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Abstract—Game engines provide video game developers with
a wide range of fundamental subsystems for creating games,
such as 2D/3D graphics rendering, input device management,
and audio playback. Developers often integrate these subsystems
with other applications or extend them via plugins. To integrate
or extend correctly, developers need a broad system architectural
understanding. However, architectural information is not always
readily available and is often overlooked in this kind of system. In
this work, we propose an approach for game engine architecture
recovery and explore the architecture of three popular open-
source game engines (Cocos2d-x, Godot, and Urho3D). We
perform manual subsystem detection and use Moose, a platform
for software analysis, to generate architectural models. With these
models, we answer the following questions: Which subsystems
are present in game engines? Which subsystems are more often
coupled with one another? Why are these subsystems coupled
with each other? Results show that the platform independence,
resource management, world editor, and core subsystems are
frequently included by others and therefore act as foundations
for the game engines. Furthermore, we show that, by applying
our approach, game engine developers can understand whether
subsystems are related and divide responsibilities. They can also
assess whether relationships among subsystems are appropriate
for the game engine.

Index Terms—software architecture, game engines, coupling,
game development

I. INTRODUCTION

Game engines are tools to facilitate game development.
They are systems composed of subsystems that interact with
several audio, video, network, storage, and user interface
devices. Besides making these subsystems work together with
high performance, developers often integrate them with other
software or extend them using plugins. However, to make the
right choices, developers first need to understand the game
engine architecture they are working with and how its subsys-
tems relate to one another: “[a] prerequisite for integration and
extension is the comprehension of the software. To understand
the architecture, we should identify the architectural patterns
involved and how they are coupled.” [1].

Even though these are relevant concerns on both game
engine and game development, the topics of game engine
subsystems coupling and architectural models have not been
explored extensively. The literature mostly focuses on the
implementation of specific game engine subsystems and not
on their design and integration in architecture. In the context of
graphics, for example, “there are a lot of sources of very good
information from research to practical jewels of knowledge.
However, these sources are often not directly applicable to
production game environments or suffer from not having actual
production-quality implementations.” [4, p. xiv].

Moreover, popular game engines, such as Unity 1, are closed
source, which makes it harder for developers to study them
[12]. When developers have no access to architectural models,
the software understanding process is mostly based on trial
and error: “the only way for a developer to understand the
way certain components work and communicate is to create
his/her own computer game engine.” [11].

In this work, we propose an approach for creating architec-
ture models of game engines. Given a game engine, we cluster
its source-code files into subsystems and create an include
graph that holds the representation of the dependency relation-
ships between these files. After creation, we check this graph
for inconsistencies, resolving manually any include paths that
could not be resolved automatically by our graph generator.
Finally, we use this graph to generate an intermediate model
that can be loaded into Moose 10, a platform for software
analysis 2. Using this platform, we generate an architectural
model that allows us to visualise the relationships between
subsystems. With such a model we can answer the following
research questions:

• RQ1: Which subsystems are present in game engines?
• RQ2: Which subsystems are more often coupled with one

another?

1https://unity.com/solutions/game
2https://moosetechnology.org
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• RQ3: Why are these subsystems coupled with each other?
We apply our approach to three popular open-source game

engines: Cocos2d-x 3, Godot 4, and Urho3D 5. Our results
show that game engines share the same set of base subsystems,
even though some responsibilities are grouped differently on
each system. For example, files from Profiling and Debugging
and Human Interface Devices subsystems can be either placed
in separate folders or merged together in a single “core”
folder. We also observe that the Platform Independence Layer,
Resource Management, World Editor, and Core subsystems are
frequently included by others and therefore are foundational
for game engines. Moreover, we observe that the Core subsys-
tem frequently includes graphic-related subsystems to initialise
these subsystems and access debugging information. We show
and discuss more examples of these and other occurrences.

We show that, by applying our approach, game engine
developers can understand whether subsystems are related and
how responsibilities are/should be divided. Also, they can
assess if these relationships help the subsystems to fulfil their
responsibilities in the overall system. We intend to apply this
approach to a larger set of game engines and subsystems.
We also want to explore other relationships and metrics, such
as cohesion and complexity, and their effect on game engine
understanding and maintainability.

The remainder of the paper is organised as follows: Sec-
tion II presents related work on game engines, architectural
recovery, and coupling. Section III provides a description of
our game engine analysis approach. Section IV shows and
discusses the architectural models resulting from applying our
approach to three game engines. Section V presents threats to
validity and Section VI concludes with future work.

