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Abstract 
The concern location problem is to identify the source 

code within a program related to the features, 

requirements, or other concerns of the program. This 

problem is central to program development and 

maintenance.  We present a new technique called prune 

dependency analysis that can be combined with existing 

techniques to dramatically improve the accuracy of 

concern location.  We developed CERBERUS, a potent 

hybrid technique for concern location that combines 

information retrieval, execution tracing, and prune 

dependency analysis. We used CERBERUS to trace the 360 

requirements of RHINO, a 32,134 line Java program that 

implements the ECMAScript international standard. In our 

experiment, prune dependency analysis boosted the recall 

of information retrieval by 155% and execution tracing by 

104%. Moreover, we show that our combined technique 

outperformed the other techniques when run individually or 

in pairs. 

1. Introduction 

Most of the cost in software development goes towards 

maintaining and evolving existing code [5].  Programmers 

spend more than half of their time trying to understand the 

program so that they can make changes correctly [26].  The 

most valuable information to a programmer—and the most 

difficult to obtain—is the “intent behind existing code and 

code yet to be written” [17].  To understand the intent 

behind a piece of unfamiliar code, the programmer may 

look for clues in the code or documentation.  Program 

identifiers and comments, programming patterns and 

idioms, program dependencies, and how the program 

responds to input, all hint at the relationship between the 

code and the features, requirements, and other high-level 

concerns of the program. 

A concern is any consideration that can impact the 

implementation of a program [21].  Software requirements 

and features (i.e., user-observable functionality) are 

examples of different types of concerns  Generally 

speaking, the goal of concern location (e.g., concept 

assignment [4], feature location [2] [8] [12] [13] [18] [20] 

[25] [27] [28] [29], requirements tracing [1] [9] [10] [15], 

and related techniques) is to determine the relationship 

between high-level domain concepts (concerns) and other 

software artifacts, e.g., source code. 

A concern location technique can be thought of as an 

expert that evaluates a set of heuristics to produce a 

relevance judgment about the relationship between a 

program element and a concern.  For example, information-

retrieval-based techniques are experts that provide 

judgments based on the lexical similarity between program 

element names and concern descriptions.  Unfortunately, 

many factors conspire to reduce the reliability of the 

judgments.  First, each expert relies on the presence of 

clues to evaluate its heuristics.  If the clues are missing or 

misleading (e.g., meaningful element names are not used), 

the expert will likely draw the wrong conclusions.  Second, 

each expert is focused on a narrow aspect, and thus, an 

incomplete picture, of the program.  The judgments 

produced by one expert may not be entirely trustworthy. 

In theory, we should be able to increase accuracy by 

combining the judgments of multiple experts, thus 

mimicking how a programmer combines multiple clues to 

arrive at a more informed judgment.  That is, if three 

independent experts arrive at the conclusion that an element 

is relevant to a concern, this judgment is more reliable than 

if only one or two experts agreed.  However, combining 

judgments is not straightforward because of disagreements 

between the experts.  Furthermore, judgments are not 

necessarily comparable because each expert analyzes data 

and produces judgments in a different way (i.e., impedance 

mismatch). 

Our goals in this paper are to introduce improvements to 

previous automated concern location techniques, to present 

a novel prune dependency analysis technique, and to 

determine if the judgments of three experts can be 

successfully combined—would it be a case of ―three heads 

are better than one‖ or ―too many cooks in the kitchen?‖  

Our hypothesis is that combining the judgments of all three 



experts—information retrieval, execution tracing, and 

prune dependency analysis—is better than combining one 

or two experts.  We evaluated our hybrid technique, 

CERBERUS
1, by comparing it against a large concern–

element mapping (10,613 concern–element links) done by 

hand for RHINO, a 32,134 line Java program.  While a 

handful of researchers [18] [20] [28] [29] have successfully 

paired concern location techniques, as yet no one has 

combined the judgments of three experts. 

We found that concern location accuracy can improve as 

more heuristics and analysis techniques are brought to bear.  

In particular, CERBERUS outperforms all other technique 

combinations by 9%–263%.  In large part this improvement 

is due to the use of our novel prune dependency analysis 

technique, which boosted the recall of information retrieval 

by 155% and execution tracing by 104%. 

In the next section we give an overview of the individual 

techniques and how we integrated them to create 

CERBERUS.  In Section 3, we describe our evaluation 

methodology and our case study.  We describe our 

experimental results in Section 4 and evaluate the different 

technique combinations, including CERBERUS.  In Section 

5, we discuss some surprising results and threats to validity.  

Section 6 reviews prior work.  Section 7 concludes. 

