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Email: {hassaisa,hamelsyl}@iro.umontreal.ca
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Abstract—The maintenance of large programs is a costly
activity because their evolution often leads to two problems:
an increase in their complexity and an erosion of their design.
Impact analysis is crucial to make decisions among different
alternatives to implement a change and to assess and plan
maintenance activities by highlighting artefacts that should
change when another artefact changes. Several approaches
were proposed to identify software artefacts being affected by
a change. However, to the best of our knowledge, none of these
approaches have been used to study two pieces of information:
(1) the scope of a change in a program and (2) the propagation
of the change in time. Yet, these pieces of information are useful
for developers to better understand and, thus, plan changes.
In this paper, we present a metaphor inspired by seismology
and propose a mapping between the concepts of seismology
and software evolution. Our metaphor relate the problems of
(1) change impact and earthquake’s debris and (2) change
propagation and damaged site predictions to observe the scopes
and the evolution in time of changes. We show the applicability
and usefulness of our metaphor using Rhino and Xerces-J.

Keywords-Software evolution; Change Impact Analysis;
Change Propagation; Earthquake forecasting;

I. INTRODUCTION

Although object-oriented programming has met great suc-
cesses in modeling and implementing complex software
programs, developers face problems with maintenance [1].
In particular, understanding the evolution of a program is a
time- and resource-consuming activity, despite its benefits to
perform adequate changes [2], [3]. Approaches exist to study
software evolution phenomena, including evolution trends,
traceability between artefacts, and the impacts of changes.

In particular, understanding the propagation and the im-
pact of changes is crucial for estimating the effort required
to implement a change and for planning maintenance activ-
ities. Change impact analysis aims at identifying software
artefacts being affected by a change; it provides the potential
consequences of a change and an estimate of the artefacts
that must be modified to accomplish a change [4]. As in
previous work, e.g., [5]–[7], for the sake of simplicity and
without loss of generality, we focus on C++ and Java classes.

Existing approaches for change impact analysis are based
on the software structure and use static, dynamic, and–or tex-
tual analyses [4], [8]–[10]. However, change impact analyses
should also take into account classes that are semantically
coupled but that may not be structurally depend on one

another. Thus, recently, researchers proposed to analyse the
content of version-control systems to identify semantically
coupled classes (i.e., logical couplings) by assessing whether
they co-change together within change sets [11]–[13].

However, to the best of our knowledge, none of these
approaches have been used to study two pieces of infor-
mation: (1) the scope of changes in a program and (2) the
propagation of changes in time. First, they do not take into
account a “distance” among classes, for example whether
two co-changing classes are in direct relation or separated
through a long chain of relationships. Yet, studying the scope
of changes could help developers prioritise their changes
according to the forecast scope of changes. Second, they
do not report the trends of the co-changes among files in
time, for example whether changing a class impacts more
and more co-changing classes as the program evolves. Yet,
studying the propagation of changes in time could help
developers plan their maintenance activities according to the
forecast time that a change may take to settle in a program.

We propose a novel approach to change impact analysis
specifically designed to study the scope and the propagation
of changes, based on a metaphor between seismology and
change impact analysis. Our approach considers changes
to a class as a seism that propagates through the program
following the class levels, defined by direct relationships
among classes, and that impacts other classes with different
extent, depending on (1) their relationships with the “epicen-
ter class” and other impacted classes and (2) the moments in
time at which developers change impacted classes. With our
approach, we can observe and, in future work, will predict
the scopes and the propagations of changes through the class
levels of a program and in time.

To show the applicability and the usefulness of our
approach, we apply our approach on three epicenter classes
in Rhino and six epicenter classes in Xerces-J and study its
approach results to answer the three research questions:

• RQ1: Is it possible to find external information that
support our observations on the impact of changes
according to our metaphor?

• RQ2: Does our metaphor allow us to observe interesting
change patterns in scope?

• RQ3: Does our metaphor allow us to observe interesting
change patterns in time?
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Our answers to these research questions confirm that:
(1) like with earthquakes dramatic consequence, we can
find external information in mailing lists and but reports
confirming the observed change propagation and its negative
impact on the impacted classes and (2) like earthquakes,
changes propagate in programs with decreasing impact as the
levels from the changed class increase and as time passes.

This paper is organised as follows: Section II summarises
work related to change impact. Section III describes our
metaphor and mapping. Section IV presents our approach
and its implementation. Section V presents the three research
questions derived from our metaphor while Section VI
presents our study results and answers to the questions.
Finally, Section VIII concludes with future work.

II. RELATED WORK

Change impact analysis [4] aims at identifying classes
being affected by a change. In this section, we review and
discuss related work with respect to our approach.

A. Structure-based Change Impact Analyses

Several change impact analyses are based on class depen-
dencies and use static, dynamic, and textual analyses.

Arnold and Bohner proposed several models of change
propagation [4], [8]. These models are based on code
dependencies and algorithms, including slicing and transi-
tive closure, to assist in assessing the impact of changes.
Dependency analysis of source code is typically performed
using static analyses or dynamic program analyses. When
performing change impact analysis with call graphs, the
impact of a change in a method is the transitive closure of all
its callers and callees. Therefore, it can be highly inaccurate,
by reporting false candidates that do not change and failing
to estimate some classes that actually do change because
the analysis is restricted to method calls. Static slicing is
typically based on data- and control-flow graphs that are
computationally expensive to process and analyse.

