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Abstract. Code and design smells are recurring design problems in soft-
ware systems that must be identified to avoid their possible negative
consequences on development and maintenance. Consequently, several
smell detection approaches and tools have been proposed in the liter-
ature. However, so far, they allow the detection of predefined smells
but the detection of new smells or smells adapted to the context of the
analysed systems is possible only by implementing new detection al-
gorithms manually. Moreover, previous approaches do not explain the
transition from specifications of smells to their detection. Finally, the
validation of the existing approaches and tools has been limited on few
proprietary systems and on a reduced number of smells. In this paper,
we introduce an approach to automate the generation of detection al-
gorithms from specifications written using a domain-specific language.
This language is defined from a thorough domain analysis. It allows the
specification of smells using high-level domain-related abstractions. It al-
lows the adaptation of the specifications of smells to the context of the
analysed systems. We specify 10 smells, generate automatically their de-
tection algorithms using templates, and validate the algorithms in terms
of precision and recall on Xerces v2.7.0 and GanttProject v1.10.2,
two open-source object-oriented systems. We also compare the detection
results with those of a previous approach, iPlasma.

Keywords Design smells, antipatterns, code smells, domain-specific lan-
guage, algorithm generation, detection, Java.

1 Introduction

Following their development and delivery to the clients, software systems enter
the maintenance phase. During this phase, systems are modified and adapted
to support new user requirements and changing environments, which can lead
to the introduction of “bad smells” in the design and code. Indeed, during the
maintenance of systems, their structure may deteriorate because the maintainer’s



efforts are focused on bugs under cost and time pressure, thus with little time
to keep the code and design “clean”.

Yet, code and design smells are costly because these “bad” solutions to com-
mon and recurrent problems of design and implementation are a frequent cause
of low maintainability3 [26] and can impede the evolution of the systems. Dur-
ing formal technical reviews, quality experts may detect errors and smells early,
before they are passed on to subsequent software development and maintenance
activities or released to customers. However, the detection of code and design
smells requires important resources in time and personal, as well as being error-
prone [31].

Code and design smells are problems resulting from bad design practices
[31]. They include problems ranging from high-level and design problems, such
as antipatterns [3] (that we will designate as design smells in the rest of the
paper), to low-level or local problems, such as code smells [9]. Code smells are
in general symptoms of design smells. However, software engineers can define
their own code and design smells according to their own understanding and the
context of their systems and organisations.

One example of a very common design smell is the Blob [3, p. 73–83], also
known as God Class [28]. The Blob reveals a procedural design (and thinking)
implemented with an object-oriented programming language. It manifests itself
through a large controller class that plays a God-like role in the program by
monopolizing the processing, and which is surrounded by a number of smaller
data classes providing many attributes but few or no methods. In the Blob, the
code smells are the large class and its surrounding data classes.

Several approaches [1,19,24] and tools [8,17,25] have been proposed in the
literature to specify and detect smells. Although showing interesting results,
these approaches have the following limitations :

– Problem 1: Lack of high-level specifications of smells adapted to
analysed systems. These approaches propose the detection of a set of pre-
defined hard-coded smells. The detection of new smells requires a new im-
plementation using programming languages. The detection algorithms are
defined at the code level by developers rather than at the domain level by
quality experts. Moreover, the implementation of the detection algorithms is
guided by the services of the underlying detection framework rather than by
a study of the textual descriptions of the smells. Lincke et al. [18] demon-
strate that the problem is even worst, in particular among metrics-based
tools. They show that metrics-based tools not only interpret and implement
the definitions of metrics differently but also deliver tool-dependent metrics
results, and these differences have implications on the analyses based on the
metrics results. Consequently, it is difficult for quality experts not familiar
with these languages and services to evaluate the choices made by the devel-

3 Maintainability is defined as “the ease with which a software system or component
can be modified to correct faults, improve performance, or other attributes, or adapt
to a changed environment” [13].



opers, to adapt the algorithms or specify new detection algorithms to take
into account the contexts of the analysed systems.

– Problem 2: “Magical” transition from the specifications of smells
to their detection. Most of the approaches do not explain the transition
from the specifications of smells to their detection. The way specifications
are processed or manipulated is not clear and the definition of the underlying
detection platform that allows the detection is not documented. This lack of
transparency prevents replication and improvement of detection techniques,
but also the technical comparison of the implementation of these techniques.

– Problem 3: Partial validation of the existing detection techniques.
The results of the detection with the approaches are not presented on a
representative set of smells and on available systems. Indeed, available results
concern proprietary systems and a reduced number of smells.

In this paper, we follow the principle of domain analysis [27] to propose
a domain-specific language to specify code and design smells at the domain
level and generate automatically detection algorithms from these specifications.
A shorter version of this paper was published in [22]. We extend this previous
version of the paper with (1) a more significant set of smells, (2) detection results
on a second open-source system, and (3) an extended description of the domain
analysis that gives a new research point of view with respect to our previous
work [21,23]. Figure 1 illustrates the following contributions:

– Contribution 1: We describe and implement a domain-specific lan-
guage, 2D-DSL (Design Defects Domain Specific Langage) based on a
unified vocabulary that allows quality experts to specify smells.
This language results from a thorough domain analysis of smells, allows qual-
ity experts to take into account the contexts of the analysed systems, and
allows the generation of traceable detection algorithms.

– Contribution 2: We propose an explicit process for generating de-
tection algorithms automatically using templates. We recall the ser-
vices provided by our underlying detection framework, 2D-FW (Design De-
fects FrameWork), which allow the automatic generation of detection algo-
rithms from the specifications. These algorithms correspond to Java code
source directly compilable and executable without any manual intervention.

– Contribution 3: We present the validation of our process including
the first study of both precision and recall on two large open-source
software systems, GanttProject v1.10.2 and Xerces v2.7.0. This
validation constitutes a first result in the literature on both the precision and
recall of a detection technique on open-source systems and on a representative
set of 10 smells.

In the rest of this paper, Section 2 presents the domain analysis performed
on the literature pertaining to smells. Section 3 presents 2D-DSL and 2D-FW.



