
CERBERUS: Tracing Requirements to Source Code

Using Information Retrieval, Dynamic Analysis, and Program Analysis

Marc Eaddy, Alfred V. Aho
Department of Computer Science

Columbia University

New York, New York, USA

{eaddy, aho}@cs.columbia.edu

Giuliano Antoniol
Département de Génie

Informatique

École Polytechnique de Montréal

Montréal, Québec, Canada

antoniol@ieee.org

Yann-Gaël Guéhéneuc
Département d’Informatique et

Recherché Opérationnelle

Université de Montréal

Montréal, Québec, Canada

guehene@iro.umontreal.ca

Abstract
The concern location problem is to identify the source

code within a program related to the features,

requirements, or other concerns of the program. This

problem is central to program development and

maintenance. We present a new technique called prune

dependency analysis that can be combined with existing

techniques to dramatically improve the accuracy of

concern location. We developed CERBERUS, a potent

hybrid technique for concern location that combines

information retrieval, execution tracing, and prune

dependency analysis. We used CERBERUS to trace the 360

requirements of RHINO, a 32,134 line Java program that

implements the ECMAScript international standard. In our

experiment, prune dependency analysis boosted the recall

of information retrieval by 155% and execution tracing by

104%. Moreover, we show that our combined technique

outperformed the other techniques when run individually or

in pairs.

1. Introduction

Most of the cost in software development goes towards

maintaining and evolving existing code [5]. Programmers

spend more than half of their time trying to understand the

program so that they can make changes correctly [26]. The

most valuable information to a programmer—and the most

difficult to obtain—is the “intent behind existing code and

code yet to be written” [17]. To understand the intent

behind a piece of unfamiliar code, the programmer may

look for clues in the code or documentation. Program

identifiers and comments, programming patterns and

idioms, program dependencies, and how the program

responds to input, all hint at the relationship between the

code and the features, requirements, and other high-level

concerns of the program.

A concern is any consideration that can impact the

implementation of a program [21]. Software requirements

and features (i.e., user-observable functionality) are

examples of different types of concerns Generally

speaking, the goal of concern location (e.g., concept

assignment [4], feature location [2] [8] [12] [13] [18] [20]

[25] [27] [28] [29], requirements tracing [1] [9] [10] [15],

and related techniques) is to determine the relationship

between high-level domain concepts (concerns) and other

software artifacts, e.g., source code.

A concern location technique can be thought of as an

expert that evaluates a set of heuristics to produce a

relevance judgment about the relationship between a

program element and a concern. For example, information-

retrieval-based techniques are experts that provide

judgments based on the lexical similarity between program

element names and concern descriptions. Unfortunately,

many factors conspire to reduce the reliability of the

judgments. First, each expert relies on the presence of

clues to evaluate its heuristics. If the clues are missing or

misleading (e.g., meaningful element names are not used),

the expert will likely draw the wrong conclusions. Second,

each expert is focused on a narrow aspect, and thus, an

incomplete picture, of the program. The judgments

produced by one expert may not be entirely trustworthy.

In theory, we should be able to increase accuracy by

combining the judgments of multiple experts, thus

mimicking how a programmer combines multiple clues to

arrive at a more informed judgment. That is, if three

independent experts arrive at the conclusion that an element

is relevant to a concern, this judgment is more reliable than

if only one or two experts agreed. However, combining

judgments is not straightforward because of disagreements

between the experts. Furthermore, judgments are not

necessarily comparable because each expert analyzes data

and produces judgments in a different way (i.e., impedance

mismatch).

Our goals in this paper are to introduce improvements to

previous automated concern location techniques, to present

a novel prune dependency analysis technique, and to

determine if the judgments of three experts can be

successfully combined—would it be a case of ―three heads

are better than one‖ or ―too many cooks in the kitchen?‖

Our hypothesis is that combining the judgments of all three

experts—information retrieval, execution tracing, and

prune dependency analysis—is better than combining one

or two experts. We evaluated our hybrid technique,

CERBERUS
1, by comparing it against a large concern–

element mapping (10,613 concern–element links) done by

hand for RHINO, a 32,134 line Java program. While a

handful of researchers [18] [20] [28] [29] have successfully

paired concern location techniques, as yet no one has

combined the judgments of three experts.

We found that concern location accuracy can improve as

more heuristics and analysis techniques are brought to bear.

In particular, CERBERUS outperforms all other technique

combinations by 9%–263%. In large part this improvement

is due to the use of our novel prune dependency analysis

technique, which boosted the recall of information retrieval

by 155% and execution tracing by 104%.

In the next section we give an overview of the individual

techniques and how we integrated them to create

CERBERUS. In Section 3, we describe our evaluation

methodology and our case study. We describe our

experimental results in Section 4 and evaluate the different

technique combinations, including CERBERUS. In Section

5, we discuss some surprising results and threats to validity.

Section 6 reviews prior work. Section 7 concludes.

2. An Overview of Our Approach

We are interested in determining if a prune dependency

relationship exists between a concern and an element based

on the following rule [9]:

A program element is relevant to a concern if it

should be removed, or otherwise altered, when the

concern is pruned.
 2

To properly interpret this rule, consider a software

pruning scenario where a programmer is removing a

concern to reduce the footprint of a program or otherwise

tailoring the program for a particular environment. Thus,

the goal is to remove as much of the code related to a

concern as possible, short of a redesign3, and without

affecting other concerns.

