
On the Study of Microservices Antipatterns: a Catalog Proposal
Rafik Tighilt

tighilt.rafik@courrier.uqam.ca
Université du Québéc à Montréal

Montréal, Canada

Manel Abdellatif
manel.abdellatif@polymtl.ca
Polytechnique Montréal

Montréal, Canada

Naouel Moha
moha.naouel@uqam.ca

Université du Québéc à Montréal
Montréal, Canada

Hafedh Mili
mili.Hafedh@uqam.ca

Université du Québéc à Montréal
Montréal, Canada

Ghizlane El Boussaidi
ghizlane.elboussaidi@etsmtl.ca
École de Technologie Supérieure

Montréal, Canada

Jean Privat
privat.jean@uqam.ca

Université du Québéc à Montréal
Montréal, Canada

Yann-Gaël Guéhéneuc
yann-gael.gueheneuc@concordia.ca

Concordia University
Montréal, Canada

ABSTRACT
Microservice architecture has become popular in the last few years
as it allows the development of independent, highly reusable, and
fine grained services. However, a lack of understanding of its core
concepts and the absence of a ground-truth lead to design and
implementation decisions, which might be applied often and intro-
duce poorly designed solutions, called antipatterns. The definition
of microservice antipatterns is essential for improving the design,
maintenance, and evolution of microservice-based systems. More-
over, the few existing specifications and definitions of microser-
vice antipatterns are scattered in the literature. Consequently, we
conducted a systematic literature review of 27 papers related to
microservices and analyzed 67 open-source microservice-based sys-
tems. Based on our analysis, we report in this paper 16 microservice
antipatterns. We concisely describe these antipatterns, how they are
implemented, and suggest refactoring solutions to remove them.

KEYWORDS
Microservices, architecture, antipatterns
ACM Reference Format:
Rafik Tighilt, Manel Abdellatif, Naouel Moha, HafedhMili, Ghizlane El Bous-
saidi, Jean Privat, and Yann-Gaël Guéhéneuc. 2018. On the Study of Mi-
croservices Antipatterns: a Catalog Proposal. In Proceedings of the 25th
European Conference on Pattern Languages of Programs. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Microservice architecture is an architectural style and approach
to developing a single application as a suite of small services, each

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroPLoP’20, July 01–05, 2020, Kloster Irsee, Bavaria, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

running on its own process and communicating with lightweight
mechanisms, often an HTTP resource API [1].

This architectural style has been broadly adopted by several ma-
jor actors in industry (e.g., Amazon, Netflix, Riot Games, etc.) as it
allows the development of independent, reusable, and fine grained
services. The dynamic and distributed nature of microservice-based
systems allow them to offer greater agility and operational effi-
ciency to enterprises, which are challenging to be obtained with
monolithic applications[2].

Microservices recently demonstrated to be an effective archi-
tectural paradigm for migrating and modernizing monolithic ap-
plications. They allow the developers to decompose monolithic
applications into small and independent services. Each service (1) is
developed by a team; (2) represents a single business capability; and,
(3) can be delivered and updated autonomously without impacting
other services and their releases.

However, the highly dynamic nature of microservice-based sys-
tems as well as the continuous integration and continuous delivery
of microservices can lead to design and implementation decisions,
which might be applied often and introduce poorly designed so-
lutions, called antipatterns. These antipatterns may significantly
affect the maintainability of the systems and degrade their design
and operational quality [3].

However, a lack of understanding of its core concepts and the
absence of a ground-truth

Unlike object-oriented antipatterns, the specifications and defi-
nitions of microservice antipatterns are still in their infancy. Only a
few books and academic papers deal with microservice antipatterns.
These antipatterns are often mixed with Service Oriented Archi-
tecture (SOA) antipatterns and not described thoroughly: while
microservices antipatterns are mainly concerned with service gran-
ularity, deployment, and monitoring, SOA antipatterns often focus
on the architectural design of services and service-based systems.
Besides, the current state-of-the-art microservices antipatterns (1)
are scattered in the literature, (2) are called under different names,
and (3) are done with incomplete/imprecise definitions/description.
This makes it difficult for both practitioners and researchers to
gather relevant information to their context. It also underlines the

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

EuroPLoP’20, July 01–05, 2020, Kloster Irsee, Bavaria, Germany Tighilt et al.

lack of a solid foundation to refer to while investigating or work-
ing with microservices. Hence, in this paper, we want to unify the
definitions and naming of microservice antipatterns and go beyond
granularity, deployment, and monitoring.

In this paper we propose a catalog of the state-of-the art mi-
croservice antipatterns based on (1) a systematic literature review
of 27 studies related to microservice architectural design, and (2) the
analysis of 67 concrete microservice-based systems to have a better
understanding of the implementation of these antipatterns and their
possible refactored solutions. The paper provides a uniform and
structured description of each antipattern as well as refactoring
solutions to remove them. The paper also studies the impact of
these antipatterns on both developers and microservices end-users.

This paper is structured as follows. Section 2 describes the related
works. Section 3 details our study design. Section 4 provides our
catalog of microservice antipatterns. Section 5 synthesizes our work
and provides several recommendations. Section 6 discusses threats
to validity. Section 7 concludes with future work.

2 BACKGROUND AND RELATEDWORK
Definition ofMicroservices: Microservices are an architectural

style for developing applications as sets of small services, each run-
ning in its own process and communicating through lightweight
mechanisms [1]. While microservices emerged as a variant of the
SOA paradigm, there are several differences between them such
as (1) Microservices promotes multidisciplinary teams (DBAs, en-
gineers, DevOps etc.) while SOA teams are more specialized, (2)
SOA services are larger, modular services compared to microser-
vices fine-grained services, (3) Microservices rely on lightweight
APIs while SOA uses ESB, and (4) SOA promotes sharing between
services of code, resources and functionalities as much as possible
to support service reuse. Microservices promote a share-nothing
philosophy to easily apply iterative, continuous development and
delivery processes (DevOps) and to increase the system agility [4].

Microservice Patterns andAntipatterns: Several researchwork
exist on the design of microservice-based systems. Pahl and Jamshdi
[5] conducted a systematic mapping study of 21 works on microser-
vice design published between 2014 and 2016. They studied and
classified the works based on a characterization framework defined
in their work. They concluded that microservice research is still
in a formative stage. They also reported a lack of research tool
supporting microservice-based systems.

Zimmerman [6] mappedmicroservice tenets to SOA patterns and
concluded that microservices are just one special implementation
of the SOA paradigm.