3a

Parsing

Reification

3b
Rule

Specifications

Rule Analyses
3c

Algorithm
Generation 3d

Models of rules

Models
of rules

Metamodel
2D-DL

Detection
Algorithms

Templates

3. Generation

Definition
1b

Classification
1c

Key Concepts

Vocabulary

1. Domain Analysis

Identification
1a 2a

2D-DSL
Language

2. Specification

2b

2D-FW
Framework

ServicesTaxonomy

Textual Descriptions
of Smells

Fig. 1. Generation Process.

Section 4 describes the generation process of detection algorithms. Section 5
validates our contributions with the specification and detection of 10 smells
including the antipatterns: Blob, Functional Decomposition, Spaghetti Code, and
Swiss Army Knife, and the code smells: Large Class, Lazy Class, Long Method,
Long Parameter List, Refused Parent Bequest, Speculative Generality, on the open-
source systems Xerces v2.7.0 and GanttProject v1.10.2. Section 6 surveys
related work and explicitely compares our approach to iPlasma, the current
state-of-the-art tool. Section 7 concludes and presents future work.

2 Domain Analysis of Code and Design Smells

“Domain analysis is a process by which information used in developing software
systems is identified, captured, and organised with the purpose of making it
reusable when creating new systems” [27].

In the context of smells, information relates to the smells, software systems
are detection algorithms, and the information on smells must be reusable when
specifying new smells. Thus, we have studied the textual descriptions of code and
design smells in the literature to identify, define, and organise the key concepts
of the domain, Steps 1a–1c in Figure 1.



The Blob (called also God class [28]) corresponds to a large controller class that depends on data
stored in surrounded data classes. A large class declares many fields and methods with a low
cohesion. A controller class monopolises most of the processing done by a system, takes most
of the decisions, and closely directs the processing of other classes [33]. Controller classes can
be identified using suspicious names such as Process, Control, Manage, System, and so on. A data
class contains only data and performs no processing on these data. It is composed of highly
cohesive fields and accessors.

The Functional Decomposition antipattern may occur if experienced procedural developers with
little knowledge of object-orientation implement an object-oriented system. Brown describes this
antipattern as “a ‘main’ routine that calls numerous subroutines”. The Functional Decomposition
design smell consists of a main class, i.e., a class with a procedural name, such as Compute or
Display, in which inheritance and polymorphism are scarcely used, that is associated with small
classes, which declare many private fields and implement only a few methods.

The Spaghetti Code is an antipattern that is characteristic of procedural thinking in object-
oriented programming. Spaghetti Code is revealed by classes with no structure, declaring long
methods with no parameters, and utilising global variables for processing. Names of classes and
methods may suggest procedural programming. Spaghetti Code does not exploit and prevents the
use of object-orientation mechanisms, polymorphism and inheritance.

The Swiss Army Knife refers to a tool fulfilling a wide range of needs. The Swiss Army Knife
design smell is a complex class that offers a high number of services, for example, a complex
class implementing a high number of interfaces. A Swiss Army Knife is different from a Blob,
because it exposes a high complexity to address all foreseeable needs of a part of a system,
whereas the Blob is a singleton monopolising all processing and data of a system. Thus, several
Swiss Army Knives may exist in a system, for example utility classes.

Table 1. List of the Four Design Smells.

2.1 Identification of the Key Concepts

The first step of the domain analysis consists of reviewing the literature on
smells for example the books and articles cited in the related work in Section
6, to identify essential key concepts. This step is performed manually so its
description would be necessarily narrative. Therefore, to illustrate this step, we
use the example of the Spaghetti Code antipattern. We summarise the textual
description of the Spaghetti Code [3, page 119] in Table 1 along with these of the
Blob [3, page 73], Functional Decomposition [3, page 97], and Swiss Army Knife [3,
page 197] that will be used in the rest of the paper. Table 2 gives the descriptions
of the code smells participating in each of these antipatterns.

In the textual description of the Spaghetti Code, we identify the key concepts
(highlighted) of classes with long methods, procedural names and with methods
with no parameter, of classes defining global variables, and of classes not using
inheritance and polymorphism.

We perform this first step iteratively: for each description of a smell, we
extract all key concepts, compare them with existing concepts, and add them to
the set of key concepts avoiding synonyms, a same concept with two different
names, and homonyms, two different concepts with the same name. We study
29 smells, which included 8 antipatterns and 21 code smells. These 29 smells are
representative of the whole set of smells described in the literature and include
about 60 key concepts.



The Large Class is a class with too many responsibilities. This kind of class declares a high
number of usually unrelated methods and attributes.

The Lazy Class is a class that does not do enough. The few methods declared by this class have
a low complexity.

The Long Method is a method with a high number of lines of code. A lot of variables and
parameters are used. Generally, this kind of method does more than its name suggests it.

The Long Parameter List corresponds to a method with high number of parameters. This smell
occurs when the method has more than four parameters.

The Refused Parent Bequest appears when a subclass does not use attributes and/or methods
public and/or protected inherited by a parent. Typically, this means that the class hierarchy is
wrong or badly organized.

The Speculative Generality is an abstract class without child classes. It was added in the system
for future uses and this entity pollutes the system unnecessarily.

Table 2. List of the Six Code Smells.

2.2 Definition of the Key Concepts

The key concepts include metric-based heuristics as well as structural and lexical
information. In the second step, we define the key concepts precisely and form
a unified vocabulary of reusable concepts to describe smells. We do not present
the definitions of each key concept because it would be very descriptive but we
introduce a classification of the key concepts according to the types of properties
on which they apply: measurable, lexical, and structural properties.

Measurable properties pertain to concepts expressed with measures of inter-
nal attributes of the constituents of systems (classes, interfaces, methods, fields,
relationships, and so on). A measurable property defines a numerical or an ordi-
nal value for a specific metric. Ordinal values are defined with a 5-point Likert
scale: very high, high, medium, low, very low. Numerical values are used to de-
fine thresholds whereas ordinal values are used to define values relative to all
the classes of a system under analysis. In the textual descriptions of the Blob,
Functional Decomposition, and Swiss Army Knife, the keywords such as high, low,
few, and many are used and refer to measurable properties.

These properties also related to a set of metrics identified during the domain
analysis, including Chidamber and Kemerer metric suite [6]: depth of inheritance
DIT, lines of code in a class CLASS LOC, lines of code in a method METHOD LOC,
number of attributes declared in a class NAD, number of methods declared in a
class NMD, lack of cohesion in methods LCOM, number of accessors NACC, number
of private fields NPRIVFIELD, number of interfaces NINTERF, number of methods
with no parameters NMNOPARAM.

