
Mendel: A Model, Metrics, and Rules
to Understand Class Hierarchies

Simon Denier and Yann-Gaël Guéhéneuc

Ptidej Team – GEODES – DIRO
University of Montreal, Quebec, Canada

E-mail: {deniersi,guehene}@iro.umontreal.ca

Abstract

Inheritance is an important mechanism when de-
veloping object-oriented programs with class-based pro-
gramming languages: it enables subtyping, polymor-
phism, and code reuse. Inheritance is also known as
a difficult feature to grasp and to use correctly because
of its many purposes. We propose a model of inheri-
tance to help understand class hierarchies of class-based
object-oriented programs. We define metrics and rules
to highlight interesting classes and behaviours with re-
spect to inheritance. Thus, we provide the programmer
with insight on how inheritance is used in a program.
We illustrate our approach on JHotDraw and val-
idate it further on three other programs: ArgoUML,
Azureus, and Log4J. We also show that our model can
describe existing rules, such as micro patterns.

1. Introduction

Inheritance is an important feature when developing
object-oriented programs with class-based program-
ming languages, because it enables subtyping [1], poly-
morphism [6], and code reuse [23]. In the past decades,
inheritance has been put forward [4] as a means to en-
hance reusability, to provide specialization and gener-
alization, and to define hierarchical taxonomies of real
world objects. However, it is known to be a a difficult
feature to grasp and use correctly [4, 20].

Our goal is to help programmers understand the uses
of inheritance in their programs by providing Mendel,
a systematic approach to perform inheritance analysis
in programs. The two objectives of our approach are,
first, to design a simple yet detailed-enough model to
allow mappings from different programming languages;
and, second, to contribute metrics and rules to qualify
classes and behaviours to help programmers in answer-
ing: What are the interesting classes in an unknown

program or framework? and What particular relation-
ships exist between a subclass and its superclass?

Our model combines data provided by the inheri-
tance tree and by the public interface of classes. Meth-
ods in a class are classified according to their inheri-
tance status: new, inherited, specialised, and replaced.
We propose metrics and rules based on this model to
classify interesting classes in the program as large, bud-
ding, and blooming classes, as well as to identify differ-
ent subclassing and overriding behaviours.

We illustrate Mendel using the running example
of JHotDraw. We show that using our approach we
are able to isolate the base classes documented by the
authors of the framework. We also apply and vali-
date our approach on three other programs: ArgoUML,
Azureus, and Log4J. We show that our model is able
to highlight interesting classes as well as different sub-
classing and overriding behaviours.

In the rest of this paper, Section 2 presents related
work. Section 3 introduces the running example of
JHotDraw and further defines our research objec-
tives. Section 4 introduces our model and associated
definitions. Section 5 contains the definitions of metrics
and rules used to understand and assess the uses of in-
heritance. Section 6 presents experiments done on four
programs. Section 7 discusses some extensions of our
model to accommodate previous work, such as client
driven characterisation and micro patterns. Section 8
concludes and presents future work.

2. Related Work

The work presented in this paper relates to several
areas of software engineering: (1) the definition, mod-
els, and properties of inheritance in programming lan-
guages; (2) the rules on “good” uses of inheritance; and
the use of inheritance to (3) assess software quality and
(4) identify behaviors and defects in programs.

1

Inheritance is one of the main concept introduced by
the object-oriented paradigm. In class-based program-
ming languages, inheritance plays three major roles.
First, inheritance allows subtyping [1]. In conjunction
with method overriding, it also enables class special-
ization and inclusion polymorphism [6]. Second, in-
heritance allows reusing code [23]: common code can
be factored out in superclasses for the benefit of sub-
classes, avoiding code duplication. Third, inheritance
allows defining taxonomies of objects, to express the
conceptual relationships among the modelled objects
and real-world objects. Programming languages may
offer various flavors of single, multiple, or mixin inher-
itance, depending on the rules governing its roles [21].

Although fundamental to object-oriented program-
ming languages, inheritance is well-known for being dif-
ficult to grasp and to use correctly by beginners [4, 20].
In their book [12, page 20], Gamma et al. issued a
warning and suggested to “favor object composition
over class inheritance”. Consequently, several educa-
tors and researchers provided guidelines on the uses of
inheritance. For example, Brown and Fowler [5, 11] de-
scribed typical examples of “bad” uses of inheritance
and suggest corrective measures. Recently, Gil and Ma-
man [14] introduced the concept of micro patterns in
Java, where several micro patterns are directly con-
cerned with inheritance. They show that micro pat-
terns, such as Implementor and Overrider, occur fre-
quently in programs like Sun JRE and JBoss Server.