Garriga [7] proposed a taxonomy of the concepts of microser-
vices, which includes the whole microservice life-cycle (design,
implementation, deployment, runtime, and cross-cutting concerns)
as well as organizational aspects.

Soldani et al. [8] studied the industrial grey literature and identi-
fied and compared benefits and limitations of microservices. They
also studied the design and development practices of microservices
to bridge academia and industry in terms of research focus.

Marquez and Astudillo [9] extended their previous work with
Osses [10] to determine whether architectural patterns are used
in the development of microservice-based systems. They provided

(1) a catalog of microservice architectural patterns from academia
and industry, (2) a correlation between quality attributes and these
patterns, (3) a list of technologies used to build microservice-based
systems with these patterns, and (4) a comparative analysis of SOA
and microservice architectural patterns.

Taibi et al. [11] proposed a taxonomy of microservice antipat-
terns based on a survey of 27 practitioners. They compiled 20 an-
tipatterns and estimated their degree of harmfulness from the prac-
titioners’ point of view. They did not describe the antipatterns, their
symptoms, or their practical use and implementations.

We rely on these previous works to perform a systematic lit-
erature review of microservice antipatterns. We describe these
antipatterns, their implementations, and refactoring solutions. We
also describe the impact of each antipattern from the point of view
of microservice end users and developers.

3 STUDY DESIGN
We use the following steps to build our catalog of microservice
antipatterns. We believe that the following study design can be
used for replication purpose and for future studies investigating
other microservice patterns and antipatterns.

3.1 Systematic Literature Review Methodology
We follow the procedures proposed by Kitchenham et al. [12] for
performing systematic literature reviews. First, we collected re-
search papers based on search queries. We started by identifying
relevant query terms that are related to microservices. Then, for
each keyword, we identified a set of related terms and synonyms
using an online synonym finder1. Thus, we defined the following
search string:

(microservice OR micro-service OR service) AND (an-
tipattern OR anti-pattern OR bad smell OR pitfall OR
poor design OR code smell OR bad practice)

Second, we executed this search query in different scientific
search engines: ACM Digital Library, Engineering Village, Google
Scholar, IEEE Xplore Digital Library, which returned a total of 1,195
unique references.

Third, we filtered these references based on (1) their titles, (2)
their abstracts, and (3) their contents. Two of the authors manually
and independently analyzed all the papers and then reconciled
any differences through discussions. We excluded from our review
papers that met one of the following criteria:

• Papers not written in English.
• Papers not related to microservices.
• Papers not related to microservice antipatterns.

Thus, we reduced the number of references to 21 papers on the
design of microservice-based systems.

Fourth, we applied forward and backward snowballing [13, 14]
to minimize the risk of missing important papers. Forward snow-
balling refers to the use of the bibliographies of the papers to iden-
tify new papers. Backward snowballing refers to the identification
of new papers citing the identified papers. We iterated the backward
and forward snowballing and applied for each new candidate paper
our exclusion criteria. We stopped the iteration process when we
1https://www.synonym-finder.com/

On the Study of Microservices Antipatterns: a Catalog Proposal EuroPLoP’20, July 01–05, 2020, Kloster Irsee, Bavaria, Germany

could not found new candidate paper. We performed a total of five
iterations and added six papers. We thus obtained 27 papers that
describe microservice antipatterns, presented in Table 1.

3.2 Analysis of Microservice-based Systems
We searched for open-source microservice-based systems to have
a better understanding of microservice antipatterns. We manually
analyzed 67 systems2 to detect potential violations of microservice
design practices and thus potential antipatterns. We analyzed the
implementation of each detected antipattern in the source code and
noted textually its related symptoms/hints that helped us to detect
their presence in systems. This analysis also allowed us also to
identify the concrete refactoring solutions or practices that should
be applied to remove the antipatterns

3.3 Validation and Generation of the Catalog of
Microservice Antipatterns

Based on our systematic literature review and the analysis ofmicroservice-
based systems, we generated a catalog of microservice antipatterns.
Through discussions among the authors as well as prior studies on
SOA patterns and antipatterns, we generalized the specifications
and definitions of each microservice antipattern, their symptoms,
and their possible refactoring solutions.

Several templates are used in the literature to define patterns
and antipatterns [34, 35]. We adapted the template provided by
Dudney et al. [36] to describe the list of microservice antipatterns
as follows:

• Antipattern: Name of the antipattern.
• Context: Context in which the antipattern could occur.
• General form: How the antipattern manifested itself.
• Symptoms: Hints/elements that show the presence of the
antipattern.

• Consequences: Drawbacks related to the presence of the
antipattern.

• Refactored solution: Steps to remove the antipattern and
apply best practices.

• Advantages of refactoring: Benefits of removing the antipat-
tern by applying the refactoring solution.

• Trade-offs: Trade-offs between keeping/removing this an-
tipattern.

Finally, we obtained a total number of 16 antipatterns in our
catalog that we detail in the following section.

3.4 Categorization of Microservice
Antipatterns

We organized our antipattern catalog into four categories, based
on the development cycle of a microservice-based system:
Design: Antipatterns related to the specification of the architectural
design of a microservice-based system.
Implementation: Antipatterns related to how the microservices are
implemented.
Deployment: Antipatterns related to packaging and deployment of
microservice-based systems.

2https://github.com/davidetaibi/Microservices_Project_List

Figure 1: Wrong Cut

Monitoring: Antipatterns related to the monitoring of microservice-
based systems, their behavior and changes.

We relied on the scale of Taibi et al. [11] to assign a developer’s
and a end user’s impact (high, moderate, or low) to each antipattern
based on our observations:
High: Antipattern consequences directly affect end users.
Moderate: End user may indirectly experience some of the impact,
either in performance or in application evolution.
Low: Antipattern consequences has little to no impact on end users,
only as an increase in maintenance or deployment costs.

4 MICROSERVICES ANTIPATTERNS
We now provide our catalog of 16 microservices antipatterns.

4.1 Design Antipatterns
We found four antipatterns related to the design of microservice-
based systems.

4.1.1 Wrong Cut
Also known as: Layered microservices architecture
Developer impact: High
End user impact: Low
Refactored solution name: Decompose on business capabilities

Context: A microservice should encapsulate a group of function-
alities to allow the independent delivery of business capabilities.
It should be owned, developed, and deployed by a single team. It
should fulfill a single purpose.

General Form: The system is decomposed in microservices fol-
lowing technical aspects, such as presentation layer, business layer,
and data access layer, as illustrated by Figure 1.

