
Noises in Interaction Traces Data and their
Impact on Previous Research Studies
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Abstract—Context: Developers’ interaction traces (ITs) are
commonly used in software engineering to understand how
developers maintain and evolve software systems. Researchers
make several assumptions when mining ITs, e.g., edit events are
considered to be change activities and the time mined from ITs is
considered to be the time spent by the developers performing the
maintenance task. Goal: We investigate the extent to which these
assumptions are correct. We examine noises in developers’ ITs
data and the impact of these noises on previous results derived
from these traces. Approach: We perform an experiment with 15
participants, whom we asked to perform bug-fixing activities and
collect Mylyn ITs and VLC video captures. We then investigate
noises between the two data sets and propose an approach to
correct noises in ITs. Results: We find that Mylyn ITs can miss on
average about 6% of the time spent performing a task and contain
on average about 28% of false edit-events. We report that these
noises may have led researchers to mislabel some participants’
editing styles in about 34% of the cases and that the numbers
of edit-events performed by developers and the times that they
spent on tasks are correlated, when they were considered not
to be. Conclusion: We show that ITs must be carefully cleaned
before being used in research studies.

Keywords—Software maintenance, bias, interaction traces,
video captures, maintenance effort.

I. INTRODUCTION

Developers’ activities are valuable source of information to
improve their productivity [5]. Developers’ interaction traces
(ITs), also known as activity logs, have been used to study
developers’ preferred views in an IDE [10], edit styles [22],
[24], and exploration strategies [19] as well as work fragmen-
tation [16], maintenance effort [14], [18], change prediction
[1], and impact analysis [23]. Developers’ ITs have also been
used to provide tool support through code completion [13]
and recommendations of relevant program entities [4], [8], [?].
They are usually collected by monitoring tools, such as Mimec
[7] or Mylyn [11].

Most of these studies depend on the accuracy of the
information mined from ITs. An IT is an ordered list of
events triggered by developers while performing their task.
Each event has a kind (e.g., selection, edit), has a start and
end timestamps, and is triggered on a program entity (e.g.,
file, class, or method). Unfortunately, ITs contain noise. Some
events may (1) have a 0 duration, some events may (2) overlap
with one another, and some edit events may not (3) correspond
to real modifications of the source code because current tools,
such as Mylyn, (1) record the 0 duration, (2) temper on-the-fly
with events to ease their analyses and collect events not directly
triggered by developers, and (3) generate edit events every time
a developer selects a piece of text in an editor [12] even if

the code does not change. Consequently, previous studies that
infer developers code edit styles [22], code edit patterns [?], or
recommend code entities based on these recorded edit events
[5], [16], [19] are likely to have some inaccuracies.

For example, the IT in Figure 1 shows an excerpt of the edit
events recorded for one developer during our empirical study
(explained in Section III). The edit events e1, e2, e3 could be
labelled by Mylyn as edit-events but they could be false edit-
events because the developer did not modify the source code
(when observing the corresponding screen capture). Therefore,
using this IT, the developers’ edit style [22], for example,
would be wrongly inferred as edit-throughout instead of edit-
last, even though edit-events really occurred towards the end
of the task.

After observing the impact that noises in developers’ ITs
can have on the accuracy of the analyses performed on the
ITs collected by current monitoring tools, we systematically
investigate these noises. Our goals are to (1) quantify noises
in current ITs collected by Mylyn, (2) propose an approach
to correct these noises, and (3) assess how these noises and
corrections affect some previous studies. Our goals aim to help
(1) researchers to mine ITs reliably and (2) tools providers to
improve monitoring tools.

To reach our goals, first, we conduct a controlled experi-
ment involving 15 developers to whom we asked to complete
maintenance tasks on four open-source Java systems (ECF,
jEdit, JHotDraw, and PDE). During the tasks, we collected
both Mylyn ITs and video captures of developers’ screens. My-
lyn ITs—RITs for Raw Interaction Traces in the following—
have been often used in the literature to study developers’
activities. Video captures have been used as alternatives to ITs
[6], [15], [20] when transcribed into ITs—VITs for Video-
based Interaction Traces in the following. By comparing RITs
and VITs, we observe that RITs miss on average about 6%
of the time spent performing a task and contain about 28% of
false edit-events. Second, we use the mean-duration of false
edit-events to propose an approach to automatically correct
RITs. Using our approach, we revisit some previous studies
by Ying and Robillard [22] and Soh et al. [19] and show
that these noises in ITs may have led researchers to mislabel
some participants’ editing styles in about 34% of the cases.
We also observe that the numbers of edit-events performed
by developers and the times that they spent on tasks are not
correlated.

The remainder of the paper is organized as follows. Section
II summarises previous studies. Section III describes our
empirical study of the noises in ITs. Section IV presents our
approach to correct ITs. Section V reports our revisits of two



Fig. 1. Illustration of idle time (it) and overlap time (ot)

previous studies. Section VI discusses threats to the validity
of our study, approach, and revisits. Section VII concludes.

II. RELATED WORK

Many studies have studied developers’ ITs. While some
previous studies focused on the analysis of ITs to understand
developers’ behaviour, others used ITs to study software en-
gineering activities. Yet some others build tools to support
developers in their daily work. These three uses of ITs are
complementary because to provide tool support based on
ITs, there is a need for a good understanding of developers’
behaviour and activities.

A. Interaction Traces to Understand Developers’ Behaviour

Ying and Robillard [22] studied the developers’ editing
style and characterised edit-first, edit-last, and edit-throughout
editing styles. They observe that enhancement tasks are as-
sociated with a high fraction of edit events at the beginning
of the programming session (i.e., edit-first). Zhang et al.
[24] studied how several developers concurrently edit a file
and derive concurrent, parallel, extended, and interrupted file
editing patterns. They stated that file editing patterns impact
software quality because they are related to future bugs.

