ��� ��� ��� ��� ��� �� ��! ��"

�� #
��$�
��
� %�&�'� ���$� (((((((((((((((

�� #
��$�
��
� %�&�'�)	*�+	 ((((((((((((((

�� ,-.���/,��
��� %�&�'� 011'����'���������2 ((((((

�� ,-.���/,��
��� %�&�'� 011 ((((((

�� #
��$�
��
� %�&�'� 011'�0 ((((((((

�

����/	�
����� 3����
���45����

	� 	� 	� 	� 3� 3� 3� 3� 3� 3� 3� 3 3! 3�" 3�� 3�� 3�� 3�� 3�� 3�� 3�� 3� 3�! 3�" 4�� 4��

�� �,4 ���� 4������
�6�� (�#'�(�� 3�$ 3�� 11 11 1 11 11 11 11 1 1 11 1 1 3�$ 3��

�� �,4 ���� 4������
�6�� (�# 3�$ 3�� 1 1 11 11 11 11 1 1 11 1 1 3�$ 3��

�� 7�	 ���� ����������� ��3 3�$ 3�� 1 1 11 11 11 11 1 1 11 1 1 3�$ 3��

�� 7�	 ���� 4������
�6�� (�# 3�$ 3�� 1 1 11 11 11 11 11 1 1 3�$ 3��

�� (8
��� ����� 9�8 #�$ #
� / / / / / / / / / #�$ #
�

�

)�5����
��3
&�5
��
�

)�)�)�)�)�)�)�))!

��

,0	'��5���5 %�&�� �5����+����'�

:
5;���������5&���������5��� ��:

�5���5 <��������� $������='�>����5	 ��	'��5���5'������55�� (

��

,0	'��5���5 %�&�� �5����+����'�

:
5;���������5&���������5��� ��:

�5���5 <:����5��������5&���'�%�&��

���5&����=

��	'��5���5' �����55�� ((

�� �,,�3�?�&���5
��
��+����
��3
�
� �,,�3 �,,�3�9�6���5�
��3
�
� ((

�� (����� ((

�� �+	 �),,	� <����������������5��= (

�

��6
�5
)�5���������������
�����5������� 4�
��5
����

�� �� �� �� �� �� �� �� �� �� +� +� +� +� +� +� +�

�� ��
����� 3�$ 3�� (1 3�-����� ��
��� 1 1

�� ��
����� 3�$ 3�� (1 3�-����� ��
��� 1 1

�� ��
����� 3�$ 3�� 1

�� ��
����� 3�$ #
� 1 1

�� ��
����� #�$ #
�

)�5�����05�$����
�5
'�

��$�
��
����
�����'�

)�5������
�����'�

������������9��5&���

�

?5
/4�
��5
����

+ +! +�" +�� +�� +�� +�� +�� +�� +� +�! +�" +�� +�� +�� +�� +��

�� / �5�'����$��'�05���
�� 11 11 1 1 4��� 4���� #
�����
��'�05�$5��5
 1 11 4���� 11 1 11

�� �5�'����$��'�05���
�� 11 11 1 1 4��� 4����)��2��� #
�����
��'�05�$5��5
 1 11 4���� 11 11 1

�� �5�'����$��'�05���
�� 11 11 1 4��� 4���� #
�����
��'�05�$5��5
 1 11 4���� 11 11 1

�� 11 / / 4��� 7
�&���-�� #
�����
��'�05�$5��5
 1 /)������� 1 1

�� / / / 4��� 7
�&���-�� / /)������� / /

Fig. 17 Classification results using ProMeTA (M1: ASTM, M2: KDM, M3: FAMIX, M4:
SPOOL Metamodel, M5: UNIQ-ART Metamodel, X: supports the characteristic indicated,
++: particularly satisfies the characteristic/requirement indicated, +: satisfies the charac-
teristic/requirement indicated, -: sacrifices or does not satisfy the characteristic/requirement
indicated, Exp: Explicit, Imp: Implicit, Ext: External, Int: Internal)

28 Hironori Washizaki et al.

6.3 Discussions

RQ1: Does ProMeTA cover all possible characteristics and limita-
tions in existing works that evaluate and compare program meta-
models?

During the construction process of ProMeTA, the important characteris-
tics from existing classification schemes/frameworks and comparisons [84,67,
64,13,12,83,109,44,43,10,6] as well as discussions on quality properties [40,
26,79,109,43,119,103,65,66,28,25,128] for program metamodels and related
concepts identified by the SLR were included or mapped to the items, imply-
ing that it has adequate coverage. Thus, ProMeTA is implicitly benchmarked
against existing classification schemes.

RQ2: Does ProMeTA have orthogonality in its classification fea-
tures?

We successfully classified popular program metamodels from the SLR ac-
cording to the characteristics defined in ProMeTA and show how it can help
classify program metamodels. Moreover, the classification did not result in the
characteristics fitting into more than one category, demonstrating the orthog-
onality of the classification features.

RQ3: Is ProMeTA useful for guiding practitioners and researchers?

ProMeTA can guide practitioners and researchers in the following possible
usecases UC1–UC3.