Due to its importance in object-oriented languages,
several works offered metrics related to inheritance
to understand its impact on the quality of programs.
For example, the object-oriented metric suite by Chi-
damber and Kemerer [8] includes the metrics Depth of
Inheritance Tree and Number Of Children. Lorenz and
Kidd [18] defined metrics to count the number of inher-
ited, overridden, or added methods in a subclass. Beyer
et al. [3] used some flattening functions to take inher-
itance into account when computing classical metrics
like size, coupling, or cohesion. By comparing flattened
and unflattened metrics, they can find some particular
subclassing behaviors. Our work offers the same met-
rics and uses them to build new ones. Li-Thiao-Té et
al. [17] defined special metrics to detect misuses of
inheritance related to overriding. Recently, Mihancea
[19] proposed metrics to characterise hierarchies based
on the use of their classes by clients. The metrics allow
characterising a hierarchy in terms of uniformity and
detecting anomalies. Our approach is complementary
to this previous work, as further discussed in Section 7.

Previous work also highlighted the problems faced
by programmers when working with frameworks (or
any large program): mapping, understanding function-

alities, and understanding the framework architecture
[16]. Understanding the role played by classes through
inheritance when understanding framework is impor-
tant, as shown for example in [15] where programmers
often asked questions about inherited feature (45 over
300 questions) and variation points (what method to
use or override) because the framework studied (Java
Swing) was heavily inheritance-based. Demeyer et al.
[9] proposed a hybrid approach combining metrics and
visualisation to understand object-oriented programs.
Ducasse and Lanza [10] built on this previous work
class blueprints, a visualisation of class metrics. They
defined visual patterns to detect behaviors and defects,
related to inheritance among others. Our approach has
similar goals. However, class blueprints require some
expertise to identify visual patterns, while we want to
provide information to start the comprehension process
for programmers without any know-how.

3. Problem and Definitions

We build on previous work to propose a new model,
metrics, and rules to help programmers understand the
uses of inheritance in their programs.

Running Example. We illustrate this paper using
JHotDraw v5.2. JHotDraw is a framework to build
2D vector-based graphical editors [13]. It has been orig-
inally designed by Gamma and Eggenschwiller to illus-
trate the use of several design patterns and to be eas-
ily extended, using both the inheritance and composi-
tion mechanisms. A programmer willing to understand
JHotDraw would need to identify and understand the
main classes of the framework, their methods, and how
she should use, redefine, or override these methods to
implement her editor [15]. To help her in understand-
ing JHotDraw, Gamma and Eggenschwiller provided
an overview of the main Java interfaces in the form of
a UML-like class diagram, adapted in Figure 1.

JHotDraw Base Classes. The class diagram in
Figure 1 highlights the six classes (out of 148) in the
program that should be the starting point of any com-
prehension effort. Each of the classes shown in the
diagram is the direct implementation of one of the
six Java interfaces provided by Gamma and Eggen-
schwiller. We focus on these classes because they
should be understood by the programmer to grasp the
“mechanics” of JHotDraw. We call base this set of
classes, namely DrawApplication, StandardDrawing-
View, StandardDrawing, AbstractFigure, Abstract-
Handle, and AbstractTool.

2

AbstractFigureAbstractHandle

handles

current tool

s
e

le
c
tio

n

owner

figures

JFrame

DrawApplication

JPanel

StandardDrawingView

AbstractTool StandardDrawing

Figure 1. JHotDraw UML-like class diagram,
adapted from [13]

Problem Statement. Unfortunately, few other
real-world programs and frameworks provide such doc-
umentation [22], and the example of JHotDraw il-
lustrates the first question that we would like to help
programmers in answering: What are the interesting
classes in an unknown program or framework?

By virtue of inheritance, subclasses hold special
bonds with their superclasses. Some bonds indicates
how a subclass–superclass couple should behave, such
as specialisation or extension. It is of great help for the
programmer to know and understand such behaviour.
Thus, the second question is: What is the relationship
between a subclass and its superclass?

Therefore, we propose a language-independent
model of inheritance and then define metrics and rules
that help programmers answer these questions. We fo-
cus on the five following concepts.

Large Classes. A simple way to identify interesting
classes in a program is by the numbers of methods that
they declare locally. Indeed, the more methods a class
defines, the more it contributes to the program. We call
large class any class with a large interface compared to
the other classes in the program. We use the number of
methods declared in a class rather than the number of
lines of code because methods can be arbitrarily long
while the number of methods provide information on
the services that the class supports.

Budding Classes. Classes that provide more meth-
ods than their superclasses are likely to be interesting,
with respect to inheritance. Thus, they can be un-
derstood relatively independently of their superclasses.
We call budding classes these classes standing out lo-
cally in their inheritance tree, but not necessarily visi-

ble at first sight in the whole program.

Blooming Classes. Finally, we define blooming
classes as classes that seem to “blossom” in the inheri-
tance tree. They are often both large classes (declaring
many methods locally) and budding classes (adding a
lot of methods with respect to their superclasses) and
are prime choice to begin understanding a program.

Subclassing Behaviours. There are different ways
for a class to inherit from its superclasses. For example,
a class can extend its superclass with new methods or
override some existing methods. Therefore, it is also
important to identify such subclassing behaviours to
understand the incremental difference between a class
and its superclass.

Overriding Behaviours. Similarly to subclassing
behaviour, but finer-grain, we introduce the concepts
of overriding behaviours to characterise classes spe-
cialising or replacing methods of their superclasses—
because specialisation and replacement are important
features of inheritance with different impacts on the
class–superclass couple.