Soh et al. [19] classified developers’ exploration strategies
as referenced exploration (i.e., revisitation of a set of entities)
and unreferenced exploration (i.e., no reference entities). They
found that unreferenced explorations require more effort but
are less time consuming than referenced explorations. Murphy
et al. [10] analysed how developers use the Eclipse IDE, e.g.,
which Eclipse views and perspectives they mostly use. They
observed that feature usage vary but that, for example, none
used the declaration view.

B. Interaction Traces to Study Software Engineering Activities

Sanchez et al. [16] studied the work fragmentation (through
interruption) and related it to developers’ productivity. They
found that work fragmentation is correlated to lower observed
productivity. Robbes and Röthlisberger [14] also analysed how
developers’ expertise is correlated to the effort on a task. They
found a negative correlation between the time spent and the
developers’ experience. Soh et al. [18] analysed the complexity
of the task resolution (i.e., in the patch) and correlated it
to the time spent on a task. They reported that the effort
spent by a developer is not correlated with the implementation
complexity. Bantelay et al. [1] combined ITs with commit
data to calculate evolutionary couplings. They reported that
the combined ITs and commit for change prediction achieved
a maximum recall improvement of 13% and 2% maximum
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Fig. 2. Overview of the approach

precision drop. Similarly, Zanjani et al. [23] improved an
existing approach of impact analysis.

C. Interaction Traces for Recommendation

ITs have been used for code recommendation. TeamTrack
[2] uses the association between previously-visited entities
to recommend the next program entity to visit. NavTrack
[17] uses only selection- and open-events on files to discover
hidden dependencies between files and recommend files related
to the file of interest. NavClus [8] improves the previous
approaches by clustering navigational cycles. MI [9] includes
view/selection histories of program entities in association rules
and recommend entities that are not yet edited. Kersten and
Murphy [5] used ITs to build task contexts and recommend
program entities to developers. Their recommendation system
is based on the principle of frequency and recency, e.g., the
more frequently and recently developers interacted with an
entity, the more the entity is relevant. Robbes and Lanza [13]
also used change history to propose a code completion tool
that reduces developers’ scrolling effort and that users found
more accurate than the previous tools they used.

Instead of studying developers’ behaviour, development activ-
ities (and their relations), or providing a tool support based
on ITs, our study investigates noises in ITs and assesses the
effect of these noises on previous studies. Our study is related
to the works above because it can provide new insights for a
more reliable use of ITs and for the improvement of tools.

III. NOISES IN INTERACTION TRACES

We now explain how we observe the noise in ITs and
computed its characteristics. By noise, we refer to any events
that may (1) have a 0 duration, that may (2) overlap with
one another, and to edit-events that may not (3) correspond to
real modifications of the source code. Noise can be at the
trace-level and–or at the event-level: at the trace-level, the
noise would impact the overall time spent on the task (see
Section III-B) while at the event-level, the noise impacts the
characterisation of edit events (see Section III-C).

Figure 2 summarises our approach. We first collect VITs
and RITs. We collect RITs using Mylyn because we want
to assess if these ITs contain any noise and Mylyn has
been often used in previous studies. We collect VITs because
they accurately capture the developers’ interactions. Then, we
compute and analyse metrics and report our observations on
existing noises in RITs in comparison to VITs. Based on our
observations, we propose an approach, in Section IV, to align
RITs and VITs using rules to annotate events. Finally, we use



our approach to correct RITs and study the impact of noise on
some previous studies, in Section V.

A. Data Collection

We perform a controlled experiment to collect RITs and
the video-captures necessary to obtain VITs [21].

1) Subject Systems: We choose four Java open-source
systems1 because we need their source code, which the partic-
ipants will modify to accomplish their tasks. We choose two
Eclipse-based (plugin) systems (ECF and PDE) and two non-
Eclipse systems (jEdit and JHotDraw). ECF (Eclipse Com-
munication Framework) is a set of frameworks for building
communications into applications and services. PDE (Plug-in
Development Environment) provides tools to create, develop,
test, debug, build, and deploy Eclipse plug-ins. JEdit is an
open-source text editor. JHotDraw is a Java GUI framework
for technical and structured Graphics.

We choose these two kinds of systems because (1) we
want to decrease threats to generalisability as two systems
are Eclipse-based and other two are non-Eclipse systems;
(2) their source code is open; (3) they belong to different
application domains; and, (4) they are well-known and studied
in the software engineering community. We also choose these
systems because there are RITs available in the bug reports of
the two first ones while the other two have no relation with
Mylyn.

2) Object Tasks: We seek concrete maintenance tasks.
Thus, for each Eclipse-based system (ECF and PDE), we
consider one of their bugs2: 202958 and 265931, respectively
for ECF and PDE. We consider these bugs because (1) they are
already fixed so we know that a solution exist and (2) these
solutions can be implemented in reasonable times, about 45
minutes, which we estimated through a pilot study.

For the non-Eclipse systems, we choose one of their version
randomly and define one task for each system so that each
task requires around 45 minutes. The tasks were defined by
exploring the two systems and identifying a possible need: in
jEdit, to add lines number and error messages in the select line
range dialog and, in JHotDraw, to change the colors of labels
and background of the FontChooser.

3) Participants: We recruit participants via emails, which
we send to the authors’ research groups and individual con-
tacts. We provide potential participants with a link3 to an
online form for registration, collecting information about their
level of study, gender, numbers of years of Java and Eclipse
experiences. We use this information to assign participants to
systems so that participants with different profiles work on a
same system to minimise threats to internal validity. To avoid
learning bias, each participant perform only one task.