2. An Overview of Our Approach 

We are interested in determining if a prune dependency 

relationship exists between a concern and an element based 

on the following rule [9]: 

A program element is relevant to a concern if it 

should be removed, or otherwise altered, when the 

concern is pruned.
 2 

To properly interpret this rule, consider a software 

pruning scenario where a programmer is removing a 

concern to reduce the footprint of a program or otherwise 

tailoring the program for a particular environment.  Thus, 

the goal is to remove as much of the code related to a 

concern as possible, short of a redesign3, and without 

affecting other concerns. 

To achieve this goal, the programmer must locate as 

many elements in the program as possible that implement 

the concern.  Locating these elements by hand is labor 

intensive and does not scale to large constantly evolving 

programs.  Fortunately, she can use automated concern 

location techniques.  Next, we describe two well-known 

                                                      
1 The three-headed dog of Greek mythology. 

2 ―Prune‖ is synonymous with ―remove.‖  We use different 

terms to make it clear what is being removed: the concern 

(pruned) or the program element (removed). 

3 Assume that disabling the concern using a flag, 

preprocessor macros, or code generation is not sufficient. 

concern location techniques and introduce our novel prune 

dependency analysis technique. 

2.1. Information Retrieval 

Information-retrieval-based concern location techniques 

(IR), such as vector space indexing [1] [28] [29], 

probabilistic indexing [1], and latent semantic indexing 

(LSI) [1] [18] [20], have been very successful at 

determining relevance based on the similarity between 

terms used in the concern descriptions and in the program 

elements (e.g., element names, variable names).  

Unfortunately, IR techniques suffer from the same 

problems that impede information retrieval in the large, 

such as polysemy (different meanings for the same word) 

and synonymy (same meaning for different words).  These 

problems particularly impact concern location because 

concern descriptions (e.g., paragraphs from a requirements 

specification) and program elements are often written by 

different authors, using different vocabularies and rules of 

grammar [20], and because program identifiers are often 

abbreviated (e.g., ―num,‖ ―str‖).  IR techniques require 

meaningful identifiers to be used to establish relevancy 

with any certainty.   

Our IR technique parses Java source code and extracts 

terms from comments and identifiers.  We include 

comments that precede the element definition as well as 

comments inside methods.  Identifiers include the names of 

methods (and fields), enclosing types, packages, 

parameters, local variables, field accesses, method calls, 

and type references (e.g., using instanceof).  Qualified 

names (e.g., foo.bar.baz()) are split into separate identifiers 

(―foo,‖ ―bar,‖ and ―baz‖).  Compound identifiers are added 

as is and also split into separate terms based on standard 

naming conventions (e.g., ―camelCaseStyle‖ and 

―underscore_style‖).  We kept terms that looked like 

section numbers (e.g., ―15.4.4.5‖) as well as ―magic‖ 

numbers (e.g., 0, 1, 3.14159). 

We filter terms using a standard stop list augmented 

with the list of Java keywords.  Abbreviated identifiers 

were generating a large number of synonyms, so we created 

a custom thesaurus to expand them.  A unique aspect of our 

technique is that we also expand abbreviated compound 

identifiers, e.g., the identifier ―numConns‖ expands into 

terms ―numberconnections,‖ ―number,‖ and ―connections.‖  

To further reduce the number of unique terms, we reduced 

the inflected form of the terms to their stem using a 

standard stemming library. 

Similar to [29], we treat program elements as the 

―documents‖ and requirements as the ―queries.‖  Our 

custom script parses a requirements specification to 

identify individual requirements, which will become the 

queries.  Terms are extracted from the requirements using 

the same rules as above for program elements. 

After extracting all the terms for the program elements 

and requirements, we weigh the terms using the standard 



TF–IDF formula [3].  The result is a vector of weighted 

terms for each program element and requirement.  We 

calculate the cosine distance [3] between the two vectors to 

arrive at a similarity score that ranges from 0 (no terms in 

common) to 1 (terms are identical).  IR presumes that term 

similarity implies relevance, so we interpret the similarity 

score to be the predicted relevance score for a given 

program element and requirement. 

2.2. Execution Tracing 

Execution-tracing-based concern location (tracing) 

techniques analyze the runtime behavior of a program to 

determine program elements activated when a concern is 

exercised.  For functions and methods, activation implies 

execution; for fields and global variables, activation implies 

access (reading or writing).  Exercising a concern implies 

supplying inputs to the program that are related to the 

concern.  For example, the ―bookmarking‖ feature in a web 

browser can be exercised by clicking the ―Add to 

Bookmarks‖ button [20].  We improve upon previous 

execution tracing techniques by considering field accesses 

as well as method executions. 

Traces for a set of concerns are compared to distinguish 

elements that are specific to a particular concern from those 

shared by many concerns.  The output is a list of methods 

ranked by their trace score (predicted relevance score), 

which ranges from 0 (irrelevant) to 1 (relevant).  We 

evaluated the effectiveness of the following scoring 

formulas: 

 Software Reconnaissance (SR): 1 if the element if 

activated by only one concern, otherwise 0 [25]. 