– UC1. Developing new reverse engineering tools: When engineers want to
build their own reverse engineering tools, they must define the requirements
in program metamodels that enable and circumscribe the features of the
tools. ProMeTA supports the requirements definition and guides reuse,
extension, or creation of metamodels because engineers can recognize fea-
tures included in ProMeTA as possible requirement items. Moreover, if a
ProMeTA-based classification result of a potential metamodel for reuse or
extension is available like M1–M5 in the above validation, engineers can
easily determine whether the metamodel satisfies their requirements.

– UC2. Choosing existing reverse engineering tools: When engineers want to
reuse and eventually extend existing reverse engineering tools, they must
compare and then select the appropriate one according to how the un-
derlying program metamodels meet their objectives. ProMeTA can help
by comparing criteria and the metamodels according to the characteristics
defined in ProMeTA. Moreover, ProMeTA may help by comparing existing
classification results of metamodels (if available).

– UC3. Communicating or researching program metamodels and reverse en-
gineering tools: ProMeTA can serve as a reference for the reverse engineer-
ing community, including practitioners and researchers. It can be extended
by peers, providing the community with an important body of knowledge to
guide future communications and research on program metamodels and the
corresponding reverse engineering tools since it incorporates the character-
istics of metamodels into a single orthogonal structure based on a concep-

ProMeTA 29

tual framework that defines common terminology. For example, ProMeTA
can serve as the basis for building an open repository of information of
existing program metamodels (and corresponding tools) by accumulating
classification results. The above-mentioned classification results of M1–M5
can be a starting point.

6.4 Limitations

Five popular metamodels are identified solely on their adoption in papers
selected by the SLR. It is plausible that such “popularity” does not reflect
actual popularity in program reverse engineering tools and projects. In the
future, we will investigate actual adoptions of metamodels in active projects
on reverse engineering tools and classify these metamodels using ProMeTA.

The classification of the five popular metamodels based on ProMeTA was
conducted by the first author of this paper and reviewed by the second and
third authors. Therefore, it is possible that our classification results may not
be completely correct. To mitigate this threat to validity, we have opened
the classification results and ProMeTA to the public and call for comments
at our Website16. In particular, we did contact the original developers of the
metamodels addressed in the paper and request a review.

Thus, we received six sets of complementary information regarding the
metamodels ASTM/KDM, FAMIX, SPOOL, and UNIQ-ART. These sets val-
idated our findings, as reported in the previous sections, but also confirmed the
known limitation of this and any SLR: the limitation due to circumscribing the
review and thus missing interesting papers. For example, our discussions with
the colleagues working on FAMIX pointed us to works in which FAMIX was
used to model program metadata and related data, including, but not limited
to: Evolizer to analyze source code and software project data [45], ChEOPS
to represent changes as first-class entities for change-oriented software engi-
neering [38], and Orion to model simultaneous versions in a software version
repository [82]. We did not include these works in our review because they were
beyond the borders of our review. These discussions with colleagues show the
relevance of our review and taxonomy and the need to open the taxonomy so
that it can be augmented incrementally to encompass more metamodels and
usages thereof, even beyond program reverse engineering.

Our taxonomy also does not include infrastructure such as srcML17 [27],
which describes source code in an alternative, well specified format, because
such infrastructure at are a lower-level of abstraction that the metamodels
described in our taxonomy. Indeed, srcML, although useful and well used in
research, does not directly provide a metamodel abstracting source code ele-
ments but rather describe source code elements systematically, using a XML
format. Thus, it is not included in our taxonomy although well worth men-
tioning here.

16 http://www.washi.cs.waseda.ac.jp/prometa/
17 http://www.srcml.org/about.html

30 Hironori Washizaki et al.

We used Engineering Village as the initial document base of the SLR.
Although it is adopted in other SLRs [107], relevant papers may be missed.
Additionally, we may have missed relevant papers even after double-checking
the paper selection results. To mitigate these threats, we plan to use other
databases, extend our SLR, and elicit public review of the revised results.

Although our rigorous systematic literature survey identified the character-
istics of program metamodels, other characteristics to be used for classification
of metamodels may be omitted. ProMeTA is expected to efficiently incorpo-
rate such missing characteristics into the single structure because the form of
feature diagrams should make such an extension of the taxonomy easy.

Any taxonomy can only unleash its full potential through widespread
awareness and a large number of contributions [39]. Therefore, our future work
is to follow a popularization strategy [39].

7 Conclusion and Future Work

In this paper, we propose a conceptual framework with definitions of program
metamodels and related concepts as well as build a comprehensive taxon-
omy named ProMeTA based on this framework. ProMeTA incorporates newly
identified characteristics into those stated in existing works via a systematic
literature survey on program metamodels, while maintaining the orthogonality
of the entire taxonomy. This feat is accomplished by referring to the basic term
classification defined in the framework. Additionally, we validate the taxon-
omy in terms of its orthogonality and usefulness through the classification of
five popular metamodels from the survey. We have made ProMeTA available
to the reverse engineering community, including practitioners and researchers,
through our Website.

In the near future, we plan to validate ProMeTA by conducting experi-
ments involving the three usecases (UC1–UC3) in Section 6. This should pro-
vide improved answers to the research questions, especially RQ3. We are also
planning a collaborative Wiki to let the community refine or modify ProMeTA
online.