Lexical Properties relate to the concepts pertaining to the vocabulary used to
name constituents. They characterise constituents with specific names, defined
in a list of keywords. In future work, we plan to use the WordNet lexical
database of English to deal with synonyms.

Structural Properties pertain to concepts related to the structure of the con-
stituents of systems. For example, the property USE GLOBAL VARIABLE is used
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Fig. 2. Taxonomy of Smells. (Hexagons are design smells, gray ovals are code smells, white ovals are
properties, and circles are set operators.)

to check if a class uses global variables and the property NO POLYMORPHISM to
check if a class does not/prevents the use of polymorphism. System classes and
interfaces characterised by the previous properties may be, in addition, linked
with one another with three types of relationships: association, aggregation, and
composition. Cardinalities define the minimum and the maximum numbers of
instances of classes that participate in a relationship.

In the example of the Spaghetti Code, we obtain the following classification: mea-
surable properties include the concepts of long methods, methods with no param-
eter, inheritance; lexical properties include the concepts of procedural names;
structural properties include the concepts of global variables, polymorphism.
Structural properties and relationships among constituents appear in the Blob
and Functional Decomposition (see the key concepts depends on data and asso-
ciated with small classes).

We also observe during the domain analysis that properties can be combined
using set operators, such as intersection and union. For example, all properties
must be present to characterise a class as Spaghetti Code.

2.3 Classification of the Key Concepts

Using the key concepts and their definitions, we build a taxonomy of smells by
using all relevant key concepts to relate code and design smells on a single map
and clearly identify their relationships.

We produce a map organising consistently smells and key concepts. This map
is important to prevent misinterpretation by clarifying and classifying smells. It
is similar in purpose to Gamma et al ’s Pattern Map [12, inside back cover]. For



Fig. 3. The Taxonomy Meta-model.

the sake of clarity, we show in Figure 2 the taxonomy from the domain analysis
of the four design smells shown in Table 1 only, which are used all through the
paper. Figure 2 also includes the taxonomy of code smells associated with these
design smells.

The taxonomy shows the structural relationships or set combinations (edges)
among design smells (hexagons) and code smells (ovals in gray), and their rela-
tion with measurable, structural, and lexical properties (ovals in white). It gives
an overview of all key concepts that characterise the four design smells and differ-
entiates the key concepts as either structural relationships between code smells
or their properties (measurable, structural, lexical). It also makes explicit the
relationships among high- and low-level smells. Figure 3 gives the meta-model
followed to design such a taxonomy.

3 Specification of Code and Design Smells

The domain analysis performed in the previous section provides a set of key
concepts, their definition, and a classification. Then, following Steps 2a and 2b
in Figure 1, we design 2D-DSL, a domain-specific language (DSL) [20] to spec-
ify smells in terms of their measurable, structural and lexical properties, and
2D-FW, a framework providing the services that are the operational implemen-
tations of the properties, set operations, and so on.

We build 2D-DSL and 2D-FW using and only using the identified key con-
cepts, thus they both capture the domain expertise. Therefore, 2D-DSL and
2D-FW differ from general purpose languages and their runtime environments,
which are designed to be universal [7]. They also differ from previous work on
smell detection, which did not define explicitly a DSL and in which the detection
framework drove the specification of the detection algorithms.

Thus, with 2D-DSL and 2D-FW, it is easier for quality experts to under-
stand smell specifications and to specify new smells because these are expressed



1 CODESMELL define LongMethod as METRIC METHOD LOC with VERY HIGH and 10.0;

2 CODESMELL define NoParameter as METRIC NMNOPARAM with VERY HIGH and 5.0;

3 CODESMELL define NoInheritance as METRIC DIT with 1 and 0.0;

4 CODESMELL define NoPolymorphism as STRUC NO POLYMORPHISM;

5 CODESMELL define ProceduralName as LEXIC CLASS NAME with (Make, Create, Exec);

6 CODESMELL define UseGlobalVariable as STRUC USE GLOBAL VARIABLE;

7 CODESMELL define ClassOneMethod as METRIC NMD with VERY LOW and 10.0;

8 CODESMELL define FieldPrivate as METRIC NPRIVFIELD with HIGH and 10.0;

9 DESIGNSMELL define SpaghettiCode as {
( INTER LongMethod NoParameter NoInheritance NoPolymorphism
ProceduralName UseGlobalVariable) };

10 DESIGNSMELL define FunctionalDecomposition as {
ASSOC FROM ( INTER ProceduralName NoInheritance NoPolymorphism) ONE
TO ( UNION ClassOneMethod FieldPrivate) MANY };

Fig. 4. Specifications of the Spaghetti Code and Functional Decomposition.

using domain-related abstractions and focus on what to detect instead of how
to detect it [7].

3.1 2D-DSL

With 2D-DSL, quality experts specify smells as sets of rules. Rules are expressed
using key concepts. They can specify code smells, which correspond to measur-
able, lexical, or structural properties, or express design smells, which correspond
to combinations of code smells using set operators or structural relationships.
Figure 4 shows the specifications of the Spaghetti Code and Functional Decompo-
sition design smells and their code smells. These two design smells shared some
code smells as shown in the taxonomy in Figure 2.

A Spaghetti Code is specified using the intersection of several rules (line 9).
A class is Spaghetti Code if it declares methods with a very high number of lines
of code (measurable property, line 1), with no parameter (measurable property,
line 2); if it does not use inheritance (measurable property, line 3), and poly-
morphism (structural property, line 4), and has a name that recalls procedural
names (lexical property, line 5), while declaring/using global variables (struc-
tural property, line 6). The float value after the keyword ‘and’ in measurable
properties corresponds to the acceptable degree of fuzziness for this measure,
which is the margin acceptable in percentage around the numerical value (line
3) or around the threshold relative to the ordinal value (lines 1-2). We further
explain the ordinal values and the fuzziness in Section 4.