To achieve this goal, the programmer must locate as

many elements in the program as possible that implement

the concern. Locating these elements by hand is labor

intensive and does not scale to large constantly evolving

programs. Fortunately, she can use automated concern

location techniques. Next, we describe two well-known

1 The three-headed dog of Greek mythology.

2 ―Prune‖ is synonymous with ―remove.‖ We use different

terms to make it clear what is being removed: the concern

(pruned) or the program element (removed).

3 Assume that disabling the concern using a flag,

preprocessor macros, or code generation is not sufficient.

concern location techniques and introduce our novel prune

dependency analysis technique.

2.1. Information Retrieval

Information-retrieval-based concern location techniques

(IR), such as vector space indexing [1] [28] [29],

probabilistic indexing [1], and latent semantic indexing

(LSI) [1] [18] [20], have been very successful at

determining relevance based on the similarity between

terms used in the concern descriptions and in the program

elements (e.g., element names, variable names).

Unfortunately, IR techniques suffer from the same

problems that impede information retrieval in the large,

such as polysemy (different meanings for the same word)

and synonymy (same meaning for different words). These

problems particularly impact concern location because

concern descriptions (e.g., paragraphs from a requirements

specification) and program elements are often written by

different authors, using different vocabularies and rules of

grammar [20], and because program identifiers are often

abbreviated (e.g., ―num,‖ ―str‖). IR techniques require

meaningful identifiers to be used to establish relevancy

with any certainty.

Our IR technique parses Java source code and extracts

terms from comments and identifiers. We include

comments that precede the element definition as well as

comments inside methods. Identifiers include the names of

methods (and fields), enclosing types, packages,

parameters, local variables, field accesses, method calls,

and type references (e.g., using instanceof). Qualified

names (e.g., foo.bar.baz()) are split into separate identifiers

(―foo,‖ ―bar,‖ and ―baz‖). Compound identifiers are added

as is and also split into separate terms based on standard

naming conventions (e.g., ―camelCaseStyle‖ and

―underscore_style‖). We kept terms that looked like

section numbers (e.g., ―15.4.4.5‖) as well as ―magic‖

numbers (e.g., 0, 1, 3.14159).

We filter terms using a standard stop list augmented

with the list of Java keywords. Abbreviated identifiers

were generating a large number of synonyms, so we created

a custom thesaurus to expand them. A unique aspect of our

technique is that we also expand abbreviated compound

identifiers, e.g., the identifier ―numConns‖ expands into

terms ―numberconnections,‖ ―number,‖ and ―connections.‖

To further reduce the number of unique terms, we reduced

the inflected form of the terms to their stem using a

standard stemming library.

Similar to [29], we treat program elements as the

―documents‖ and requirements as the ―queries.‖ Our

custom script parses a requirements specification to

identify individual requirements, which will become the

queries. Terms are extracted from the requirements using

the same rules as above for program elements.

After extracting all the terms for the program elements

and requirements, we weigh the terms using the standard

TF–IDF formula [3]. The result is a vector of weighted

terms for each program element and requirement. We

calculate the cosine distance [3] between the two vectors to

arrive at a similarity score that ranges from 0 (no terms in

common) to 1 (terms are identical). IR presumes that term

similarity implies relevance, so we interpret the similarity

score to be the predicted relevance score for a given

program element and requirement.

2.2. Execution Tracing

Execution-tracing-based concern location (tracing)

techniques analyze the runtime behavior of a program to

determine program elements activated when a concern is

exercised. For functions and methods, activation implies

execution; for fields and global variables, activation implies

access (reading or writing). Exercising a concern implies

supplying inputs to the program that are related to the

concern. For example, the ―bookmarking‖ feature in a web

browser can be exercised by clicking the ―Add to

Bookmarks‖ button [20]. We improve upon previous

execution tracing techniques by considering field accesses

as well as method executions.

Traces for a set of concerns are compared to distinguish

elements that are specific to a particular concern from those

shared by many concerns. The output is a list of methods

ranked by their trace score (predicted relevance score),

which ranges from 0 (irrelevant) to 1 (relevant). We

evaluated the effectiveness of the following scoring

formulas:

 Software Reconnaissance (SR): 1 if the element if

activated by only one concern, otherwise 0 [25].

 Dynamic Feature Traces (DFT): # element

activations by the concern / total # element

activations [2].

 Scenario-Based Probabilistic Ranking (SPR): # of

tests for a concern that activate the element / total

of tests that activate the element [13].

 Element Frequency–Inverse Concern Frequency

(EF–ICF):

–

The first scoring formula, introduced by Wilde and

Scully in their pioneering work on Software

Reconnaissance [25], renders a binary judgment based on

whether an element is uniquely activated by a concern.

Later formulas (e.g., DFT, SPR, EF–ICF) more closely

capture the notion of element specificity, i.e., the degree to

which an element is relevant to a concern, and at the same

time compensate for the imprecision and noise inherent in

the collection of dynamic data [2].

We created the last formula, Element Frequency–

Inverse Concern Frequency (EF–ICF), because we noticed

the resemblance between DFT and SPR and the TF–IDF-

like [3] term weighting formula commonly used in

information retrieval. EF–ICF is the same as TF–IDF,

where ―terms‖ are program elements, ―term frequencies‖

are activation counts (e.g., number of method calls), and

―documents‖ are concerns. EF–ICF essentially adjusts the

Dynamic Feature Traces score to account for the likelihood

that the element is activated by other concerns.