Over the long term, we plan to extend our SLR using additional databases
and share the revised results to obtain reviews from the public. We expect
that the research community will further validate ProMeTA as well as the
SLR results from the viewpoints of practitioners and researchers. Public input
should not only lead to standard terminology and classification characteristics
in the taxonomy, but also extend the taxonomy to include new categories and
datasets that reflect its usage.

Acknowledgements We thank reviewers as well as the original developers of the meta-
models addressed in the paper for their valuable comments, which significantly improved
our paper. This work was supported by JSPS KAKENHI Grant Number 16H02804, IISF
SSR Forum 2015 and 2016.

ProMeTA 31

References

1. Abdi, M.K., Lounis, H., Sahraoui, H.A.: Analyzing Change Impact in Object-Oriented
Systems. In: Proceedings of the 32nd EUROMICRO Conference on Software Engineer-
ing and Advanced Applications (EUROMICRO-SEAA), pp. 310–319. IEEE Computer
Society (2006)

2. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D. (eds.): Compilers: Principles, Tech-
niques, and Tools (2nd Edition), 2 edn. Addison-Wesley Professional (2006)

3. Alanen, M., Porres, I.: A Relation Between Context-Free Grammars and Meta Object
Facility Metamodels. TUCS Technical Report, No.606 pp. 1–13 (2003)

4. Alikacem, E.H., Sahraoui, H.A.: A Metric Extraction Framework Based on a High-
Level Description Language. In: Proceedings of the 9th IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM), pp. 159–167. IEEE
Computer Society (2009)

5. Amelunxen, C., Klar, F., Königs, A., Rötschke, T., Schürr, A.: Metamodel-based Tool
Integration with MOFLON. In: Proceedings of the 30th International Conference on
Software Engineering (ICSE), pp. 807–810. ACM (2008)

6. Amelunxen, C., Königs, A., Rötschke, T.: MOSL: Composing a Visual Language for
a Metamodeling Framework. In: Proceedings of the IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC), pp. 81–84. IEEE Computer Society
(2006)

7. Antoniol, G., Penta, M.D., Gall, H.C., Pinzger, M.: Towards the Integration of Ver-
sioning Systems, Bug Reports and Source Code Meta-Models. Electronic Notes in
Theoretical Computer Science 127(3), 87–99 (2005)

8. Antoniol, G., Penta, M.D., Merlo, E.: YAAB (Yet Another AST Browser): Using OCL
to Navigate ASTs. In: Proceedings of the 11th International Workshop on Program
Comprehension (IWPC), pp. 13–22. IEEE Computer Society (2003)

9. Antoniol, G., Penta, M.D., Merlo, E.: YAAB (Yet Another AST Browser): Using OCL
to Navigate ASTs. In: Proceedings of the 11th IEEE International Workshop on
Program Comprehension (IWPC), pp. 13–22. IEEE Computer Society (2003)

10. Arcelli, F., Masiero, S., Raibulet, C., Tisato, F.: A Comparison of Reverse Engineering
Tools based on Design Pattern Decomposition. In: Proceedings of the Australian
Software Engineering Conference (ASWEC), pp. 262–269. IEEE Computer Society
(2005)

11. Arcelli, F., Zanoni, M., Porrini, R., Vivanti, M.: A Model Proposal for Program Com-
prehension. In: Proceedings of the 16th International Conference on Distributed Mul-
timedia Systems (DMS), pp. 23–28. Knowledge Systems Institute (2010)

12. Armstrong, M., Trudeau, C.: Evaluating Architectural Extractors. In: Proceedings
of the 5th Working Conference on Reverse Engineering (WCRE), pp. 30–39. IEEE
Computer Society (1998)

13. Bellay, B., Gall, H.: A Comparison of Four Reverse Engineering Tools. In: Proceedings
of the 4th Working Conference on Reverse Engineering (WCRE), pp. 2–11. IEEE
Computer Society (1997)

14. Bergmayr, A., Wimmer, M.: Generating Metamodels from Grammars by Chaining
Translational and By-Example Techniques. Proceedings of the 1st International Work-
shop on Model-driven Engineering By Example co-located with ACM/IEEE 16th Inter-
national Conference on Model Driven Engineering Languages and Systems (MoDELS),
CEUR Workshop Proceedings 1104, 22–31 (2013)

15. van den Brand, M., Klint, P.: ATerms for Manipulation and Exchange of Structured
Data: It’s All about Sharing. Information and Software Technology 49(1), 55–64 (2007)

16. Bravenboer, M., Kalleberg, K.T., Vermaasc, R., Visser, E.: Stratego/XT 0.17. A Lan-
guage and Toolset for Program Transformation. Science of Computer Programming
72, 52–70 (2008)

17. Brühlmann, A., Gı̂rba, T., Greevy, O., Nierstrasz, O.: Enriching Reverse Engineering
with Annotations. In: Proceedings of the 11th International Conference on Model
Driven Engineering Languages and Systems (MoDELS), pp. 660–674. Springer-Verlag
(2008)

32 Hironori Washizaki et al.

18. Brunelière, H., Cabot, J., Dupé, G., Madiot, F.: MoDisco: A Model Driven Reverse En-
gineering Framework. Information and Software Technology 56(8), 1012–1032 (2014)