We formalise specifications with a Backus-Naur Form (BNF) grammar, shown
in Figure 5. A specification lists first a set of code smells and then a set of de-
sign smells (Figure 5, line 1). A code smell is defined as a property. A property
can be of three different kinds: measurable, structural, or lexical, and define
pairs of identifier–value (lines 7–9). The BNF grammar specifies only a subset of
possible structural properties, other can be added as new domain analyses are
performed. The design smells are combinations of the code smells defined in the
specification using set operators (lines 5–6). The design smells can also be linked



1 rulespec ::= (codesmell)+ (designsmell)+

2 codesmell ::= CODESMELL define codesmellName as csContent ;
3 designsmell ::= DESIGNSMELL define designsmellName as { dsContent };

4 csContent ::= property
5 dsContent ::= codesmellName | (operator dsContent (dsContent)+) | relationship
6 operator ::= INTER | UNION | DIFF

7 property ::= METRIC metricID with metricValue and fuzziness
8 | LEXIC lexicID with ((lexicValue,)+)
9 | STRUC structID

10 metricID ::= ( DIT | NINTERF | NMNOPARAM | LCOM | METHOD LOC
11 | CLASS LOC | NAD | NMD | NACC | NPRIVFIELD
12 | IR | NOC | NPrM | NOParam )
13 ((+ | -)metricID)∗

14 metricValue ::= VERY HIGH | HIGH | MEDIUM | LOW | VERY LOW | NUMBER
15 lexicID ::= CLASS NAME | INTERFACE NAME | METHOD NAME | FIELD NAME | PARAMETER NAME
16 structID ::= USE GLOBAL VARIABLE | NO POLYMORPHISM
17 | ABSTRACT CLASS | IS DATACLASS | ACCESSOR METHOD
18 | FUNCTION CLASS | FUNCTION METHOD | STATIC METHOD
19 | PROTECTED METHOD | OVERRIDDEN METHOD
20 | INHERITED METHOD | INHERITED VARIABLE

21 relationship ::= relationshipType FROM dsContent cardinality TO dsContent cardinality
22 relationshipType ::= ASSOC | AGGREG | COMPOS
23 cardinality ::= ONE | MANY | ONE OR MANY

24 codesmellName, designsmellName, lexicValue ∈ string
25 fuzziness ∈ double { 0...100 }

Fig. 5. BNF Grammar of Smell Specifications.

to these code smells using relationships such as the composition, aggregation or
association (lines 5, 21–23). Each code smell is identified by a name (line 2) and
can be reused in the definition of design smells. Thus, the specification of the
code smells, which can be viewed as a repository of code smells, can be reused
or modified for the specification of different design smells.

3.2 2D-FW

The 2D-FW framework provides the services that implement operations on the
relationships, operators, properties, and ordinal values. It also provides services
to build, access, and analyse systems. Thus, with 2D-FW, it is possible to com-
pute metrics, analyse structural relationships, perform lexical and structural
analyses on classes, and apply the rules. The set of services and the overall de-
sign of the framework are directed by the key concepts and the domain analysis.
2D-FW represents a super-set of previous detection frameworks and therefore
could delegate part of its services to exiting frameworks.

2D-FW is built upon the PADL meta-model (Pattern and Abstract-level
Description Language), a language-independent meta-model to represent object-
oriented systems, including binary class relationships [14] and accessors, and on
the POM framework (Primitives, Operators, Metrics) for metric computation
[15]. PADL offers a set of constituents from which we can build models of sys-
tems. It also offers methods to manipulate these models easily and generate other



Fig. 6. Architecture of the 2D-FW Framework.

models, using the Visitor design pattern. We chose PADL because it is mature
with 6 years of active development and is maintained in-house.

Figure 6 sketches the architecture of the 2D-FW framework. The archi-
tecture consists of two main packages, smell.kernel and smell.util. The
smell.kernel package contains core classes and interfaces. Class Smell rep-
resents smells and is so far specialised in two subclasses, DesignSmell and
CodeSmell. This hierarchy is consistent with our taxonomy of smells. A smell ag-
gregates entities, interface IEntity from padl.kernel. For example, a smell is a
set of classes with particular characteristics. Interfaces IDesignSmellDetection
and ICodeSmellDetection define the services that detection algorithms must
provide. The smell.util package declares utility classes that allow the manip-
ulation of some key concepts of the specifications.

3.3 Discussions

The smell specifications are self-documenting and express naturally the textual
descriptions of the smells. They can be modified by quality experts either to re-
fine them by adding new rules or to modify existing ones to take into account the
contexts of the systems, i.e., the set of information related to the characteristics
of the analysed system. The context includes the type of systems (prototypes,
systems in development or maintenance, industrial systems . . . ), design choices
(related to principles or design heuristics), and coding standards (agreements to
respect during the code writing). Quality experts can thus adapt the specifica-
tions to the context of their systems because the characteristics of systems differ



from one system to the other, e.g., the quantity of code comments, which can
be low in prototypes but high in system in maintenance, the permitted depth
of inheritance, which differs according to the design choices, and the maximal
size of classes and methods defined in coding standards. Thus, specifications can
be modified easily at the domain level without any knowledge of the underlying
detection framework.

In the cases where the domain-specific language would not provide the re-
quired constructs to specify a certain class of smells, it is possible to extend
the language with a new set of primitives. However, in this case, the underlying
detection framework should also be extended to provide the operational imple-
mentations of the new primitives. Such an extension can only be realised by
developers modifying the detection framework using its general-purpose imple-
mentation language.

4 From Specifications to Detection Algorithms

The problem that we solve is the automatic transition from the specifications to
detection algorithms to avoid the manual implementation of algorithms, which
is costly and not reusable, and to ensure the traceability between specifications
and occurrences of detected smells. Thus, the automatic generation of detec-
tion algorithms spares the experts or developers of implementing by hand the
detection algorithms and allows them to save time and resources.

The generation process consists of four fully automated steps, starting from
the specifications through their reification to algorithm generation, as shown in
Figure 1, Steps 3a–3d, and detailed below.

4.1 Parsing and Reification

The first step consists of parsing the smell specifications. A parser is built using
JFlex and JavaCUP4 from the BNF grammar, extended with appropriate
semantic actions.