In total, 19 participants answered our emails. Out of 19,
four did not complete the tasks because (1) three did not have
enough Java knowledge and (2) one abandoned the experiment.
Thus, we consider only 15 participants: 13 are Ph.D. students

1https://eclipse.org/ecf/, https://eclipse.org/pde/, http://www.jedit.org/, and
http://www.jhotdraw.org/

2https://bugs.eclipse.org/bugs/show bug.cgi?id=202958 and id=265931
3http://goo.gl/DyQu6j

in the Department of Computer and Software Engineering of
Polytechnique Montréal; one is M.Sc. student at the Czech
Technical University in Prague; and, one is a professional
software developer.

We perform a Kruskal-Wallis rank-sum test to assess
whether the numbers of years of Java and Eclipse experience
differ between groups of participants performing the tasks
on different systems and found that the differences are not
statistically significant (p-values of 0.67 and 0.96). Tasks are
performed by participants with similar numbers of years of
Java and Eclipse experience.

We use a checklist of the steps of the experiment to
consistently provide the same (and only the same) information
to each participant. We let each participant know before the
experiment that she will perform one maintenance task on one
Java system for about 45 minutes, although there is no time
limit. We also inform her that the collected data is anonymous.
We ask the participants to try their best to complete the tasks
but also that they can leave the experiment at any time for any
reason without penalty whatsoever.

4) Collected Data and Processing: Participants performed
their tasks using the Eclipse IDE together with the Mylyn
plugin to collect RITs. The subject systems were hosted
in our SVN repository4. We imported the systems into the
participants’ environments and collected their RITs at the
end of the tasks (as well as patches for future studies). To
collect RITs, we create the task in the IDE. Mylyn starts
collecting RITs when the participant activates the task. After
the participant completes the task, she deactivates the task
to stop collecting RITs. More details regarding how Mylyn
collects RITs can be found in [5].

During the tasks, we also captured video recordings of the
participants’ screens using VLC Media Player 2.0.55 at 15
images per second. We transcribed the video captures into ITs
manually. The first three authors defined a transcription tem-
plate after viewing the videos once to minimise subjectivity.
Then, they transcribed the videos into CSV files, including
the following information. Finally, they constructed VITs from
these CSV files. (All the data is available online6.)

• Start (hh:mm:ss): The timestamps when the event
starts.

• End (hh:mm:ss): The timestamps when the event ends.
• EntityName (string): The name of the entity concerned

by the event.
• EntityType (project, package, or file): The type of the

entity concerned by the event.
• Origin (Package Explorer, Outline View, Search Re-

sult, etc): The part of the IDE where the event was
triggered.

• Technique (Visual, Static Relation, Text Search, Ref-
erence): The method used by the participants to move
from the previous event to the current event. For
example, “visual” is when the participant is visually
searching at a relevant entity by scrolling the package

4http://goo.gl/Mskalh
5http://www.videolan.org/vlc/releases/2.0.5.html
6http://www.ptidej.net/downloads/replications/esem15/



explorer or the code editor, then open a file through
the package explorer. We consider that the participant
reach the opened file through visual search. “Static re-
lation” is for example the navigation from the method
call to its declaration.

• Activity (Selection, Open, Search, Run, Edit, Close,
Other): The activity performed by the participants such
as select a file (in the package explorer), open the file,
search through a keywords, run the system, edit the
code or close an opened file.

• Comments (string): Other information that the tran-
scriber found useful for further analysis.

B. Trace Level

We compare both RITs and VITs to access all the entities
involved in the ITs, the times spent and the activities performed
on these entities, and the IDE views used by participants.
At trace level, we study the possible noises introduced by
0-duration events and overlapping events because some re-
searchers compute the times spent on tasks by participants
considering the start and end timestamps of the whole ITs,
e.g., [14], while others aggregate and clean the times spent in
each event, e.g., [19].

1) Approach: We consider the times spent performing the
tasks as defined below and illustrated in Figure 1, which
is an IT involving three events e1, e2, and e3. We study
the mismatches between VITs time (TV ITs) and RITs time
(TRITs). We compute both TV ITs and TRITs in two ways:

• Global time: we compute the global time using the
start and end timestamps of the ITs as GT =
End(IT )− Start(IT ). The global time of the IT in
Figure 1 would be GT = End(e3)− Start(e1)

• Accumulated time: we compute the accumulated time
in an IT as the sum of the times spent on each event:
AT =

∑
event∈IT End(event)− Start(event). The accumu-

lated time of the IT in Figure 1 would be
AT =

∑
ei∈{e1,e2,e3} End(ei)− Start(ei)

= d1 + d2 + d3.

To assess if there are noises in the times computed from
ITs, we first compare the global and accumulated time of VITs,
on the one hand, and RITs, on the other hand. This comparison
aims to figure out whether the two ways of computing times
give the same results. If global and accumulated times are the
same, to study the noises in time spent on task, we must only
compare one of them between VITs and RITs. However, if they
are different, we must compare both of them between VITs
and RITs. The comparison of the times between VITs and
RITs aims to assess the possible noises in RITs (compared to
VITs). We use the two-sided Wilcoxon unpaired test to assess
the differences stated above, using a significance level of α =
0.05. We use the two-sided test because we are not interested
in the direction of the difference and only aim to know if there
is any difference.

2) Results and Discussions: Figure 3 presents the differ-
ence between global and accumulated times computed from
VITs (See Figure 3(a)) and RITs (See Figure 3(b)). Regarding
RITs, the difference is statistically significant for two systems
(ECF and JHotDraw) and borderline for one system (PDE with

(a) Video (VITs) time

(b) Mylyn (RITs) time

Fig. 3. Difference in global and accumulated times

TABLE I. GLOBAL VS. ACCUMULATED TIMES

p-value
VITs RITs

ECF 0.88 0.02
jEdit 1 0.1

JHotDraw 0.68 0.02
PDE 0.77 0.05

p-value exactly 0.05), as shown in Table I. This result suggests
that the two ways of computing time from RITs do not provide
the same results. Thus the way the time spent on a task is
computed in the previous studies may affect the results found.