 Dynamic Feature Traces (DFT): # element 

activations by the concern / total # element 

activations [2]. 

 Scenario-Based Probabilistic Ranking (SPR): # of 

tests for a concern that activate the element / total 

# of tests that activate the element [13]. 

 Element Frequency–Inverse Concern Frequency 

(EF–ICF): 

–  

 

The first scoring formula, introduced by Wilde and 

Scully in their pioneering work on Software 

Reconnaissance [25], renders a binary judgment based on 

whether an element is uniquely activated by a concern.  

Later formulas (e.g., DFT, SPR, EF–ICF) more closely 

capture the notion of element specificity, i.e., the degree to 

which an element is relevant to a concern, and at the same 

time compensate for the imprecision and noise inherent in 

the collection of dynamic data [2]. 

We created the last formula, Element Frequency–

Inverse Concern Frequency (EF–ICF), because we noticed 

the resemblance between DFT and SPR and the TF–IDF-

like [3] term weighting formula commonly used in 

information retrieval.  EF–ICF is the same as TF–IDF, 

where ―terms‖ are program elements, ―term frequencies‖ 

are activation counts (e.g., number of method calls), and 

―documents‖ are concerns.  EF–ICF essentially adjusts the 

Dynamic Feature Traces score to account for the likelihood 

that the element is activated by other concerns. 

2.3. Prune Dependency Analysis 

Given an initial set of elements relevant to a concern 

(initial relevant elements or seeds [28] [29]), program-

analysis-based concern location techniques infer additional 

relevant elements by analyzing different kinds of 

relationships between the elements.  The initial seeds may 

be found by manual inspection [16], or, as in the case of 

CERBERUS, by a separate automated concern location 

technique.  We say an element ec is relevant to concern c if 

ec is prune dependent on c; that is, pruning c implies ec 

should be removed from the program, or otherwise altered.  

Our prune dependency analysis (PDA) technique assumes 

all the initial relevant elements will be removed when c is 

pruned.  PDA then determines the impact on the program 

of removing the initial relevant elements to infer additional 

relevant elements. 

PDA takes as input a tuple (G, R, A).  G is a directed 

program dependency graph G = (E, D1, D2, D3), where E is 

the set of program elements, D1 are references 

dependencies (e.g., method A calls method B), D2 are 

contains dependencies (e.g., a class contains its members), 

and D3 are inherits-from dependencies.  R = {e | e E } is 

called the removal set and initially contains the initial 

relevant elements for a single concern c.  A = {e | e E } is 

called the alter set and is initially empty. 

The dependency graph for the example Java program in 

Fig. 1 is shown in Fig. 2a.  Elements in the removal and 

alter sets are indicated as dark grey and light grey nodes, 

respectively.  The PDA algorithm proceeds by analyzing 

each element in the removal set R to determine if removing 

interface A { 

 public void foo(); 

} 

public class B implements A { 

 public void foo() { ... }   
 public void bar() { ... }   

} 

public class C { 

 public static void main() { 

  B b = new B(); 

  b.bar(); 

 } 

} 

Fig 1. Example to illustrate prune dependency analysis 
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that element will require additional elements to be 

removed—in which case they will be added to R—or 

otherwise altered—in which case they will be added to A.  

The following clauses were derived from [9]. 

References clause – If element e references ec, then e is 

also relevant to c since removing ec requires all references 

to it in the code to be modified to avoid a compile error.  

Depending on whether e is a method, field, or type (class, 

interface, or enum), ―references‖ means calls, accesses, or 

names, respectively.  A type is referred to by name in Java 

by type casts, instanceof, extends, and implements. 

The removal set in Fig. 2a initially contains B.foo() and 

B.bar().  This means that removing c dictates that these 

methods be removed.  However, C.main() calls B.bar(), so 

we must alter C.main() to avoid a compile error, e.g., 

remove the call entirely or replace it with something else.  

Thus, C.main() is added to the alter set, as shown in Fig. 

2b. 

Element containment clause – If all elements contained 

by e are relevant to c, then e is also relevant to c.  Referring 

to Fig. 2b, pruning c implies all the methods of B will be 

removed, leaving behind an empty class.  Adhering to the 

goal of software pruning, we should remove B as well.  

Thus, B is added to the removal set, as shown in Fig. 2c. 

Inheritance clause – If all subtypes inherited from an 

abstract base class or interface e are relevant to c, then e is 

also relevant to c.  Continuing the example, removing B 

will leave A without a concrete implementation.  Adhering 

to the goal of software pruning, we should remove A since 

an object of type A or derived from A cannot be created and 

methods of A cannot be called.  Thus, A and its members 

are added to the removal set, as shown in Fig. 2d.  We 

reapply the clauses to A and its members but this does not 

affect the removal set, so the algorithm terminates. 