Then, as a specification is parsed, the second step consists of reifying the spec-
ifications based on the dedicated 2D-DL meta-model (Design Defects Definition
Language). The meta-model is a representation of the abstract syntax tree gen-
erated by the parser. The meta-model 2D-DL defines constituents to represent
specifications, rules, set operators, relationships among rules, and properties, as
illustrated in Figure 7. The result of this reification is a 2D-DL model of the
specification, instance of class Specification defined in 2D-DL. An instance
of Specification is composed of objects of type IRule, which describes rules
that can be either simple or composite. A composite rule, CompositeRule, is
a rule composed of other rules (Composite design pattern). Rules are combined
using set operators defined in class Operator. Structural relationships are en-
forced using methods defined in class Relationship. The 2D-DL meta-model

4 http://www2.cs.tum.edu/projects/cup/



Fig. 7. The 2D-DL Meta-model.

also implements the Visitor design pattern. This meta-model is quite similar to
the meta-model of the taxonomy given in Figure 3 and it illustrates the ease
with which, from the taxonomy, we can specify intuitively the smells with the
language.

4.2 Rule Analyses

This step consists of visiting the models of specifications and applying some con-
sistency and domain-specific analyses. These analyses aim to identify incoherent
or meaningless rules before generating the detection algorithms. Consistency
analyses consist of verifying that specifications are not inconsistent, redundant,
or incomplete. An inconsistent specification is, for example, two code smells de-
fined with identical names but different properties. A redundant specification
corresponds, for example, to two code smells defined with different names but
identical properties. An example of an incomplete specification is a code smell
referenced in the rule of an antipattern but not defined in the rule set of code
smells. Domain-specific analyses consist of verifying that the rules are conform
to the domain. For example, the value associated with a metric has a meaning
in the domain : typically, a measurable property computed with the “metric
number of methods declared” NMD compared to a float value has no meaning in
the domain.

4.3 Algorithm Generation

The generation of the detection algorithms is implemented as a set of visitors
on models of specifications. The generation targets the services of the 2D-FW
framework and is based on templates. Templates are excerpts of Java code
source with well-defined tags to be replaced by concrete code. We use templates
because our previous studies [21,23] showed that detection algorithms have recur-
ring structures. Thus, we aggregate naturally all common structures of detection



algorithms into templates. As we visit the model of a specification, we replace
the tags with the data and values appropriate to the rules. The final source code
generated for a specification is the detection algorithm of the corresponding
smell and this code is directly compilable and executable without any manual
interventions.

We detail in the following the generation of the detection algorithms of the
set operators and the measurable properties. We do not present the generation of
the lexical properties, structural properties, and structural relationships because
they are similar to the ones presented here.

Measurable Properties. The template given in Figure 8(e) is a class called
<CODESMELL>Detection that extends the class CodeSmellDetection and im-
plements ICodeSmellDetection. It declares the method performDetection(),
which consists of computing the specified metric on each class of the system.
All the metric values are compared with one another with a boxplot, a sta-
tistical technique [4], to identify ordinal values, i.e., outlier or normal values.
Then, the boxplot returns only the classes with metric values that verify the
ordinal values. Figure 8(c) presents the process of generating code to verify a
measurable property defined in the specification of the Spaghetti Code on a set of
constituents. When the rule is visited in the model of the specification, we replace
the tag <CODESMELL> by the name of the rule, LongMethod , tag <METRIC> by the
name of the metric, METHOD LOC, tag <FUZZINESS> by the value 10.0, and tag
<ORDINAL VALUES> by the method associated with the ordinal value VERY HIGH.
Figure 8(g) presents the code generated for the rule given in Figure 8(a).

Set Operators. The rules can be combined using set operators such as the in-
tersection in Figure 8(b). The code generation for set operators is quite different
from the generation of properties. The template given in Figure 8(f) contains also
a class called <CODESMELL>Detection that extends the class CodeSmellDetection
and implements ICodeSmellDetection. However, the method performDetec-
tion() consists of combining with a set operator the list of classes in each
operand of the rule given in Figure 8(b) and returning classes that satisfy this
combination. Figure 8(d) presents the process related to the code generation for
set operators in the specification of the Spaghetti Code. When an operator is
visited in the model of the specification, we replace the tags associated with the
operands of the rule, operand1: LongMethod, operand2: NoParameter, and
the tag <OPERATION> by the type of set operator specified in the specification,
i.e., intersection. The operands correspond to detection classes generated when
visiting other rules as shown in Figure 8(h).

Discussion. The generated algorithms are by construct deterministic. We do
not need to revise manually the code because the generation process ensures the
correctness of the code source with respect to its specifications. This generated
code tends sometimes itself towards Spaghetti Code and could be improved using
polymorphism, yet it is automatically generated and is not intended to be read



by quality experts and it will be improved in future work. We do not report the
generation times because they take only few seconds.

5 Validation

We validate our contributions by specifying and detecting the 10 smells pre-
sented in Section 2 and computing the precision and recall of the generated
algorithms on GanttProject v1.10.2 and Xerces v2.7.0, two open-source
systems. GanttProject v1.10.2 is a project-management tool to plan projects
with Gantt charts. It contains 21,267 lines of code, 188 classes, and 41 interfaces.
Xerces v2.7.0 is a framework for building XML parsers in Java. It contains
71,217 lines of code, 513 classes, and 162 interfaces.

We seek in the following to obtain a recall of 100% because quality experts
need all smells to improve software quality and ease formal technical reviews.
Having 100% recall means that all smells are detected and, thus, that quality
experts can concentrate on the classes returned by the detection without needing
to analyse by hand the classes not reported because, by definition, they cannot
be part of a smell.

We are not aware of any other work reporting both precision and recall for
smell detection algorithms.

5.1 Validation Process

First, we build models of the analyzed systems. These models are obtained by
reverse engineering. Then, we apply the generated detection algorithms on the
models of the systems and obtain all suspicious classes that have potential smells.
The list of suspicious classes is returned in a file. We validate the results of the
detection algorithms by analysing the suspicious classes in the context of the
complete model of the system and its environment. The validation is inherently
a manual task. Therefore, we chose to apply the detection of the six code smells
on GanttProject and of the four design smells on Xerces only so that we
could divide the efforts of analysing manually these systems.