Figure 4 presents the differences in the times spent
performing the tasks between RITs (GTRITs) and VITs
(GTV ITs). Figure 4(a) shows that GTV ITs is higher than
GTRITs. On the contrary, ATRITs is higher than ATV ITs in
Figure 4(b).

We studied whether the differences are statistically sig-
nificant. Table II shows that for ECF and JHotDraw, there
are statistical significant differences between ATV ITs and
ATRITs. For jEdit and PDE, the differences are not statistically
significant, but are close, with p-values of exactly 0.05. The
absence of significant differences for global times between
RITs and VITs hints that global time is closer to the actual time
spent. We expected this result because participants performed
their tasks without interruptions. However, when performing
a task in a real-work setting, developers may have real in-
terruptions, possibly with or without collecting related ITs,
that can affect the actual times spent performing the tasks. To
support this statement, we observe in the RITs (from Bugzilla)
some traces that ended a month or more after their start dates.
Thus, even without statistical significant differences between
GTV ITs and GTRITs, we claim that global times are not
reliable for RITs gathered by developers in their daily work.



(a) Global time

(b) Accumulated time

Fig. 4. Difference in task resolution times between RITs and VITs

TABLE II. TV ITs AND TRITs GLOBAL VS. ACCUMULATED TIMES

p-value
Global Accumulated

ECF 0.68 0.02
jEdit 0.4 0.1

JHotDraw 1 0.02
PDE 0.68 0.05

Robbes and Röthlisberger [14] relate the development time
to developers expertise by considering the global time as the
time spent performing a task (i.e., “the difference between
the timestamps of the last and the first events”). The global
times seem reliable in our data-set because they come from a
controlled experiment.

Moreover, the differences, even not statistically significant,
observed in Figure 4(a) indicate a mismatch between GTV ITs

and GTRITs. We explain that this mismatch may be caused
by the tool for gathering ITs and the delays between the
developers’ actions and the collection of the data. We observe
that Mylyn starts collecting data when the participants interact
with the first program entity, e.g., if a participants starts the
task by scrolling without interacting with any entity, Mylyn
will not collect any data. This noise does not concern Mylyn
only, any monitoring tool may be subject to this noise. Overall,
RITs miss on average 2.91 minutes (about 6%). Hence the
following observation.�
�

�
�

Observation 1: Mylyn ITs miss on average about 6%
of the times spent during the session.

Figure 4(b) and Table II (column “Accumulated”) show that
accumulated times are also different between RITs and VITs
and that this difference is statistically significant. We assert
that this observation comes from idle and overlap times.

We consider that there is an idle time between two consec-
utive events if there is a non-zero time period between these
events, i.e., the second event was not triggered immediately
after the end of the first event. There is idle time (it) between
the events e2 and e3 in Figure 1. The lack of interaction

(a) Idle times

(b) Overlap times

Fig. 5. Difference in idle and overlap times between RITs and VITs

TABLE III. TV ITs AND TRITs IDLE VS. OVERLAP TIMES

p-value
Idle Overlap

ECF 0.02 0.02
jEdit 0.06 0.06

JHotDraw 0.02 0.02
PDE 0.02 0.02

with the IDE (thinking, reading code or task description) and
the interactions that the monitoring tool cannot handle (e.g.,
scrolling) appear in RITs as “inactivity” periods. However, we
cannot distinguish them to the real inactivity that can appear
in the real-world setting. Thus, we name all the “inactivity”
periods in the RITs as idle times. We consider that there is
an overlap between two consecutive events if the second event
starts before the end of the first event. There is overlap time
(ot) between the events e1 and e2 in Figure 1. Overlap may
occur because of the aggregation of the events and–or the
activities involving several program entities (e.g., selection of
many files in the package explorer). Idles and overlaps affect
the overall times spent to perform tasks. Yet, previous study
did not consider idles and overlaps when computing global
times, e.g., [14].

Figure 5 shows the cumulative durations of idles and
overlaps. It shows that these phenomena are prevalent in RITs
compared to VITs. It also shows that overlap times are more
important in duration than idle times. Table III shows that the
differences between idle and overlap times in RITs and VITs
are statistically significant for three systems (ECF, JHotDraw
and PDE) while it is closed to be significant (p-value = 0.06)
for JEdit. Overall, RITs contain a average cumulative idle
and overlap times of 26.08 (median 27.55) minutes and 579.3
(median = 250.4) minutes, respectively. While idle time can be
seen as the time spent reading code, thinking or understanding
the code, the overlap time seems too much. However, it can
be due to the overlap between many events (multi-overlaps).�
�

�
�

Observation 2: Mylyn ITs involve on average about
53% of idle times and 1,171% of overlap times.



(a) Clean idle and overlap times

(b) Clean overlap times

Fig. 6. Difference in clean times between RITs and VITs

Fig. 7. Distribution of the time of individual idle times for RITs

When we recompute the accumulated times after removing
idle and overlap times, as shown in Figure 6(a), the new
accumulated times of RITs drop down, but is still different
from the global time (See Figure 6(a) vs. Figure 4(a)). How-
ever, if we keep the idle times but remove only the overlap
times (See Figures 6(b)), then the accumulated and global
times are similar, both for VITs and RITs (See Figure 6(b)
vs. Figure 4(a)). Thus, we consider that idle times that may
appear in the RITs collected in a real-world setting are not
always interruptions.

The last observation arises from our interest to quantify
the magnitude of individual idle times. We investigate this
magnitude because the cumulative durations of these idle times
can reach an average of 26 minutes, and the data collected by
developers in their daily work may involve real interruptions.
Figure 7 (durations of individual idle) shows that idle times in
RITs can reach more than five minutes. However, overall, idle
times lasted 0.5 (median = 0.07) minutes.