2.3. Prune Dependency Analysis

Given an initial set of elements relevant to a concern

(initial relevant elements or seeds [28] [29]), program-

analysis-based concern location techniques infer additional

relevant elements by analyzing different kinds of

relationships between the elements. The initial seeds may

be found by manual inspection [16], or, as in the case of

CERBERUS, by a separate automated concern location

technique. We say an element ec is relevant to concern c if

ec is prune dependent on c; that is, pruning c implies ec

should be removed from the program, or otherwise altered.

Our prune dependency analysis (PDA) technique assumes

all the initial relevant elements will be removed when c is

pruned. PDA then determines the impact on the program

of removing the initial relevant elements to infer additional

relevant elements.

PDA takes as input a tuple (G, R, A). G is a directed

program dependency graph G = (E, D1, D2, D3), where E is

the set of program elements, D1 are references

dependencies (e.g., method A calls method B), D2 are

contains dependencies (e.g., a class contains its members),

and D3 are inherits-from dependencies. R = {e | e E } is

called the removal set and initially contains the initial

relevant elements for a single concern c. A = {e | e E } is

called the alter set and is initially empty.

The dependency graph for the example Java program in

Fig. 1 is shown in Fig. 2a. Elements in the removal and

alter sets are indicated as dark grey and light grey nodes,

respectively. The PDA algorithm proceeds by analyzing

each element in the removal set R to determine if removing

interface A {

 public void foo();

}

public class B implements A {

 public void foo() { ... }
 public void bar() { ... }

}

public class C {

 public static void main() {

 B b = new B();

 b.bar();

 }

}

Fig 1. Example to illustrate prune dependency analysis

Initial
relevant
elements

that element will require additional elements to be

removed—in which case they will be added to R—or

otherwise altered—in which case they will be added to A.

The following clauses were derived from [9].

References clause – If element e references ec, then e is

also relevant to c since removing ec requires all references

to it in the code to be modified to avoid a compile error.

Depending on whether e is a method, field, or type (class,

interface, or enum), ―references‖ means calls, accesses, or

names, respectively. A type is referred to by name in Java

by type casts, instanceof, extends, and implements.

The removal set in Fig. 2a initially contains B.foo() and

B.bar(). This means that removing c dictates that these

methods be removed. However, C.main() calls B.bar(), so

we must alter C.main() to avoid a compile error, e.g.,

remove the call entirely or replace it with something else.

Thus, C.main() is added to the alter set, as shown in Fig.

2b.

Element containment clause – If all elements contained

by e are relevant to c, then e is also relevant to c. Referring

to Fig. 2b, pruning c implies all the methods of B will be

removed, leaving behind an empty class. Adhering to the

goal of software pruning, we should remove B as well.

Thus, B is added to the removal set, as shown in Fig. 2c.

Inheritance clause – If all subtypes inherited from an

abstract base class or interface e are relevant to c, then e is

also relevant to c. Continuing the example, removing B

will leave A without a concrete implementation. Adhering

to the goal of software pruning, we should remove A since

an object of type A or derived from A cannot be created and

methods of A cannot be called. Thus, A and its members

are added to the removal set, as shown in Fig. 2d. We

reapply the clauses to A and its members but this does not

affect the removal set, so the algorithm terminates.

In this way, PDA builds up the set of elements that must

be removed or altered when the concern is pruned. The

algorithm terminates when all elements in R have been

analyzed, which is guaranteed to happen since the elements

are finite and are only analyzed once. PDA outputs the

final set of removal and alter elements. The final relevant

elements are the union of the two sets, i.e., R A. For our

example, the final relevant elements are A, A.foo(), B,

B.foo(), B.bar(), and C.main().

PDA assumes a closed world where the types are known

at analysis time. This is a reasonable assumption since our

goal is to locate concerns in our own code.

2.4. Our Combined Technique: CERBERUS

 As shown in Fig. 3, CERBERUS combines information

retrieval, execution tracing, and prune dependency analysis

to locate concerns. We use information retrieval to produce

the IR ranking and execution tracing to produce the trace

ranking. We use the PROMESIR formula [20] to combine

the rankings produced by tracing and IR by normalizing,

weighting, and summing the similarity and trace scores. To

be conservative, absent scores, i.e., an element that does not

appear in a trace, are treated as 0 (irrelevant).

We then apply a threshold to identify highly relevant

elements, which will become seeds for the prune

dependency analysis technique. We experimented with

rank thresholds (e.g., the top 5 most similar elements),

score thresholds (e.g., the elements with scores in the top

5%), and the gap threshold algorithm introduced by Zhao

(c) Containment clause applied

(a) Initial state (b) References clause applied

 C A B

 foo foo main bar
calls

contains

refs

inherits,

refs

contains contains contains

 C A B

 foo foo main bar
calls

contains

refs

inherits,

refs

contains contains contains

Fig 2. Application of prune dependency analysis

 C A B

 foo foo main bar
calls

contains

refs

inherits,

refs

contains contains contains

(d) Inheritance clause applied

 C A B

 foo foo main bar
calls

contains

refs

inherits,

refs

contains contains contains

Fig 3. Overview of the Cerberus approach

Information

Retrieval

Prune

Dependency

Analysis

Trace

Ranking

IR

Ranking

Execution

Tracing

Combined

Ranking

Seed

Extraction

Concern

Tests

Source

Code

Initial

Relevant
Elements

Final

Relevant

Elements

 ∑

w1

w2
Concern

Descriptions

et al. [28] The gap algorithm traverses the list of elements

in order, from highest to lowest score, to find the widest

gap between adjacent scores. The relevance score

immediately prior to the gap becomes the threshold for

picking the seeds. These seeds are then passed to the prune

dependency analysis to infer additional relevant elements.