We recast the validation in the domain of information retrieval and use the
measures of precision and recall, where precision assesses the number of true
identified smells, while recall assesses the number of true smells missed by the
algorithms [10], according to the following equations:

precision =
|{existing smells} ∩ {detected smells}|

|{detected smells}|

recall =
|{existing smells} ∩ {detected smells}|

|{existing smells}|
The computation of precision and recall is performed using independent re-

sults obtained manually because only quality experts can assess whether a sus-
picious class is indeed a smell or a false positive, depending on the specifica-
tions and the context and characteristics of the system. The manual analysis



CODESMELL define LongMethod as
METRIC METHOD LOC with VERY HIGH and 10.0;

(a) Excerpt of the Spaghetti Code.

DESIGNSMELL define SpaghettiCode as {
((LongMethod ∩ NoParameter) ...

(b) Excerpt of the Spaghetti Code.

1 public void visit(IMetric aMetric) {
2 replaceTAG("<CODESMELL>", aRule.getName());
3 replaceTAG("<METRIC>", aMetric.getName());
4 replaceTAG(<FUZZINESS>,
5 aMetric.getFuzziness());
6 replaceTAG(<ORDINAL_VALUE>,
7 aMetric.getOrdinalValue());
8 }
9 private String getOrdinalValue(int value) {

10 switch (value) {
11 case VERY_HIGH :
12 "getHighOutliers";
13 case HIGH :
14 "getHighValues";
15 case MEDIUM :
16 "getNormalValues";
17 ...
18 }

(c) Visitor.

1 public void visit(IOperator anOperator) {
2 replaceTAG("<OPERAND1>",
3 anOperator.getOperand1());
4 replaceTAG("<OPERAND2>",
5 anOperator.getOperand2());
6 switch (anOperator.getOperatorType()) {
7 case OPERATOR_UNION :
8 operator = "union";
9 case OPERATOR_INTER :

10 operator = "intersection";
11 ...
12 }
13 replaceTAG("<OPERATION>", operator);

(d) Visitor.

1 public class <CODESMELL>Detection
2 extends CodeSmellDetection
3 implements ICodeSmellDetection {
4 public Set performDetection() {
5 IClass c = iteratorOnClasses.next();
6 LOCofSetOfClasses.add(
7 Metrics.compute(<METRIC>, c));
8 ...
9 BoxPlot boxPlot = new BoxPlot(

10 <METRIC>ofSetOfClasses, <FUZZINESS>);
11 Map setOfOutliers =
12 boxPlot.<ORDINAL_VALUE>();
13 ...
14 suspiciousCodeSmells.add( new CodeSmell(
15 <CODESMELL>, setOfOutliers));
16 ...
17 return suspiciousCodeSmells;
18 }

(e) Template.

1 public class <CODESMELL>Detection
2 extends CodeSmellDetection
3 implements ICodeSmellDetection {
4 public void performDetection() {
5 ICodeSmellDetection cs<OPERAND1> =
6 new <OPERAND1>Detection();
7 op1.performDetection();
8 Set set<OPERAND1> =
9 cs<OPERAND1>.listOfCodeSmells();

10 ICodeSmellDetection cs<OPERAND2> =
11 new <OPERAND2>Detection();
12 op2.performDetection();
13 Set set<OPERAND2> =
14 cs<OPERAND2>.listOfCodeSmells();
15 Set setOperation = Operators.getInstance().
16 <OPERATION>(set<OPERAND1>, set<OPERAND2>);
17 this.setSetOfSmells(setOperation);
18 }

(f) Template.

1 public class LongMethodDetection
2 extends CodeSmellDetection
3 implements ICodeSmellDetection {
4 public Set performDetection() {
5 IClass c = iteratorOnClasses.next();
6 LOCofSetOfClasses.add(
7 Metrics.compute("LOC_METHOD", c));
8 ...
9 BoxPlot boxPlot = new BoxPlot(

10 LOC_METHODofSetOfClasses, 10.0);
11 Map setOfOutliers =
12 boxPlot.getHighOutliers();
13 ...
14 suspiciousCodeSmells.add( new CodeSmell(
15 LongMethod, setOfOutliers));
16 ...
17 return suspiciousCodeSmells;
18 }

(g) Generated Code.

1 public class Inter1
2 extends CodeSmellDetection
3 implements ICodeSmellDetection {
4 public void performDetection() {
5 ICodeSmellDetection csLongMethod =
6 new LongMethodDetection();
7 csLongMethod.performDetection();
8 Set setLongMethod =
9 csLongMethod.listOfCodeSmells();

10 ICodeSmellDetection csNoParameter =
11 new NoParameterDetection();
12 csNoParameter.performDetection();
13 Set setNoParameter =
14 csNoParameter.listOfCodeSmells();
15 Set setOperation = Operators.getInstance().
16 intersection(setLongMethod, setNoParameter);
17 this.setSetOfSmells(setOperation);
18 }

(h) Generated Code.

Fig. 8. Code Generation for Measurable Properties (left) and Set Operators (right).



Code Smells
Numbers of Known Numbers of

Precision Recall Time
True Positives Detected Smells

Large Class 9 (4.79%) 13 (6.91%) 69.23% 100.00% 0.008s
Lazy Class 41 (21.81%) 104 (55.32%) 34.61% 87.80% 0.3s
Long Method 45 (23.94%) 22 (11.70%) 46.66% 95.45% 0.08s
Long Parameter List 54 (28.72%) 43 (22.87%) 79.63% 100.00% 0.030s
Refused Parent Bequest 18 (9.57%) 20 (10.64%) 40.00% 44.45% 0.16s
Speculative Generality 4 (2.13%) 4 (2.13%) 100.00% 100.00% 0.01s

Table 3. Precision and Recall of Code Smells in GanttProject v1.10.2. (In parenthesis, the per-
centage of classes affected by a smell). The number of classes in GanttProject v1.10.2 is 188.

Design Smells
Numbers of Known Numbers of

Precision Recall Time
True Positives Detected Smells

Blob 39 (7.60%) 44 ( 8.58%) 88.64% 100.00% 2.45s
Functional Decomposition 15 (2.92%) 29 ( 5.65%) 51.72% 100.00% 0.91s
Spaghetti Code 46 (8.97%) 76 (14.81%) 60.53% 100.00% 0.23s
Swiss Army Knife 23 (4.48%) 56 (10.91%) 41.07% 100.00% 0.08s

Table 4. Precision and Recall of Design Smells in Xerces v2.7.0. (In parenthesis, the percentage of
classes affected by a smell.). The number of classes in Xerces v2.7.0 is 513.

of GanttProject has been performed by one independent software engineer
with a good expertise in code and design smells. We asked three master students
and two independent software engineers to analyse manually Xerces using only
Brown and Fowler’s books to identify smells and compute the precision and re-
call of the algorithms. Each time a doubt on a candidate class arose, the software
engineers considered the books as references in deciding by consensus whether
or not this class was actually a smell. This task is tedious, some smells may
have been missed by mistake, thus we have asked other software engineers to
perform this same task to confirm our findings and on other systems to increase
our database.

