
Game Engine Comparative Anatomy

Gabriel C. Ullmann1, Cristiano Politowski1,
Yann-Gaël Guéhéneuc1, and Fabio Petrillo2

1 Concordia University, Montreal QC, Canada
g cavalh@live.concordia.ca, c polito@encs.concordia.ca,

yann-gael.gueheneuc@concordia.ca
2 École de Technologie Supérieure, Montreal QC, Canada

fabio.petrillo@etsmtl.ca

Abstract. Video game developers use game engines as a tool to manage
complex aspects of game development. While engines play a big role in
the success of games, to the best of our knowledge, they are often devel-
oped in isolation, in a closed-source manner, without architectural dis-
cussions, comparison, and collaboration among projects. In this work in
progress, we compare the call graphs of two open-source engines: Godot
3.4.4 and Urho3D 1.8. While static analysis tools could provide us with
a general picture without precise call graph paths, the use of a profiler
such as Callgrind allows us to also view the call order and frequency.
These graphs give us insight into the engines’ designs. We showed that,
by using Callgrind, we can obtain a high-level view of an engine’s archi-
tecture, which can be used to understand it. In future work, we intend
to apply both dynamic and static analysis to other open-source engines
to understand architectural patterns and their impact on aspects such
as performance and maintenance.

Keywords: Game Engines · Game Engine Architecture · Game Devel-
opment.

1 Introduction

Game engines allow developers to create games in an agile and standardized
way. While there is a wide array of free, open-source engines, many large studios
choose to develop proprietary solutions to be used internally. Famous examples
of this approach are Frostbite 3, id Tech 4, and RAGE 5. There are also popular
closed-source engines available publicly, such as Unity and Source [11].

When writing a proprietary engine, developers are able to customize it to
fulfill performance or feature requirements of a certain game or game genre,
which may give them an edge on competitors. As a downside, however, this de-
velopment process hinders exchange of information that could be beneficial to

3 https://www.ea.com/frostbite
4 https://arstechnica.com/gaming/2018/08/doom-eternal-reveals-new-powers-puts-
hell-back-on-earth/

5 https://www.inverse.com/gaming/gta-6-leaks-new-rage-engine

2 G. Ullmann et al.

the entire game development community. According to [12], “almost all relevant
game engines are closed source which means that particularities on implementa-
tion of certain functionalities are not available to developers. The only way for
a developer to understand the way certain components work and communicate
is to create his/her own computer game engine”.

Developers may also find obstacles when creating a game engine from scratch,
especially due to a lack of standards on how high-level architecture components
should be created and related for this kind of system. Even though books have
been published on the topic of game engine architecture [4–6], according to [1],
often these publications “tend to only briefly describe the high-level architecture
before plunging straight down to the lowest level and describing how the indi-
vidual components of the engine are implemented”. Furthermore, they mention
that “such literature offers an excellent source of information for writing an en-
gine, but provides little assistance for designing one when the requirements are
different from the solution described”.

We believe game engines would benefit from experience exchanges with other
projects of the same kind. A comparative analysis would allow us to identify
commonalities and propose points of improvement to existing engines. In this
work in progress, we compare the call graphs of two open-source engines, Godot
and Urho3D, considering these aspects.

The Callgrind profiling tool is used to generate these call graphs, which reflect
the execution of a base game project produced with each engine. By comparing
the call graphs, we aim to observe the main components of each engine and how
responsibilities are divided among them.

While static analysis tools could provide us with a general picture without
precise call graph paths, we chose to use a profiler because it allows us to view
the call order, frequency, and the number of CPU cycles taken by each method.
As a result of this analysis, we will answer the following questions: Are game
engine designs similar? If so, how similar are they? Our hypothesis is that game
engines follow a similar design and architectural structure.

We show that producing a high-level architecture view of the engine is pos-
sible using a profiling tool and that it is a way to get insights into an engine’s
design. In future work, we will compare these architectures with those proposed
by researchers, both through static and dynamic analysis. We will study how
design choices made in each case may influence performance, maintenance, and
the range of games that can be produced with a given engine.

2 Related Work

Several works compare game engines concerning ease of use [3], available tools
and target platforms, and also to determine which are more suitable for a given
platform [9] or game genre [10]. However, these comparisons are made from a
game developer point of view and do not encompass details related to engine
design or implementation. Other works focus on proposing architecture to fulfill

Game Engine Comparative Anatomy 3

a specific requirement, such as low-energy consumption for mobile devices [2].
Novel distributed architectures have also been proposed [7, 8].