3. Evaluation Methodology

The goals of our experiment are to determine if

combining information retrieval, execution tracing, and

program dependency analysis improves accuracy over

individual and paired techniques, and to determine if our

prune dependency analysis technique is effective at

inferring relevant elements.

3.1. Effectiveness Measures

We use the key measures of information retrieval,

precision and recall, to evaluate concern location

techniques [15]. For a given concern c, let Ec be the set of

program elements actually relevant to c (the relevant

element set), and Ec
*
 be the set of elements judged to be

relevant by our technique (the retrieved element set).

When the concern location technique produces a list of

elements ei ranked by a relevance score, we apply a

threshold t to obtain the retrieved element set by discarding

elements below the threshold [2].

Recall is the percentage of relevant elements retrieved

by the technique, i.e., recall = . Precision is

the percentage of retrieved elements that are relevant, i.e.,

precision = . We also compute the f-

measure, the harmonic mean of precision and recall: f-

measure = 2 ∙ (recall ∙ precision) / (recall + precision).

The f-measure facilitates comparing effectiveness because

it produces a single value that balances precision and recall

equally.

We are interested in the overall accuracy of a technique

for multiple concerns, so we compute mean recall, mean

precision, and mean f-measure. However, a concern

location technique may not locate all the concerns. For

example, execution tracing can only locate concerns that

have an associated exercising test. It is also possible that

all of the elements in a ranking are below the relevance

score threshold. We do not consider missing concerns

when computing means for several reasons. First, precision

and f-measure are undefined in this case. Second, our

graphs show the number of concerns located by the

techniques. Third, we are interested in how well a

technique performs in two different scenarios: when we

desire a trace of all the concerns (i.e., requirements

traceability) and when we want to locate a subset of

concerns (i.e., concern location). As we will see, we can

achieve higher accuracy if we can accept locating fewer

concerns.

We say that a ranking technique is effective if higher

relevance scores lead to higher actual relevance; that is,

relevance scores should be positively correlated with f-

measure. We say that a technique is more effective than

another if it has a higher mean f-measure. Because

dependency analysis requires preexisting seeds, we did not

evaluate it in isolation, but instead evaluated it in

combination with execution tracing and information

retrieval. We consider prune dependency analysis to be

effective if it increases the f-measure of another technique.

3.2. Our Study Subject: RHINO

RHINO
4 is a JavaScript/ECMAScript interpreter and

compiler. Version 1.5R6 consists of 32,134 source lines of

Java code (excluding comments and blank lines), 138 types

(classes, interfaces, and enums), 1,870 methods, and 1,339

fields (as reported by CONCERNTAGGER
5). RHINO

implements the ECMAScript international standard,

ECMA-262 v3 [11]. We chose RHINO because in a prior

study [10] we had systematically associated all the

methods, fields, and types in the RHINO source code with

the requirements from the ECMAScript specification,

which provides us with an oracle by which we can evaluate

the performance of different concern location techniques.

Indeed, the extensive manual labor required to map

RHINO—it took 102 hours to create 10,613 concern–

element links—strongly motivated our current work.

We evaluated our technique against the same set of

concerns analyzed in our prior study, namely the

requirement concerns specified by the normative leaf

sections of the ECMAScript specification [11]. A leaf

section is a section that has no subsections; i.e., it is at the

lowest level of granularity. For example, consider the

following snippet of the requirements hierarchy:

15 – Native ECMAScript Objects

...

15.4 – Array Objects

...

15.4.4 – Properties of the Array Prototype Object

...

15.4.4.5 – Array.join(separator)

...

In the above snippet, ―15.4.4.5 – Array.join()‖ is a leaf

section. The ECMAScript requirements are quite detailed,

as can be seen from an excerpt for this section:

“The elements of the array are converted to strings, and

these strings are then concatenated, separated by

occurrences of the separator. If no separator is provided,

a single comma is used as the separator. The join

method takes one argument, separator, and performs the

following steps: ... [algorithm follows]”

4 http://www.mozilla.org/rhino

5 http://www.cs.columbia.edu/~eaddy/concerntagger

The top four TF–IDF weighted terms for this section are

―15.4.4.5,‖ ―comma,‖ ―join,‖ and ―occur.‖

3.3. Applying CERBERUS to RHINO

Indexing the RHINO source code resulted in 4,530

unique terms (after stopping, stemming, compound term

expansion, and abbreviation expansion) and 3,345

documents, i.e., one document for every type, method, and

field in RHINO. Indexing the ECMA 262 v3 specification

resulted in 2,032 unique terms and 360 leaf sections, which

became our queries. The total vocabulary size (combining

code and requirements terms) was 5,566 unique terms.

The ECMAScript test suite consists of 939 tests, 795 of

which directly test 240 of the 360 requirements, i.e., several

requirements have multiple tests. These tests activate 1,124

of the 1,870 methods in RHINO. Thus, the concern

coverage of the test suite is 67% and the method coverage

is 60%. The tests are written in ECMAScript and the file

names indicate which requirement is tested (e.g.,

―15.4.4.5.js‖ tests section ―15.4.4.5 – Array.join()).‖

We collected traces of method calls and field accesses

using AspectJ6. AspectJ is not able to monitor access to

―static final‖ fields because Java compilers convert these

into constants. Therefore, when we are combining the trace

and IR scores, we just use the IR score instead of assuming

the trace score is 0 as we do for other missing elements (see

Section 2.4).