5.2 Results

Table 4 and 3 report detection times, numbers of suspicious classes, and preci-
sions and recalls, respectively for the GanttProject and Xerces systems. We
perform all computations on a Intel Dual Core at 1.67GHz with 1Gb of RAM.
Computation times do not include building the models of the system but include
accesses to compute metrics and check structural relationships and lexical and
structural properties.

Excluding the code smells Lazy Class and Refused Parent Bequest, the recalls of
the generated algorithms range from 95.45% to 100% for code smells and 100%
for design smells. Precisions range from 46.66% to 100%, providing between
2.13% and 22.87% of the total number of classes, which is reasonable for quality
experts to analyse by hand, with respect to analysing the entire system, 188
classes GanttProject, manually.

For the Spaghetti Code, we found 76 suspicious classes. Out of these 76 sus-
picious classes, 46 are indeed Spaghetti Code previously identified in Xerces



manually by software engineers independent of the authors, which leads to a pre-
cision of 60.53% and a recall of 100.00% (see third line in Table 4). The result
file contains all suspicious classes, including class org.apache.xerces.xinclude.-
XIncludeHandler declaring 112 methods. Among these 112 methods, method
handleIncludeElement(XMLAttributes) is typical of Spaghetti Code: it does
not use inheritance and polymorphism, uses excessively global variables, and
weighs 759 LOC.

For the Large Class, Long Parameter List, and Speculative Generality code
smells, we obtained optimum recalls because the generated detection algorithms
are based on quite simple metrics that consist in counting entities. For the Long
Method, the same kind of simple metric, the number of lines of code, has been
used. However, this metric depends on the experts’ definition of a long method,
which explains that we did not obtain a perfect recall (95.45%).

We encountered another ambiguity with Lazy Class. Indeed, one of the cri-
teria of its detection is method complexity: during manual detection, software
engineers must appreciate method complexity, which is inherently subjective,
while we use objective metrics (WMC, Weighted methods per class, and Mc-
Cabe Cyclomatic Complexity) during the automatic detection.

Finally, the smell Refused Parent Bequest illustrated the inverse problem: it
is very difficult for software engineers to identify all its occurrences because they
must appreciate if a class uses enough public and protected methods/fields of any
of its superclasses. Moreover, the software engineers consider bequests provided
by API classes whereas we apply our detection on the system only, excluding
libraries.

The two smells Lazy Class and Refused Parent Bequest exhibit poorer precision
and recall because of the lack of constraints of their specifications. A Lazy Class
could be any class with few simple methods while a Refused Parent Bequest could
be any class that does not directly use some of its parents methods. These two
smells illustrate the problems of interpreting the definitions of the smells and of
translating these definitions into specifications. Future work includes studying
the contexts in which these specifications could be made more constraining.

The results depend on the specifications of the smells. The specifications
must be neither too loose, not to detect too many suspicious classes, nor too
constraining, and miss smells. With 2D-DSL, quality experts can refine the
specifications of the smells easily, according to the detected suspicious classes
and their knowledge of the system through iterative refinement.

5.3 Discussions

Results. The validation shows that the specifications of the design and code
smells lead to generated detection algorithms with expected recalls and good
precisions. Thus, it confirms that: (1) the language allows describing several
smells. We described 10 smells including 4 different design smells and 6 code
smells; (2) the generated detection algorithms have, mainly, a recall of 100%,
i.e., all known smells are detected, and an average precision greater than 34%,



i.e., the detection algorithms report less than 2/3 of false positives with respect
to the number of true positives. Quality experts do not need to look at classes
not detected as smells because they cannot be part of smells thanks to the recall
of 100%; and, (3) the complexity of the generated algorithms is reasonable, i.e.,
the generated algorithms have computation times of few seconds. Computation
is fast because the complexity of our detection algorithms depends only on the
number of classes in the system, n, and on the number of properties to verify:
the complexity of the generated detection algorithms is (c + op)×O(n), where
c is the number of properties and op of operators.

Threats to the Validity. The validity of the results depends directly on the
smell specifications. We performed our experiments on a representative set of
smells to lessen the threat to the internal validity of our validation. The sub-
jective nature of interpreting, specifying, and identifying smells is a threat to
the construct validity of this validation. We lessen this threat by specifying the
smells based on the literature and by involving several independent software
engineers in the computation and manual assessment of the results. The threat
to external validity is related to the exclusive use of open-source Java systems,
which may prevent the generalisation of our results to other systems. Neverthe-
less, we chose to perform our experiments on freely available systems to allow
their verification and replication. Furthermore, in the context of a cooperation
with a company (not described here for confidentiality reasons), we also applied
our approach on their proprietary systems and we obtained similar encouraging
results.

6 Related Work and Current State-of-the-Art

Several smell detection approaches and tools have been proposed in the litera-
ture to specify and detect code and design smells. However, we are not aware
of any approach that is based on an explicit domain analysis and its resulting
domain-specific language. Moreover, most of these approaches do not clarify the
process that allows the detection of smells from their specifications. These ap-
proaches are often driven by the services of their underlying detection framework
rather than by an exhaustive study of the descriptions of smells that led to their
specifications. Finally, if others explain their detection process, they do not pro-
vide a validation of their detection technique. We first present the related work
and then a detailed comparison of our approach with the approach of detection
strategies [19], the current state-of-the-art.

6.1 Related Work

Several books provide in-breadth views on pitfalls [32], heuristics [28], code smells
[9], and antipatterns [3] aimed at a wide audience for educational purposes.
However, they describe textually smells but none performed a complete analysis
of the text-based descriptions of smells. Thus, it is difficult to build detection



algorithms from their textual descriptions because they lack precision and are
prone to misinterpretation. Travassos et al. [31] introduced a process based on
manual inspections and reading techniques to identify smells. No attempt was
made to automate this process and thus it does not scale to large systems easily.
Also, it only covers the manual detection of smells, not their specification.