II. RELATED WORK

Works compared game engine aspects such as ease of
use [3], available subsystems and target platforms [7], and
suitability for a given platform [8] or game genre [9]. These
comparisons are all tabular, listing game engines in one axis
and relating them to subsystems in another. They are organized
in this way to determine which game engines have the largest
subsystem count, which subsystems are more commonly im-
plemented and what benefit they bring to developers. But
while discussing function, these works do not mention the
architectural structures which support functionality. In this
paper, we present an approach to obtain architectural models
from game engines, which may be useful for both game engine
developers and game developers who want to integrate or
extend game engines.

Outside of game engines, the recovery and study of software
architecture models have been applied to different software,
such as the Linux kernel [2] and the IBM SQL/DS database
[14]. In their work, [2] present a model showing the rela-
tionships among Linux subsystems. This visualisation, which

3https://github.com/cocos2d/cocos2d-x
4https://github.com/godotengine/godot
5https://github.com/urho3d/urho3d

they called “conceptual architecture”, helped them “under-
stand the volume of detail in the implementation” and view
“relationships between subsystems that are “meaningful” to
developers”. Similarly, in this work, we propose an approach
to obtain game engine architectural models by detecting and
relating their subsystems. We present our analysis of subsys-
tem coupling with an architectural model generated by Moose,
which represents each subsystem as a node in a graph, with
edges between them representing dependency relationships.

Many software quality metrics exist and we choose cou-
pling because coupling among subsystems directly impacts
understanding and maintainability [13], which are important to
consider because video games are “complex, emergent systems
that are difficult to design and test” [6]. Also, “the more
scattered the [game engine] feature implementations are in
the architecture, the more likely it is that they get tangled
with features to be added.” [5].

In previous work, we compared the dynamic call graphs
of Godot and Urho3D to understand the similarities and
differences between their initialisation processes and division
of responsibilities at the class level [12]. In this work, we
analyse the architecture at the subsystem level, observing the
static dependencies among files and not their method calls. We
analyse the same two engines, Godot and Urho3D, and add a
third one, Cocos2d-x.

III. APPROACH

We divide our approach into six steps (Figure 1): system
selection, subsystem selection, subsystem detection, gener-
ation of the include graph, Moose model generation, and
architectural model visualisation. We partially automate our
approach. Data and scripts are available on GitHub 6. In this
section, we explain our steps and choices in detail.

1) System selection: We chose the game engines to study
using GitHub. This step was done manually.

2) Subsystem selection: We chose game engine subsys-
tems from the game engine development literature. This
step was done manually.

3) Subsystem detection: For each selected game engine,
we clustered files and folders into the selected subsys-
tems. This process was done manually by a single person
in this paper but could be done by multiple people and
the results could be combined by consensus.

4) Include graph generation: We generated an include
graph that encompasses all the files of a selected game
engine. This step was done automatically with a dedi-
cated tool, described in Section III-D.

5) Moose model generation: We used the data obtained
from Steps 3 and 4 to generate a model that can be
loaded into the Moose software analysis platform. This
step was done semi-automatically with dedicated scripts.

6) Architectural model visualisation: We loaded each
game engine model into Moose and then used its
“Architectural map” visualisation to generate a visual

6https://github.com/gamedev-studies/game-engine-analyser
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Fig. 1: Steps of our game engine analysis approach.

representation of the include graph and subsystems. This
representation is an architectural model. This step was
done semi-automatically with dedicated scripts.

A. System Selection

We searched for and selected game engine repositories in
GitHub. We defined the following criteria for selecting game
engine repositories:

• Open source: the repository must be publicly available
and unarchived.

• Game engine: the repository must be tagged with the
“game engine” tag.

• Written in C++: the repository must contain mostly C++
code because it is the most used programming language
for game engine development [10].

• General purpose: the game engine must enable the
creation of games of diverse game genres. We made this
choice so our analysis reflects the architectural choices
and needs of a broad range of games and is useful for a
large set of game developers.

In our search result, we selected the top three engines with
the highest sum of forks and stars and with the lowest numbers
of header files and folders because our approach is partly
manual. We thus obtained three game engines: Cocos2d-x,
Godot, and Urho3D, as shown in Table I.

B. Subsystem Selection

We used the 15 subsystems described in the “Runtime
Engine Architecture” proposed by [4, p. 33]. We chose these
subsystems because they are well-known in the game engine
development community. While Gregory uses the terms “com-
ponent”, “module” and “subsystem” interchangeably, we chose

to use the word “subsystem” to describe a group of files and
folders that contain code for a given system functionality.