19. Buchner, T., Matthes, F.: Introspective Model-Driven Development. Proceedings of
the 3rd European Workshop on Software Architecture (EWSA), Lecture Notes in Com-
puter Science 4344, 33–49 (2006)

20. Budgen, D., Burn, A., Brereton, O., Kitchenham, B., Pretorius, R.: Empirical Evidence
about the UML: A Systematic Literature Review. Software: Practice and Experience
41(4), 363–392 (2011)

21. Canfora, G., Penta, M.D., Cerulo, L.: Achievements and Challenges in Software Reverse
Engineering. Communications of the ACM 54(4), 142–151 (2011)

22. Chikofsky, E.J., II, J.H.C.: Reverse Engineering and Design Recovery: A Taxonomy.
IEEE Software 7(1), 13–17 (1990)

23. Chirila, C.B., Jebelean, C.: Towards Programs Logic Based Representation Driven by
Grammar and Conforming to a Metamodel. In: Proceedings of the IEEE International
Joint Conferences on Computational Cybernetics and Technical Informatics (ICCC-
CONTI), pp. 107–112. IEEE Computer Society (2010)

24. Cho, E.S.: Integrated Meta-model Approach for Reengineering from Legacy into CBD.
In: Proceedings of the International Conference on Computational Science and Its
Applications (ICCSA), pp. 868–877. Springer-Verlag (2005)

25. Christopher, C.N.: Evaluating Static Analysis Frameworks.
http://www.cs.cmu.edu/˜aldrich/courses/654/tools/christopher-analysis-frameworks-
06.pdf (2006)

26. Clark, T., Sammut, P., Willans, J.: Applied Metamodelling: A Foundation for Lan-
guage Driven Development (Third Edition). ArXiv e-prints pp. 1–228 (2015)

27. Collard, M.L., Decker, M.J., Maletic, J.I.: Lightweight transformation and fact extrac-
tion with the srcml toolkit. In: Proceedings of the 11th IEEE Working Conference
on Source Code Analysis and Manipulation (SCAM), pp. 173–184. IEEE Computer
Society (2011)

28. Czarnecki, K., Helsen, S.: Classification of Model Transformation Approaches. In: Pro-
ceedings of the OOPSLA Workshop on Generative Techniques in the Context of Model-
Driven Architecture, pp. 1–17 (2003). URL http://www.s23m.com/oopsla2003/mda-
workshop.html

29. Czeranski, J., Eisenbarth, T., Kienle, H.M., Koschke, R., Plödereder, E., Simon, D., V,
Y.Z., Girard, J., Würthner, M.: Data Exchange in Bauhaus. In: Proceedings of the 7th
Working Conference on Reverse Engineering (WCRE), pp. 293–295. IEEE Computer
Society (2000)

30. Demeyer, S., Ducasse, S., Tichelaar, S.: Why Unified is not Universal? UML Shortcom-
ings for Coping with Round-trip Engineering. In: Proceedings of the 2nd International
Conference on the Unified Modeling Language (UML), pp. 630–644. Springer-Verlag
(1999)

31. Ducasse, S., Anquetil, N., Bhatti, U., Hora, A.C., Laval, J., Girba, T.: MSE and FAMIX
3.0: an Interexchange Format and Source Code Model Family. HAL 00646884 pp. 1–39
(2011)

32. Ducasse, S., Lanza, M., Tichelaar, S.: MOOSE: an Extensible Language-Independent
Environment for Reengineering Object-Oriented Systems. In: Proceedings of the 2nd
International Symposium on Constructing Software Engineering Tools (COSET), pp.
1–7. IEEE (2000)

33. Durelli, R.S., Santibáñez, D.S.M., Delamaro, M.E., de Camargo, V.V.: Towards a
Refactoring Catalogue for Knowledge Discovery Metamodel. In: Proceedings of the
15th IEEE International Conference on Information Reuse and Integration (IRI), pp.
569–576. IEEE Computer Society (2014)

34. Earley, J.: An Efficient Context-Free Parsing Algorithm. Communications of the ACM
13(2), 94–102 (1970)

35. Ebert, J.: Metamodels Taken Seriously: The TGraph Approach. In: Proceedings of
the 12th European Conference on Software Maintenance and Reengineering (CSMR),
p. 2. IEEE Computer Society (2008)

36. Ebert, J., Kullbach, B., Riediger, V., Winter, A.: GUPRO - Generic Understanding
of Programs, An Overview. Electronic Notes in Theoretical Computer Science 72(2),
47–56 (2002)

ProMeTA 33

37. Ebert, J., Kullbach, B., Winter, A.: GraX - An Interchange Format for Reengineer-
ing Tools. In: Proceedings of the 6th Working Conference on Reverse Engineering
(WCRE), p. 89. IEEE Computer Society (1999)

38. Ebraert, P., Vallejos, J., Costanza, P., Paesschen, E.V., D’Hondt, T.: Change-oriented
software engineering. In: Proceedings of the 2007 International Conference on Dynamic
Languages (ICDL), pp. 3–24. ACM (2007)

39. Engström, E., Petersen, K.: Mapping Software Testing Practice with Software Testing
Research - SERP-Test Taxonomy. In: Proceedings of the 8th IEEE International
Conference on Software Testing, Verification and Validation (ICST) Workshops, pp.
1–4. IEEE Computer Society (2015)

