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Abstract

Component-based programming promises to ease the construction of large-scale
applications. The construction of applications using components relies on the notion
of interfaces. However, the notion of interfaces provided by current component
models is restricted: In particular, it does not include behavioral information to
define the protocols of the components: Sequences of service requests. The lack of
behavioral information limits our trust in components: Security, reuse, and quality
relate directly on this missing information. In this paper, we consider the problem
of verifying if a component implementation respects the protocol specified during its
design. First, we define a notion of coherence between protocols and an algorithm
to verify the coherence between two protocols. Then, we describe an algorithm to
extract the protocol of a component from its source code. Finally, we present a tool
that enables the static verification and enforcement of the notion of coherence.

1 Introduction

Component-oriented programming promises to simplify the construction of
large-scale applications by using components off the shelf. The construction
of applications using components relies on the notion of interfaces. Inter-
faces describes the services components offer and require: Their syntax and
semantics.

The developpers of components specify these interfaces during the design
phase. However, the specifications of the interfaces cannot be always easily
translated into the components source code. Therefore, developpers, design-
ers, and users of components must use specialized tools to verify that the
implementations of components comply with their specified interfaces.
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In particular, developers must ensure that their implementations of com-
ponents respect allowed sequences of service requests. Sequences of service re-
quests determine the order in which components can request or accept services
from their collaborators. Sequences of service requests define the protocols of
the components.

Protocols are not explicit in most industrial component models. Work
proposed to integrate protocols in academic component models [5,16,19,12,20]
has produced interesting results.

In [5], we defined protocols using finite state machines (FSM) [8]. We
developed a set of operators to manage FSM-based protocols. This set of
operators is interesting because it verifies a property of substituability. The
property of substituability ensures that compositions of components still verify
the protocols of the composed components.

We aim at integrating these results with industrial component models. The
integration of explicit protocols with an industrial component model (as with
any academic component model) should results in advanced security, better
reuse, and improved quality of component-based applications [4].

However, the integration of protocols in an industrial component model
raises new problems which have no answer yet. In this paper, we discuss the
problem of coherence between protocols specifying the components behavior,
at the design level, and the sequences of service requests that components
really perform.

Introductory example

We consider a simple example: A chat server for the publication of mes-
sages among clients. The architecture of the chat server is shown in Figure
1. The ChatServer component offers services for clients to login and to lo-
gout, to publish messages, and to search for already published messages. This
component delegates the responsibility of some of its services to collabora-
tors: Services login() and logout() call the login() and logout() services
provided by the Login component, for example.

ChatServer

Login

Message

search(Message)

login()

logout()
login()

logout()

post(Message)

search(String)
Board

Client

newMessage(Message)

Im
plem

entation

Message exchanges

Fig. 1. Architecture of the chat server component

At run-time, the availability of the ChatServer services depends on its
state and on the states of its clients. Clients can publish messages only if they
are already logged in: They can publish messages by calling first the login()
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service and then the post(Message) service. The protocol of the chat server
defines these constraints on sequences of service requests.

Question

Then, the following question arises naturally: How to ensure the coherence
between the protocol defined at the design-level and the sequences of service
requests followed by a component? For examples, how do we ensure that the
implementation of a Client respects the protocol defined by the designers of
the chat server? If we change the implementation of the Login component,
how do we verify that it still follows the protocol defined at the design-level?

This article is structured as follows: In section 2, we present our general
model of components with explicit protocols. In section 3, we define a notion
of coherence between the protocols of a component specified at design time
and its implementation, and we present a tool for extracting the protocol
from code source to describe interface-level protocols and verifying coherence
between protocols. In section 4, we present related work. Finally, we conclude
and we give some directions for future work.

2 A component model with explicit protocols

In this section, we present our model of components with explicit protocols
and describe the life cycle of components and how problems of coherence arise.

2.1 Component model

We base our study of protocols on a component model with explicit proto-
cols [5]. We consider a component as a logical unit providing an interface
consisting of a set of services (methods), a protocol, and a set of lists of col-
laborator identities.

Informally (a formal description is presented in [5]), the semantics of such
an interface is defined as follows: The set of services corresponds to services
offered by the component to its collaborators; The protocol defines all the valid
sequences of service requests between a component and its collaborators, using
a FSM.

In the FSM, a transition between two states is labelled with the name of a
service, a direction specifying if the transition corresponds to a service request
to the component or from the component, and (optionally) constraints on the
identities of the collaborators involved in the service requests.

The list of collaborators restricts the interactions among components de-
pending on their identities and types. Types of the collaborators are set at
implementation-time, identities of the collaborators are set and may change
at run-time. We use four types of identity constraints to restrict the service
requests and to manage the identity lists: l+, to add the identity of a com-
ponent; l−, to remove an identity; l!, to restrict the call or reception of a
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service to a collaborator in list l; And, l∗, to broadcast a request to all the
collaborators in list l.

login post

Identity Lists

Interface

Implementation

Service declarations

(a) The ChatServer com-
ponent structure.