In this way, PDA builds up the set of elements that must 

be removed or altered when the concern is pruned.  The 

algorithm terminates when all elements in R have been 

analyzed, which is guaranteed to happen since the elements 

are finite and are only analyzed once.  PDA outputs the 

final set of removal and alter elements.  The final relevant 

elements are the union of the two sets, i.e., R  A.  For our 

example, the final relevant elements are A, A.foo(), B, 

B.foo(), B.bar(), and C.main(). 

PDA assumes a closed world where the types are known 

at analysis time.  This is a reasonable assumption since our 

goal is to locate concerns in our own code. 

2.4. Our Combined Technique: CERBERUS 

 As shown in Fig. 3, CERBERUS combines information 

retrieval, execution tracing, and prune dependency analysis 

to locate concerns.  We use information retrieval to produce 

the IR ranking and execution tracing to produce the trace 

ranking.  We use the PROMESIR formula [20] to combine 

the rankings produced by tracing and IR by normalizing, 

weighting, and summing the similarity and trace scores.  To 

be conservative, absent scores, i.e., an element that does not 

appear in a trace, are treated as 0 (irrelevant). 

We then apply a threshold to identify highly relevant 

elements, which will become seeds for the prune 

dependency analysis technique.  We experimented with 

rank thresholds (e.g., the top 5 most similar elements), 

score thresholds (e.g., the elements with scores in the top 

5%), and the gap threshold algorithm introduced by Zhao 

(c) Containment clause applied 

(a) Initial state (b) References clause applied 

 C  A  B 

 foo  foo  main  bar 
calls 

contains 

refs 

inherits, 

refs 

contains contains contains 

 C  A  B 

 foo  foo  main  bar 
calls 

contains 

refs 

inherits, 

refs 

contains contains contains 

Fig 2. Application of prune dependency analysis

 C  A  B 

 foo  foo  main  bar 
calls 

contains 

refs 

inherits, 

refs 
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(d) Inheritance clause applied 

 C  A  B 

 foo  foo  main  bar 
calls 

contains 

refs 

inherits, 

refs 

contains contains contains 

Fig 3. Overview of the Cerberus approach 
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et al. [28]  The gap algorithm traverses the list of elements 

in order, from highest to lowest score, to find the widest 

gap between adjacent scores.  The relevance score 

immediately prior to the gap becomes the threshold for 

picking the seeds.  These seeds are then passed to the prune 

dependency analysis to infer additional relevant elements. 

3. Evaluation Methodology 

The goals of our experiment are to determine if 

combining information retrieval, execution tracing, and 

program dependency analysis improves accuracy over 

individual and paired techniques, and to determine if our 

prune dependency analysis technique is effective at 

inferring relevant elements. 

3.1. Effectiveness Measures 

We use the key measures of information retrieval, 

precision and recall, to evaluate concern location 

techniques [15].  For a given concern c, let Ec be the set of 

program elements actually relevant to c (the relevant 

element set), and Ec
*
 be the set of elements judged to be 

relevant by our technique (the retrieved element set).  

When the concern location technique produces a list of 

elements ei ranked by a relevance score, we apply a 

threshold t to obtain the retrieved element set by discarding 

elements below the threshold [2]. 

Recall is the percentage of relevant elements retrieved 

by the technique, i.e., recall = .  Precision is 

the percentage of retrieved elements that are relevant, i.e., 

precision = .  We also compute the f-

measure, the harmonic mean of precision and recall: f-

measure = 2 ∙ (recall ∙ precision) / (recall + precision).  

The f-measure facilitates comparing effectiveness because 

it produces a single value that balances precision and recall 

equally. 

We are interested in the overall accuracy of a technique 

for multiple concerns, so we compute mean recall, mean 

precision, and mean f-measure.  However, a concern 

location technique may not locate all the concerns.  For 

example, execution tracing can only locate concerns that 

have an associated exercising test.  It is also possible that 

all of the elements in a ranking are below the relevance 

score threshold.  We do not consider missing concerns 

when computing means for several reasons.  First, precision 

and f-measure are undefined in this case.  Second, our 

graphs show the number of concerns located by the 

techniques.  Third, we are interested in how well a 

technique performs in two different scenarios: when we 

desire a trace of all the concerns (i.e., requirements 

traceability) and when we want to locate a subset of 

concerns (i.e., concern location).  As we will see, we can 

achieve higher accuracy if we can accept locating fewer 

concerns. 

We say that a ranking technique is effective if higher 

relevance scores lead to higher actual relevance; that is, 

relevance scores should be positively correlated with f-

measure.  We say that a technique is more effective than 

another if it has a higher mean f-measure.  Because 

dependency analysis requires preexisting seeds, we did not 

evaluate it in isolation, but instead evaluated it in 

combination with execution tracing and information 

retrieval.  We consider prune dependency analysis to be 

effective if it increases the f-measure of another technique. 