In our work, we compare Godot and Urho3D, not simply in terms of what
features are available and in what situations they fit best, but also looking at how
engine subsystems (e.g., graphics, audio, physics, etc.) are organized, initialized
and in which ways they interact and relate.

3 Approach

3.1 Overview

Our approach consists of five steps. First, we selected C++ engines available on
Github (more details on Section 3.2) and cloned their repositories. Following the
documentation or running scripts provided by the developer, we compiled them.
Using the engine’s editor, we created a new project, setting up the minimum
necessary to make it run. We will hereby call this our “base game” 6. A Godot
project demands at least one scene object to run, which can be created via the
engine’s editor. Urho3D, on the other hand, has no editor: one must create a
.cpp file and include Urho3D’s library to create a new project. We can run the
game loop by calling the Start method, no scene creation needed.

We then ran the base game’s packaging process, which allows us to obtain an
executable that can be analyzed by the profiler. In the case of Urho3D, there is
no packaging, only .cpp file compilation. Normally the code would be compiled
in release mode, with all optimizations in place, but in our case, we changed the
packaging settings to obtain an executable with debug symbols.

We ran Callgrind on the base game executable to obtain the list of all calls
made by the program, which it saves into a log file. Using KCachegrind, we con-
verted this Callgrind log into a visual representation of the program’s execution,
a call graph. Class and method names in the graph guided our analysis since
they helped us understand the responsibilities of each component.

3.2 Engine selection

We searched for all repositories on GitHub filtering by topic (game-engine) and
language (C++). We chose to consider only C++ since this is one of the most
popular languages for game engine development [11]. After that, we selected 15
projects and ordered them by number of stars and forks. We then proceeded
to clone and build each one of them, starting by those with the highest sum of
stars and forks. At the time of writing of this paper, we managed to compile and
produce a running executable for two of these engines: Godot and Urho3D.

6 https://github.com/gamedev-studies/engine-profiling-
projects/tree/master/BaseGame

4 G. Ullmann et al.

3.3 Engine compilation and analysis

We cloned the GitHub repositories for Godot and Urho3D, working with the
latest version at the time for each: commit feb0d at the master branch for
Urho3D and commit 242c05 at the 3.4.3-stable branch for Godot.

Following the instructions in the documentation, we compiled Godot export
templates for Linux (we used Ubuntu 20.04.4 LTS), both in release and debug
modes. These are binary files containing engine code compiled for a specific target
platform. Before generating an executable for any Godot project, we must link
these templates to the project via the editor’s GUI. We created a Godot base
game, generated the executable, and then ran it with Callgrind for 30 seconds.

4 Godot’s call graph

We verified that the first tasks Godot executes upon running a game are register-
ing classes and initializing a window (Figure 1). Since our base game is running
on Ubuntu, Godot calls the X11 windowing system. After getting a window in-
stance, the engine then proceeds to call methods to create a scene. Once ready,
a notification is sent into the engine’s message queue. According to the engine
documentation, the MessageQueue class is “a thread-safe buffer to queue set
and call methods for other threads” 7.

Main::setup

Main::setup2

register_scene_types

OS_X11::initialize

ClassDB::register_class

initialize_class

bind_methods

(all classes)

OS_X11::run

Main::iteration

SceneTree::iteration

MessageQueue::flush

MessageQueue::
_call_function

Node2D::_notificationv

initialize_theme

make_default_theme

fill_default_theme

Ref<StyleBoxTexture>
make_stylebox

StyleBoxTexture
::setTexture

Texture::get_sizeProceduralSky::
_generate_sky

12x

ProjectSettings::setup

Fig. 1. Godot’s base game call graph, showing which methods are called.

7 https://docs.godotengine.org/en/stable/development/cpp/custom godot servers.html

Game Engine Comparative Anatomy 5

Also during startup, Godot’s calls methods to set up its GUI theme sys-
tem 8, such as initialize theme, even though in our base game it is not being
used. Similarly, a ProceduralSky:: generate sky method is called repeatedly even
though no sky is drawn. According to Godot’s documentation9, this class proce-
durally generates a sky object, which is “stored in a texture and then displayed
as a background in the scene”. Since no textures are loaded into the base game,
nothing is drawn, but the sky generation method is called and updated anyway.

To validate our approach, we compared Godot’s call graph with a “layers
of abstraction” diagram posted on Twitter by Godot’s creator Juan Linietsky
10. This comparison can be seen in Figure 2. Searching by class names, we
found matches for all classes, even though the names were not the same (e.g
PhysicsServer and Physics2DServer).