Symptoms: Some of the following aspects can indicate the pres-
ence of the Wrong Cut antipattern in a microservice-based system:
(1) high microservice coupling; (2) process calls; (3) front-end/ORM
microservices; or, (4) deployment dependencies.

Consequences: Delivering business capabilities becomes harder
because it involves multiple teams that need coordination. Microser-
vices become highly coupled together and thus failures become
more difficult to handle.

Refactored Solution: Microservices should be decomposed based
on business capabilities and organization teams. They should be

https://github.com/davidetaibi/Microservices_Project_List

EuroPLoP’20, July 01–05, 2020, Kloster Irsee, Bavaria, Germany Tighilt et al.

Reference Title
Newman [2] Building Microservices: Designing Fine-Grained Systems
Di Francesco et al. [4] Research on architecting microservices: Trends, focus, and potential for industrial adoption
Pahl and Jamshidi [5] Microservices: A Systematic Mapping Study
Garriga [7] Towards a Taxonomy of Microservices Architectures
Soldani [8] The pains and gains of microservices: A Systematic grey literature review
Marquez And Astudillo [9] Actual Use of Architectural Patterns in Microservices-Based Open Source Projects
Osses et al. [10] Exploration of academic and industrial evidence about architectural tactics and patterns in microservices
Taibi et al. [11] Microservices Anti Patterns: A Taxonomy
Salah [15] Microservices Antipatterns
Bogard [16] Avoiding microservices megadisaster
Shadija [17] Towards an understanding of microservices
Taibi et al. [18] Architectural patterns for microservices: a systematic mapping study
Taibi et Lenarduzzi [19] On the Definition of Microservice Bad Smells
Brogi et al. [20] Design principles, architectural smells and refactorings for microservices: A multivocal review
Bogner et al. [21] Towards a collaborative repository for the documentation of service-based antipatterns and bad smells
Carrasco et al. [22] Migrating towards microservices: migration and architecture smells
Alshuqayran et al. [23] A systematic mapping study in microservice architecture
Balalaie et al. [24] Microservices migration patterns
Carnell [25] Spring microservices in action
Di Francesco et al. [26] Architecting with microservices: a systematic mapping study
Dragoni et al. [27] Microservices: yesterday, today, and tomorrow.
Ghofrani and Lubke [28] Challenges of microservices architecture: a survey on the state of the practice.
Nadareishvili et al. [29] Microservice architecture: aligning principles, practices, and culture
Pautasso et al. [30] Microservices in practice, part 1: reality check and service design
Richards [31] Microservices antipatterns and pitfalls
Stocker et al. [32] Interface quality patterns—communicating and improving the quality of microservices APIs.
Wolff [33] Microservices: flexible software architecture

Table 1: Microservices Design References

Figure 2: Refactored Wrong Cut

atomic business entities and implement all the functionalities that
fulfill given business capabilities (see Figure 2).

Advantages of Refactoring: The decomposition of microservices
based on business capabilities allows teams to focus on single re-
sponsibilities. The microservices become easier to maintain, de-
ployments are more frequents, the microservice boundaries are
clear.

Trade-offs: Decomposing a system by business capabilities re-
sults in multiple independent teams that can be expert in these
capabilities and focus on their tasks. However, implementing new

functionality that spans multiple business capabilities requires co-
ordination and efficient communication tools between teams. It is
also challenging to keep all the teams aligned to the system vision.

4.1.2 Cyclic Dependencies
Also known as: N/A
Developer impact: High
End user impact: Low
Refactored solution name: Group dependent microservcies

Context: Microservices should be independent processing units
that communicate through lightweight mechanisms [1] to avoid
managing dependencies and the “distributed monolith" pitfall [19].

General Form: Microservices depend on each other in a cyclic
way, as illustrated by Figure 3.

Symptoms: Cyclic dependencies manifest through (1) direct calls
between microservices; (2) frequent communications between mi-
croservices; or, (3) presence of HTTP requests in callbacks.

Consequences: Microservices are no longer independent. The
deployment of a microservice depends on deploying its coupled mi-
croservices. A failure in one of the cyclic-dependent microservices
causes a failure in the others.

On the Study of Microservices Antipatterns: a Catalog Proposal EuroPLoP’20, July 01–05, 2020, Kloster Irsee, Bavaria, Germany

Figure 3: Cyclic Dependencies

Figure 4: Refactored Cyclic Dependencies

Refactored Solution: We can avoid cyclic dependencies by group-
ing strongly dependent microservices into a single microservice,
see Figure 4.

Advantages of Refactoring: Refactoring into units remove depen-
dencies between microservices and transforms cyclic-dependent
microservices into a singular unit easier to maintain and deploy.

Trade-offs: Cyclic dependencies may be necessary when the out-
put of one service should trigger an input microservice, for example
when processing product orders result in orders for sub-products
to be processed. However, cyclic dependencies make reasoning
about the business processes more difficult as well as make changes
to the involved microservices harder. Refactoring this antipattern
requires updating all the microservices that communicate with the
dependent microservices. Developers should also ensure that the
resulting microservices each fulfill one business capability and do
not become Mega Services.

4.1.3 Mega Microservice
Also known as: N/A
Developer impact: Moderate
End user impact: Moderate
Refactored solution name: Decompose on business capabilities

Context: Microservices should be small and independent units,
independently deployable and serving a single purpose [1].

General Form: A microservice that serves multiple purposes.

Symptoms: A mega microservice is a microservice with a high
number of lines of code, modules or files, as well as a high fan-in.

Consequences: Having a mega microservice creates maintenance
issues, reduced performance, and difficult testing, in addition to the
complexity of the microservices infrastructure.

Refactored solution: We must decompose the mega microservice
into smaller microservices that serve a single purpose.

Advantages of Refactoring: Decomposing a mega microservice
into smaller pieces simplifies the deployment and testing process
and, isolates business capabilities into well defined microservices.

Trade-offs: Having one cohesive microservice providing a set of
related business capabilities helps developers focus and coordinate
their work. However, it also prevents the evolution of the systems
in new directions, the reuse of microservices in other scenarios
or systems, and developers forming loosely coupled, independent
teams.

4.1.4 Nano Microservice
Also known as : Break the piggy bank
Developer impact: Low
End user impact: Low
Refactored solution name: Decompose on business capabilities

Context: Refactoring a monolith system into a microservices-
based system is a complex problem. Microservices should fulfill
single business capabilities, no more but also no less.

General Form: A monolith system broken into a large number of
small microservices.

Symptoms: The nano microservice antipattern exists when (1)
the system has a large number of microservices; (2) microservices
exchange a lot of information; or, (3) cyclic dependencies exist.