 Similar to [18], we semi-automatically inserted method

calls into the test cases to start and stop tracing to avoid

tracing startup code, setup code, test harness code, and code

related to other concerns. The assumption is that this code

6 http://www.aspectj.org

is irrelevant to the concern and acts as noise that reduces

the ability for the traces to discriminate relevant elements.

This assumption later proved false for reasons we explain

in Section 5.

We extended our CONCERNTAGGER plug-in for

ECLIPSE
7 to implement prune dependency analysis by

leveraging ECLIPSE’s program analysis framework.

4. Analysis of Experimental Results

Fig. 4 shows a graph of the mean f-measure for all

combinations of the three techniques. Each line in the

graph represents a different technique or technique

combination. Each point on a line represents a different

threshold t. Each technique is represented in its optimal

configuration, i.e., parameterized to use the most effective

heuristic. For example, the best parameterization of the

tracing technique used marked traces and the Dynamic

Feature Traces scoring formula. In Fig. 6, we show how

the other scoring formulas fared.

4.1. Comparing Technique Effectiveness

We make several observations:

The combination of the three techniques is the most

effective. From Fig. 4, we see that our combined

technique, CERBERUS (IR + Tracing + PDA), is more

effective than any subset.

We verified that CERBERUS outperforms the other

techniques by statistical analysis of the populations of the f-

measures produced by the compared techniques. We

7 http://www.eclipse.org

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 300 350

F
-M

e
a

s
u

re

Number of Concerns Located by Technique

IR + Tracing + PDA
("CERBERUS")
IR + PDA
IR + Tracing
IR
Tracing + PDA
Tracing

CERBERUS

t =.01%

t = .05%

t =.1%

Fig 4. Effectiveness of individual concern location techniques and technique combinations for different threshold values t

t = .5%
t = 1%

t = "gap"

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

R
e

c
a

ll

Precision

CERBERUS

t = "gap"

t = .01%

t =.05%

t = .1%
t = .5%

t = 1%

Fig 5. Precision–recall graph for our combined technique

observed that the f-measure values for the techniques were

not normally distributed. We therefore performed one

descriptive statistic test and three non-parameteric tests:

mean f-measure, Mann–Whitney, Kruskal–Wallis, and

Friedman [24]. For the first test, we simply computed the

mean f-measure value for each technique. The non-

parameteric tests compare the f-measure ranks rather than

the actual values. All four tests indicate that the mean f-

measure values and ranks are highest for CERBERUS, which

supports our performance claim according to the

effectiveness criteria in Section 3.1. The Kruskal–Wallis

and Friedman tests further determined that the difference in

means was statistically significant (p-value < .005).

However, while we witnessed an average 9% improvement

in f-measure for CERBERUS over IR + PDA, as can be seen

in Fig. 4, the Mann–Whitney test was inconclusive since it

indicated the improvement was not statistically significant

(p-value = .291). In short, three tests indicate the

superiority of CERBERUS, while one test was inconclusive.

The PROMESIR formula allows us to adjust the weights

of the IR and trace relevance scores to reflect our

confidence in these two ―experts.‖ However, weighting the

experts equally, as done in [20], produces worse results

than using IR alone, because in our study this would be

akin to averaging the test scores of a poorly performing

student (tracing) and a well performing student (IR). Using

an 80/20 combination (determined by trial-and-error) of IR

and trace scores, execution tracing improves the

performance of IR by 4% and the performance of IR +

PDA by 9%.

Fig. 5 shows the precision–recall graph for our

approach, where each point on the line represents a

different threshold t. Our best precision is 75% and recall

is 73% using the threshold t = 0.01%; however, looking at

Fig. 4 we see that only 36 concerns have ranked elements

that exceeded this threshold. If we use the ―gap‖ threshold,

we locate all 360 concerns, but our precision drops to 37%

and recall drops to 39%.

No previous study that we know of has traced this many

concerns (360) to the level of methods and fields in a

program of this size (32,134 lines). Indeed, the existence

of a publicly available oracle8 of this size (10,613 concern–

element links) is rare. While our precision and recall (48%

and 56%, respectively) is not as good as SNIAFL [29]

(99% and 87%), for example, our evaluation is more

rigorous (360 concerns versus 21) and realistic (32.1K lines

versus 8.6K lines).

Each technique and technique combination is effective

at locating concerns. In general, higher relevance scores

lead to higher actual relevance. This is apparent by

noticing that the f-measure tends to increase as we increase

our relevance score threshold. This is not surprising, as the

IR and execution tracing techniques have been

independently validated by numerous studies. However,

only a few studies [28] [29] have validated the

effectiveness of using program analysis for automated

concern location, and our results provide further evidence.

Prune dependency analysis is effective at boosting the

performance of other techniques. Combining prune

dependency analysis with any other technique or technique

combination improves the recall of that technique,

regardless of the threshold or number of concerns located.

This can be observed in Fig. 4, by noting that combining

PDA with any technique results in a higher f-measure.

Software Reconnaissance is not as effective as the other

trace scoring formulas. The graph in Fig. 6 indicates that

the Software Reconnaissance formula performs poorly,

possibly validating the claim in [13] that this formula is

“overly sensitive to the quality of the input.” SPR

performed better followed by DFT and EF–ICF, although

we did not find a significant difference between these last

two.