3.2. Our Study Subject: RHINO 

RHINO
4 is a JavaScript/ECMAScript interpreter and 

compiler.  Version 1.5R6 consists of 32,134 source lines of 

Java code (excluding comments and blank lines), 138 types 

(classes, interfaces, and enums), 1,870 methods, and 1,339 

fields (as reported by CONCERNTAGGER
5).  RHINO 

implements the ECMAScript international standard, 

ECMA-262 v3 [11].  We chose RHINO because in a prior 

study [10] we had systematically associated all the 

methods, fields, and types in the RHINO source code with 

the requirements from the ECMAScript specification, 

which provides us with an oracle by which we can evaluate 

the performance of different concern location techniques.  

Indeed, the extensive manual labor required to map 

RHINO—it took 102 hours to create 10,613 concern–

element links—strongly motivated our current work. 

We evaluated our technique against the same set of 

concerns analyzed in our prior study, namely the 

requirement concerns specified by the normative leaf 

sections of the ECMAScript specification [11].  A leaf 

section is a section that has no subsections; i.e., it is at the 

lowest level of granularity.  For example, consider the 

following snippet of the requirements hierarchy: 

15 – Native ECMAScript Objects 

... 

15.4 – Array Objects 

... 

15.4.4 – Properties of the Array Prototype Object 

... 

15.4.4.5 – Array.join(separator) 

... 

In the above snippet, ―15.4.4.5 – Array.join()‖ is a leaf 

section.  The ECMAScript requirements are quite detailed, 

as can be seen from an excerpt for this section: 

“The elements of the array are converted to strings, and 

these strings are then concatenated, separated by 

occurrences of the separator. If no separator is provided, 

a single comma is used as the separator. The join 

method takes one argument, separator, and performs the 

following steps: ... [algorithm follows]” 

                                                      
4 http://www.mozilla.org/rhino 

5 http://www.cs.columbia.edu/~eaddy/concerntagger 



The top four TF–IDF weighted terms for this section are     

―15.4.4.5,‖ ―comma,‖ ―join,‖ and ―occur.‖  

3.3. Applying CERBERUS to RHINO 

Indexing the RHINO source code resulted in 4,530 

unique terms (after stopping, stemming, compound term 

expansion, and abbreviation expansion) and 3,345 

documents, i.e., one document for every type, method, and 

field in RHINO.  Indexing the ECMA 262 v3 specification 

resulted in 2,032 unique terms and 360 leaf sections, which 

became our queries.  The total vocabulary size (combining 

code and requirements terms) was 5,566 unique terms.  

The ECMAScript test suite consists of 939 tests, 795 of 

which directly test 240 of the 360 requirements, i.e., several 

requirements have multiple tests.  These tests activate 1,124 

of the 1,870 methods in RHINO.  Thus, the concern 

coverage of the test suite is 67% and the method coverage 

is 60%.  The tests are written in ECMAScript and the file 

names indicate which requirement is tested (e.g., 

―15.4.4.5.js‖ tests section ―15.4.4.5 – Array.join()).‖ 

We collected traces of method calls and field accesses 

using AspectJ6.  AspectJ is not able to monitor access to 

―static final‖ fields because Java compilers convert these 

into constants.  Therefore, when we are combining the trace 

and IR scores, we just use the IR score instead of assuming 

the trace score is 0 as we do for other missing elements (see 

Section 2.4). 

 Similar to [18], we semi-automatically inserted method 

calls into the test cases to start and stop tracing to avoid 

tracing startup code, setup code, test harness code, and code 

related to other concerns.  The assumption is that this code 

                                                      
6 http://www.aspectj.org 

is irrelevant to the concern and acts as noise that reduces 

the ability for the traces to discriminate relevant elements.  

This assumption later proved false for reasons we explain 

in Section 5. 

We extended our CONCERNTAGGER plug-in for 

ECLIPSE
7 to implement prune dependency analysis by 

leveraging ECLIPSE’s program analysis framework. 

4. Analysis of Experimental Results 

Fig. 4 shows a graph of the mean f-measure for all 

combinations of the three techniques.  Each line in the 

graph represents a different technique or technique 

combination.  Each point on a line represents a different 

threshold t.  Each technique is represented in its optimal 

configuration, i.e., parameterized to use the most effective 

heuristic.  For example, the best parameterization of the 

tracing technique used marked traces and the Dynamic 

Feature Traces scoring formula.  In Fig. 6, we show how 

the other scoring formulas fared. 

4.1. Comparing Technique Effectiveness 

We make several observations:  

The combination of the three techniques is the most 

effective.   From Fig. 4, we see that our combined 

technique, CERBERUS (IR + Tracing + PDA), is more 

effective than any subset.  