Approach for the Programmer. With our model,
a programmer could focus first on large, budding, and
blooming classes to get a good understanding of the
overall inheritance tree of a program. Subclassing and
overriding behaviours would then help the programmer
understand the relationship of a class to its superclass
more finely, in particular if the superclass is itself a
large, budding, or blooming class.

4. Model Definition

Our model divides into two levels. The first level
describes the tree formed by a set of classes in a hier-
archy. It provides selection of classes within the tree.
The second level describes classes as an interface with
different subsets of methods, based on their inheritance
status. It provides definition of those subsets.

In our model, we assume that a class is identified
by a name and provides a set of methods through its
interface. It is in relationship with a superclass simi-
larly defined. We only consider single inheritance for
the sake of simplicity, because multiple inheritance has
many different semantics [7]. Java interfaces are also
ignored because our model focuses on concrete meth-
ods and subclassing behaviours.

We call classes the set of all classes defined in a pro-
gram. It includes classes defined in imported libraries,
in case a class inherits from a superclass defined in a

3

Specialized

S
U

P
E

R
L

O
C

A
L

T
O

T
A

L

InheritedInherited

Replaced

New New

OVR OVR

O
V

E
R

R
ID

D
E

N

Figure 2. Method Subsets in the Class Model

library. However, our approach is still applicable if we
choose not to include libraries. This can eliminate, at
the expense of completeness, some obfuscation of pro-
gram classes by large library classes (such as Swing
classes).

4.1. Tree Model

The tree model focuses on describing relationships
between different classes connected through inheri-
tance. We define the inherits relation as follow:

inherits(c, s) if c ∈ classes ∧ s ∈ classes
∧ s is the superclass of c

We call parents the set of direct superclasses of
a class (of cardinality 1 in single inheritance). The
ancestors of a class is the transitive closure on parents
(noted ∗), up to the root of the inheritance tree. The
branch of a class includes the class and its ancestors.

parents(c) = {s : s ∈ classes ∧ inherits(c, s)}
ancestors(c) = parents ∗ (c)
branch(c) = {c} ∪ ancestors(c)

4.2. Class Model

The local interface of a class is the set of its lo-
cally declared public methods (excluding inherited and
private methods, including protected methods), each
method being identified by its unique signature [2].
The selector of the method, usually composed from its
name and its parameters types, is used as its signature.

For a class c ∈ classes, we define its pseudo-
superclass sflat = flatten(ancestors(c)), where
flatten means that sflat is a single class in which all
methods from the ancestors of c appear if and only if
they are visible and accessible from c.

Local Subset LocS: all methods defined by c.

Super Subset SupS: all methods defined by sflat.

Total Subset TotS: all methods that c can answer,
TotS = LocS ∪ SupS.

The purpose of the class model is to distinguish sub-
sets of methods in the interface of a class: new, inher-
ited, specialised, and replaced. These subsets are used
to compute metrics and rules.

New Subset NewS: methods only declared in c and
not in sflat, NewS = LocS\SupS.

Inherited Subset InhS: methods purely inherited
from sflat, i.e., that are not declared in c,
InhS = SupS\LocS.

Overridden Subset OvrS: methods defined in sflat

and redefined in c, OvrS = LocS ∩ SupS.

Specialized Subset SpcS: methods of c specialising
methods inherited from sflat (methods calling
their overridden parent method).

Replaced Subset RplS: methods of c replacing
methods inherited from sflat, i.e., methods over-
riding methods from sflat but not calling the over-
ridden methods, RplS = OvrS\SpcS.

Figure 2 gives a visual representation of the previous
subsets. Alternative definitions are of course possible,
for example LocS = OvrS ∪NewS.

In JHotDraw, we can compute the model of each
class. The following table shows sets cardinalities for
the class StandardDrawing. First are LocS, SupS, and
TotS. Those sets can be refined as NewS, InhS, and
OvrS. OvrS divides into SpcS and RplS.

StandardDrawing

|LocS| 12 |NewS| 5 |SpcS| 3
|SupS| 68 |OvrS| 7 |RplS| 4
|TotS| 73 |InhS| 61

5. Metric and Rule Definitions

We now introduce metrics and rules to identify large,
budding, and blooming classes, as well as to characterise
different subclassing and overriding behaviours.

Threshold. Each of the following metrics produces
a ranking of classes. We use a threshold t to select
a small interesting subset of classes IS according to a
metric X. We define t as the sum of the mean of X
and the standard deviation of X. Thus, our threshold
selects only high above average classes yet still retrieves
a number of classes relative to the program size.

tX =X(classes) + σ(X(classes))
ISX = {c : c ∈ classes ∧X(c) > tX}

4

5.1. Large Classes

We first define a threshold t|LocS| to distinguish large
classes from other classes, with respect to the size of
their local interfaces |LocS|. Using this threshold, we
define the set of large classes IS|LocS|.