TABLE IV. COMPARISON BETWEEN TV ITs AND TRITs EDIT-EVENTS

p-value
Number edit Edit duration

ECF 0.13 0.26
jEdit 0.8 0.4

JHotDraw 0.34 1
PDE 0.66 0.34

�




�

	

Observation 3: Mining times from ITs requires to
remove overlap times from accumulated times. Idle
times that last less or equal to half a minute should
not be consider as interruptions and should be include
in the time spent on task.

By quantifying the average duration of idle events that are
not interruptions, our result complements Sanchez et al. [16]
who was inspired by previous study and defined interruptions
in RITs as a pause of programming of duration greater or equal
to 3 minutes. Our threshold of idle times is in the context of
RITs i.e., considering idle times within developers’ activities.
The threshold of interruption times defined by González and
Mark [3] was found by considering more general workers’
activities as the considered workers were four developers, six
business analysts, and four managers.

C. Event Level

At the event level, we focus on the noises for edit events
because (1) edit events are more accurately identifiable from
video data than other events as it is trivial to see in the videos
if the code is being changed and (2) edit events are subject
to several assumptions, such as being representative of the
activity of changing source code [9], [16], [19]. Also, edit
events have been used to build code recommendation tools
[4], [9] and as proxy to productivity [5], [16]. Thus, any bias
related to edit events would impact such previous studies.

1) Approach: We consider the numbers of edit events and
the times spent performing edit events to investigate noises in
the identification of edit events, i.e., any differences between
VITs and RITs in numbers of edit events and the times spent
performing edit events.

• Numbers of edit-events: we count the numbers of
edit-events after removing events whose start and end
timestamps are equal (i.e., 0-duration), which were
considered selection-events in previous studies [9],
[16].

• Edit duration: we compute the edit durations after
removing overlap times.

We use the two-sided Wilcoxon unpaired test to evaluate
the difference between VITs and RITs for the numbers of edit
events and edit durations. We use the two-sided test because
we are not interested in the direction of the difference and only
aim to know if there is any difference. We consider that the
difference is significant at α = 0.05.

2) Results: We observe differences in VITs and RITs
according to their numbers of edit-events, see Figure 8(a),
and the durations of the edit-events, see Figure 8(b). The
differences are not statistically significant as revealed by the
Wilcoxon test results from Table IV. The numbers of edit



(a) Numbers of edit-events

(b) Durations of edit-events

Fig. 8. Difference in edit-events between RITs and VITs

events and the durations of the events mined from RITs are
not statistically different to that from VITs.

The lack of statistical significant difference in the numbers
and durations of edit events is the consequence of the task
resolution i.e., how successfully participants resolved the tasks.
Indeed, participants performed few changes. Only 12 out of the
15 participants performed at least one edit event while only
five participants successfully resolved their tasks (and three
participants partially). Overall, eight participants (53.33%)
changed the code during their task. As resolving the task
requires to change the code, results of the statistical tests would
be different if all participants perform changes.

However, even though they are not statistically different,
the observed difference in Figure 8 reveals that there are
some edit-events that are not really changes to the code
(See Section IV-B for the details about these edit-events).
We call these edit-events “false edit-events” and define the
measure edit bias edit bias = false edit

real edit , where false edit =
edit(RITs) − edit(V ITs) and real edit = edit(V ITs).
Using the edit bias, we observe a bias of, on average about
28%, which contradicts the assumption that all non 0-duration
edit events correspond to changes to the code.�
�

�
�

Observation 4: Interaction traces contain about 28%
of false edit-events.

IV. APPROACH TO ANNOTATE EVENTS

We now propose an approach to correct RITs by identifying
false edit-events.

A. Approach

We align VITs with RITs to generate corrected ITs (CITs)
corresponding to RITs. The alignment consists in identifying

(a) Reference start timestamps
of RITs

(b) Alignment principle

Fig. 9. Illustration of the alignment of RITs and VITs

VITs events corresponding to RITs events. We use the times-
tamps as keys for traces alignment. First, we manually identify
the RITs start timestamps reference (“reference timestamps” in
the remainder), which is the RITs timestamps corresponding
to the start timestamps of VITs, see Figure 9(a). Timestamps
are in different format and have different precision. RITs
timestamps are more precise (in term of milliseconds) than
reference timestamps (in term of minutes). This difference in
precision could affect the alignment of the events but, given
the durations of the events, a precision in minutes is sufficient.

Second, we use the reference timestamps to compute the
exact time when an event starts and ends. For example,
consider that an event e started at timestamps d1 and ended
at timestamps d2. We compute the start and end time of
the event e as startT ime(e) = time(d1) − time(d) and
endT ime(e) = time(d2)− time(d) where d is the reference
timestamps (i.e., the timestamps corresponding to the start of
the video recording), and time(x) is the number of millisec-
onds7 to reach the timestamps x. Having the start and end time
of each event in a VIT and a RIT, we can align two events
if they (ideally) start at the same time and end at the same
time. However, the alignment is not always ideal. To avoid
wrong alignments due to overlap times between events, we
remove overlap time intervals before aligning the events, e.g.,
for consecutive events e1 and e2, if End(e1) > Start(e2),
we consider that End(e1) = Start(e2). This cleaning does
not affect the start time of an event which the alignment is
mostly based on. The alignment consists to search the events
in a VIT corresponding to each event in RITs, see Figure 9(b).
For each event in RITs, we scan the VITs and search for the
corresponding event(s).