Gregory states that “all commercial game engines have
some kind of world editor tool”, which is “a tool that permits
game world chunks to be defined and populated” [4, p. 857]
so we added a subsystem, which we called “World Editor”,
because it directly impacts game developers’ work.

While the description of the responsibilities encompassed
by each subsystem is beyond the scope of this paper, we
summarise their definitions in the following. We also assign
them a 3-letter code, which we use in the rest of this paper.

1) Audio (AUD): manages audio playback and effects.
2) Core Systems (COR): manages engine initialisation,

contains libraries for math, memory allocation, etc.
3) Profiling and Debugging (DEB): manages performance

stats, debugging via in-game menus or console.
4) Front End (FES): manages GUI, menus, heads-up

display (HUD), and full-motion video playback.
5) Gameplay Foundations (GMP): manages the game

object model, scripting and event/messaging system.
6) Human Interface Devices (HID): manages game-

specific input interfaces, physical I/O devices.
7) Low-Level Renderer (LLR): manages cameras, tex-

tures, shaders, fonts, and general drawing tasks.
8) Online Multiplayer (OMP): manages match-making

and game state replication.
9) Collision and Physics (PHY): manages forces and

constraints, rigid bodies, ray/shape casting.
10) Platform Independence Layer (PLA): manages

platform-specific graphics, file systems, threading, etc.
11) Resources (RES): manages the loading and caching of

game assets, such as 3D models, textures, fonts, etc.
12) Third-party SDKs (SDK): enables interfacing with

DirectX, OpenGL, Vulkan, Havok, PhysX, STL, etc.
13) Scene graph/culling optimizations (SGC): computes

spatial hash, occlusion, and level of detail (LOD).
14) Skeletal Animation (SKA): manages animation state

tree, inverse kinematics (IK), and mesh rendering.
15) Visual Effects (VFX): enables light mapping, dynamic

shadows, particles, decals, etc.
+ World Editor (EDI): visual game world-building.

C. Subsystem Detection

In this step, we clustered all folders in each repository into
the selected subsystems. When deciding which subsystem best
suits a given folder, we considered all available information
about the folder: name, contents, documentation, and source
code. We show an example of this decision process in Table II.

D. Include Graph Generation

We generated an include graph for each repository using a
script created by Irving8. This script generates a graph file in
the DOT language, which contains each file’s absolute path
and its include relations with other files.

7https://docs.cocos.com/creator/manual/en/asset/spine.html
8https://www.flourish.org/cinclude2dot
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TABLE I: Open-source game engines in GitHub which match our criteria.

Game Engine Branch Commit Forks + Stars Headers Folders

Cocos2d-x HEAD->v4 90f6542cf7 23,300 1,089 642
Godot HEAD->3.4;tag:3.4.5-stable f9ac000d5d 59,200 2,748 1,022
Urho3D HEAD->master feb0d90190 4,956 3,446 1,546

TABLE II: Subsystem detection example for Cocos2d-x.

/cocos/editor–support/spine

Subsystem detected:
1) By folder name? No, there is no subsystem called

spine. From the names of the files it
contains, we can infer it is related to
animation (SKA), but we need more
data to confirm.

2) By parent folder name? No, the folder editor-support might
be related to EDI, but we need more
data to confirm.

3) By documentation? Yes, according to docs: “Skeletal ani-
mation assets in Creator are exported
from Spine”. 7

4) By code? No need to look at the code, subsys-
tem detected on step 3.

Conclusion SKA

The script attempts to resolve each relative include path into
an absolute path. If the resolution fails, the script stores the
path in a file. We then iterate over this file and resolve the
paths manually. After resolution, we added the path to the
script list of search paths and ran the script again (Figure 2).

Run script

List of include
search paths

Game
Engine

Repository

Are there
unresolved

paths?
Inspect the graph file

Search for correct
path manually on disk

Are these
system

libraries?

adds

uses

No

Yes

YesNo Validate files
manually

Graph

generates

Validated
graph

uses

generates

uses

Fig. 2: Steps of include graph generation.

Some include paths remained unresolved because they re-
ferred to system or OS-specific libraries (e.g., stdio.h, win-
dows.h). These headers are external to the game engine
repositories so their absence does not influence our results.

E. Moose Model Generation

We used Moose 10, a platform for software analysis, to
analyse the include graphs. We chose Moose because it
generates visualisations and is built on top of Pharo9, a

9https://pharo.org/

Smalltalk development environment that gives us the flexibility
to customize existing tools and also write our own.

