
P-MARt: Pattern-like Micro Architecture Repository

Yann-Gaël Guéhéneuc
Département d’informatique et de recherche opérationnelle

Université de Montréal – CP 6128 succ. Centre Ville
Montréal, Québec, Canada, H3C 3J7

guehene@iro.umontreal.ca

Abstract

We introduce P-MARt, a repository of pattern-like
micro-architetcures. The purpose of P-MARt is to
serve as baseline to assess the precision and recall of
pattern identification tools. Indeed, several approaches
have been proposed to identify occurrences of design
patterns, yet few have been independently validated for
precision and recall for lack of known occurrences. We
hope that P-MARt can be shared and enriched by re-
searchers interested in design pattern identification.

1 Context

Maintainers must be aware of design choices in order
to modify an object-oriented software system. Design
choices include decisions made by developers when de-
signing and implementing the system: the structures
of classes and the relationships among them. However,
design choices are often scattered in the source code of
systems after implementation because, with available
object-oriented programming languages, they do not
transcribe directly into source code; developers must
write several lines of code to implement their choices.
Moreover, documentation is often obsolete, if it even
exists, and these choices are thus lost.

However, design choices are often implemented with
recurring patterns, “a form or model proposed for imi-
tation” [9], to facilitate writing and understanding the
source code. Idioms and design patterns are two types
of patterns; architectural patterns and micro-patterns
are others. Idioms are low-level patterns specific to
some programming languages and to the implemen-
tation of particular characteristics of classes or their
relationships. They are intra-class patterns describing
typical implementation of, for example, relationships,
object containment, and collection traversal. Design
patterns [5] are recurring inter-class patterns that de-

fine solutions to common design problems in the or-
ganisation of classes. They are “tactics” that generate
the structure and behaviour of classes and their rela-
tionships [2]. They influence the design of modules and
classes but not the overall architecture. They are de-
fined in terms of classes and relationships; thus their
implementation uses idioms.

Developers search for some kinds of patterns in order
to understand a system [10]; by recognising concrete
manifestations of these patterns, they deduce from
their experience choices underlying the presence of pat-
terns in the source code. During maintenance and evo-
lution, maintainers would greatly benefit by knowing
the design choices made during implementation, see
for example [11]. Therefore, several researchers have
proposed tools to identify occurrences of patterns in
object-oriented systems. Design patterns have been of
much interest since Wuyts’ precursor work [11].

2 Vocabulary

We use the term motif to express the solution of a
pattern as “a reliable sample of traits, acts, tendencies,
or other observable characteristics” [9] of a pattern. We
distinguish between patterns and motifs because pat-
terns encompass information that is not readily avail-
able for their identification. For example, the Compos-
ite design pattern [5, p.163] also includes information
about its intent, motivation, applicability, and conse-
quences, which are not observable characteristics. Only
its structure, its participants, and their collaborations
are observable in the source code. Thus, strictly speak-
ing, we cannot use the terms design pattern “identifi-
cation”, “detection”, or “instantiation” but rather the
instantiation and identification of micro-architectures
similar to some motifs; thus, we use the term “design
motif identification” for the process traditionally called
design pattern identification.

We define the term micro-architectures (µA) as con-

1

crete manifestations of some motifs in the implementa-
tion of a system. A micro-architecture is an occurrence
of a design motif, composed of classes, methods, fields,
and relationships having structure and organisation
similar to one or more motifs. A micro-architecture
can be similar to more than one motif because only
developers may decide intent, motivation, and so on.

3 Problem

To support design pattern identification and pro-
gram comprehension, we have been developing the
Ptidej tool suite to model and identify design mo-
tifs [6, 7, 8] using a new multilayered framework. This
framework makes it possible to recover two kinds of de-
sign choices from source code: idioms pertaining to the
relationships among classes and design motifs charac-
terising the organisation of the classes. The framework
is extensible and scalable and ensures the traceability
between motifs and source code by first identifying bi-
nary class relationships to obtain an idiomatic model of
the code and using this model to identify design motifs
and generate a design model of the system.