Consequences: When decomposing a monolith system into mi-
croservices without considering domain or granularity, services
often become coupled.

Refactored Solution: We must decompose a system around busi-
ness capabilities and consider microservices as the base unit for a
business entity.

Advantages of Refactoring: Refactoring nano microservices in-
creases microservices independence, system efficiency, and ease
maintenance.

Trade-offs: Nano microservices increase the opportunities for
reuse and help developers focus on important microservices (those
bringing coordination and business values). However, at develop-
ment time, they require more developers or that developers switch
contexts more often; at deployment time, they yield more work
because more services must be deployed; and at runtime, they imply
more communication overhead among services. However, group-
ing a set of nano microservices may lead to microservices that no
longer have only one business capability. The refactoring of nano
microservices antipatterns can also lead to Wrong Cuts or Mega
Microservices.

4.2 Implementation Antipatterns
We now describe antipatterns related to the implementation of
microservice-based systems.

EuroPLoP’20, July 01–05, 2020, Kloster Irsee, Bavaria, Germany Tighilt et al.

Figure 5: Shared Libraries

Figure 6: Refactored Shared Libraries (1)

Figure 7: Refactored Shared Libraries (2)

4.2.1 Shared Libraries
Also known as: I was taught to share
Developer impact: Moderate
End user impact: Low
Refactored solution name: Share as little as possible

Context: Microservices should avoid sharing runtime libraries
and code directly.

General Form: Microservices share libraries or files as illustrated
by Figure 5

Symptoms: The presence of executable files or runtime libraries
shared among multiple microservices, added at compile or packag-
ing time, can indicate this antipattern.

Consequences: This antipattern couples microservices together
and breaks the boundary between microservices. It also impedes
change, evolution, testing, and deployment [31].

Refactored Solution: Runtime assets should not be shared even at
the cost of the DRY principle [31] as illustrated by Figure 6. Shared
libraries should be their own microservices as shown in Figure 7.

Advantages of refactoring: Microservices become independent
and isolated with clear boundaries.

Trade-offs: Sharing libraries among microservices is useful to
ensure consistency and have a single location where to update
a library. However, sharing libraries creates a dependency on a

Figure 8: Hardcoded Endpoints

single point of failure and defeats the purpose of having indepen-
dent, lightly coupled microservices. However, when refactoring
the Shared Libraries antipattern, the libraries must be copied into
the related microservices, which increases the complexity of updat-
ing/maintaining the libraries and microservices. Refactoring could
be done by adding one microservice that wraps one or more shared
libraries.

4.2.2 Hardcoded Endpoints
Also known as: Hardcoded IPs and ports [15]
Developer impact: High
End user impact: Low
Refactored solution name: Service discovery

Context: Microservices must communicate with one another.
They are independently deployed and usually communicate through
REST APIs. Microservices can reach one another endpoints via IP
addresses and port numbers.

General Form: Microservice IP addresses, ports, and endpoints
are explicitly/directly specified in the source code. Figure 8 show
hardcoded endpoints in one microservice-based system3.

Symptoms: Hardcoded endpoints antipattern show via the pres-
ence of IP addresses or fully qualified domain names in source code,
configuration files, or environment variables4.

Consequences: When there are manymicroservices in a system, it
becomes more difficult to track all the endpoints and URLs. Running
multiple instances of a microservice with a load-balancer becomes
impossible. Changing the IP address or port number of a microser-
vice requires changing and redeploying other microservices.

Refactored Solution: Service discovery prevents hardcoding IP
addresses and port numbers. It tracks microservices endpoints and
ease the communications among microservices. Two strategies may
be used for service discovery: (1) client-side service discovery, in
Figure 9, and server-side service discovery, in Figure 10.

Advantages of Refactoring: With service discovery, microservice
endpoints can change dynamically without affecting other microser-
vices. It also simplifies the deployment of microservices on contain-
ers and virtual machines with dynamic IP addresses. It also provides
a single, centralized registry for all microservice endpoints.

3https://github.com/microservices-demo
4https://github.com/oktadeveloper/spring-boot-microservices-example

On the Study of Microservices Antipatterns: a Catalog Proposal EuroPLoP’20, July 01–05, 2020, Kloster Irsee, Bavaria, Germany

Figure 9: Client side service discovery. Service 1 asks Registry
for the endpoint of Service 2 (1,2); then Service 1 uses the returned
endpoint to communicate with Service 2 (3,4).

Figure 10: Server side service discovery. Service 1 asks Registry
to fulfill the service (1,4); whereas Registry just proxies the com-
munication to Service 2 (2,3).

Figure 11: Manual Configuration

Trade-offs: In a tightly controlled, slow changing environment,
hardcoding endpoints is an easy shortcut to speed development,
deployment, and testing. However, it also makes evolution and
scalability more difficult. In particular, client-side service discovery
requires writing discovery logic inside each microservice. Server-
side discovery requires adding amicroservice tomanage, deploy and
maintain endpoints, which may affect the system’s performance.
In both refactoring scenarios, a network call is added. Therefore,
a trade-off between dynamic and hardcoded endpoints should be
considered when refactoring this antipattern.

4.3 Deployment Antipatterns
We now describe antipatterns related to the deployment of mi-
croservices.

4.3.1 Manual Configuration
Also known as: N/A
Developer impact: N/A
End user impact: Low
Refactored solution name: Automated configuration

Context: Microservices efficiency relies on automation and ev-
erything that can be automated should be automated.

General form: Configuration of instances, services and hosts is
done manually by developers as illustrated in Figure 11

Figure 12: Refactored Manual Configuration

Symptoms: Configuration files in every microservice and the
reliance on environment variables can indicate the presence of this
antipattern5.

Consequences: The process of configuring microservices is time
consuming and error prone as we need to manage, for each mi-
croservice, different configurations for different environments (de-
velopment, testing and production).

Refactored solution: Use configuration servers and services to
automate the configuration process like depicted in Figure 12, this
can be done through continuous delivery tools.

Advantages of refactoring: Using configurationmanagement tools
allow developers to manage configurations in a centralized way,
making it easier to share common elements across configurations,
and more generally, easier to maintain consistency across configu-
rations of different services.

Trade-offs: Manually configuring microservices and their inter-
actions makes it easy to write, deploy, and run the microservices
and deliver the system. Enabling automatic configuration requires
to set up new tools and pipelines, which may be complex depend-
ing on the system. It also requires monitoring to check that all the
configurations are correctly loaded for each service. However, it is
necessary when the number of microservices grows and-or when
the system must scale (in deployment and at runtime).