We wrote a Smalltalk program that takes as input a list
of game engine files/folders, their assigned subsystem and
include graph files. The union of these two data sources
happens in Step 4 of Figure 1. The result of this union is
a Moose model, which is a Pharo object containing source-
code entities (files and folders) and include relations. We then
used Moose and Pharo methods to analyse these models, such
as counting the number of entities in a model, filtering them
by name and type, or displaying them with the “Architectural
map” visualisation, as described in III-F.

F. Architectural Model Visualisation

Moose provides an “Architectural map” to visualise entities
and relationships in Moose models. It is a directed graph where
each model entity is a node, and each include relationship is
an edge. This graph is an architectural model.

The “Architectural map” visualisation is interactive and
allows us to group files/folders by tags, identified by names
and colours. We created one tag for each selected subsystem
and assigned one tag to each entity in each model. The tag cre-
ation and assignment process was semi-automated. We wrote
a script to gather all the folder names and their respective
subsystem names (see Section III-C) from a CSV file and
then create the tags. We created the CSV files manually.

Once we created all tags in Moose for each game engine, we
selected all entities at the root folder, propagated them to the
data bus, opened the “Architectural map” and finally selected
all tags and relationships (called “associations” in Moose) for
visualisation. We describe and comment on the results next.

IV. RESULTS

The application of our approach on the three selected
game engines produces three architectural models showing
the similarities and differences among subsystems and their
relations, shown in Figure 3. We discuss the architectural
models and answer our RQs.

A. RQ1: Detected Subsystems

In the architectural models shown in Figure 3, all subsys-
tems are identified by coloured boxes named with the abbrevi-
ations in Section III-B. Subsystems that were not detected are
represented by a dark grey box with light grey text. The four
subsystems placed in the centre of the map are the ones most
often included by others. We placed the subsystems manually
in a circular pattern, organized alphabetically from left to right.

We identified 12 subsystems in Urho3D, 13 in Cocos2d-
x and all 16 in Godot. While this may imply that Godot

https://pharo.org/
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Fig. 3: Game engine architectural models generated with Moose 10.

is more feature-complete than its counterparts, an undetected
subsystem does not mean that its features are totally absent
from the game engine. For example, we found out that
DEB subsystem functionality is not always centralized in
a file/folder, but rather spread among different subsystems.
Concretely, we observed in Urho3D that both files Renderer.h
and DebugRenderer.h inside the Graphics folder, clustered into
the LLR subsystem. LLR has its own debugging utilities, no
system-wide debug utilities exist.

We observed that some subsystems are present but their files
are in a base or core folder, mixed with other, unrelated files.
Our clustering was mainly based on folder names so these files
were clustered together, even though they are not functionally
related. For example, we confirmed that Cocos2d-x has HID
functionality by inspecting its source files, which is backed
by its documentation10. However, the files that contain HID-
related classes are in a folder called base, which was clustered
in the COR subsystem.

Urho3D presents several other cases where one of the
selected subsystems is encompassed by another. Code for

10https://docs.cocos2d-x.org/cocos2d-x/v4/en/event dispatcher/keyboard.
html

MacOS compatibility, a PLA subsystem responsibility, can be
found in folders such as IO (COR subsystem) and ThirdParty
(SDK subsystem). VFX subsystem features are in files under
Graphics, along with Renderer.h.

Finally, we observed cases where a subsystem was not de-
tected because its files were in a separate folder or repository.
In Urho3D, for example, the editor is represented by a single
AngelScript file, Editor.as, which is in /bin/Data/Scripts along
with other code examples and away from /Source in which
most subsystem code resides. This subsystem is not written
in C++ while, in this work, we only considered C++ files.
In Cocos2d-x, third-party libraries are placed in a separate
repository11, which we excluded from our analysis.

B. RQ2 and RQ3: Coupling Among Subsystems

The architectural models in Figure 3 go beyond showing
the existence of a set of subsystems or comparing their
implementation with a theoretical model. Indeed, they are
directed graphs whose incoming and outgoing edges we can
study to understand subsystem relationships. We can also
answer questions to explore and validate the architectures,

11https://github.com/cocos2d/cocos2d-x-3rd-party-libs-bin
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such as “Should subsystem A include files from B? If so,
why?”.