40. Favre, J.M., Godfrey, M., Winter, A.: First International Workshop on Meta-Models
and Schemas for Reverse Engineering ateM 2003. In: A. van Deursen, E. Stroulia,
M.A.D. Storey (eds.) Proceedings of the 10th Working Conference on Reverse Engi-
neering (WCRE), pp. 366–367. IEEE Computer Society (2003)

41. Favre, J.M., NGuyen, T.: Towards a Megamodel to Model Software Evolution Through
Transformations. Proceedings of the Workshop on Software Evolution through Trans-
formations: Model-based vs. Implementation-level Solutions (SETra), Electronic Notes
in Theoretical Computer Science 127(3), 59–74 (2005)

42. Favre, L.: Formalizing MDA-based Reverse Engineering Processes. In: Proceedings of
the 6th International Conference on Software Engineering Research, Management and
Applications (SERA), pp. 153–160. IEEE Computer Society (2008)

43. Ferenc, R., Beszédes, Á., Tarkiainen, M., Gyimóthy, T.: Columbus - Reverse Engineer-
ing Tool and Schema for C++. In: Proceedings of the 18th International Conference
on Software Maintenance (ICSM), pp. 172–181. IEEE Computer Society (2002)

44. Ferenc, R., Sim, S.E., Holt, R.C., Koschke, R., Gyimothy, T.: Towards a Stardard
Schema for C/C++. In: Proceedings of the 8th Working Conference on Reverse Engi-
neering (WCRE), pp. 49–58. IEEE Computer Society (2001)

45. Gall, H.C., Fluri, B., Pinzger, M.: Change analysis with evolizer and changedistiller.
IEEE Software 26(1), 26–33 (2009)

46. Garwick, J.V.: Programming Languages: GPL, A Truly General Purpose Language.
Communications of the ACM 11(9), 634–638 (1968)

47. Gı̂rba, T., Ducasse, S.: Modeling History to Analyze Software Evolution. Journal of
Software Maintenance and Evolution: Research and Practice 18(3), 207–236 (2006)

48. Glass, R.L.: Sorting Out Software Complexity. Communications of the ACM 45(11),
19–21 (2002)

49. Gómez, V.U., Ducasse, S., D’Hondt, T.: Ring: A Unifying Meta-model and Infrastruc-
ture for Smalltalk Source Code Analysis Tools. Computer Languages, Systems and
Structures 38(1), 44–60 (2012)

50. Gómez, V.U., Kellens, A., Brichau, J., D’Hondt, T.: Time Warp, an Approach for
Reasoning Over System Histories. In: Proceedings of the Joint International and An-
nual ERCIM Workshops on Principles of Software Evolution (IWPSE) and Software
Evolution (EVOL) Workshops, pp. 79–88. IEEE Computer Society (2009)

51. Gray, J., Zhang, J., Lin, Y., Roychoudhury, S., Wu, H., Sudarsan, R., Gokhale, A.,
Neema, S., Shi, F., Bapty, T.: Model-Driven Program Transformation of a Large Avion-
ics Framework. Proceedings of the 3rd International Conference on Generative Pro-
gramming and Component Engineering (GPCE), Lecture Notes in Computer Science
3286, 361–378 (2004)

52. Guéhéneuc, Y., Albin-Amiot, H.: Using Design Patterns and Constraints to Automate
the Detection and Correction of Inter-Class Design Defects. In: Proceedings of the 39th
International Conference and Exhibition on Technology of Object-oriented Languages
and Sytems (TOOLS), pp. 296–306. IEEE Computer Society (2001)

53. Harmer, T.J., Wilkie, F.G.: An Extensible Metrics Extraction Environment for Object-
Oriented Programming Languages. In: Proceedings of the 2nd IEEE International
Workshop on Source Code Analysis and Manipulation (SCAM), pp. 26–35. IEEE Com-
puter Society (2002)

54. Heidenreich, F., Johannes, J., Seifert, M., Wende, C.: Closing the Gap between Mod-
elling and Java. Proceedings of the International Conference on Software Language
Engineering (SLE), Lecture Notes in Computer Science 5969, 374–383 (2010)

34 Hironori Washizaki et al.

55. Holt, R.: An Introduction to TA: The Tuple Attribute Language. Department
of Computer Science, University of Waterloo and Toronto pp. 1–10 (1998). URL
http://plg.uwaterloo.ca/˜holt/papers/ta.html

56. Holt, R.C., Schürr, A., Sim, S.E., Winter, A.: GXL: A Graph-based Standard Exchange
Format for Reengineering. Science of Computer Programming 60(2), 149–170 (2006)

57. Imber, M.: CASE Data Interchange Format Standards. Information and Software
Technology 33(9), 647–655 (1991)

58. Ishizue, R., Washizaki, H., Fukazawa, Y., Inoue, S., Hanai, Y., Kanazawa, M., Namba,
K.: Metrics Visualization Technique Based on The Origins and Function Layers for
OSS-based Development. In: Proceedings of the IEEE Working Conference on Software
Visualization (VISSOFT), pp. 71–75. IEEE Computer Society (2016)