We consider that an event in a RIT is aligned to an event in
a VIT if the intersection of their time period is not empty. For
example, if an edit event e in a RIT is aligned with n events
{e1, e2, ...en} in a VIT, we consider that the edit event e is
aligned to the first edit event in {e1, e2, ...en}. We could use
DTW (Dynamic Time Warping) for alignment, but our goal is
not to minimise the distance between RITs and VITs as does
DTW. Instead, we align vertically events and identify matching
events in a RIT and in its corresponding VIT.

We manually check the alignments of some randomly-
selected ITs and identify the VITs events that correspond to
RITs events and build the following rules (see Section IV-B) to
annotate RITs events. We randomly choose some ITs because
checking all the ITs could not impact negatively our approach.
On the contrary, checking all ITs could only lead to more fine-
grained annotations that would only be sub-categories of the
current annotations.

7We use the method getTime() of the Java Date class.



TABLE V. RULES FOR ANNOTATION OF EDIT EVENTS

RITs events Times Previous event Annotated events
Edit time ≤ 24.01sec Search view Open
Edit time ≤ 24.01sec Other Navigation
Edit time > 24.01sec N/A Edit

TABLE VI. RULES FOR ANNOTATION OF SELECTION EVENTS

RITs events Origin Annotated events
Selection Editor Inspection
Selection Other Selection

B. Results

Through the alignment, we identified VITs events that
correspond to RITs events. RITs involved two main kinds of
events: selection and edit. For edit-events, we observed that
false edit-events with not 0-duration take on average 24.01
(median = 4.14) seconds, while true edit-events take on average
143.7 (median = 114.4) seconds. Thus, we assume that:�
�

�
�Observation 5: An edit-event is a false edit-event if it

takes less than 24.01 seconds but more than 0 second.

When looking at the alignments, most of the false edit-
events correspond to the opening of a file (e.g., double click to
open the file), the navigation of static relation between program
entities and the text-based search in the file. When we look
at RITs, we did not find any indicator to distinguish which
false edit-event corresponds to each of the VITs event above.
However, one case of open event was identifiable, e.g., a false
edit-event after an event triggered through the search view.
We build our correction approach with the annotation rules in
Table V. For example, the first row in the table means that if
an event is an edit event that lasted less than or 24.01 seconds
and if the previous event was triggered through a search view,
the event should be considered an open event.

Regarding selection events, the alignment reveals that
selection events can occur through different views (package
explorer, outline view, search view, editor). While RITs equally
considers these selection events, the video captures show that
selection events in the editor or type hierarchy views (com-
pare to selection events through other views) are performed
when the participants expect the entities to be relevant. This
observation is consistent with Ko et al. [6], who stated that the
selection in the editor view indicates a perception of relevance.

Hence, a selection event in the editor and type hierarchy
views is likely to indicate the relevance of an entity, we
consider the selection of an entity in the editor as the inspection
of the entity because the participants seem to investigate the
entity to see if it is relevant or to understand it. Thus, we
annotate the selection event as indicated in Table VI.

Our annotation rules (Tables V and VI) provides a way
to correct RITs. Some edit-event really should be navigation-
and open-events while some selection-events really should
be inspection-events. We present a preliminary study of the
possible effects of the correction in Section V.

V. WHAT IS THE EFFECT OF THE NOISES AND ITS
CORRECTION ON PREVIOUS WORK?

We now assess whether applying our approach impacts the
results from two previous studies. We consider the study on

TABLE VII. EDITING STYLES BETWWEN VITS, RITS, AND CITS

VITs RITs CITs
# P(%) R(%) # P(%) R(%)

edit-first 1 0 0 0 0 0 0
edit-last 9 1 100 11.11 3 100 33.33
edit-throughout 2 11 18.18 100 9 22.22 100

TABLE VIII. EDITING STYLES BETWEEN BRITS AND BCITS

bRITs bCITs bRITs ∩ bCITs style → others others → style
edit-first 163 521 142 21 (1.06%) 379 (19.23%)
edit-last 546 438 279 267 (13.55%) 159 (8.07%)
edit-throughout 1,261 1,011 872 389 (19.74%) 139 (7.05%)

All 1,970 1,970 1,293 (65.63%) 677 (34.36%) 677 (34.36%)

editing style by Ying and Robillard [22] and the study on
exploration strategies by Soh et al. [19]. We choose these two
studies because (1) their use of ITs can be affected by the
noises observed in Section III, and (2) we have access to their
data and–or scripts.

We revisit these previous studies by applying their ap-
proaches on two data-sets. The first data-set contains the RITs
and VITs collected during our experiment in Section III. The
second data-set contains ITs collected from bugs reports in
Bugzilla for the ECF, Mylyn, PDE and Platform, called bRITs
in the following and containing 1,970 ITs. We correct RITs and
bRITs using the approach described in Section IV to obtain
CITs and bCITs, respectively.

A. Effect of Noises on Editing Styles

We use the script8 provided by the authors of the study to
compute the editing styles [22]. We use precision and recall
to compare the editing styles identified in, on the one hand,
RITs, VITs, and CITs, considering VITs as oracles and, on
the other hand, bRITs and bCITs.

Precision(s) =
# traces correctly identified as style s

# traces identified as style s

Recall(s) =
# traces correctly identified as style s

# traces of style s

where s ∈ {edit-first, edit-throughout, edit-last}

We also compute the numbers of miscategorisation be-
tween ITs, e.g., when an IT categorised as edit-first (using
bRIT) becomes edit-throughout or edit-last (using the corre-
sponding bCITs), which we note “style X → others” with
styleX ∈ {edit-first, edit-throughout, edit-last}. Similarly, an
IT may change the editing style from other style (e.g., edit-
throughout or edit-last) to a style X (e.g., edit-first).