OS_X11

main

setup2

register_scene_types

Node2D

RigidBody

TileMap

SpriteCollisionObject

register_server_types

Physics2DServer

VisualServer

Script

SceneTree

TileSetCollisionShape Texture

setup

Fig. 2. Comparison between the call graph for Godot base game and diagram of “layers
of abstraction” by Juan Linietsky

The most notorious difference is the class described by Linietsky as Window.
There is no class with this name on Godot’s code base. We believe, however, that
he referred to windowing systems in general and therefore decided to simply use
the term Window since his diagram was platform-agnostic.

Also regarding the windowing system, we found no class named DisplayServer
on the call graph. To understand what part of our call graph corresponds to this

8 https://docs.godotengine.org/en/stable/classes/class theme.html
9 https://docs.godotengine.org/en/stable/classes/class proceduralsky.html

10 https://twitter.com/reduzio/status/1506266084420337666

6 G. Ullmann et al.

class, we used method names as a reference. Inspecting the source code, we
determined that methods get singleton and has feature from the DisplayServer
class were called by the ProjectSettings class, which is instantiated by the first
setup method. In the base game’s graph, we found this same method name being
called by a class named OS.

5 Urho3D’s call graph

Differently from Godot, Urho3D initializes its graphics object first and only then
calls DSL (Simple DirectMedia Layer) and X11 to open a window, as shown in
Figure 3. However, they both initialize UI-related code even though there is
no UI to draw, and register all game object classes even though they are not
instantiated.

Furthermore, our attention was drawn to the fact that, while Urho3D calls
one initialization method per class, Godot calls Main::setup and Main::setup2.
These apparently redundant calls are justified by the developer as a way to
separate low and high level “singletons and core types” 11.

RunApplication

Urho3D::Application::Run

HelloWorld::Start

Sample::Start

Urho3D::Engine
::Initialize

Urho3D::Graphics
::Graphics

Urho3D::Graphics
::Constructor_OGL

Urho3D::Graphics
::SetMode

(set window mode, set
screen mode, call SDL)

SDL_CreateWindow

SDL_GL_LoadLibrary

X11_GL_LoadLibrary

Urho3D::Engine
::RunFrame

Urho3D::Engine
::Render

(UI Render, update, end
frame)

(create X11 window)

(register Physics2D, Audio,
CollisionShape, RigidBody)

Urho3D::Texture2D
::SetData_OGL

Urho3D::Texture2D
::SetSize

Urho3D::Texture2D
::Create

x15

Urho3D::UI
::GetBatches

Urho3D::Sprite
::GetBatches

x15

(calls to UI methods)

Fig. 3. Urho3D’s base game call graph, showing which methods are called.

6 Comparing Godot and Urho3D

In terms of similarities, both Godot and Urho3D have the same features present
in the most widely used game engines, such as graphics, audio, and physics.

11 Line 342 at https://github.com/godotengine/godot/blob/3.4/main/main.cpp

Game Engine Comparative Anatomy 7

Both engines register all game object classes upon startup and initialize graphics
systems, even though there is nothing more than an empty window to draw.

Main::setup

Main::setup2

ProjectSettings::setup RunApplication

Urho3D::Application::RunHelloWorld::Start

Sample::Start
register_scene_types

OS_X11::initialize

OS_X11::runClassDB::register_class initialize_theme Urho3D::Engine
::Initialize

Urho3D::Engine
::RunFrame

(...)(...) (...)(...) (...) (...)

Godot Urho3D

Fig. 4. Division of responsibility on Godot and Urho3D: initialization methods (or-
ange), class registration (red) and graphics (blue). Call tree ramifications omitted for
brevity.

On the other hand, the engines run graphics and window initialization in
different orders. Godot creates the window first, Urho3D does the opposite and
uses the DSL library to manage the interaction with X11. Godot has a scene
manager and internal messaging system which are initialized even in a simple
project such as the base game. Urho3D initializes only graphics and UI in this
case.

7 Discussion

We can use call graphs to visualize the division of responsibilities inside the en-
gines during initialization. They also provide an overview of the most important
subsystems and at which moment they are registered and called.

However, these observations do not give us deep insights into architectural
patterns and design choices for specific subsystems that could be useful for game
engine developers. To obtain this knowledge, we will generate dynamic and static
call graphs, as well as C++ #include graphs for each subsystem in the future.

While comparing the engines, we also identified project and runtime environ-
ment conditions that could make the profiler generate the call graph differently.
These are important to note since they may change our overall view of the ar-
chitecture.