59. ISO/IEC: ISO/IEC 14977:1996 Information technology - Syntactic metalanguage -
Extended BNF (1996)

60. ISO/IEC: ISO/IEC 25010:2011 Systems and Software Engineering - Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) - System and Software Quality
Models (2011)

61. ISO/IEC/IEEE: ISO/IEC/IEEE 42010:2011 Systems and Software Engineering - Ar-
chitecture Description (2011)

62. Izquierdo, J.L.C., Molina, J.G.: A Domain Specific Language for Extracting Models
in Software Modernization. In: Proceedings of the 5th European Conference on Model
Driven Architecture-Foundations and Applications (ECMDA-FA), pp. 82–97. Springer-
Verlag (2009)

63. Izquierdo, J.L.C., Molina, J.G.: An Architecture-Driven Modernization Tool for Cal-
culating Metrics. IEEE Software 27(4), 37–43 (2010)

64. Izquierdo, J.L.C., Molina, J.G.: Extracting Models from Source Code in Software Mod-
ernization. Software and Systems Modeling 13(2), 713–734 (2014)

65. Jin, D.: Exchange Of Software Representations Among Reverse Engineering Tools.
Technical Report 2001-454 pp. 1–131 (2001)

66. Jin, D., Cordy, J., Dean, T.: Where’s The Schema? A Taxonomy of Patterns for Soft-
ware Exchange. In: Proceedings of the 10th International Workshop on Program Com-
prehension (IWPC), pp. 65–74. IEEE Computer Society (2002)

67. Jin, D., Cordy, J.R.: Integrating Reverse Engineering Tools Using a Service-Sharing
Methodology. In: Proceedings of the 14th IEEE International Conference on Program
Comprehension (ICPC), pp. 94–99. IEEE Computer Society (2006)

68. Jouault, F., Bezivin, J.: KM3: a DSL for Metamodel Specification. Proceedings of 8th
IFIP International Conference on Formal Methods for Open Object-Based Distributed
Systems, Lecture Notes in Computer Science 4037, 171–185 (2006)

69. Jouault, F., Bezivin, J., Kurtev, I.: TCS: a DSL for the Specification of Textual Con-
crete Syntaxes in Model Engineering. In: Proceedings of the 5th International Confer-
ence on Generative Programming and Component Engineering (GPCE), pp. 249–254.
ACM (2006)

70. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21
pp. 1–148 (1990)

71. Keller, R.K., Bédard, J., Saint-Denis, G.: Design and Implementation of a UML-Based
Design Repository. In: Proceedings of the 13th International Conference on Advanced
Information Systems Engineering (CAiSE), pp. 448–464. Springer-Verlag (2001)

72. Kienle, H.M., Müller, H.A.: Rigi - An Environment for Software Reverse Engineering,
Exploration, Visualization, and Redocumentation. Science of Computer Programming
75(4), 247–263 (2010)

73. Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J., Linkman, S.: Sys-
tematic Literature Reviews in Software Engineering - A Systematic Literature Review.
Information and Software Technology 51(1), 7–15 (2009)

74. Kitchenham, B.A., Dyba, T., Jorgensen, M.: Evidence-based Software Engineering. In:
Proceedings of the 26th International Conference on Software Engineering (ICSE), pp.
273–281. IEEE Computer Society (2004)

75. Knodel, J., Calderon-Meza, G.: A Meta-Model for Fact Extraction from Delphi Source
Code. Electronic Notes in Theoretical Computer Science 94, 19–28 (2004)

ProMeTA 35

76. Kollmann, R., Gogolla, M.: Capturing Dynamic Program Behaviour with UML Col-
laboration Diagrams. In: Proceedings of the 5th Conference on Software Maintenance
and Reengineering (CSMR), pp. 58–67. IEEE Computer Society (2001)

77. Krasovec, G., Howell, S.: Applying the System Engineering Environment to the Reengi-
neering Process. Journal of Systems Integration 5(4), 309–336 (1995)

78. Kunert, A.: Semi-automatic Generation of Metamodels and Models From Grammars
and Programs. Electronic Notes in Theoretical Computer Science 211, 111–119 (2008)

79. Kurtev, I., Bézivin, J., Aksit, M.: Technological Spaces: An Initial Appraisal. In:
International Symposium on Distributed Objects and Applications (DOA), pp. 1–6.
Springer-Verlag (2002). URL http://doc.utwente.nl/55814/

80. Lanza, M.: CodeCrawler - Lessons Learned in Building a Software Visualization Tool.
In: Proceedings of the 7th European Conference on Software Maintenance and Reengi-
neering (CSMR), pp. 409–418. IEEE Computer Society (2003)

81. Lapierre, S., Laguë, B., Leduc, C.: Datrix
TM

Source Code Model and Its Interchange
Format: Lessons Learned and Considerations for Future Work. ACM SIGSOFT Soft-
ware Engineering Notes 26(1), 53–56 (2001)

82. Laval, J., Denier, S., Ducasse, S., Falleri, J.: Supporting simultaneous versions for
software evolution assessment. Science of Computer Programming 76(12), 1177–1193
(2011)

83. Lethbridge, T.C.: Requirements and Proposal for a Software Information Exchange
Format (SIEF) Standard.
http://www.site.uottawa.ca/˜tcl/papers/sief/standardProposal.html (1998)