8 http://www.cs.columbia.edu/~eaddy/concerntagger

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 50 100 150 200

F
-m

e
a

s
u

re

Number of Concerns Located

Dynamic Feature Traces

EAF–ICF

SPR

Software Reconnaissance

Fig 6. Effectiveness of execution tracing for different
trace relevance scoring formulas

4.2. A Concern in Point

The following example illustrates how prune

dependency analysis can improve the recall of information

retrieval. The Rhino concern ―15.4.4.5 – Array.join()‖

specifies the behavior of the join() method of the native

ECMAScript Array class. Table 1 shows the results of our

IR technique.

The similarity gap between elements ranked #3 and #4

is .21-.18 = .03, which is the largest gap in the ranking, so

the threshold t is .21, and only the first three elements are

judged relevant. Id_join and js_join() both use the terms

―array‖ and ―join,‖ which also occur in the concern

description. The relatively low frequency of the term

―join‖ in the specification results in a high TF–IDF weight,

as we showed in Section 3.2. Unfortunately, js_sort() is

actually irrelevant but receives a high similarity score

because of an incorrect comment in the code.

From the bad js_sort() seed, PDA infers the following

methods in the NativeArray class: execIdCall(),

findPrototypeId(), and initPrototypeId(). Coincidentally,

the good js_join() seed infers the same methods, and these

inferred methods are in fact relevant, so the damage of the

bad seed is masked. Thus, the IR + PDA technique finds

all the relevant elements (recall = 100%) and one irrelevant

element (precision = 83%).

5. Discussion

5.1. Poor Performance of LSI and Tracing

We were surprised to find that LSI did not improve

performance over vector space indexing despite the success

that others researchers have had with it (e.g., [1] [18] [20]).

One possible reason is that our corpus is somewhat small,

consisting of 5,566 unique terms and 3,345 documents,

thus reducing the effectiveness of LSI. For example, LSI is

effective at reducing the problems associated with term

synonymy by analyzing the co-occurrence of terms in the

corpus. If the corpus is small, LSI may not have enough

co-occurrence information to be effective.

We were also surprised that the effectiveness of our

execution tracing technique could not be improved, even

after instrumenting the 939 tests in the RHINO test suite

with trace markers, employing two different trace tools, and

leveraging an arsenal of different scoring formulas. There

are several factors that may account for this poor

performance.

The first issue is that 33% of the concerns in RHINO are

untested, which limits effectiveness when combining

tracing with other techniques because tracing provides no

information for those missing concerns. 40% of the

methods in RHINO are not called during any test, although

some were actually relevant to some of the concerns.

The second issue is that some concerns were

implemented as different branches of a switch statement or

if statement as opposed to different methods. Our scoring

formulas deem a method with many concern-relevant

branches as being irrelevant to any concern in particular,

when in fact the opposite is true. We believe that tracing at

the basic-block level [27] [12], or emulating such a trace,

would be effective at untangling these interleaved concerns.

The third issue is that execution trace data tends to be

imprecise and noisy because it includes startup code, test

harness code, bookkeeping code, etc., which are not

relevant to the concern [2] [12] [13]. Imprecision and noise

hinders establishing the non-exhibiting scenarios that help

pinpoint relevant methods. These problems made it

difficult to use RHINO’s tests to isolate concern-relevant

code. Liu et al. [18] argued that information retrieval can

compensate for this issue, but our results indicate that a test

suite with poor isolation cannot be effectively repurposed

for concern location.

We attempted to isolate concerns by bracketing the

functionality of the primary concern in each test with trace

markers, but this did not improve results. Indeed, the

markers ended up excluding many relevant methods and

fields, e.g., concern-relevant initialization code. Overall

accuracy was mostly unaffected by the use of trace

markers: analysis of the f-measures for the different

thresholds revealed that marked traces increased the f-

measure by an insignificant 0.01.

Interestingly, we achieved a greater performance

improvement by using trace scoring formulas that attempt

to compensate for imprecision and noise than by using

trace markers. This is analogous to the classic information

retrieval debate that a stop list is redundant if we have a

good TF–IDF formula trained on a large corpus.

Note that the poor performance of tracing actually

validates our approach since combining expert judgments

reduces the impact of ―unqualified experts.‖ By choosing

appropriate relevance thresholds and confidence weights,

we were able to ignore bad judgments produced by tracing

while retaining good ones, to boost the accuracy over IR by

4% and over IR + PDA by 9%. Furthermore, Fig. 4

suggests that CERBERUS is effective even without execution

tracing.

TABLE 1
TF–IDF Similarity Scores for Concern

“15.4.4.5 – Array.join()”

Rank Program Element Kind
Similarity

Score

1 NativeArray.Id_join field .22

2 NativeArray.js_sort() method .22

3 NativeArray.js_join() method .21

– Largest Similarity Score Gap –

4 NativeArray.Id_concat field .18

5.2. Threats to Validity

Internal validity deals with possible biases and

measurement errors. Our current study is almost identical

to our prior study [10], e.g., same subject program,

concerns, and assignment criteria. The only difference is

that our current study automatically locates concerns

whereas the previous study located concerns manually.

Because our oracle was created for the prior study, subject

bias is not an issue; i.e., the author could not craft the

oracle to maximize the results of our automated technique.