In JHotDraw, the mean |LocS| is 6.57 and t|LocS| =
12.04. The set IS|LocS| contains 15 classes out of 148.
Among these 15 large classes, three of the base classes
appear and make the top three (cf. Table 1). This
confirms their status as interesting class to start un-
derstanding the framework.

5.2. Budding Classes

We define a novelty index as a metric to identify
budding classes. The novelty index nvi is computed
on the class and its ancestors. It provides a measure
of the contribution of the class to its branch in term of
new definitions, i.e., the size of its local subset LocS
with respect to its ancestors.

To compute nvi, we first compute the branch mean
size, bms, for the ancestors. This is the mean num-
ber of new definitions available among the ancestors.
We compute bms independently of overriding—we only
count the methods that are visible in the class. The set
ISnvi defines the budding classes.

with bms(c) =
|TotS(c)|
DIT (c) + 1

nvi(c) =
|LocS(c)|

bms(parents(c))

In JHotDraw, the mean nvi is 0.42 and tnvi = 0.71.
Above tnvi, we find 25 budding classes out of 148, in-
cluding 4 of the 6 base classes (cf. Table 1). As ex-
plained in Section 3, they can be understood indepen-
dently from their hierarchy by a programmer.

In Table 1, the high nvi of AbstractFigure is due
to its large interface combined with the fact that it only
inherits from java.lang.Object. On the contrary,
DrawApplication and StandardDrawingView have a
smaller nvi because they inherit from large classes in
the Swing framework, such as JFrame and JPanel.

The set of budding classes includes AbstractHandle
and AbstractTool, while large and blooming sets do
not. This status shows that both classes highly con-
tribute to the interface in their branch, presumably
to be refined by their subclasses. Thus, these two
classes are interesting classes: they stamp their mark
on their hierarchies. Their comparatively low |LocS|
shows however that they have less responsibility than
the top three large classes.

5.3. Blooming Classes

A weighting of the novelty index by the size of the
interface |LocS| of a class leads to the definition of a
novelty score. The novelty score nvs highlights classes
with a large interface as well as classes with a smaller
interface but having an important impact on their hi-
erarchies. Thus, the novelty score provides a measure
of the importance of a class while not relying only on
its number of methods.

nvs(c) = |LocS(c)| × nvi(c)

In JHotDraw, the mean nvs is 5.36 and tnvs =
12.19. The nvs subset includes 14 classes out of 148,
among which three base classes (cf. Table 1). These
three classes are the same appearing as large classes,
although in a different order.

The class StandardDrawingView extends the
JPanel Swing class. Although it is the largest class
(55 methods) in JHotDraw, it is overwhelmed by the
number of inherited methods from the Swing hierar-
chy (432 methods). Consequently, its novelty index is
low (0.63) and it does not qualify as a budding class.
Yet, using the nvs, StandardDrawingView is clearly
highlighted as a blooming class.

The status of AbstractFigure as an interesting
class is confirmed by its first place in the blooming
set. On the contrary, StandardDrawing is the only
base class to not appear in any interesting subsets,
as shown by its low nvs. Code review shows that
StandardDrawing inherits from CompositeFigure,
which ranks in fourth position in the blooming set (cf.
Table 2): thus StandardDrawing must be understood
in conjunction with CompositeFigure.

5.4. Subclassing Behaviours

We distinguish in subclassing between overriding
and extending behaviours. An overriding behaviour
targets specialisation of the superclass. An extending
behaviour indicates that the prime interest is reuse.
We formally define the subclassing behaviours using
the following equations:

Pure Overrider PurOv: set of classes such as
|NewS| = 0 ∧ |LocS| > 0.

Overrider Ovr: set of classes such as
|OvrS| ≥ |NewS| ∧ |LocS| > 0.

Pure Extender PurExt: set of classes such as
|OvrS| = 0 ∧ |LocS| > 0.

5

Base Classes |LocS| rank nvi rank nvs rank |NewS| |OvrS|
AbstractFigure 34 3 3.09 1 105.09 1 33 1
AbstractHandle 11 20 1.00 13 11.00 15 11 0
AbstractTool 10 22 0.91 16 9.09 19 10 0
DrawApplication 53 2 0.76 21 40.32 6 53 0
StandardDrawing 12 16 0.53 42 6.35 26 5 7
StandardDrawingView 55 1 0.63 28 34.61 10 50 5

Threshold 12.04 0.71 12.19 - -

Table 1. Metrics Results and Ranks for Base Classes in JHotDraw. Bold Numbers are Above
Threshold of Their Respective Metric.

Extender Ext: set of classes such as
|NewS| > |OvrS| ∧ |LocS| > 0.

Classes that do not match any of the previous def-
initions are classified in the set Other (in Java, it in-
cludes classes with no methods or only static methods).
Classes having a pure behaviour—overriding or defin-
ing new methods only—are especially interesting.

In JHotDraw, we obtain the sets with the following
cardinalities:

Set PurOvr Ovr PurExt Ext Other

Classes 55 30 34 24 5
Base 0 1 3 2 0

This table shows a majority of pure behaviours
in JHotDraw, which implies that most classes have
a straightforward relationship to their superclasses.
Also, the majority of classes refine their superclasses
instead of extending them, which shows that polymor-
phism is well used in JHotDraw.