4.3.2 No Continuous Integration / Continuous Deliv-
ery (CI/CD)

Also known as: No DevOps tools [11]
Developer impact: Low
End user impact: Low
Refactored solution name: CI/CD usage

Context: The independent deployment of microservices allows
relatively small teams -within a single enterprise- to easily apply
iterative continuous development and delivery (DevOps) processes,
and thereby increase system agility. The integration of Development
and Operations, and the continuous delivery result in (1) reducing
delivery time; (2) increasing delivery efficiency; (3) decreasing time
between releases; and (4) maintaining software quality [2].

General form: No automated solution to manage tests and de-
ployment processes.
5https://github.com/venkataravuri/e-commerce-microservices-sample

EuroPLoP’20, July 01–05, 2020, Kloster Irsee, Bavaria, Germany Tighilt et al.

Figure 13: No API gateway

Symptoms: Some of the following symptoms can indicate the
presence of the no CI/CD antipattern: (1) no version control reposi-
tories on microservices; (2) no unit/integration/functional tests; (3)
no automated delivery tools; or (4) no staging environments.

Consequences: Testing and deployment processes are slower and
error prone [37]. Bugs and build failures are harder to catch. Also, a
lot of coordination is needed to ensure the cohesion ofmicroservices
deployments.

Refactored solution: Use continuous integration and continuous
delivery tools to build an efficient pipeline of testing and deploy-
ment.

Advantages of refactoring: When using continuous integration
and continuous delivery tools, code changes can be smaller and
deployed as early as possible. Faults in the system become easier to
track and to identify. Rollbacks are easier because the root cause
of a problem can be found in a efficient way. Also, tests become
more efficient as they are automated and executed before each
deployment.

Trade-offs: Despite all their benefits, there are some challenges
when adopting CI/CD. Substantial effort, time, and money are re-
quired to install and run CI/CD-based development. Also an organi-
zation may face internal resistance from its developers to learn and
integrate CI/CD in their well-honed development process. A trade-
off between refactoring this antipattern and the aforementioned
challenges should be considered when considering this antipattern.

4.3.3 No API Gateway
Also known as: N/A
Developer impact: Moderate
End user impact: Low
Refactored solution name: API gateway

Context: When building microservices-based systems, consumer
applications needs to communicate with a lot of microservices, and
every consumer needs a very specific set of information.

General form: Microservices are exposed and consumers com-
municate with them directly, as shown in Figure 13.

Symptoms: Consumer applications sending multiple HTTP re-
quests, or requests to multiple different URLs, and systems that
have multiple front ends (Web, mobile, etc.) can be indicative of the
presence of this antipattern6.

6https://github.com/venkataravuri/e-commerce-microservices-sample

Figure 14: API gateway

Consequences: Consumer applications need to be "aware" of how
the application is partitioned into microservices. They also need
to manage/maintain endpoints for many microservices. Finally,
authentication and authorization are done per microservice.

Refactored solution: Use an API gateway as the single entry point
for all the microservices as illustrated in Figure 14.

Advantages of refactoring: As a single entry point for all microser-
vices, the API gateway will be in charge of: 1) routing requests to
the corresponding microservices, and 2) common tasks such as
authentication, authorization, input validation, and response trans-
formation.

Trade-offs: Implementing an API gateway requires to create,
manage, and maintain a new microservice. It also requires choosing
the type of API gateway to implement (to handle or not security
for example). Implementing an API gateway may also slow down
the microservices response times as it adds additional network
operations. However, without an API gateway, the clients of the
microservice-based systems are dependent on particular microser-
vices, which limit the systems evolution.

4.3.4 Timeouts
Also known as: Dog piles [31]
Developer impact: N/A
End user impact: High
Refactored solution name: Circuit breaker

Context: Service availability refers to the possibility for a service
consumer to connect and send a request to a service. Service respon-
siveness is the time taken by the service to respond to that request
[31]. It is common practice in distributed systems to have consumer
applications/tasks use timeouts to handle service unavailability or
unresponsiveness.

General form: Timeouts are set by developers when sending
requests or waiting for responses.

Symptoms: Request retrial and timeout values are good signs of
the presence of this antipattern.

Consequences: Finding the right timeout value is difficult. A too
short timeout will fall too quickly on timeout exception handling,
not giving "busy" services enough time to respond, leading to thrash-
ing; a too long timeout will keep consumer applications wait too
long before bailing out on a down service.

On the Study of Microservices Antipatterns: a Catalog Proposal EuroPLoP’20, July 01–05, 2020, Kloster Irsee, Bavaria, Germany

Figure 15: Multiple Microservices Instances Per Host

Refactored solution: Use circuit breakers, which are interceptors
that check regularly for service "health" (availability and respon-
siveness), and decline requests automatically if the microservice is
down.

Advantages of refactoring: Consumer applications no longer need
to wait until timeout to fall back on service unavailability exception
handling, and avoids unnecessary retrials. Circuit breakers close
themselves (become pass-through) automatically once the service
is up again.

Trade-offs: Implementing circuit breakers requires updating all
microservices to call one another via the circuit breakers as proxies.
Choosing the right timeout values for the circuit breaker is also
challenging. Yet, circuit breakers are necessary to maintain and
improve the responsiveness of the systems.

4.3.5 Multiple Service Instances Per Host
Also known as: N/A
Developer impact: N/A
End user impact: Low
Refactored solution name: Single service instance per host

Context: When microservices are built, multiple deployment
strategies could be applied. We can choose to deploy either each
microservice instance in its own host or multiple microservices
instances in a single host.

General form: A single host contains multiple microservices in-
stances are deployed to the same host (See Figure 15).

Symptoms: The hints of the presence of this antipattern could
be : (1) a single deployment platform; (2) a single version control
repository; or (3) a global deployment script.

Consequences: Microservices have to share the same resources
that are available inside the host. Moreover, scaling up or down a
given host involves scaling all the instances that are inside this host.
Finally, possible technology-related conflicts may happen between
the microservices instances that share the same host.

Refactored solution: Each microservice instance should be in-
dependently deployed on a different host as illustrated in Figure
16.

Advantages of refactoring: Single microservice instance per host
allows the independent use and scale of resources for each one of
them. It also provides an additional isolation layer to microservices,

Figure 16: Single Microservice Instance Per Host

Figure 17: Shared Database Between Microservices

and prevents conflicts between the technologies that are present in
the same host.