1) Results: Table VII presents the results of identified
editing styles for VITs, RITs and CITs for the 12 participants
who performed at least one edit event in our experiment. The
table shows that one, nine, and two traces are identified in
VITs as edit-first, edit-last, and edit-throughout, respectively.
Compared to editing styles identified in RITs, nine traces
(11 − 2) are wrongly identified as edit-throughout. The nine
traces are one edit-first and eight edit-last. Similarly, seven
traces (9− 2) are wrongly identified as edit-throughout using
CITs. The seven traces are one edit-first and six edit-last.
These results shows that both RITs and CITs contains noises

8http://www.cs.mcgill.ca/aying1/2011-icpc-editing-style-data.zip



TABLE IX. EDIT RATIOS BETWEEN VITS, RITS, AND CITS

p-values
VITs vs. RITs VITs vs. CITs RITs vs. CITs

ECF 0.02 0.46 0.02
jEdit 0.1 1 0.1

JHotDraw 0.02 0.68 0.02
PDE 0.02 0.68 0.11

that affect the identification of editing styles. However, when
comparing RITs with CITs, using CITs improves the precision
and recall by about 22% (edit-last) and 4% (edit-throughout).

Table VIII shows similar trends for bRITs and bCITs.
About 66% of the ITs conserve their editing style in both
bRITs and bCITs (column “bRITs ∩ bCITs”) while editing
styles change for 34% (column “style → others”). These
results show that our approach (modification of traces) yields
in some cases different categorisation of ITs and, hence, that
noise impacts the results of this previous study.

2) Discussions: Using our experiment data-set and ap-
proach shows a small difference in the identification of editing
styles. We use the categorisation threshold from the original
work which is based on the percentage of edit-events in the
first half of an IT [22]. The considered threshold was inferred
from a large set of ITs. We explain the small difference on
the experiment data-set by the small size of the data-set as
the threshold used may not be suitable for the amount of IT.
However, the use of Bugzilla data-set which may be more
suitable to the threshold due to the size of the data-set shows
about 34% of changes in editing styles.

As example of differences between ITs, we observe that
the trace of participant S06 is categorised as edit-first when
using VITs because, as expected, it has only edit-events in
its first half. The corresponding trace has 29% and 50% of
edit-events when considering RITs and CITs, respectively. We
assumed that applying the annotation rules, which improve the
categorisation of RITs wrt. VITs for the experiment data-set,
also improved the categorisation of RITs from the Bugzilla
data-set. We cannot verify this assumption because we do not
know the true categorisation for the Bugzilla data-set.

B. Effect of the Noises on Edit Ratio and Time Spent

To assess the effect of noise on edit ratio and time spent
used by Soh et al. [19] to evaluate exploration strategies, we
compute the number of edit-events in an IT divided by the total
number of events in RITs, VITs, CITs as well as bRITs and
bCITs and compare these ratios using the Wilcoxon unpaired
test. We consider that a difference is significative at α = 0.05.
We also compute the durations of the ITs to obtain the times
spent by participants on the tasks. We include idle times (less
or equal to 0.5 min) in the time spent on the tasks as discussed
in Section III-B2. Thus, for VITs, we consider their global
times while, for RITs, CITs, bRITs, and bCITs, we consider
the accumulated times of all the events after removing overlap
and adding idle times. We use the Spearman coefficient to
assess the relation between edit ratios and the times spent
on tasks. This relation is evaluated because Soh et al. [19]
observed that edit ratio and the time spent was related to
different exploration strategies, i.e., edit ratios and times spent
were not correlated.

TABLE X. SPEARMAN COEFFICIENT BETWEEN EDIT RATIOS AND
TIMES SPENT FOR VITS, RITS, AND CITS

Spearman correlations
VITs RITs CITs

ECF 0.31 -0.4 0.6
jEdit -0.5 0.5 -1

JHotDraw -0.4 0.8 1
PDE 0.2 0.8 1

TABLE XI. SPEARMAN COEFFICIENT BETWEEN EDIT RATIOS AND
TIMES SPENT FOR BRITS AND BCITS

Spearman correlations
bRITs bCITs

ECF 0.11 0.6
Mylyn 0.07 0.52
PDE 0.30 0.66

Platform 0.08 0.60

1) Results and Discussions for Edit Ratios: The analysis
of the edit ratios shows significant difference between VITs
and RITs, except for jEdit, in Table IX (first column). The
differences between VITs and CITs are not statistically sig-
nificant for all systems, see Table IX (second column). While
the differences between RITs and CITs are system-dependent
for the experiment data-set, in Table IX (third column), the
Bugzilla data-set shows significant differences for all systems.

The significant differences between VITs and RITs show
that using RITs may result in inaccurate findings. Applying
our correction approach reduces the mismatch between VITs
and RITs as there are differences between VITs and RITs but
not between VITs and CITs. The system-dependent differences
between RITs and CITs could indicate that our approach may
not fully address the noises in RITs or that other characteristics
of the VITs and RITs reduce the efficiency of our approach.
Future works include studying in details this observation.

2) Results and Discussions for Times Spent: Tables X and
XI show the relations between edit ratios and times spent.
Computing the correlation on VITs shows that the edit ratios
tend to be weak or inversely correlated with the times spent,
Table X, first column while on RITs and bRITs, it shows
positive correlations (except for the ECF system), second
column of Table X and first column of Table XI. After applying
our correction approach, the correlations increase, except for
jEdit system in the experiment data-set.

The correlations between edit ratios and times spent in
VITs have no common trend, while those in RITs are positive
for 3 out of 4 systems. For the systems that have a common
trend, we observe that the correlation is more pronounced for
RITs than for VITs. The corrected ITs, which show positive
correlations (except for jEdit), indicate that the more time is
spent by participants, the more they perform edit events over
other events. Contrary to the study of Soh et al. [19] that
may indicate the absence of correlation between edit ratio and
the time spent on task, the result of CITs is realistic because
the changes of code may take more time than other activities.
However, the observed contradiction with the result of VITs
(no correlation) can be explained by the number of events in
RITs. In fact, while the transcription of the videos (i.e., VITs)
resulted in more events than RITs, CITs correct RITs and have
the same number of edit-events as VITs, but the total number
of events is less than those of VITs. This difference in the
number of events increase the edit ratios of CITs that may



correlated with the time spent.