We verified that CERBERUS outperforms the other 

techniques by statistical analysis of the populations of the f-

measures produced by the compared techniques.  We 

                                                      
7 http://www.eclipse.org 
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observed that the f-measure values for the techniques were 

not normally distributed.  We therefore performed one 

descriptive statistic test and three non-parameteric tests: 

mean f-measure, Mann–Whitney, Kruskal–Wallis, and 

Friedman [24].  For the first test, we simply computed the 

mean f-measure value for each technique.  The non-

parameteric tests compare the f-measure ranks rather than 

the actual values.  All four tests indicate that the mean f-

measure values and ranks are highest for CERBERUS, which 

supports our performance claim according to the 

effectiveness criteria in Section 3.1.  The Kruskal–Wallis 

and Friedman tests further determined that the difference in 

means was statistically significant (p-value < .005).  

However, while we witnessed an average 9% improvement 

in f-measure for CERBERUS over IR + PDA, as can be seen 

in Fig. 4, the Mann–Whitney test was inconclusive since it 

indicated the improvement was not statistically significant 

(p-value = .291).  In short, three tests indicate the 

superiority of CERBERUS, while one test was inconclusive.   

The PROMESIR formula allows us to adjust the weights 

of the IR and trace relevance scores to reflect our 

confidence in these two ―experts.‖  However, weighting the 

experts equally, as done in [20], produces worse results 

than using IR alone, because in our study this would be 

akin to averaging the test scores of a poorly performing 

student (tracing) and a well performing student (IR).  Using 

an 80/20 combination (determined by trial-and-error) of IR 

and trace scores, execution tracing improves the 

performance of IR by 4% and the performance of IR + 

PDA by 9%.  

Fig. 5 shows the precision–recall graph for our 

approach, where each point on the line represents a 

different threshold t.  Our best precision is 75% and recall 

is 73% using the threshold t = 0.01%; however, looking at 

Fig. 4 we see that only 36 concerns have ranked elements 

that exceeded this threshold.  If we use the ―gap‖ threshold, 

we locate all 360 concerns, but our precision drops to 37% 

and recall drops to 39%.  

No previous study that we know of has traced this many 

concerns (360) to the level of methods and fields in a 

program of this size (32,134 lines).  Indeed, the existence 

of a publicly available oracle8 of this size (10,613 concern–

element links) is rare.  While our precision and recall (48% 

and 56%, respectively) is not as good as SNIAFL [29] 

(99% and 87%), for example, our evaluation is more  

rigorous (360 concerns versus 21) and realistic (32.1K lines 

versus 8.6K lines). 

Each technique and technique combination is effective 

at locating concerns.  In general, higher relevance scores 

lead to higher actual relevance.  This is apparent by 

noticing that the f-measure tends to increase as we increase 

our relevance score threshold.  This is not surprising, as the 

IR and execution tracing techniques have been 

independently validated by numerous studies.  However, 

only a few studies  [28] [29] have validated the 

effectiveness of using program analysis for automated 

concern location, and our results provide further evidence. 

Prune dependency analysis is effective at boosting the 

performance of other techniques.  Combining prune 

dependency analysis with any other technique or technique 

combination improves the recall of that technique, 

regardless of the threshold or number of concerns located.  

This can be observed in Fig. 4, by noting that combining 

PDA with any technique results in a higher f-measure. 

Software Reconnaissance is not as effective as the other 

trace scoring formulas.  The graph in Fig. 6 indicates that 

the Software Reconnaissance formula performs poorly, 

possibly validating the claim in [13] that this formula is 

“overly sensitive to the quality of the input.”  SPR 

performed better followed by DFT and EF–ICF, although 

we did not find a significant difference between these last 

two. 

                                                      
8 http://www.cs.columbia.edu/~eaddy/concerntagger 
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4.2. A Concern in Point 

The following example illustrates how prune 

dependency analysis can improve the recall of information 

retrieval.  The Rhino concern ―15.4.4.5 – Array.join()‖ 

specifies the behavior of the join() method of the native 

ECMAScript Array class.  Table 1 shows the results of our 

IR technique.   

The similarity gap between elements ranked #3 and #4 

is .21-.18 = .03, which is the largest gap in the ranking, so 

the threshold t is .21, and only the first three elements are 

judged relevant.  Id_join and js_join() both use the terms 

―array‖ and ―join,‖ which also occur in the concern 

description.  The relatively low frequency of the term 

―join‖ in the specification results in a high TF–IDF weight, 

as we showed in Section 3.2.  Unfortunately, js_sort() is 

actually irrelevant but receives a high similarity score 

because of an incorrect comment in the code. 