The tendency for the six base classes is on extend-
ing. We explain this tendency by the fact that most
base classes perform well on nvi and nvs, providing
new methods in their hierarchies. Indeed, the two
rightmost columns in Table 1 show that base classes
have more methods in NewS than in OvrS, except for
StandardDrawing. Interestingly, StandardDrawing is
the only Overrider, which confirms its strong link with
its superclass CompositeFigure.

5.5. Overriding Behaviours

We define five overriding behaviours by distinguish-
ing between specialisation and replacement. Simi-
larly to subclassing behaviours, we separate pure and
mixed behaviours. The interpretation of overriding be-
haviours should be made with care, as we only look at
the OvrS set and not, for example, at the NewS set.

Pure Specialiser PurSpc: set of classes such as
|RplS| = 0 ∧ |OvrS| > 0.

Specialiser Spc: set of classes such as
|SpcS| > |RplS| ∧ |OvrS| > 0.

Pure Replacer PurRpl: set of classes such as
|SpcS| = 0 ∧ |OvrS| > 0.

Replacer Rpl: set of classes such as
|RplS| > |SpcS| ∧ |OvrS| > 0.

Equals Eq: set of classes such as
|SpcS| = |RplS| ∧ |OvrS| > 0.

Classes that do not override any method are classi-
fied in the set NoOvr. This corresponds to the PurExt
and Other subclassing behaviours.

In JHotDraw, we have the following classification
of classes:

Set PurSpc Spc Eq Rpl PurRpl NoOvr

Classes 26 15 17 15 36 39
Base 0 0 0 1 2 3

The pure behaviours are in majority, which means
that most classes are consistent when overriding meth-
ods. However, we observe the presence of more Pure
Replacers than Pure Specialisers and of 37 classes with
mixed behaviours (Spc, Eq, and Rpl): this shows that
many classes have a tendency to change their super-
class behaviour (instead of specializing it), which can
make understanding the framework more complex.

6. Validation

We first show how to map Java programs to our
model. We then discuss further facts on JHotDraw
and results on three other programs.

6.1. Mapping Java Programs to the Model

We use the BCEL library for bytecode engineering
to parse Java class files. BCEL gives flexibility as we

6

can parse any Java program, even in the absence of
source code. In particular, we can build the model of
any superclass defined in a library. Our BCEL imple-
mentation of Mendel computes model and metrics in
9 ± 2 seconds for a program with 1, 600 classes (data
for Azureus 2.4 on a 2GHz computer with 1Go mem-
ory). However, the inclusion of generics starting with
Java 1.5 introduces some changes in classfiles, such as
bridge methods, which BCEL does not currently han-
dle.

The root of any inheritance tree in Java
is the java.lang.Object class. We consider
SupS(Object) = �. We ignore Java interfaces as we
focus on subclassing concrete classes.

Constructors, private methods, and static methods
are not inherited in Java classes. Thus, they are ig-
nored. Other modifiers for visibility (public, protected,
package) do not impact the sets definitions.

Another specificity of the Java language is the ab-
stract modifier. The following rules apply: (1) an ab-
stract method is in LocS; (2) if an abstract method
overrides a method from the superclass, it belongs to
RplS, otherwise to NewS, because making a concrete
method abstract prevents subclasses to call it for spe-
cialisation; (3) a concrete method defining an abstract
method belongs to SpcS. It is the responsibility of
classes subclassing an abstract class to specialize it
with their own methods.

6.2. Blooming Classes in JHotDraw

We provide a detailed overview of the blooming
classes in JHotDraw as this set provides a small in-
teresting selection, with 12 (out of 14) classes also be-
longing to large and budding sets. Table 2 shows the
14 blooming classes in JHotDraw. We include the
|LocS| and nvi metrics for comparison. The distri-
bution is even between sets: this means that all large
classes are also budding classes, which points to an even
distribution of responsibilities.

Most of the blooming classes are special fig-
ures in JHotDraw, with non-trivial behaviours:
TextFigure, LineConnection (a figure able to connect
to other figures), CompositeFigure, PolygonFigure,
DecoratorFigure, PolyLineFigure. Overall, this in-
dicates that the figure hierarchy is, as expected, the
most important piece of software in JHotDraw.

Two blooming classes do not appear as large and
budding class as the others. StandardDrawingView
does not appear as a budding class due to inheritance
from Swing classes (cf. Section 5.2). TextTool, which
is not a large class, is a budding class with a sufficient
contribution to be blooming.