84. Lethbridge, T.C., Tichelaar, S., Ploedereder, E.: The Dagstuhl Middle Metamodel: A
Schema For Reverse Engineering. Electronic Notes in Theoretical Computer Science
94, 7–18 (2004)

85. Lin, T., Robert Cheung, Z.H., Smith, K.: Exploration of Data from Modeling and
Simulation through Visualization. In: Proceedings of the 3rd International SimTect
Conference, pp. 303–308 (1998)

86. Lin, Y., Holt, R.C.: Formalizing Fact Extraction. Electronic Notes in Theoretical
Computer Science 94, 93–102 (2004)

87. Martinez, L., Pereira, C., Favre, L.: Recovering Sequence Diagrams from Object-
oriented Code - An ADM Approach. In: Proceedings of the 9th International Con-
ference on Evaluation of Novel Approaches to Software Engineering (ENASE), pp.
188–195. SciTePress (2014)

88. Meng, C., Wong, K.: A GXL Schema for Story Diagrams. Electronic Notes in Theo-
retical Computer Science 94, 29–38 (2004)

89. Mens, T., Lanza, M.: A Graph-Based Metamodel for Object-Oriented Software Met-
rics. Electronic Notes in Theoretical Computer Science 72(2), 57–68 (2002)

90. Minas, M.: Generating Visual Editors Based on Fujaba/MOFLON and DiaMeta. In:
Proceedings of the 4th International Fujaba Days, pp. 35–42 (2006)

91. Naik, R., Bahulkar, A.: A Programmable Analysis and Transformation Framework for
Reverse Engineering. Electronic Notes in Theoretical Computer Science 94, 39–49
(2004)

92. Nierstrasz, O., Tichelaar, E., Demeyer, S.: CDIF as the Interchange Format between
Reengineering. In: Proceedings of the OOPSLA Workshop on Model Engineering,
Methods and Tools Integration with CDIF, pp. 1–8. ACM (1998)

93. OMG: Architecture-driven Modernization: Abstract Syntax Tree Metamodel (ASTM),
Version 1.0 (2011)

94. OMG: Architecture-Driven Modernization: Knowledge Discovery Meta-Model (KDM),
Version 1.3 (2011)

95. OMG: Meta Object Facility (MOF) Core Specification, Version 2.5 (2015)
96. OMG: XML Metadata Interchange (XMI), Version 2.5.1.

http://www.omg.org/spec/XMI/2.5.1/ (2015)
97. Ossher, J., Bajracharya, S.K., Linstead, E., Baldi, P., Lopes, C.V.: SourcererDB: An

Aggregated Repository of Statically Analyzed and Cross-linked Open Source Java
Projects. In: Proceedings of the 6th International Working Conference on Mining
Software Repositories (MSR), pp. 183–186. IEEE Computer Society (2009)

36 Hironori Washizaki et al.

98. Owens, D., Anderson, M.: A Generic Framework for Automated Quality Assurance of
Software Models - Application of an Abstract Syntax Tree. In: Proceedings of Science
and Information Conference (SAI), pp. 207–211. IEEE (2013)

99. Pedro, L., Risoldi, M., Buchs, D., Barroca, B., Amaral, V.: Composing Visual Syntax
for Domain Specific Languages. In: Proceedings of the 13th International Conference
on Human-Computer (HCI), pp. 889–898. Springer-Verlag (2009)

100. Pérez-Castillo, R., de Guzmán, I.G.R., Gómez-Cornejo, R., Fernández-Ropero, M.,
Piattini, M.: ANDRIU. A Technique for Migrating Graphical User Interfaces to An-
droid. In: Proceedings of the 25th International Conference on Software Engineering
and Knowledge Engineering (SEKE), pp. 516–519. Knowledge Systems Institute Grad-
uate School (2013)

101. Pinzger, M., Gall, H.C., Fischer, M.: Towards an Integrated View on Architecture
and its Evolution. Electronic Notes in Theoretical Computer Science 127(3), 183–196
(2005)

102. Reus, T., Geers, H., van Deursen, A.: Harvesting Software Systems for MDA-Based
Reengineering. In: Proceedings of the Second European Conference on Model Driven
Architecture - Foundations and Applications (ECMDA-FA), pp. 213–225. Springer-
Verlag (2006)

103. Saint-Denis, G., Schauer, R., Keller, R.K.: Selecting a Model Interchange Format:
The SPOOL Case Study. In: Proceedings of the 33rd Annual Hawaii International
Conference on System Sciences (HICSS), pp. 1–10. IEEE Computer Society (2000)

104. Santibáñez, D.S.M., Durelli, R.S., de Camargo, V.V.: A Combined Approach for Con-
cern Identification in KDM Models. Journal of the Brazilian Computer Society 21(1),
1–20 (2015)

105. Schauer, R., Keller, R.K., Lague, B., Knapen, G., Robitaille, S., Saint-Denis, G.: The
SPOOL Design Repository: Architecture, Schema, and Mechanisms. In: H. Erdogmus,
O. Tanir (eds.) Advances in Software Engineering, chap. 13, pp. 269–294. Springer-
Verlag (2002)

106. Schürr, A.: Developing Graphical (Software Engineering) Tools with PROGRES. In:
Proceedings of the 19th International Conference on Software Engineering (ICSE), pp.
618–619. ACM (1997)