Trade-offs: Running multiple microservices on the same host
eases deployment and debugging. Besides, having a single microser-
vice per host requires managing load balancing, service discovery,
and resource consumption for each microservice. It also requires
managing multiple environments with potentially multiple systems
and languages, and monitoring each instance independently.

4.3.6 Shared Persistence
Also known as: Data ownership [16]
Developer impact: Moderate
End user impact: Low
Refactored solution name: Database per service

Context: microservices architecture is a way of building systems
that decompose application code into small independent services
[1]. Each of these small services may need to persist and access
data. However, in order to fully benefit from the microservices
architecture, software architects need to handle data storage in a
way where each microservice can store and access its data without
affecting other microservices [38].

General form: A single database being accessed by multiple mi-
croservices, as illustrated in Figure 17.

Symptoms: This antipattern is characterized by one or more
of the following symptoms: (1) multiple microservices share the
same configuration files and deployment environments; (2) database
tables are prefixed; or (3) databases have a lot of schemas.7

Consequences: Microservices become coupled together [38], and
the maintenance becomes harder. Also, data must be adapted to
fit a single data store. In addition, microservices become no longer
independently deployable because they share the same database.

Refactored solution: Data should be separated regarding of how
it is accessed and how it is used. We have to choose the appropriate
data store for every kind of data (Polyglot persistence [39]), and
7https://github.com/acmeair/

EuroPLoP’20, July 01–05, 2020, Kloster Irsee, Bavaria, Germany Tighilt et al.

Figure 18: Database Per Microservices

Figure 19: No API Versioning

use a single database for each microservice. Figure 18 illustrates
the refactoring solution.

Advantages of refactoring: Refactoring to the database per service
pattern offers the following advantages: (1) separation of concerns
as each microservice owns its data; (2) each microservice can be
fully managed by a single team; and (3) flexibility in terms of storage
technologies.

Trade-offs: A persistence service (or microservice) shared among
many microservices eases deployment and increases performance
while ensuring the consistency of the data among the microser-
vices. Having one database per microservice requires managing
multiple database systems, implementing queries across multiple
microservices, and ensuring the consistency among the different
databases.

4.3.7 No API Versioning
Also known as: Static contract [31]
Developer impact: Moderate
End user impact: Moderate
Refactored solution name: API versioning

Context: Sometimes, multiple versions of the exposed API of a
given microservice must be supported. This is generally the case
when a service API has undergone major changes and we need to
support both the new and old versions for some period of time.

General form: No information is available on the microservice
version.

Symptoms: Some of the following are hints to the presence of
this antipattern: (1) microservices endpoint urls do not contain
version numbers8; (2) no custom header information are sent by
the client; and (3) multiple microservices have similar names.

Consequences: Changes to a microservice API will impact all
consumers andmay lead to breaking changes; i.e. several consumers
may fail to use the new microservice.

8https://github.com/GoogleCloudPlatform/microservices-demo/

Figure 20: API Versioning

Refactored solution: Using API versioning allows the same mi-
croservice to providemultiple versions. In anHTTP-basedmicroser-
vices architecture, the version number can be part of the URI. Other-
wise, it can be included in the the header of the requests/responses.

Advantages of refactoring: Microservices can be upgraded with-
out breaking changes, and consumers can continue using an older
version of a microservice while switching gradually to the newer
version as depicted in Figure 20 [40].

Trade-offs: API versioning requires managing and documenting
the versions of each microservice. It also changes resource names
and URIs with version changes. Thus, it slows down development
and deployment and leads to having to maintain multiple versions
of the same APIs. Yet, it is necessary for large systems whose APIs
evolve, for example to increase security and provide new features
while retiring old, unnecessary ones.

4.4 Monitoring Antipatterns
We describe in this section the antipatterns that are related to the
operation of microservices-based systems.

4.4.1 No Health Check
Also known as: N/A
Developer impact: N/A
End user impact: Low
Refactored solution name: Health check endpoint

Context: The nature of microservices is volatile. A microservice
can be deployed anywhere, and can be unavailable for a particular
amount of time or in a particular context.

General form: No endpoint is exposed to check the health of the
given microservice9.

Symptoms: No periodic HTTP request, no API gateway or no
service discovery can be hints of the presence of this antipattern.

Consequences: Consumers of a given microservice may experi-
ence timeouts and long waiting time without getting a response in
case the microservice is down.

Refactored solution: Add health check API endpoints to the mi-
croservices to periodically verify their status and their ability to
answer requests.

9https://github.com/Crizstian/cinema-microservice

On the Study of Microservices Antipatterns: a Catalog Proposal EuroPLoP’20, July 01–05, 2020, Kloster Irsee, Bavaria, Germany

Figure 21: Local Logging

Advantages of refactoring: When using health check endpoints,
microservices that are down no longer receive requests, and con-
sumers get the information before even sending a request. This
prevent useless timeouts and waiting times.

Trade-offs: Implementing a health-check endpoint allows peri-
odically testing the availability of a microservice. Developers must
carefully think about how often the health-check is performed to
keep the performance of the systems while a microservice may fail
between two health-checks. Besides, health-checks increase the
code to be maintained and deployed and the communication among
services.

4.4.2 Local Logging
Also known as: N/A
Developer impact: Moderate
End user impact: Low
Refactored solution name: Distributed logging

Context: Each microservice produces a lot of information that
is being logged in different file systems. This information is very
useful in a monitoring context and should be easily accessed and
stored.

General form: Each microservice writes its logs to a local storage.
See figure 21.

Symptoms: Some indications of this antipattern are (1) the pres-
ence of log files inside microservices; (2) files being written by the
microservice; (3) the usage of time aware databases; and (4) logging
frameworks and tools10.

Consequences: Local logs can be very difficult to aggregate and
to analyze. This slows down the monitoring process proportionally
to the number of microservices and log size.

Refactored solution: Distributed logging allows microservices to
use a logging systems which will be responsible of aggregating logs
for all the microservices. See figure 22.

Advantages of refactoring: Using a distributed logging mecha-
nism allow to have a single log repository, forces microservices
to use the same log formatting, and simplifies the monitoring and
analysis processes.

Trade-offs: Local logging is easy to implement and helps with
debugging each microservice independently. Using a distributed
logging system requires setting up an infrastructure to aggregate

10https://github.com/venkataravuri/e-commerce-microservices-sample

Figure 22: Distributed Logging

the logs. It also requires having uniform logs generated by all mi-
croservices.

4.4.3 Insufficient Monitoring
Also known as: Lack of monitoring [11]
Developer impact: Moderate
End user impact: High
Refactored solution name: Application metrics

Context: Because provided microservices are often subject to
service level agreements (SLA), monitoring their behavior and per-
formance is crucial.