Class |LocS| nvi nvs

AbstractFigure 34 3.09 105.09
TextFigure 30 1.84 55.1
LineConnection 32 1.55 49.55
CompositeFigure 31 1.41 43.68
PolygonFigure 26 1.59 41.39
DrawApplication 53 0.76 40.32
DecoratorFigure 29 1.32 38.23
PolyLineFigure 29 1.32 38.23
StandardDrawingView 55 0.63 34.61
PertFigure 24 1.06 25.41
ConnectionTool 15 1.43 21.43
StandardStorageFormat 14 1.27 17.82
GraphicalCompositeFigure 19 0.84 15.93
TextTool 10 1.3 13.04

Table 2. Blooming Classes in JHotDraw

The classes ConnectionTool (related to
LineConnection) and TextTool (related to
TextFigure) also belong to the blooming set.
The complexity of the connection and text concerns is
thus underlined by the presence of these classes.

Table 1 shows that AbstractHandle ranks just af-
ter the blooming classes, and that StandardDrawing
comes last of the base classes at the 26th rank. Over-
all, all base classes are in the upper quartile of
our metrics. This justifies a posteriori their pres-
ence in the documentation of JHotDraw. How-
ever, we can make a clear distinction between a pri-
mary set of base classes composed of AbstractFigure,
DrawApplication, and StandardDrawingView, and
a secondary set composed of AbstractHandle,
AbstractTool, and StandardDrawing (in close rela-
tionship with CompositeFigure).

6.3. Programs Comparison

We now show that our model is able to highlight
the subclassing and overriding behaviours in different
programs by applying our model, metrics, and rules
to four different programs and comparing qualitatively
and quantitatively the obtained sets. In addition to
JHotDraw, we also analyse:

Log4J 1.2.1 is a library for application logging, com-
prising 206 classes and 15,731 lines of code.

ArgoUML 0.19.8 is a UML modeling tool, compris-
ing 1431 classes and 163,126 lines of code.

Azureus 2.4 is an extensible peer-to-peer client, com-
prising 1681 classes and 222,154 lines of code.

7

Program |large| |budding| |blooming| |classes|
JHotDraw 15 25 14 148

10% 17% 9% 100%

Log4J 30 29 10 206
15% 14% 5% 100%

ArgoUML 259 121 45 1431
18% 8% 3% 100%

Azureus 219 204 97 1681
13% 12% 6% 100%

Table 3. Interesting Subsets

Program PurOvr Ovr PurExt Ext Other

JHotDraw 55 30 34 24 5
37% 20% 23% 16% 3%

Log4J 29 17 68 37 55
14% 8% 33% 18% 27%

ArgoUML 575 216 370 117 153
40% 15% 26% 8% 11%

Azureus 137 115 980 137 312
8% 7% 58% 8% 19%

Table 4. Subclassing Behaviours

We observe in Table 3 that the class selection is
much smaller for blooming classes than for large and
budding classes. This high selectivity confirms the use-
fulness of the novelty score metric. However, the selec-
tion can still be quite extensive for large programs: a
programmer could rely on the ranking given by the
metric to get a smaller selection.

The case of ArgoUML stands out with a small se-
lection on budding and blooming classes compared to
other programs. Value examination shows high devia-
tion of nvs between blooming classes, with the first two
classes (NSUMLModelFacade, FacadeMDRImpl) defining
each more than 300 methods. Their names hint to-
ward the Façade design pattern: we thus highlight a
fundamental architecture choice in ArgoUML.

We also observe a very large class in Log4J:
LogBrokerMonitor provides more than 100 methods.
Other data shows that the Appender hierarchy plays a
key role in the library.

The ditribution in Azureus is more even with a num-
ber of large classes and few standing out in nvi. Ac-
cording to their recurrence in the names of the bloom-
ing classes, download, peer, and the DHT protocol are
among the first key concerns.

Table 4 shows a clear dichotomy between two sub-
classing behaviours: JHotDraw and ArgoUML makes
a good use of inheritance for polymorphic behaviour by
overriding. Log4J and Azureus display a tendency to

Figure 3. Subclassing Proportions

Program PurSpc Spc Eq Rpl PurRpl NoOvr

JHotDraw 26 15 17 15 36 39
18% 10% 11% 10% 24% 26%

Log4J 34 12 4 1 32 123
17% 6% 2% 0% 16% 60%

ArgoUML 491 35 36 71 275 523
34% 2% 3% 5% 19% 37%

Azureus 164 18 22 23 162 1292
10% 1% 1% 1% 10% 77%

Table 5. Overriding Behaviours

extend classes. In particular, 77% of Azureus classes
(PurExt∪Other) do not override any methods at all.
This confirms previous findings in [24], which mentions
that Azureus “barely uses inheritance”.

Figure 3 shows the proportions in the four programs
for each subclassing behaviours. The distinctive pat-
tern of overriding in JHotDraw and ArgoUML versus
extending in Log4J and Azureus is apparent.

In Table 5, all programs except JHotDraw show a
tendency to favor pure behaviours. However, this ten-
dency is less strong in the case of Log4J and Azureus,
which only make a small use of overriding. ArgoUML
stands out as a Specialiser champion, which shows that
its design is strongly organized for polymorphism.

Figure 4. Overriding Proportions

8

Figure 4 shows the different proportions in the four
programs for each overriding behaviours. Mixed be-
haviours are summarized by MixOvr = Spc∪Eq∪Rpl.
The even distribution between behaviors in JHotDraw
is apparent, whereas ArgoUML displays a dichotomy
between PurSpc and NoOvr. The predominance of
NoOvr in Log4J and Azureus is clearly visible.