Start

Stable Sending

clients*: +newMessage(Message)

clients+: −login()
clients−: −logout()

clients!: −post(Message)

(b) A subset of the ChatServer
component protocol.

Fig. 2. Structure and protocol of the ChatServer component.

Figure 2(a) shows the structure of the ChatServer component. The Chat-

Server structure includes: The login()service; A protocol defining constraints
on the order in which services login() and post() are called; And, a list of
collaborators of the ChatServer component containing the identities of the
clients currently logged in.

Figure 2(b) presents a subset of the protocol of the ChatServer component.
The initial Stable state has three transitions representing the services provided
by the component (prefixed by ‘-’) for adding a client (-login()), for deleting a
client (-logout()), and for posting a message (-post()). Transitions labelled
with identity constraints add clients (clients+) or delete clients (clients−),
and verify that messages are published only by clients that are already logged
in (clients!). When a client successfully publishes a message, the protocol
transits to the Sending state and the server broadcasts the message to every
connected client (clients∗, with +newMessage(Message)).

2.2 Life cycle of a component

The life cycle of a component has five main phases: Design, implementa-
tion, assembly, deployment, and run-time [10,2]. Component specifications
are defined during the design phase. The specifications expressed as protocols
are integrated in the component implementation, during the implementation
phase.

We call the protocol specifying the behavior of a given component, at the
design-level, a design-level protocol (D−LP). At the implementation level, a
component follows sequences of service requests that we denote as the com-
ponent implementation-level protocol (I−LP).
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A fundamental hypothesis of component-based programming is that com-
ponent implementations respect the behavioral constraints defined during the
design phase. In a component model with explicit protocols, the component
implementation must comply with its given D−LP: The I−LP must be co-
herent with the D−LP.

It is possible that the implementation of a component does not respect
the protocol defined at the design level. We imagine two scenarios where such
an incoherence can take place. In the first scenario, designers have correctly
defined the desired behavior of a component but, because of the natural com-
plexity of design specifications and implementations, developers made errors
when implementing the component. In a second scenario, designers, who de-
fined the D−LP, took wrong design decisions that developers noticed and
corrected at the implementation level, thus implementing a component which
I−LP is different from the given D−LP.

We argue that it is of high importance to qualify (and to correct, if neces-
sary) the coherence between D−LP and I−LP for security, reuse, and quality
reasons. In the next section, we introduce of notion of coherence between
protocols and present algorithms to extract the I−LP of a component and to
compare the I−LP against the D−LP.

3 Coherence between D−LP and I−LP

We introduce a notion of coherence between protocols. The notion of coher-
ence allows to determine if two protocols, despite structural differences, define
the same sequences of service requests. We present an algorithm for statically
verifying the coherence between a D−LP and an I−LP. Then, we introduce
a mechanism to extract a I−LP from a component implementation. Finally,
we propose a methodology for modifying the implementation of a component
so that it obeys a given D−LP. Figure 3 summarizes our contributions.

extraction modification
tests

Protocol at the

coherence modification

design level
Protocol at the

implementation level

Implementation

Fig. 3. Extraction, verification between D−LP and I−LP.

3.1 Coherence and its verification

We base our notion of coherence on the notion of substitutability as defined
by Nierstrasz [14] and adapt his algorithm for the verification of protocol
substitutability to protocol coherence.
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Let us consider two protocols p and q. Intuitively, if p can be substituted
for protocol q (denoted p :< q) then, from the client’s point of view, protocol
p behaves as protocol q, but not the contrary. Of course, if p :< q and q :< p,
then p and q behaves identically from its clients’ point of view: We say that
protocols p and q are coherent if and only if p :< q et q :< p.

a, b

Start

Start

a

a, b

a

a

Fig. 4. Two structurally different FSM accepting the same language. These two
FSM are coherent.

Formally, substitutability is defined using two notions: Traces and failures
of a protocol (cf. [14]). Traces are the possible sequences of service requests
that are accepted from a given state. In a non-deterministic FSM, accepting
a trace from a given state can lead to different states. Failures are defined as
the set of services that the protocol rejects from a state led by accepting a
particular trace. Then, p is coherent with q if failures(p) = failures(q) [14].
Figure 4 shows two protocols which are structurally different but coherent.
They have the same set of traces (accepting the same set of sequences of ser-
vices requests) and after accepting a given sequence of services (as for example
abab), have the same failures (for example b).