From the bad js_sort() seed, PDA infers the following 

methods in the NativeArray class: execIdCall(), 

findPrototypeId(), and initPrototypeId().  Coincidentally, 

the good js_join() seed infers the same methods, and these 

inferred methods are in fact relevant, so the damage of the 

bad seed is masked.  Thus, the IR + PDA technique finds 

all the relevant elements (recall = 100%) and one irrelevant 

element (precision = 83%).  

5. Discussion 

5.1. Poor Performance of LSI and Tracing 

We were surprised to find that LSI did not improve 

performance over vector space indexing despite the success 

that others researchers have had with it (e.g., [1] [18] [20]).  

One possible reason is that our corpus is somewhat small, 

consisting of 5,566 unique terms and 3,345 documents, 

thus reducing the effectiveness of LSI.  For example, LSI is 

effective at reducing the problems associated with term 

synonymy by analyzing the co-occurrence of terms in the 

corpus.  If the corpus is small, LSI may not have enough 

co-occurrence information to be effective. 

We were also surprised that the effectiveness of our 

execution tracing technique could not be improved, even 

after instrumenting the 939 tests in the RHINO test suite 

with trace markers, employing two different trace tools, and 

leveraging an arsenal of different scoring formulas.  There 

are several factors that may account for this poor 

performance. 

The first issue is that 33% of the concerns in RHINO are 

untested, which limits effectiveness when combining 

tracing with other techniques because tracing provides no 

information for those missing concerns.  40% of the 

methods in RHINO are not called during any test, although 

some were actually relevant to some of the concerns. 

The second issue is that some concerns were 

implemented as different branches of a switch statement or 

if statement as opposed to different methods.  Our scoring 

formulas deem a method with many concern-relevant 

branches as being irrelevant to any concern in particular, 

when in fact the opposite is true. We believe that tracing at 

the basic-block level [27] [12], or emulating such a trace, 

would be effective at untangling these interleaved concerns. 

The third issue is that execution trace data tends to be 

imprecise and noisy because it includes startup code, test 

harness code, bookkeeping code, etc., which are not 

relevant to the concern [2] [12] [13].  Imprecision and noise 

hinders establishing the non-exhibiting scenarios that help 

pinpoint relevant methods.  These problems made it 

difficult to use RHINO’s tests to isolate concern-relevant 

code.  Liu et al. [18] argued that information retrieval can 

compensate for this issue, but our results indicate that a test 

suite with poor isolation cannot be effectively repurposed 

for concern location.   

We attempted to isolate concerns by bracketing the 

functionality of the primary concern in each test with trace 

markers, but this did not improve results.  Indeed, the 

markers ended up excluding many relevant methods and 

fields, e.g., concern-relevant initialization code.  Overall 

accuracy was mostly unaffected by the use of trace 

markers: analysis of the f-measures for the different 

thresholds revealed that marked traces increased the f-

measure by an insignificant 0.01. 

Interestingly, we achieved a greater performance 

improvement by using trace scoring formulas that attempt 

to compensate for imprecision and noise than by using 

trace markers.  This is analogous to the classic information 

retrieval debate that a stop list is redundant if we have a 

good TF–IDF formula trained on a large corpus. 

Note that the poor performance of tracing actually 

validates our approach since combining expert judgments 

reduces the impact of ―unqualified experts.‖  By choosing 

appropriate relevance thresholds and confidence weights, 

we were able to ignore bad judgments produced by tracing 

while retaining good ones, to boost the accuracy over IR by 

4% and over IR + PDA by 9%.  Furthermore, Fig. 4 

suggests that CERBERUS is effective even without execution 

tracing. 

 

TABLE 1 
TF–IDF Similarity Scores for Concern 

“15.4.4.5 – Array.join()” 

Rank Program Element Kind 
Similarity 

Score 

1 NativeArray.Id_join field .22 

2 NativeArray.js_sort() method .22 

3 NativeArray.js_join() method .21 

– Largest Similarity Score Gap – 

4 NativeArray.Id_concat field .18 

 



5.2. Threats to Validity 

Internal validity deals with possible biases and 

measurement errors.  Our current study is almost identical 

to our prior study [10], e.g., same subject program, 

concerns, and assignment criteria.  The only difference is 

that our current study automatically locates concerns 

whereas the previous study located concerns manually.  

Because our oracle was created for the prior study, subject 

bias is not an issue; i.e., the author could not craft the 

oracle to maximize the results of our automated technique. 

To avoid the possibility that a tool or technique is 

defective, we used multiple tools and techniques to 

redundantly verify some of our results.  Because we 

implemented execution tracing using two different 

instrumentation tools, and trace markers were manually 

added to the tests by two authors independently, we cannot 

attribute the poor performance of tracing to defective tools.  

We also evaluated two different information retrieval 

techniques: latent semantic indexing and vector space 

indexing.  The results of the two techniques were very 

similar, and thus redundantly indicate the maximum 

effectiveness we can expect from an information-retrieval-

based technique for tracing concerns in RHINO. 