General form: Performance and failure of the microservices are
not tracked.

Symptoms: Some indications of this antipattern include the use
of local logging11 for some microservices or the absence of health
check endpoints.

Consequences: Insufficient monitoring may hinder the mainte-
nance activities in a microservices-based system. Failures become
more difficult to catch and tracking performance issues become
more tedious. It may even affect the ability to compy with the SLA.

Refactored solution: Use a monitoring tool that will gather per-
formance and failure data and statistics about every microservice
in the system.

Advantages of refactoring: Monitoring every aspect of a microser-
vice based system provides a full understanding of the behavior of
the application. It also provides data that can be used to enhance
the performance and quality of the whole application.

Trade-offs: Monitoring microservices requires setting up new
tools and monitoring infrastructure. It also requires the refactoring
of the microservices to include the monitoring processes. Also
aggregating monitoring data and metrics could be challenging: it
requires the unifying heterogeneous microservices logs and data
analysis methods.

5 SYNTHESIS
We proposed a catalog of 16 microservice antipatterns categorized
into: design, implementation, deployment, and operation-related
antipatterns. We found that most of these antipatterns relate to
deployment (7/16), design (4/16) and monitoring (3/16). Only two
antipatterns relate to implementation.
11https://github.com/matt-slater/delivery-system

EuroPLoP’20, July 01–05, 2020, Kloster Irsee, Bavaria, Germany Tighilt et al.

We also studied the impact of these antipatterns on both develop-
ers and end users by assigning an impact level to each antipattern.
We found that most of the antipatterns (10/16) have a low end-
user impact. Three antipatterns have a moderate end-user impact.
These antipatterns pertain to design, deployment, and monitoring.
Finally, two antipatterns have a high end-user impact: Insufficient
Monitoring and Timeouts.

We reported that no antipattern highly impacts both developers
and end users. Insufficient Monitoring has a high impact on end
users but a moderate one on developers. It should be avoided in
microservice-based system. API Versioning and Mega Microservice
have moderate impact on both developers and end users.

When developingmicroservice-based systems, developers should
first decompose their systems into microservices, avoiding Wrong
Cuts, Mega and Nano Microservices. They should also separate mi-
croservices responsibilities and the libraries that they share. They
should share as little runtime libraries as possible and automate as
much of their deployment as possible (Manual Configuration, No
CI/CD). The evolution and maintenance of microservice-based sys-
tems is also important: monitoring, versioning, and logging must
be taken seriously by developers.

6 THREATS TO VALIDITY
We now discuss threats to the validity of our catalog.

Threats to Internal Validity: These threats concern the causal
relationship between the treatment and the outcome. We accept
these threats because our goal was not an exhaustive list of all
existing microservice antipatterns. To mitigate these threats, we
studied 27 works on microservice design and few open-source
microservice-based systems.

Our search query may not cover all terms related to microservice
antipatterns and could miss important works. To minimize this
threat, we (1) included in our search query the most important
keywords related to the design of microservices and (2) applied
forward and backward snowballing [13, 14] to minimize the risk of
missing important papers.

Threats to External Validity: These threats concern the gener-
alizability of our catalog. We minimized this threat by reporting
antipatterns recurring three or more times.

Threats to Reliability Validity: These threats concern the pos-
sibility of replicating this study. We attempted to provide all the
necessary details to replicate our catalog. We provided online ac-
cess to all the references that we studied to build our catalog of
microservices antipatterns and links to all the microservice-based
systems that we analyzed.

7 CONCLUSION
We presented a catalog of microservice antipatterns based on a sys-
tematic literature review and the analysis of open-sourcemicroservice-
based systems. We described these antipatterns, their implementa-
tions, and provided refactoring solutions to remove them. We also
studied their impacts on developers and end users.

Our study can help both researchers and practitioners interested
in microservices: practitioners by providing a better understand-
ing of the bad practices that they should avoid when developing

microservices and researchers by proposing new solutions for mi-
croservice development practices and establishing future research
directions on the design of microservice-based systems.

In future work, we want to study patterns of microservice-based
systems and propose an exhaustive and uniform catalog that de-
scribes these patterns. We also want to develop a tool to detect
automatically the presence of microservice antipatterns. Finally, we
will empirically study the effect of these antipatterns on the quality
of systems.

REFERENCES
[1] J. Lewis and M. Fowler, “Microservices a definition of this new architectural term,”

https://martinfowler.com/articles/microservices.html, accessed: January 2020.
[2] S. Newman, Building Microservices: Designing Fine-Grained Systems. O’Reilly

Media, Inc., 2015.
[3] F. Palma, “Detection of soa antipatterns,” in Service-Oriented Computing - ICSOC

2012 Workshops, A. Ghose, H. Zhu, Q. Yu, A. Delis, Q. Z. Sheng, O. Perrin, J. Wang,
and Y. Wang, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp.
412–418.

[4] P. Di Francesco, I. Malavolta, and P. Lago, “Research on architectingmicroservices:
Trends, focus, and potential for industrial adoption,” in 2017 IEEE International
Conference on Software Architecture (ICSA). IEEE, 2017, pp. 21–30.

[5] C. Pahl and P. Jamshidi, “Microservices: A systematic mapping study,” in Proceed-
ings of the 6th International Conference on Cloud Computing and Services Science.
SCITEPRESS - Science and and Technology Publications, 2016.

[6] O. Zimmermann, “Microservices tenets,” Computer Science - Research and Devel-
opment, vol. 32, no. 3-4, pp. 301–310, 2016.

[7] M. Garriga, “Towards a taxonomy of microservices architectures,” in Software
Engineering and Formal Methods. Springer International Publishing, 2018, pp.
203–218.

[8] J. Soldani, D. A. Tamburri, and W.-J. V. D. Heuvel, “The pains and gains of mi-
croservices: A systematic grey literature review,” Journal of Systems and Software,
vol. 146, pp. 215–232, dec 2018.

[9] G. Marquez and H. Astudillo, “Actual use of architectural patterns in
microservices-based open source projects,” in 2018 25th Asia-Pacific Software
Engineering Conference (APSEC). IEEE, dec 2018.

[10] F. Osses, G. Marquez, and H. Astudillo, “Exploration of academic and industrial
evidence about architectural tactics and patterns in microservices,” in Proceed-
ings of the 40th International Conference on Software Engineering Companion
Proceeedings - ICSE. ACM Press, 2018.