Marinescu introduced the concept of detection strategies to overcome the
limitations of the previous literature. We present a detailed comparison of our
approach with these detection strategies in the following subsection. Munro [24]
also noticed the limitations of the textual descriptions and proposed a tem-
plate including heuristics to describe code smells more systematically. It is a
step towards more precise specifications of code smells but code smells remain
nonetheless textual descriptions subject to misinterpretation. Munro also pro-
posed metric-based heuristics to detect code smells, which are similar to Mari-
nescu’s detection strategies. Only Marinescu [19] and Munro [24] provide some
results of their detection but on a few smells and only on proprietary systems.
Alikacem and Sahraoui proposed a description language of quality rules to de-
tect violations of quality principles and smells [1]. The rules include quantitative
information such as metrics and structural information such as inheritance or
association relationships among classes. They also use fuzzy logic to express the
thresholds of rules conditions. The rules are interpreted and executed using an
inference engine. Although their detection framework is explicit, they did not
provide any validation of their approach. All these approaches have contributed
significantly to the automatic detection of smells. However, none presents a com-
plete solution including a specification language, explicit detection framework
detailed processing, and validation of the detection technique.

Tools such as PMD [25], CheckStyle [5], and FXCop [11] detect problems
related to coding standards, bugs patterns or unused code. Thus, they focus on
implementation problems but do not address higher-level design smells such as
antipatterns. PMD [25], SemmleCode [29] and Hammurapi [16] also allow de-
velopers to write detection rules using Java or XPath. However, the addition of
new rules is intended for engineers familiar with Java and XPath, which could
limit access to a wider range of software engineers. Crocopat [2] provides an
efficient language to manipulate relations of any arity with a simple and expres-
sive query and manipulation language. However, this language is at a low-level
of abstraction and requires quality experts to understand the implementation
details of its underlying model. Therefore, previous tools provided low-level lan-
guages for specifying new smells while we defined a high-level DSL targeting
software quality experts.

6.2 Comparison with iPlasma

Marinescu [19] presented a metric-based approach to detect code smells with
the concept of detection strategies and implemented a tool called iPlasma.
Detection strategies capture deviations from good design principles. They are
described with a medium-level specification language based on metrics through
a simple process. They are therefore a step towards the precise specifications



Code Smells
Numbers of Known Numbers of

Precision Recall
True Positives Detected Smells

Large Class 9 (4.79%) 1 (0.53%) 100.00% 11.11%
Lazy Class 41 (21.81%) ∅ ∅ ∅
Long Method 45 (23.94%) 11 (5.85%) 100.00% 24.44%
Long Parameter List 54 (28.72%) 44 (23.40%) 100.00% 81.48%
Refused Parent Bequest 18 (9.57%) 1 (0.53%) 0% 0%
Speculative Generality 4 (2.13%) 9 (4.79%) 100.00% 44.44%

Table 5. Precision and Recall of Code Smells in GanttProject v1.10.2 using iPlasma.

of code smells and, as such, have been often cited. Therefore, we considered as
others detection strategies and iPlasma the current state-of-the-art. Yet, detec-
tion strategies have limitations. First, the specifications are mainly metric-based
and, thus for example, cannot describe specific relationships between classes of
interest. Second, the specifications are hard-coded in the tool and are not readily
available for study and–or modification.

To further compare the two approaches, we have proceeded to the detection
of the six code smells presented in Table 2 using iPlasma on GanttProject
as for our approach in Table 3. Table 5 presents the results of this detection.

First, we notice that iPlasma also uses the technique of the boxplot to eval-
uate relative values specified in the detection strategies. However, the mapping
from the relative values of the boxplot with the metric values is not explicit.
Therefore, we could not detect occurrences of Lazy Class because it was not
possible to define explicitly rules using the bloxplot. In our approach, we make
explicit the boxplot and enhance it with fuzzy logic and, thus, alleviates the
problem related to the definition of thresholds.

Second, iPlasma focuses on a high precision rather that a high recall. This
is an appropriate choice in the context of a day-to-day use by developers as
part of their development process. In our approach, we focus on a high recall
but developers could adapt the detection algorithms to enforce a high precision
using our high-level domain-specific language.

Third, the results of the detection of occurrences of Refused Bequest Parent
in terms of precision and recall are surprising. iPlasma only detects one (false-
positive) occurrence while, our approach provides a 40% precision and 44% recall.
We cannot explain this poor performance of iPlasma for lack of access to the
specifications of the smells. Other code smells exhibit perfect precisions and
recalls between 11% and 81%.

Finally, although the computation times in iPlasma are similar to those
of our approach (typically less than a second), iPlasma requires user interac-
tions to select the smells and the programs in which to detect their occurrences
while our approach can be fully automated and integrated in the developers’
development environment.

In conclusion, we drew much inspiration from the concept of detection strate-
gies and from their implementation in iPlasma to design a high-level domain
specific language and its companion generation algorithms. We thus attempted
to overcome the limitations of this approach illustrated in this comparison.



7 Conclusion and Future Work

In this paper, we introduced a domain analysis of the key concepts defining
design and code smells; a domain-specific language to specify smells, 2D-DSL,
and its underlying detection framework, 2D-FW; and a process for generating
detection algorithms automatically.

With 2D-DSL, 2D-FW, and the generation process, quality experts can
specify smells at the domain level using their expertise, generate detection al-
gorithms, and detect smells during formal technical reviews. We implemented
2D-DSL, 2D-FW, and the generation process and studied the precision and re-
call of 10 generated algorithms on GanttProject v1.10.2 and Xerces v2.7.0.
We showed that the detection algorithms are efficient and precise, and have a
recall close to 100% recall.

The validation in terms of precision and recall sets a landmark for future
quantitative comparisons. Thus, we plan to perform such a comparison of our
work with previous approaches in complement to the comparison with iPlasma
described here. We also plan to integrate the WordNet lexical database of
English into 2D-FW, to improve the current DSL, to improve the generated
code in terms of quality and reusability, and to compute the precision and recall
on more systems. We will assess the flexibility of the code generation offered
when using XML technologies [30]. We will also perform usability studies of the
language with quality experts.
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