Operating System: There is a possibility that if we ran the profiler on a Win-
dows or Android version of the same base games, we would obtain a different

8 G. Ullmann et al.

call graph. Each platform has its own system calls, GUI and data types, so
the engines account for this by adding platform-specific code. If the call graph
would be largely different, this difference could indicate that code evolution and
maintainability are compromised.

Active Features: Important class or method names may not be present in the
graphs because they have not been called during the analyzed run. The base
game only calls methods from the engine “core” and not others referring to
more specific features (e.g., networking methods, which would be needed in a
multiplayer game).

Other Means of Analysis: Results could vary when running our base game with
other profilers such as gprof or gperftools. Furthermore, while dynamic anal-
ysis can provide us with a precise call graph, it only represents a given run of
the program and is therefore only a partial view.

8 Conclusion

In this work in progress, we showed that producing a high-level architecture
view of an engine is possible with the use of a profiler, such as Callgrind, which
generates engine call graphs. We compared Godot 3.4.4 and Urho3D 1.8 not only
by looking at the engine’s subsystems but also in which order and frequency they
are called, which would not be possible by applying static analysis alone.

As for the research question “are game engine designs similar?”, we concluded
that Godot and Urho3D have a similar feature set and therefore could be used
to create the same types of games. Their features are the same present in most
widely used game engines, but they divide responsibilities and call them in the
code in different ways. Also, we identified that both engines initialize subsystems
even though they are not used (e.g. UI). While this may consume resources, it
seems to be the right choice since these systems are often used.

In future work, we intend to compare different open-source engine call graphs,
starting with Unreal Engine 5, to understand what architectural design patterns
are most frequently applied to them and how similar they are among engines.
Also, we will compare these architectures with those proposed by researchers,
using static and dynamic analysis, to understand the impact of design on engine
performance, maintenance, and feature richness.

Acknowledgements

The authors were partially supported by the NSERC Discovery Grant and
Canada Research Chairs programs.

Game Engine Comparative Anatomy 9

References

1. E. F. Anderson, S. Engel, P. Comninos, and L. McLoughlin. The Case for Re-
search in Game Engine Architecture. In Proceedings of the 2008 Conference on
Future Play: Research, Play, Share, Future Play ’08, pages 228–231, New York, NY,
USA, 2008. Association for Computing Machinery. event-place: Toronto, Ontario,
Canada.

2. E. Christopoulou and S. Xinogalos. Overview and Comparative Analysis of Game
Engines for Desktop and Mobile Devices. International Journal of Serious Games,
4(4), Dec. 2017.

3. P. E. Dickson, J. E. Block, G. N. Echevarria, and K. C. Keenan. An Experience-
based Comparison of Unity and Unreal for a Stand-alone 3D Game Development
Course. In Proceedings of the 2017 ACM Conference on Innovation and Technology
in Computer Science Education, pages 70–75, Bologna Italy, June 2017. ACM.

4. D. H. Eberly. 3D game engine design: a practical approach to real-time computer
graphics. Elsevier/Morgan Kaufmann, Amsterdam ; Boston, 2nd ed edition, 2007.

5. J. Gregory. Game engine architecture. Taylor & Francis, CRC Press, Boca Raton,
third edition edition, 2018.

6. E. Lengyel. Foundations of game engine development. Terathon Software LLC,
Lincoln, California, 2016.

7. D. Maggiorini, L. A. Ripamonti, E. Zanon, A. Bujari, and C. E. Palazzi. SMASH:
A distributed game engine architecture. In 2016 IEEE Symposium on Computers
and Communication (ISCC), pages 196–201, Messina, Italy, June 2016. IEEE.

8. C. Marin, M. Chover, and J. M. Sotoca. Prototyping a game engine architec-
ture as a multi-agent system. In Computer Science Research Notes. Západočeská
univerzita, 2019.

9. A. Pattrasitidecha. Comparison and evaluation of 3D mobile game engines. Mas-
ter’s thesis, Chalmers University of Technology, 2014.

10. S. Pavkov, I. Frankovic, and N. Hoic-Bozic. Comparison of game engines for serious
games. In 2017 40th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), pages 728–733, Opatija,
Croatia, May 2017. IEEE.

11. C. Politowski, F. Petrillo, J. E. Montandon, M. T. Valente, and Y.-G. Guéhéneuc.
Are game engines software frameworks? a three-perspective study. Journal of
Systems and Software, 171:110846, 2021.

12. M. Sršen and T. Orehovački. Developing a game engine in c# programming lan-
guage. In 2021 44th International Convention on Information, Communication
and Electronic Technology (MIPRO), pages 1717–1722, 2021.