VI. THREATS TO VALIDITY

Our results may suffer from threats to validity.

Interaction traces: We use Mylyn plugin to collect ITs. As
many other monitoring tools (e.g., Mimec) can collect ITs, we
cannot guarantee that Mylyn may provide the most accurate
ITs. However, Mylyn is the most used tool for collecting ITs
in industrial projects and our experience with Mimec shows
that its ITs have the same noises. Another threat when using
Mylyn is the version of the tool. During our experiment, we
use different versions of Eclipse and, consequently, different
versions of Mylyn for different tasks. We were constrained to
use specific versions of the Eclipse-based systems (i.e., ECF,
PDE) because we aimed to use the versions for which the
bugs were reported. However, as features are not significantly
different between versions of Mylyn, the differences between
the ITs of two versions of Mylyn are negligible. The overlap
phenomenon can also affect our results. We consider the
overlap between two consecutive events but not among several
events, which could affect our results.

Transcription of the video: The first three authors inde-
pendently translated the videos into ITs. As some actions may
be difficult to interpret or the exact start and end timestamps of
an action may be difficult to identify, different transcriptions of
a video by two authors may provide different results. However,
to mitigate this threat, we defined a common template for video
transcription. Moreover, the noises studied in this paper are
related to the time and the edit events and edit events are easy
to identify on a video capture.

Alignment of Mylyn and video ITs: To identify the
mismatch between Mylyn and video capture, we align both
their ITs. The alignment consists of identifying the events cor-
responding to one another in the two traces. As the alignment is
based on the times when the events occur, any shift may result
in the lost of alignment between two events that are actually
matching. To mitigate this threat, we manually checked some
alignments and observed that the false edit-events, for example,
were not due to shifts in alignments.

Correction of ITs: We use the threshold inferred from
our experiment to annotate edit-events. The time spent on
false edit-events may be different for other systems and–
or other developers (e.g., developers’ experience and speed
when triggering events). To mitigate this threat, we apply the
correction approach on both our experiment and Bugzilla RITs
and observe the same trend.

Task and systems: The participants performed mainte-
nance tasks on Java systems only. Hence, we cannot guarantee
that using other systems and other programming languages
may yield the same results. We choose the tasks to be
accomplished in about 45 min. More complex tasks would take
more time and developers would have more interruptions and
would switch more often between tasks. Therefore, the tasks
considered in our experiments may not be representative of
tasks performed by developers in industrial settings. However,
as we aimed to assess possible noises, we must have an
oracle against which to compare collected ITs. Thus, we were
constrained to collect ITs in an experimental setting.

Reliability: The reliability threat relates to the possibility
of replicating our study. We mitigate this threat by providing
all the data online. For the manual work required to replicate
our study, we define a video transcription template and allow
many peoples to make transcription. Thus, we think that the
transcription by other peoples may not significantly affect the
results (e.g., identify the edit-event from the video may not be
challenging). Moreover, we automatise the alignment of events
between RITs and VITs. Our tool can be used after video
transcription without any manual work if the replication setting
allow videos and RITs collection to start at the same time (i.e.,
no need to manually identify the reference timestamps).

VII. CONCLUSION

Developers’ interaction traces (ITs) have been widely used
for several purposes, e.g., assessing how developers perform
maintenance tasks, and recommend program entities to edit.
However, ITs have been subjects to several assumptions,
e.g., edit events are due to be code change actions, and the
times mined from ITs are assumed to be the times spent by
developers to perform the maintenance tasks. Yet, ITs collected
in non-controlled settings may be subject to noises. Video
captures of the screen of developers have been used as an
alternative way to study how developers maintain and evolve
software systems.

In this paper, we examine possible noises in ITs and the
possible effects of the noises on two previous works. To
achieve this goal, we conducted an experiment with 15 partici-
pants, whom we asked to perform some maintenance tasks. We
collected both ITs and videos captures of participants’ screens.
We compared the ITs and videos and observed that ITs may
miss up to 6% of the times spent performing tasks and that
they may contain about 28% of false edit-events. By looking
in details at the mismatches between these two data sets (i.e.,
ITs and videos), we proposed an approach based on rules to
annotate ITs to reduce the observed noises. We corrected ITs
from both our experiment and Eclipse Bugzilla issue tracker
system. Applying our approach on two previous works [22],
[19], we report that these noises may have led researchers to
mislabel some participants’ editing styles in 34% of the cases
and to consider that the numbers of edit- events performed by
developers and the times that they spent on tasks are correlated,
when they were considered not to be. Our results suggest that
the observed noises must be considered carefully when mining
interaction traces and building recommendation tools based on
collected ITs.

Our future work consists of using the proposed correction
approach and its annotation rules to build association rules
that may help to improve the recommendations of program
entities using ITs. We also want to extend our study with more
complex tasks and investigate other possible noises in ITs (e.g.,
the noises in the program entities involved in the ITs).
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[21] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in Software Engineering - An Introduc-
tion. Kluwer Academic Publishers, 2000.

[22] A. Ying and M. Robillard. The influence of the task on programmer
behaviour. In Proceedings ICPC, pages 31–40, june 2011.

[23] M. B. Zanjani, G. Swartzendruber, and H. Kagdi. Impact analysis
of change requests on source code based on interaction and commit
histories. In Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR 2014, pages 162–171, 2014.

[24] F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan. An empirical study of
the effect of file editing patterns on software quality. In Proceedings
WCRE, pages 456–465, 2012.