7. Discussions

Our model is simple and can be easily extended to
take into account previous work. It is thus more general
than and complementary to previous work on micro
patterns [14] and client-driven characterisations [19].

7.1. Client-driven Characterisation

Similarly to Mihancea [19], we can distinguish be-
tween two extremes subclassing behaviours, polymor-
phic behaviour and extending behaviour.

Polymorphic behaviour implies that a class is meant
to be used in place of its superclass. Any reference to
the superclass can hold an instance of the class. Hence
a method call on the superclass is dispatched to the
class “down” in the hierarchy. The class can override
methods to specialise the behaviour of its superclass.
It does not define new methods because these cannot
be called using a reference on the superclass. This is
the typical behaviour of taxonomies and frameworks,
with the Template Method design pattern being the
standard example of such a behaviour. In our model,
Pure Overrider classes are the most keen to display
polymorphic behaviour.

Extending behaviour implies that a class is meant to
be used by itself. It is typical of classes that subclass
only for reuse. These classes call methods “up” in their
hierarchy to define their own behaviour. They mostly
provide new methods. Hence, they can only be used
through direct references, as no superclass references
or overriding methods (accessible by the superclass)
can call their new methods. Thus, in our model, Pure
Extender classes display extending behaviour.

These two behaviours are similar to the code reuse
perspective and interface reuse perspective defined by
Mihancea; the main difference being that in our model
we only consider class hierarchies, while Mihancea con-
siders also the uses of the classes by their clients. How-
ever, Mihancea approach relies on program analyses
based on call graph or data flow, which make it sensi-
tive to these analyses. Our approach provides a simpler
model and only relies on a parser or reverse engineer-
ing tools to build the model. Therefore, these two ap-
proaches are complementary.

7.2. Micro Patterns

Our model can be extended to accommodate more
specific properties of the interfaces of classes. For ex-
ample, we can divide each defined subsets into two sub-
sets of methods to distinguish abstract from concrete
methods. We divide the set LocS into the subsets
AbsLocS and ConLocS, such as LocS = AbsLocS ∪
ConLocS. This extension of our model is pure, be-
cause previous relations are unchanged, including the
definitions of LocS, yet it allows to define new metrics
and rules. In particular, this extension allows express-
ing in our model some of the micro patterns proposed
previously [14] and related to inheritance. The three
micro patterns in the Inheritors category can be pre-
cisely expressed with the following equations:

Implementor: set of classes such as
LocS(c) = AbsC(parents(c)) ∧AbsC(c) = �.

Overrider: set of classes such as
LocS(c) = OvrS(c)
∧ OvrS(c) ∩AbsC(parents(c)) = �.

Extender: set of classes such as
NewS(c) 6= � ∧OvrS(c) = �.

Other micro patterns related to inheritance can also
be expressed in this extension of our model but less
precisely, i.e., we cannot distinguish certain micro pat-
terns, because we would need to include field declara-
tions. Yet, we can define equations that provide can-
didate classes for the given micro patterns:

Designator Candidate: set of classes such as
TotS(branch(c)) = LocS(Object) ∧ LocS(c) = �.

Taxonomy Candidate: set of classes such as
LocS(c) = �.

Function Pointer/Function Object Candidate:
set of classes such as |LocS(c)| = 1.

Outline/Trait Candidate: set of classes such as
AbsC(c) 6= �.

Pure Type/Pseudo Class Candidate: set of
classes such as LocS(c) = AbsC(c)∧LocS(c) 6= �.

8. Conclusion and Future Work

We presented Mendel, an approach to help pro-
grammers understand the uses of inheritance in their
programs, based on a simple model of inheritance fo-
cused on methods in classes. Methods were classified
according to their inheritance status: new, inherited,

9

specialised, and replaced. Using this model, we defined
metrics and rules to identify in class hierarchies large
classes, budding classes, and blooming classes as well
as subclassing and overriding behaviours in classes.

We illustrated Mendel using the running example
of JHotDraw to show that our model, novelty met-
rics, and rules are able to highlight interesting classes.
We also showed that Mendel could help in identifying
interesting classes in ArgoUML, Azureus, and Log4J.

Therefore, Mendel helps in answering two impor-
tant questions: What are the interesting classes in an
unknown program or framework? using the sets and
rankings of large, budding, and blooming classes; and
What particular relationships exist between a subclass
and its superclass? using the concepts of subclassing
and overriding behaviours.

Among other research directions, we are currently
extending our model to characterise families of sub-
classing and overriding behaviours, depending on the
prevalence of certain behaviours in class hierarchies.
Although we focus on metrics in this article, method
sets in the Mendel model also convey semantic in-
formation provided by method signatures: we plan to
use this information for fine-grained analyses. We will
also integrate our model with previous work, in partic-
ular Mihancea’s [19], to further improve the character-
isation of class hierarchies, and to compare Mendel
with other existing metrics. Finally, we plan to map
our model to other programming languages, such as
Smalltalk or C].