External validity is the extent to which we can 

generalize our findings to other contexts.  Concern location 

techniques reflect the assumptions and goals of their 

authors.  Although the concern–code relationship induced 

by our prune dependency rule was demonstrated to be 

useful for assessing code quality, predicting defective 

concerns [10], and requirements tracing and validation, the 

rule may need to be specialized to perform well for other 

software engineering tasks.  For example, concern-relevant 

fields may not be useful when predicting the locations of 

defects. 

6. Related Work 

In comparison to other information-retrieval-based 

concern location techniques, CERBERUS is the first to use a 

thesaurus to expand abbreviated terms and to index fields 

as well as methods, thus providing a more complete 

concern–code mapping. 

In contrast to Dynamic Feature Traces [13], our 

Scenario-based Probabilistic Ranking heuristic calculates a 

relevance score based on the probability that an element is 

activated by a concern [2], analyzes field accesses as well 

as method calls, and uses marked traces [18] to ensure that 

only concern-related functionality is traced. 

Several researchers [4] [8] [22] have exploited program 

dependency heuristics for interactive concern location, but 

only a few have used them for automated concern location.  

Zhao et al.’s [28] complementation heuristic assumes that 

any method that transitively calls, or is transitively called 

by, a relevant element is also relevant.  They use branch-

reserving call graphs in [29] to generate pseudo-execution 

traces, essentially using inexpensive static analysis to 

emulate the SR heuristic.    PDA’s references clause infers 

almost the same elements, except that we always consider a 

referencing element relevant even if it is already relevant to 

another concern.  Moreover, the contains and inherits 

clauses are unique to PDA. 

Recently, researchers have combined heuristics to 

improve accuracy.  For example, information retrieval 

heuristics have been combined with execution heuristics  

[18] [20] and program dependency heuristics [28] [29].  

However, CERBERUS is the first to combine all three. 

There are many different ways to integrate execution 

trace data when creating a combined technique.  CERBERUS 

converts the trace data into a ranking and then combines it 

with an IR ranking.  In contrast, SITIR [18] uses the trace 

data to filter the input to IR—the heuristic being that 

methods not activated when a concern is exercised cannot 

be relevant to that concern [29], and should therefore be 

ignored during the information retrieval phase.  The 

drawback of using tracing as a filter is that it is sensitive to 

the capability of the tests to isolate concerns, which may be 

quite poor [13].  Indeed, when we experimented with using 

the RHINO trace data as a filter we found that a large 

number of relevant methods were filtered due to the issues 

we described in Section 5.2.  By using the trace data to rank 

instead of filter elements, we were able to adjust the 

influence of the trace data, and thereby compensate 

somewhat for the poor test suite quality. 

DORA [16] is complementary to CERBERUS in that DORA 

could consume the seeds that CERBERUS produces, thus 

eliminating user involvement.  Alternatively, CERBERUS 

could use IR to filter the final relevant element set.  

Essentially, CERBERUS is a marriage of the PROMESIR 

and SNIAFL approaches, with several improvements.  

Whereas PROMESIR is effective at combining IR and 

tracing to pick highly relevant seed elements, SNIAFL is 

effective at using program analysis to infer additional 

relevant elements from those seeds.  We refined these 

approaches by adding a custom thesaurus, using marked 

traces, employing the prune dependency heuristic, and 

considering fields as well as methods. 

7. Conclusions and Future Work 

CERBERUS is the first concern location technique to 

combine information retrieval, executing tracing, and 

program analysis to locate concerns in source code.  We 

showed that the combination of these three analysis 

methods produced more accurate results than all other 

combinations of these methods.  Our novel prune 

dependency analysis algorithm boosted the recall of 

information retrieval by 155% and execution tracing by 

104%, with only a negligible loss (0.5%) in precision. 

We believe hybrid concern location techniques, such as 

ours, which combine multiple analyses, will become a 

major new avenue of research. Analyses that incorporate 



more information, such as line co-change [7], conceptual 

cohesion [19], code clones [6], co-location, and code 

authorship are promising.  Our future research focuses on 

how to best combine such techniques.  

Although we achieved good results using a weighted 

linear combination of execution trace and information 

retrieval scores [20], combining expert judgments is a core 

machine-learning problem.  We feel that hybrid concern 

location techniques can further benefit from machine-

learning solutions (e.g., ―boosting‖ [14]) [23]. 

We cannot assume that CERBERUS or its constituent 

techniques will achieve a performance improvement in 

other contexts, or with other concern domains, programs, 

etc.  As with any new technique, CERBERUS must be 

evaluated on more programs before we can be confident 

that our results are not context-specific. 

The study data and source code for RHINO and 

CERBERUS are available online at http://www.cs. 

columbia.edu/~eaddy/concerntagger. 
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