107. Sharafi, Z., Soh, Z., Guéhéneuc, Y.: A Systematic Literature Review on the Usage
of Eye-tracking in Software Engineering. Information and Software Technology 67,
79–107 (2015)

108. Sim, S.E., Koschke, R.: WoSEF: Workshop on Standard Exchange Format. ACM
SIGSOFT Software Engineering Notes 26(1), 44–49 (2001)

109. Sim, S.E., Storey, M.A., Winter, A.: A Structured Demonstration of Five Program
Comprehension Tools: Lessons Learnt. In: Proceedings of the 7th Working Conference
on Reverse Engineering (WCRE), pp. 210–212. IEEE Computer Society (2000)

110. Smite, D., Wohlin, C., Galvina, Z., Prikladnicki, R.: An Empirically Based Terminology
and Taxonomy for Global Software Engineering. Empirical Software Engineering 19(1),
105–153 (2014)

111. Soden, M., Eichler, H.: An Approach to use Executable Models for Testing. In: Pro-
ceedings of the 2nd International Workshop on Enterprise Modelling and Information
Systems Architectures (EMISA), pp. 75–85. GI (2007)

112. Sora, I.: A Meta-model for Representing Language-independent Primary Dependency
Structures. In: Proceedings of the 7th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE), pp. 65–74. SciTePress (2012)

113. Sora, I.: Unified Modeling of Static Relationships between Program Elements. Pro-
ceedings of the 7th International Conference on Evaluation of Novel Approaches to
Software Engineering (ENASE), Communications in Computer and Information Sci-
ence 410, 95–109 (2012)

114. Sora, I.: Helping Program Comprehension of Large Software Systems by Identifying
Their Most Important Classes. Proceedings of the 10th International Conference on
Evaluation of Novel Approaches to Software Engineering (ENASE), Communications
in Computer and Information Science 599, 122–140 (2015)

115. Sora, I., Todinca, D.: Using Fuzzy Rules for Identifying Key Classes in Software Sys-
tems. In: Proceedings of the IEEE 11th International Symposium on Applied Compu-
tational Intelligence and Informatics (SACI), pp. 317–322. IEEE (2016)

ProMeTA 37

116. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E. (eds.): EMF: Eclipse Modeling
Framework, 2nd Edition, 2 edn. Addison-Wesley Professional (2008)

117. Strein, D., Kratz, H., Löwe, W.: Cross-Language Program Analysis and Refactoring.
In: Proceedings of the 6th IEEE International Workshop on Source Code Analysis and
Manipulation (SCAM), pp. 207–216. IEEE Computer Society (2006)

118. Tichelaar, S., Ducasse, S., Demeyer, S., Nierstrasz, O.: A Meta-model for Language-
Independent Refactoring. In: Proceedings of the International Symposium on Princi-
ples of Software Evolution (ISPSE), pp. 154–164. IEEE Computer Society (2000)

119. Tilley, S.R., Wong, K., Storey, M.D., Müller, H.A.: Programmable Reverse Engineering.
International Journal of Software Engineering and Knowledge Engineering 4(4), 501–
520 (1994)

120. Tripathi, V., Mahesh, T.S.G., Srivastava, A.: Performance and Language Compatibility
in Software Pattern Detection. In: Proceedings of the IEEE International Advance
Computing Conference (IACC), pp. 1639–1643. IEEE (2009)

121. Unterkalmsteiner, M., Feldt, R., Gorschek, T.: A Taxonomy for Requirements Engi-
neering and Software Test Alignment. ACM Transactions on Software Engineering
and Methodology 23(2), 16:1–16:38 (2014)

122. Vidács, L.: Refactoring of C/C++ Preprocessor Constructs at the Model Level. In:
Proceedings of the 4th International Conference on Software and Data Technologies
(ICSOFT), pp. 232–237. INSTICC Press (2009)

123. W3C: Extensible Markup Language (XML). http://www.w3.org/XML/ (2000)
124. Washizaki, H., Fukazawa, Y.: A Technique for Automatic Component Extraction from

Object-Oriented Programs by Refactoring. Science of Computer Programming 56(1-
2), 99–116 (2005)

125. Washizaki, H., Guéhéneuc, Y., Khomh, F.: A Taxonomy for Program Metamodels in
Program Reverse Engineering. In: Proceedings of the 32nd IEEE International Con-
ference on Software Maintenance and Evolution (ICSME), pp. 44–55. IEEE Computer
Society (2016)

126. Washizaki, H., Guéhéneuc, Y., Khomh, F.: Patterns for Program Reverse Engineering
from the Viewpoint of Metamodel. In: Proceedings of the 23rd Conference on Pattern
Languages of Programs (PLoP), pp. 1–9. ACM (2016)

127. Wimmer, M., Kramler, G.: Bridging Grammarware and Modelware. Proceedings of
the Satellite Events at the MoDELS Conference, Lecture Notes in Computer Science
3844, 159–168 (2005)

128. Wu, H.: Test Case Generation for Programming Language Metamodels. Proceedings
of the 1st Doctoral Symposium of the International Conference on Software Language
Engineering (SLE), CEUR Workshop Proceedings 64, 27–30 (2010)