Of the three architectural models, Godot is noticeably the
densest one not only due to the number of subsystems but also
edges, a total of 40. Urho3D is the second most coupled game
engine, with 24 edges, followed by Cocos2d-x with 21. These
numbers hint at the sizes and complexities of the selected
game engines. Yet, they do not provide specific insights. In the
following, we analyse the architectural models in-degree and
out-degree and compare the frequencies of coupling between
subsystems across game engines.

1) In-degree and Out-degree: In graph theory, the number
of incoming edges of a node is called in-degree, and the
number of outgoing edges is called out-degree. We noticed
high in-degree nodes in all game engines, and so we decided
to compute a node count for each node on each game engine
to understand which subsystems support others.

On the bottom of the Cocos2d-x architectural model, we
observe a node with a very high in-degree, the PLA sub-
system, with 11 incoming and zero outgoing edges: 11 sub-
systems depend on PLA because the folder cocos/platform
contains many files with utility classes used throughout the
system. Some examples are CCFileUtils.h (file management),
CCImage.h (image loading), CCPlatformConfig.h (checks for
cross-platform compatibility), and CCLuaEngine.h (scripting
engine). These files could be clustered into their specific
subsystems but many account for OS-specific considerations
(e.g., different line-breaking characters, asset root folders, etc.)
so they belong to the PLA subsystem.

The RES subsystem has the highest in-degree in Godot,
with seven incoming and four outgoing edges. It is followed
closely by EDI, with eight incoming and two outgoing edges.
These subsystems have high in-degrees, similar to what we
observed in Cocos2d-x. The RES subsystem contains files with
classes representing game entities from many subsystems, such
as audio stream sample.h (AUD), dynamic font.h (FES), phy-
sics material.h (PHY/LLR), and animation.h (SKA).

In Godot, most files that depend on its EDI subsystem are
custom engine modules, located in godot/modules. These mod-
ules extend editor functionality for different subsystems, e.g.,
GMP (modules/gdscript/language server/gdscript language-
server.cpp includes editor log.h) and VFX (modules/light-

mapper cpu/lightmapper cpu.cpp includes editor settings.h).
In Urho3D, the COR subsystem has the highest in-degree,

with four incoming and five outgoing edges. We were sur-
prised, however, to find out that besides providing function-
ality, Urho3D’s and Cocos2d-x COR also depend on other
subsystems. They relate to graphics-related subsystems, such
as FES, LLR, or VFX, for the following reasons:

• Performing initialisation. In Urho3D, Engine.cpp in-
cludes Graphics.h (LLR) to initialise the graphics and
rendering subsystems. The graphics subsystem always
starts up unless the engine is run in headless mode.

• Accessing debug information. In Cocos2d-x,
CCConsole.cpp contains functions to write in a command
line interface, which includes CCTextureCache.h (LLR)

and CCScene.h (VFX) to print debugging information
about the scene tree and texture cache to the console.

2) Coupling Among Subsystems: Besides analysing the
game engines case by case, we want to understand what are the
trends for game engine architecture in a broader sense. While
we are aware that our selected engines may not represent the
entire market and range of use cases of this kind of system, we
believe that looking at the way subsystems relate throughout
different systems may give us insights into how this kind of
system should be built. Seeking to obtain such insights with
regard to coupling, we counted the number of times each
subsystem couples with each other on each selected engine.
The result of this analysis is a matrix where both lines and
columns represent subsystems. Zero represents no coupling,
while one represents coupling exists for a given game engine.
By summing up these matrices and colouring the highest
values, we produced a heatmap (Figure 4).

In the x-axis of the heatmap, we can see how many times a
subsystem includes another in all selected game engines. On
the other hand, in the y-axis, we can see how many times a
subsystem is included by another. For example, if we take the
first line from the top, we can observe the AUD subsystem
includes files from itself in three game engines, includes files
from COR in two game engines, and so on.

The sum of values on each column (included by) and
row (includes) is shown on Table III. We put the top four
subsystems in the “included by” column in the centre of each
architectural map from Figure 3. Since these subsystems are
represented by nodes with many edges, putting them in the
centre makes visualisation easier.

In the heatmap’s central diagonal, we observe that not all
values equal three. This happens because not all subsystems
were detected in all game engines, and therefore not all self-
include three times. This is the case for seven subsystems:
DEB, EDI, HID, PLA, RES, SDK and VFX.

# Included By Includes
1 COR 31 GMP 26
2 SGC 27 COR 25
3 LLR 26 FES 19
4 VFX 17 SGC 19
5 FES 16 EDI 18
6 RES 15 LLR 15
7 PLA 14 RES 15
8 EDI 13 VFX 15
9 AUD 12 PHY 13

10 SKA 11 SKA 13

TABLE III: Subsystems by include frequency.