To avoid the possibility that a tool or technique is

defective, we used multiple tools and techniques to

redundantly verify some of our results. Because we

implemented execution tracing using two different

instrumentation tools, and trace markers were manually

added to the tests by two authors independently, we cannot

attribute the poor performance of tracing to defective tools.

We also evaluated two different information retrieval

techniques: latent semantic indexing and vector space

indexing. The results of the two techniques were very

similar, and thus redundantly indicate the maximum

effectiveness we can expect from an information-retrieval-

based technique for tracing concerns in RHINO.

External validity is the extent to which we can

generalize our findings to other contexts. Concern location

techniques reflect the assumptions and goals of their

authors. Although the concern–code relationship induced

by our prune dependency rule was demonstrated to be

useful for assessing code quality, predicting defective

concerns [10], and requirements tracing and validation, the

rule may need to be specialized to perform well for other

software engineering tasks. For example, concern-relevant

fields may not be useful when predicting the locations of

defects.

6. Related Work

In comparison to other information-retrieval-based

concern location techniques, CERBERUS is the first to use a

thesaurus to expand abbreviated terms and to index fields

as well as methods, thus providing a more complete

concern–code mapping.

In contrast to Dynamic Feature Traces [13], our

Scenario-based Probabilistic Ranking heuristic calculates a

relevance score based on the probability that an element is

activated by a concern [2], analyzes field accesses as well

as method calls, and uses marked traces [18] to ensure that

only concern-related functionality is traced.

Several researchers [4] [8] [22] have exploited program

dependency heuristics for interactive concern location, but

only a few have used them for automated concern location.

Zhao et al.’s [28] complementation heuristic assumes that

any method that transitively calls, or is transitively called

by, a relevant element is also relevant. They use branch-

reserving call graphs in [29] to generate pseudo-execution

traces, essentially using inexpensive static analysis to

emulate the SR heuristic. PDA’s references clause infers

almost the same elements, except that we always consider a

referencing element relevant even if it is already relevant to

another concern. Moreover, the contains and inherits

clauses are unique to PDA.

Recently, researchers have combined heuristics to

improve accuracy. For example, information retrieval

heuristics have been combined with execution heuristics

[18] [20] and program dependency heuristics [28] [29].

However, CERBERUS is the first to combine all three.

There are many different ways to integrate execution

trace data when creating a combined technique. CERBERUS

converts the trace data into a ranking and then combines it

with an IR ranking. In contrast, SITIR [18] uses the trace

data to filter the input to IR—the heuristic being that

methods not activated when a concern is exercised cannot

be relevant to that concern [29], and should therefore be

ignored during the information retrieval phase. The

drawback of using tracing as a filter is that it is sensitive to

the capability of the tests to isolate concerns, which may be

quite poor [13]. Indeed, when we experimented with using

the RHINO trace data as a filter we found that a large

number of relevant methods were filtered due to the issues

we described in Section 5.2. By using the trace data to rank

instead of filter elements, we were able to adjust the

influence of the trace data, and thereby compensate

somewhat for the poor test suite quality.

DORA [16] is complementary to CERBERUS in that DORA

could consume the seeds that CERBERUS produces, thus

eliminating user involvement. Alternatively, CERBERUS

could use IR to filter the final relevant element set.

Essentially, CERBERUS is a marriage of the PROMESIR

and SNIAFL approaches, with several improvements.

Whereas PROMESIR is effective at combining IR and

tracing to pick highly relevant seed elements, SNIAFL is

effective at using program analysis to infer additional

relevant elements from those seeds. We refined these

approaches by adding a custom thesaurus, using marked

traces, employing the prune dependency heuristic, and

considering fields as well as methods.

7. Conclusions and Future Work

CERBERUS is the first concern location technique to

combine information retrieval, executing tracing, and

program analysis to locate concerns in source code. We

showed that the combination of these three analysis

methods produced more accurate results than all other

combinations of these methods. Our novel prune

dependency analysis algorithm boosted the recall of

information retrieval by 155% and execution tracing by

104%, with only a negligible loss (0.5%) in precision.

We believe hybrid concern location techniques, such as

ours, which combine multiple analyses, will become a

major new avenue of research. Analyses that incorporate

more information, such as line co-change [7], conceptual

cohesion [19], code clones [6], co-location, and code

authorship are promising. Our future research focuses on

how to best combine such techniques.

Although we achieved good results using a weighted

linear combination of execution trace and information

retrieval scores [20], combining expert judgments is a core

machine-learning problem. We feel that hybrid concern

location techniques can further benefit from machine-

learning solutions (e.g., ―boosting‖ [14]) [23].

We cannot assume that CERBERUS or its constituent

techniques will achieve a performance improvement in

other contexts, or with other concern domains, programs,

etc. As with any new technique, CERBERUS must be

evaluated on more programs before we can be confident

that our results are not context-specific.

The study data and source code for RHINO and

CERBERUS are available online at http://www.cs.

columbia.edu/~eaddy/concerntagger.

8. Acknowledgments

G. Antoniol was partially supported by the Natural

Sciences and Engineering Research Council (NSERC) of

Canada (Research Chair in Software Change and Evolution

#950-202658) and by an NSERC Discovery Grant.

9. References

[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, E.

Merlo, "Recovering Traceability Links between Code and

Documentation," IEEE Transactions on Software

Engineering, 28(10):970–983, 2002.

[2] G. Antoniol, Y.-G. Guéhéneuc, "Feature Identification: A

Novel Approach and a Case Study," Intl. Conf. on Software

Maintenance (ICSM), 2006.