[11] D. Taibi, V. Lenarduzzi, and C. Pahl, Microservices Anti-patterns: A Taxonomy.
Cham: Springer International Publishing, 2020, pp. 111–128. [Online]. Available:
https://doi.org/10.1007/978-3-030-31646-4_5

[12] B. Kitchenham, “Procedures for performing systematic reviews,” Keele, UK, Keele
University, vol. 33, no. 2004, pp. 1–26, 2004.

[13] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a
replication in software engineering,” in Proceedings of the 18th international
conference on evaluation and assessment in software engineering. ACM, 2014,
p. 38.

[14] K. R. Felizardo, E. Mendes, M. Kalinowski, É. F. Souza, and N. L. Vijaykumar,
“Using forward snowballing to update systematic reviews in software engineer-
ing,” in Proceedings of the 10th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. ACM, 2016, p. 53.

[15] T. Salah, “Microservices antipatterns,” 2016.
[16] J. Bogard, “Avoiding microservices megadisaster,” 2017.
[17] D. Shadija, M. Rezai, and R. Hill, “Towards an understanding of microservices,”

in 2017 23rd International Conference on Automation and Computing (ICAC), Sep.
2017, pp. 1–6.

[18] D. Taibi, V. Lenarduzzi, and C. Pahl, “Architectural patterns for microservices: a
systematic mapping study,” in Proceedings of the 8th International Conference on
Cloud Computing and Services Science. SCITEPRESS, 2018.

[19] D. Taibi and V. Lenarduzzi, “On the definition of microservice bad smells,” IEEE
Software, vol. 35, no. 3, pp. 56–62, May 2018.

[20] D. Neri, J. Soldani, O. Zimmermann, andA. Brogi, “Design principles, architectural
smells and refactorings for microservices: a multivocal review,” SICS Software-
Intensive Cyber-Physical Systems, pp. 1–13, 2019.

[21] J. Bogner, T. Boceck, M. Popp, D. Tschechlov, S. Wagner, and A. Zimmermann,
“Towards a collaborative repository for the documentation of service-based an-
tipatterns and bad smells,” in 2019 IEEE International Conference on Software
Architecture Companion (ICSA-C). IEEE, 2019, pp. 95–101.

[22] A. Carrasco, B. v. Bladel, and S. Demeyer, “Migrating towards microservices: mi-
gration and architecture smells,” in Proceedings of the 2nd International Workshop
on Refactoring, 2018, pp. 1–6.

https://martinfowler.com/articles/microservices.html
https://doi.org/10.1007/978-3-030-31646-4_5

On the Study of Microservices Antipatterns: a Catalog Proposal EuroPLoP’20, July 01–05, 2020, Kloster Irsee, Bavaria, Germany

[23] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping study in microser-
vice architecture,” in 2016 IEEE 9th International Conference on Service-Oriented
Computing and Applications (SOCA). IEEE, 2016, pp. 44–51.

[24] A. Balalaie, A. Heydarnoori, P. Jamshidi, D. A. Tamburri, and T. Lynn, “Microser-
vices migration patterns,” Software: Practice and Experience, vol. 48, no. 11, pp.
2019–2042, 2018.

[25] J. Carnell, Spring microservices in action. Manning Publications Co., 2017.
[26] P. Di Francesco, P. Lago, and I. Malavolta, “Architecting with microservices: A

systematic mapping study,” Journal of Systems and Software, vol. 150, pp. 77–97,
2019.

[27] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin,
and L. Safina, “Microservices: yesterday, today, and tomorrow,” in Present and
ulterior software engineering. Springer, 2017, pp. 195–216.

[28] J. Ghofrani and D. Lübke, “Challenges of microservices architecture: A survey
on the state of the practice.” in ZEUS, 2018, pp. 1–8.

[29] I. Nadareishvili, R. Mitra, M.McLarty, andM. Amundsen,Microservice architecture:
aligning principles, practices, and culture. " O’Reilly Media, Inc.", 2016.

[30] C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis, and N. Josuttis, “Microser-
vices in practice, part 1: Reality check and service design,” IEEE Software, no. 1,
pp. 91–98, 2017.

[31] M. M. Richards, “Antipatterns and pitfalls,” 2016.

[32] M. Stocker, O. Zimmermann, U. Zdun, D. Lübke, and C. Pautasso, “Interface
quality patterns: Communicating and improving the quality of microservices
apis,” in Proceedings of the 23rd European Conference on Pattern Languages of
Programs, 2018, pp. 1–16.

[33] E. Wolff, Microservices: flexible software architecture. Addison-Wesley Profes-
sional, 2016.

[34] W. H. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray, AntiPatterns:
refactoring software, architectures, and projects in crisis. John Wiley & Sons, Inc.,
1998.

[35] A. Rotem-Gal-Oz, E. Bruno, and U. Dahan, SOA patterns. Manning Shelter
Island, 2012.

[36] B. Dudney, S. Asbury, J. K. Krozak, and K. Wittkopf, J2EE antipatterns. John
Wiley & Sons, 2003.

[37] P. Duvall, S. Matyas, and A. Glover, Continuous Integration, Improving Software
Quality and Reducing Risk. Pearson, 2007.

[38] Microsoft, “Microservices: Data considerations,” https://docs.microsoft.com/en-
us/azure/architecture/microservices/design/data-considerations, accessed: Janu-
ary 2020.

[39] M. Fowler, “Polyglot persistence,” https://martinfowler.com/bliki/
PolyglotPersistence.html, accessed: January 2020.

[40] V.Alagarasan, “Microservices antipatterns,” https://www.youtube.com/watch?v=
uTGIrzzmcv8, accessed: January 2020.

https://docs.microsoft.com/en-us/azure/architecture/microservices/design/data-considerations
https://docs.microsoft.com/en-us/azure/architecture/microservices/design/data-considerations
https://martinfowler.com/bliki/PolyglotPersistence.html
https://martinfowler.com/bliki/PolyglotPersistence.html
https://www.youtube.com/watch?v=uTGIrzzmcv8
https://www.youtube.com/watch?v=uTGIrzzmcv8

	Abstract
	1 Introduction
	2 Background and Related work
	3 Study Design
	3.1 Systematic Literature Review Methodology
	3.2 Analysis of Microservice-based Systems
	3.3 Validation and Generation of the Catalog of Microservice Antipatterns
	3.4 Categorization of Microservice Antipatterns

	4 Microservices Antipatterns
	4.1 Design Antipatterns
	4.2 Implementation Antipatterns
	4.3 Deployment Antipatterns
	4.4 Monitoring Antipatterns

	5 Synthesis
	6 Threats to validity
	7 Conclusion
	References