By inspecting the heatmap from left to right, we can see
four columns are clearly highlighted: COR, LLR, SGC and
VFX, indicating they are the subsystems most often included
by others. As described in Gregory’s architecture, COR files
are “useful software utilities” [4, p. 39] used throughout the
system, and therefore it is no surprise that it is included by
almost all subsystems.

Video games are highly dependent on visuals, and graphics
are a cross-cutting concern. Therefore it is also no surprise that
so many subsystems depend on LLR and SGC. The reasons
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Fig. 4: Subsystem coupling heatmap for the selected game engines.

for this dependency only become clear when we look at the
code. The most common example can be seen in Cocos2d-
x: the FES subsystem, responsible for drawing UI elements,
includes the renderer CCRenderer.h. Urho3D PHY and AUD
subsystems include files from LLR to print debugging infor-
mation. In Cocos2d-x, PHY includes CCScene.h because it
holds a representation of the physics simulation, so it needs
to add/remove physics objects.

V. THREATS TO VALIDITY

Firstly, we are aware the selected game engines may not be
representative of all open-source game engines and the entire
video game industry. While we used GitHub stars and forks
as a metric to enable us to select systems which are relevant
to the development community, we observed that the nature of
the open-source game engine ecosystem itself poses challenges
that do not exist in other kinds of systems.

For example, many open-source front-end web development
frameworks exist and are being used in large industry-grade
projects. Open-source game engines, on the other hand, are
not used by large game development companies, being Unreal
Engine one of the few exceptions. However, Unreal Engine
has a large number of files and complex subsystems which
would deserve a dedicated study.

In the context of subsystem selection, Gregory’s “Runtime
Engine Architecture” is our single architectural reference for
game engine subsystems. We know that other authors have
proposed different reference architectures.

During subsystem detection, we noticed some files and
folders did not fit into any of the selected subsystems. Hence,
we are aware our subsystem list is not exhaustive.

In this study, subsystem detection was performed manually
by the first author only. As described in subsection III-D, we
also resolved some include paths manually. Therefore, we are
aware both of these steps may have inconsistencies and biases.

We used Moose for creating models of the selected game
engine files, folders, and include relations. We used its built-
in tools to query the entities in this model and generate
architectural models. Other, similar tools exist and could
provide different models.

VI. CONCLUSION

We proposed an approach of subsystem detection, model
generation, and visualisation of architectural models of game
engines. We answered the following questions on three open-
source game engines, Cocos2d-x, Godot, and Urho3D:

a) RQ1: Which subsystems are present in game engines?:
We detected all 16 selected subsystems [4] in the selected
game engines, even though we did not detect every subsystem
in every game engine. When we did not detect a subsystem,
it was usually because its functionalities were provided by
other subsystems (e.g., Visual Effects and Low-Level Renderer,
Profiling and Debugging and Core Systems).

b) RQ2: Which subsystems are more often coupled with
one another?: We observed that different subsystems play
a core role in their system: in Cocos2d-x, it is Platform
Independence Layer; in Godot, Resource Management and
World Editor; in Urho3D, Core Systems. When looking at the



aggregated data of all game engines, Core Systems, Low-Level
Renderer, Visual Effects, and Scene Graph/Culling Optimiza-
tions are the subsystems most often included by others. They
are all related to either Core Systems or graphics. Core Systems
often includes graphics-related subsystems.

c) RQ3: Why are these subsystems coupled with each
other?: In Cocos2d-x and Godot, Platform Independence
Layer provides functionalities used throughout the system,
such as scripting, configuration and file system management.
In Godot, Resource Management provides game object classes
(e.g., animations, materials). Core Systems are included by
many others and frequently include graphic-related subsystems
for initialisation and debugging.

By applying our approach, game engine developers can
understand whether subsystems are related and share respon-
sibilities and whether this sharing helps fulfil the objectives
of the game engine. By generating architectural models and
coupling heatmaps of their systems, developers can understand
which subsystems are available, how they depend on each
other, and which subsystems are centralising responsibilities.

In future work, we intend to apply this approach to a
larger set of game engines and subsystems. We will ask
several developers to perform subsystem detection so as to
decrease classification biases. We will improve the include
graph generation, aiming for fully automatic resolution of
include paths to increase analysis speed and accuracy. We will
explore other software quality metrics, such as cohesion and
complexity, and how they affect architectural understanding
and system maintainability.
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