We present here the algorithm to verify failures equivalence. Starting from
the protocols initial states, the algorithms verifies failure sets by iteratively
visiting all reachable state until every state has been visited or a difference is
found. The following pseudo-code implements such algorithm:
if failure(i_p) != failure(i_q)

STOP

add(i_p, i_q, initials(i_p)) to List % initial states

While (List is not empty)

if ((X, Y, R) with R not empty not found in List

SUCCESS

else

add(X’, Y’, R) reachable from (X, Y, R)

verify initials between X’ and Y’

The worst-case complexity of the algorithm is O(2(n+m)) where n and m
are the reachable states from the initial state of protocols p and q respectively.

With this algorithm, it is possible to verify the coherence between the
D−LP and I−LP. If there is no difference between the failures of the protocols,
they are coherent.

3.2 Extraction of I−LP

To compare a D−LP with an I−LP, we need to extract the protocol followed
by the component implementation: What the component really does. We per-
form the extraction by determining the protocol associated with each method
of the component.
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s3s0

s2

s1 o1: −m()

o2: −n()

o1: −cond()

o1: −cond()

if (o1.cond()){
    o1.m();

}

} else {
    o2.n();

Fig. 5. Protocol corresponding to the if instruction.

To extract the protocol of a method, we associate a pre-defined protocol
to each kind of instruction. Then, we perform composition operations on the
extracted protocols to obtain the component protocol.

Figure 5 shows the protocol associated to an if instruction. Each state of
the protocol is associated with an instruction and transitions are labelled with
the method called from that state. State s0, for example, is associated with
instruction o1.cond() and state s2 is associated with instruction o2.n(). The
final state s3 is not associated with any instruction: It is used when composing
this protocol with protocols extracted from other instructions.

We have pre-defined protocols for methods calls, loops (while), and try-
catch-finally expressions. An I−LP for a method is built by composition of
these pre-defined building blocks. Suitable composition operators are defined
in [5].

We believe that we have a one-to-one correspondence between the com-
ponent I−LP and its source code. However, we shall formally proof the
correspondence between I−LP and source code in a future work.

3.3 Verification of coherence

We use the algorithm defined in sub-section 3.1 to compare the D−LP with
the I−LP: To determine the coherence between two protocols. For example,
Figure 6 shows a piece of source code of a component (condition if ), the I−LP
extracted from this piece of code and the D−LP specified by the designers.
The algorithm detects an incoherence in state e2 of protocol e with respect to
state s2 of protocol s: Different services are called from these states.

After the verification we have determined if the two protocols, I−LP and
D−LP of a given component, are coherent:

¥ If the two protocols are coherent, the designers and the developers are
confident that the component performs (and only performs) the task it
was designed for. However, coherence between the I−LP and the D−LP
only ensures that the component behave as expected by the designers, it
does not prevent the component to behave differently than expected by
the users.

¥ If the two protocols are incoherent, the designers and the developers must
consider if the incoherences come from the component implementation or
from the component design. If the designers prove that the component
must behave following its D−LP, then the developers must change the
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s1
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if (o1.cond()){
    o2.m1();

}

} else {
    o2.m2();

e0 e3

e2
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o2: −m2()o1: −cond()

o1: −cond()

extraction
modification
tests

o2: −m1()

o2: −m3()

o1: −cond()

o1: −cond()

s0

coherence modification

Fig. 6. Protocols and implementations.

component implementation accordingly (for example, in the case of a bug
in the implementation). If the developers prove that the component must
behave following its I−LP, then the designers must change their design
(for example, in the case of unanticipated technological limitations in the
component run-time environment).

We now present an algorithm to modify automatically a protocol given
another protocol. We use this algorithm to correct automatically a component
I−LP according to its D−LP, or a component D−LP following its I−LP.

3.4 Modification of protocols

We modify the structure of an offending protocol OP based on a given pro-
tocol GP. We perform protocol modifications using a few primitives, such as
adding or deleting a transition, correcting service requests, and adding or
modifying identities verification. For each state of the GP, we modify the OP
to ensure that the OP has the same failures as the GP. Second, we handle
incoherences with respect to collaborator identities. Every incoherence in the
OP is corrected by enforcing the identity constraints specified in the GP.

The following pseudo-code describes the algorithm used to modify a pro-
tocol according to a given protocol:
while (there is a state to verify)

if failures != for states reachable by a common trace

Correct failures of the offending protocol

while (there is a state to verify)

If identities != for states reachable by a common trace

Correct identities of the transitions of the offending protocol

If I−LP and D−LP are not coherent, it is possible to correct the error by
either modifying the I−LP or modifying the D−LP: We solve the problem
of coherence statically by modifying the OP to ensure that service requests
always respect the desired order, specified by the GP. Furthermore, we add
test that verify the identity of the caller or receiver defined in the protocol
according to the interface-level protocol’s identity lists.
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It is important to remember that we have a one-to-one correspondence, by
construction, between a component I−LP and the component source code.
The one-to-one correspondence ensures that the component source code will
comply with the modified I−LP, after modifying its I−LP according to a
given D−LP. We do not either (re)generate the implementation of the com-
ponent from the modified I−LP(when I−LP is the offending protocol), or
replace the D−LP by the I−LP (when D−LP is the offending protocol) be-
cause the two protocols can be structurally different, while coherent, and the
replacement of one by the other could lead to information loss.