However, providing an identification framework is
not enough without an independent assessment of its
precision and recall to prove the soundness of the tool
suite. Precision and recall are measures defined in in-
formation retrieval and computed as:

precision =
|{true µA} ∩ {identified µA}|

|{identified µA}|

recall =
|{true µA} ∩ {identified µA}|

|{true µA}|
Therefore, we looked for known micro-architetcures

similar to some design motifs and found only a couple
of systems with well documented use of design patterns
(in particular JHotDraw [4]. This lack of known
micro-architectures prevents the independent assess-
ment of design pattern identification approaches and
their comparison with one another.

4 Our Solution: P-MARt

We have been developing since 2004 P-MARt, a
repository of micro-architectures similar to design pat-
terns. Every session, we have asked B.Sc. and M.Sc.
students to analyse one system and identify micro-
architectures using only the GoF’s book [5]. We also
collected from colleagues their collections of micro-
architectures, we are in particular grateful to Arcelli
et al. [1] and Bieman et al. [3].

<program type="LANGUAGE">
<name>NAME</name>
<designMotif name="NAME">

<microArchitectures>
<microArchitecture n="NUMBER">

<roles>
<ROLES1>

<ROLE1>
<class>

NAME
</class>

</ROLE1>
...

</ROLES1>
...

</roles>
</microArchitecture>
...

</microArchitectures>
</designMotif>
...

</program>
...

Figure 1. Structure of the repository

We record micro-architectures in a XML file, which
allows us to traverse the data to compute metrics and
various statistics automatically. Figure 1 shows the
general structure of the XML file: A program is written
in a language and has a (unique) name; Each design
motif has a (unique) name also; A micro-architecture
possesses a unique number and associates each pos-
sible role in the design motif, role1, role2, . . . ,
roleN, with the classes names (if any) playing it.

5 Conclusion and Future Work

With P-MARt, we hope to help fellow researchers
assess their approaches to design pattern identification.
We foresee three further direction of work revolving our
P-MARt. First, we would like to discuss the interest
in this repository and disseminate it further. In partic-
ular, we would like to know if similar endeavour exists
elsewhere. Second, we would like to discuss the format
of the repository and possibility to include more inter-
esting information. Finally, we would like to discuss
possible uses of P-MARt by researchers.

2

References

[1] F. Arcelli, S. Masiero, C. Raibulet, and F. Tisato. A compar-
ison of reverse engineering tools based on design pattern de-
composition. In Proceedings of the 16th Australian Software
Engineering Conference, pages 262–269. IEEE Computer So-
ciety Press, March–April 2005.

[2] K. Beck and R. E. Johnson. Patterns generate architectures. In

Proceedings of 8th European Conference for Object-Oriented
Programming, pages 139–149. Springer-Verlag, July 1994.

[3] J. Bieman, G. Straw, H. Wang, P. W. Munger, and R. T.
Alexander. Design patterns and change proneness: An exami-
nation of five evolving systems. In Proceedings of the 9th in-
ternational Software Metrics Symposium, pages 40–49. IEEE
Computer Society Press, September 2003.

[4] E. Gamma and T. Eggenschwiler. JHotDraw. Web site, 1998.
members.pingnet.ch/gamma/JHD-5.1.zip.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns – Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1st edition, 1994.

[6] Y.-G. Guéhéneuc and H. Albin-Amiot. Recovering binary class
relationships: Putting icing on the UML cake. In Proceed-
ings of the 19th Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 301–314.
ACM Press, October 2004.

[7] Y.-G. Guéhéneuc, R. Douence, and N. Jussien. No Java with-
out Caffeine – A tool for dynamic analysis of Java programs. In
Proceedings of the 17th Conference on Automated Software
Engineering, pages 117–126. IEEE Computer Society Press,
September 2002.

[8] Y.-G. Guéhéneuc and N. Jussien. Using explanations for
design-patterns identification. In Proceedings of the 1st IJ-
CAI Workshop on Modeling and Solving Problems with Con-
straints, pages 57–64. AAAI Press, August 2001.

[9] Merriam-Webster. Merriam-Webster online dictionary, March
2003.

[10] C. Rich and R. C. Waters. The Programmer’s Apprentice.
ACM Press Frontier Series and Addison-Wesley, 1st edition,
January 1990.

[11] R. Wuyts. Declarative reasoning about the structure of object-

oriented systems. In Proceedings of the 26th Conference on
the Technology of Object-Oriented Languages and Systems,
pages 112–124. IEEE Computer Society Press, August 1998.

3