Results. All results are available online at http://
www-etud.iro.umontreal.ca/~deniersi/icpc08.

Acknowledgements. We would like to thank the
anonymous reviewers for their comments and the pro-
vided references. This work has been partially funded
by the Égide Lavoisier fund (France), NSERC, and FCI
(Canada).

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Monographs
in Computer Science. Springer-Verlag, second edition, 1998.

[2] G. Antoniol, Y.-G. Guéhéneuc, E. Merlo, and P. Tonella. Min-
ing the lexicon used by programmers during software evolution.
In Proceedings of the 23rd International Conference on Soft-
ware Maintenance. IEEE Computer Society Press, October
2007.

[3] D. Beyer, C. Lewerentz, and F. Simon. Impact of inheritance
on metrics for size, coupling, and cohesion in object-oriented
systems. In IWSM, volume 2006 of Lecture Notes in Computer
Science, pages 1–17. Springer, 2000.

[4] R. Biddle and E. Tempero. Explaining inheritance: A code
reusability perspective. In SIGCSE Bulletin, 28(1):217–221,
March 1996.

[5] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. M. III,
and T. J. Mowbray. Anti Patterns: Refactoring Software,
Architectures, and Projects in Crisis. John Wiley and Sons,
1st edition, March 1998.

[6] L. Cardelli and P. Wegner. On understanding types, data
abstraction, and polymorphism. In Computing Surveys,
17(4):471–522, December 1985.

[7] B. Carré and J.-M. Geib. The point of view notion for multiple

inheritance. In Proceedings of the 20th European Conference
on Object-Oriented Programming and of the 5th conference
on Object-Oriented Programming Systems, Languages, and
Applications, pages 312–321. Springer Verlag and ACM Press,
October 1990.

[8] S. R. Chidamber and C. F. Kemerer. A metrics suite for object
oriented design. In IEEE Transactions on Software Engineer-
ing, 20(6):476–493, 1994.

[9] S. Demeyer, S. Ducasse, and M. Lanza. A hybrid reverse en-
gineering approach combining metrics and program visualiza-
tion. In Proceedings of the 6th Working Conference on Re-
verse Engineering, pages 175–186, 1999.

[10] S. Ducasse and M. Lanza. The class blueprint: Visually sup-
porting the understanding of classes. In IEEE Transactions
on Software Engineering, 31(1):75–90, 2005.

[11] M. Fowler. Refactoring – Improving the Design of Existing
Code. Addison-Wesley, 1st edition, June 1999.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns – Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1st edition, 1994.

[13] E. Gamma et al. JHotDraw. Web site, 2001.
http://www.jhotdraw.org/.

[14] Y. Gil and I. Maman. Micro patterns in java code. In Proceed-

ings of the 20th Conference on Object-Oriented Programming
Systems Languages and Applications, pages 97–116. ACM
Press, October 2005.

[15] D. Hou, K. Wong, and H. J. Hoover. What can programmer

questions tell us about frameworks? In Proceedings of the 13th

International Workshop in Program Comprehension, pages
87–96. James R. Cordy and Harald Gall, May 2005.

[16] D. Kirk, M. Roper, and M. Wood. Identifying and address-

ing problems in framework reuse. In Proceedings of the 13th

International Workshop on Program Comprehension, pages
77–86. IEEE Computer Society Press, May 2005.

[17] P. Li-Thaio-Té, J. Kennedy, and J. Owens. Assessing inher-
itance for the multiple descendant redefinition problem in oo
systems. In Proceedings of the 1997 International Confer-
ence on Object Oriented Information Systems, pages 197–210,
1997.

[18] M. Lorenz and J. Kidd. Object-Oriented Software Metrics: a
Practical Guide. Prentice-Hall, 1994.

[19] P. F. Mihancea. Towards a client driven characterization

of class hierarchies. In Proceedings of the 14th Interna-
tional Conference on Program Comprehension, pages 285–
294. IEEE Computer Society Press, June 2006.

[20] I. Milne and G. Rowe. Difficulties in learning and teaching
programming—views of students and tutors. In Education and
Information Technologies, 7(1):1360–2357, March 2002.

[21] N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits:

Composable units of behaviour. In Proceedings of the 17th Eu-
ropean Conference on Object-Oriented Programming, pages
248–274. Springer Verlage, July 2003.

[22] M. J. C. Sousa and H. M. Moreira. A survey on the software

maintenance process. In Proceedings of the 14th International
Conference on Software Maintenance, pages 265–274. IEEE
Computer Society Press, November 1998.

[23] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt. Reuse con-
tracts: Managing the evolution of reusable assets. In Proceed-
ings of the 11th conference on Object-Oriented Programming
Systems, Languages and Applications, pages 268–285. ACM
Press, October 1996.

[24] S. Vaucher and H. Sahraoui. Do software libraries evolve dif-

ferently than applications? In Proceedings of the 3rd ACM
SIGPLAN Symposium on Library-Centric Software Design
(LCSD’07), October 2007.

10