[3] R. Baeza-Yates, B. Ribeiro-Neto, Modern Information

Retrieval: Addison-Wesley, 1999.

[4] T. J. Biggerstaff, B. G. Mitbander, D. Webster, "The

concept assignment problem in program understanding,"

Intl. Conf. on Software Engineering (ICSE), 1993.

[5] B. Boehm, "Software engineering," IEEE Transactions on

Computers, C-25(12):1226–1241, 1976.

[6] M. Bruntink, A. v. Deursen, R. v. Engelen, T. Tourwe, "An

evaluation of clone detection techniques for identifying

cross-cutting concerns," Intl. Conf. on Software

Maintenance (ICSM), 2004.

[7] G. Canfora, L. Cerulo, M. D. Penta, "On the Use of Line

Co-change for Identifying Crosscutting Concern Code," Intl.

Conf. on Software Maintenance (ICSM), 2006.

[8] K. Chen, V. Rajlich, "Case study of feature location using

dependence graph," Intl. Wkshp. on Program

Comprehension (IWPC), 2000.

[9] M. Eaddy, A. Aho, G. C. Murphy, "Identifying, Assigning,

and Quantifying Crosscutting Concerns," Wkshp. on Assess.

of Contemp. Modularization Techniques (ACoM), 2007.

[10] M. Eaddy, T. Zimmerman, K. D. Sherwood, V. Garg, G. C.

Murphy, N. Nagappan, A. V. Aho, "Do Crosscutting

Concerns Cause Defects?," IEEE Transactions on Software

Engineering (in press), 2008.

[11] ECMA, "ECMAScript Standard," ECMA-262 v3, ISO/IEC

16262, 2007.

[12] T. Eisenbarth, R. Koschke, D. Simon, "Locating features in

source code," IEEE Trans. on Soft. Eng., 29:210–224, 2003.

[13] A. D. Eisenberg, K. De Volder, "Dynamic Feature Traces:

Finding Features in Unfamiliar Code," Intl. Conf. on

Software Maintenance (ICSM), 2005.

[14] Y. Freund, R. E. Schapire, "A decision-theoretic

generalization of on-line learning and an application to

boosting," Journal of Computer and System Sciences,

55(11):119–139, 1997.

[15] J. H. Hayes, A. Dekhtyar, S. K. Sundaram, "Advanced

Candidate Link Generation for Requirements Tracing: The

Study of Methods," IEEE Transactions on Software

Engineering, 32(1):4–19, 2006.

[16] E. Hill, L. Pollock, K. Vijay-Shanker, "Exploring the

Neighborhood with Dora to Expedite Software

Maintenance," Automated Software Eng. (ASE), 2007.

[17] A. J. Ko, R. DeLine, G. Venolia, "Information Needs in

Collocated Software Development Teams," Intl. Conf. on

Software Engineering (ICSE), 2007.

[18] D. Liu, A. Marcus, D. Poshyvanyk, V. Rajlich, "Feature

Location via Information Retrieval based Filtering of a

Single Scenario Execution Trace," Automated Software Eng.

(ASE), 2007.

[19] A. Marcus, D. Poshyvanyk, R. Ferenc, "Using the

Conceptual Cohesion of Classes for Fault Prediction in

Object Oriented Systems," IEEE Transactions on Software

Engineering (to appear), 2008.

[20] D. Poshyvanyk, Y.-G. Guéhéneuc, A. Marcus, G. Antoniol,

V. Rajlich, "Feature Location Using Probabilistic Ranking

of Methods Based on Execution Scenarios and Information

Retrieval," IEEE Transactions on Software Engineering,

33(6):420–432, 2007.

[21] M. P. Robillard, "Representing Concerns in Source Code,"

Thesis, CS Dept., University of British Columbia, 2003.

[22] M. P. Robillard, G. C. Murphy, "Concern Graphs: Finding

and describing concerns using structural program

dependencies," Int'l Conf. Software Eng. (ICSE), 2002.

[23] D. Shepherd, J. Palm, L. Pollock, M. Chu-Carroll, "Timna:

A Framework for Automatically Combining Aspect Mining

Analyses," Automated Software Engineering (ASE), 2005.

[24] D. Sheskin, Handbook of parametric and nonparametric

statistical procedures, 4th ed.: Chapman & Hall, 2007.

[25] N. Wilde, M. C. Scully, "Software reconnaissance: Mapping

program features to code," Journal of Software Maintenance

and Evolution: Research and Practice, 7(1):49–62, 1995.

[26] K. Wong, S. R. Tilley, H. A. Müller, M.-A. D. Storey,

"Structural Redocumentation: A Case Study," IEEE

Software, 12(1):46–54, 1995.

[27] W. E. Wong, J. R. Horgan, S. S. Gokhale, K. S. Trivedi,

"Locating program features using execution slices," App.-

Specific Systems and Soft. Eng. (ASSET), 1999.

[28] W. Zhao, L. Zhang, Y. Liu, J. Luo, J. Sun, "Understanding

How the Requirements Are Implemented in Source Code,"

Asia-Pacific Soft. Eng. Conf. (APSEC), 2003.

[29] W. Zhao, L. Zhang, Y. Liu, J. Sun, F. Yang, "SNIAFL:

Towards a Static Noninteractive Approach to Feature

Location," ACM Transactions on Soft. Eng. and

Methodology, 15(2):195–226, 2006.