3.5 Tool support for components with explicit protocols

We have developed a tool, CwEP, (Components with Explicit Protocols), sup-
porting the algorithms previously described. With this tool, we can extract
the I−LP from a component source code, verify its coherence with respect
to a given D−LP. The tool does not support yet I−LP modification, we are
currently working on this part of the implementation.

Verification Modification

Extractor

protocols

Eclipse’s Syntax analyser

source code

(a) The tool architecture.

Protocol

active() : void
addState (State) : boolean
addStates (Protocol) : boolean
addTransition (Transition) : boolean
addTransitions (Protocol) : boolean
addTransitions (List) : boolean
getName () : String
isActive () : boolean
setInitialState (State) : void
setName (String ) : void

State

getName () : String
isErrorState () : boolean

Transition

getLabel () : String
getReachableState () : State
getStartingState () : State

(b) The meta-model to describe protocols.

Fig. 7. Structure and protocol of the ChatServer component.

CwEP is implemented based on a meta-model to describe protocol and on
the compiler technology provided by the Eclipse platform [15].

We develop a meta-model to describe protocols. Figure 7(b) presents the
main classes of the meta-model. Instances of class State represent the states
of the FSM, describing protocols. Instances of class Transition represent
transitions. Instances of class Protocol represent protocols. We also have
representations for identity lists.

We use the Java parser provided with this platform to analyze the source
code of components and to build abstract syntax trees (AST). Then, we visit
each node of the AST and we build the I−LP of the component. The con-
struction of the I−LP from the component AST ensures a one-to-one corre-
spondence between the two. However, we must proof formally this one-to-one
correspondence. We are currently implementing the algorithms of coherence
verification and protocol modification.
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4 Related work

Several works have been proposed to integrate protocols in component inter-
faces. A first step towards the integration of protocols on component interface
is presented in [20]. Software adaptors are defined as bridges between appli-
cations working with incompatible component protocols. The research team
of Charles University working on the SOFA project [16] study the use of com-
munication protocols to extend and to adapt the object model proposed by
Nierstrasz [14] to components. This team implements a prototype supporting
protocol specification for components. In this prototype, the execution envi-
ronment is in charge of controlling the coherence between the components and
their associated protocols. But, this model remains academic and, until now,
there has been little work to apply it to industrial models [11].

Specification and verification of properties using finite-state verification
tools has been largely studied but slowly adopted by practitioners [3]. The
transition from the results obtained in academic component models to indus-
trial component models, such as Enterprise JavaBeans [2], Corba [17], and
Miscrosoft COM and .NET [9], is scarce. A first step towards a foundation
of a generic component model supporting the description of structural and
behavioral specifications has been presented in [18].

In the context of security, Proof Carrying Code [13] can be named as a
technique used to guarantee that a piece of code will satisfy some properties
when executed. There are several kind of component specifications for de-
scribing different kind of requirements, as for example: Concurrency, general
security properties, sequential constraints.

In the context of agent-based programming, Law-Governed Interaction
(LGI) [12] proposes a model based on four principles to describe and to en-
force the behavior of interacting agents. LGI is based on a dynamic and
decentralized mechanism of message interception. While we want to ensure
statically the coherence of a component implementation with respect to its de-
sign, LGI enforces dynamic verification of the agents behaviour with respect
to given laws.

Several work takcle the adaptation and understanding of programs, based
on the coherence of implicit protocols. For examples, in the context of con-
figuration and adaptation of component communication, an aspect-oriented
approach is used to correct incohenrence [7]; In the context of design pat-
terns, approaches exist to extract design pattern instances from source code
code [6,1].
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5 Conclusions and future work

We return now to the question stated at the beginning of this paper : How to
ensure the coherence between the protocol defined at the design-level and the se-
quences of service requests followed by a component, during the implementation-
phase of the component?

We proposed a notion of coherence between D−LP and I−LP to compare
the specifications made at the design level and the protocol followed by a com-
ponent implementation. We presented an algorithm to extract a component
I−LP from its source code. We showed how to verify the notion of coherence
and, finally, we proposed a prototype tool to extract a component I−LP, and
to compare it with its D−LP.

There are two direct steps that we want to take next. First, we shall
complete our prototype, so it can modify the component source code and
protocol definitions. Second, we want to validate our model and algorithms
by integrating our framework in the EJB component model. Then, there are
several application domains in which we can use protocols. We will apply our
approach to detection of behavioral design patterns, to the implementation of
a security aspect in an aspect-oriented programming model, and to component
specialization.
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