Law et al. [9] argued that static slicing is much more
precise than transitive closure on call graphs but it may
return sets of classes that are impacted by a change that
are too large. Dynamic slicing can improve the conservative
behavior of static slicing. However, it is subject to the risk of
lower precision and lower recall as it depends on the chosen
scenarios and–or executed test cases. Consequently, Law et
al. [9] introduced a new approach to method-level change
impact analysis, based on whole-path profiling. In their
approach, dynamic traces are compressed using the path
profiling technique [10], then they apply their PathImpact
algorithm to predict dynamic change impact. Their approach
can provide potentially more useful predictions of change
impact than method-level static slicing in situations where
specific program behaviors are the focus.

Hassan et al. [14] proposed a model of change propaga-
tion, based on several heuristics, for predicting the set of

classes that should change after a particular class has been
changed. In their approach, they combined various sources
of data for change impact analysis, such as static dependen-
cies between classes and historical co-change relations.

B. History-based Change Impact Analyses

Historical analyses add complementary information to
static and dynamic analyses, i.e., information about changes
to classes over time, such as the co-changing artefacts.

Ying et al. [12] and Zimmermann et al. [11] proposed
to mine version-control systems. They applied association
rules that identify logical couplings [15] between classes.
A change occurring to a class A may have an impact on
another class B if in the past they changed together. Such
historical analysis is often able to capture change couplings
that cannot be captured by static and dynamic analyses.

Bouktif et al. [7] used a technique from speech recog-
nition to infer cause–effect relationships from the revision
histories. Their approach relies on the technique of dynamic
time warping to group files with histories of changes of
different lengths. The values of their approach precision
and recall are higher than previous approaches, including
association rules [11], [12].

Canfora et al. [16] proposed an approach based on
information-retrieval techniques to derive the set of classes
impacted by a proposed change request. They argued that the
histories of change requests is a useful descriptor of classes
when it is used for change impact analysis.

C. Probabilistic Approaches

Zhou et al. [17] and Mirarab et al. [18] presented a
change propagation analysis based on Bayesian networks
that incorporates static source code dependencies as well as
different features extracted from the history of a program,
such as change comments and author information. Zhou et
al. [17] used the Evolizer system that retrieves all mod-
ification reports from a CVS and uses a sliding window
algorithm to group them. Their change propagation model
is able to predict future change couplings. Mirarab et al.
[18] used Bayesian belief networks as a probabilistic tool to
make such predictions systematically. Their approach mainly
relies on dependency metrics calculated using static analysis
and change history extracted from a version-control system.

Antoniol et al. [19] incorporated static source code de-
pendencies and other features extracted from the release
history of a program, such as author information. Then,
they applied the LPC/Cepstrum technique to mine a version-
control system for classes having evolved in the same or very
similar ways. Their approach can find classes having very
similar maintenance evolution histories.

Ceccarelli et al. [20] proposed the use of a generalisation
of univariate autoregression model, to capture the evolution
and the inter-dependencies between multiple time series.
They applied the bivariate Granger causality test [21] to infer
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the mutual dependencies between classes by measuring the
statistical confidence that the time series representing the
histories of changes of a class A can be used to predict
the changes of another class B. Their preliminary results
showed that change impact relationships inferred with the
Granger causality test are complementary to those inferred
with association rules.

D. Discussion

Our approach is complementary to this previous work:
we propose a metaphor to specifically study (1) the scope
of changes in a program and (2) the propagation of changes
in time. We get inspiration from this previous work and from
seismology to propose a novel approach for the analysis of
the impact of changes dedicated to observing the scope and
propagation of changes.

III. THE EARTHQUAKE METAPHOR

In this section, we relate earthquakes and software
changes by presenting a mapping between concepts in seis-
mology and in change impact analysis. We use this mapping
to observe the scope and propagation of changes as a global
phenomena both physically and temporally.

A. Seismology

Seismologists study earthquakes and seismic waves that
move through and around the Earth. A seismic wave, or
shaking, is the vibration that occurs from the epicenter of
an earthquake until a damaged site. Seismic waves propagate
along the surface and through the Earth at varying speeds,
depending on the types of soil through which they move.
In general, shaking is most severe near the epicenter and
decreases away from the epicenter, i.e., more a site is near
an epicenter, more the debris are important.

Seismology includes three main research directions:
1) Earthquake predictions: Creating effective ap-

proaches for precise earthquake predictions, i.e., fore-
casting the probable timings, locations, and magni-
tudes of earthquakes.

2) Debris forecasting: Predicting and estimating debris,
or structural damage, after an earthquake, to assist de-
bris managers in planning large scale debris removals.

3) Earthquake behaviour analysis: Studying earth-
quake clustering and quasi-periodicity. Clustering is
observed as short- or medium-term interactions among
earthquakes (fore shock, main shock, after shock).
Quasi-periodicity is a long-term behaviour of earth-
quakes caused by a same seismic source.

Figure 1 illustrates how the magnitude of an earthquake
varies in space and time. If we observe the variation of
magnitude around one epicenter for a specific time, we can
observe that the magnitude is maximum in the epicenter
and decreases with the distance from the epicenter to the
considered site.

Figure 1. Epicenters distribution in space and time. The map shows the
expected number of earthquakes of a given magnitude occurring within a
given radius from each point. (From [22].)

B. Change Impact Analysis

Change propagation begins with a class being changed.
This change propagates and forces other classes to change.
These changed classes, in turn, may yield to other changes.
Thus, change propagation is due to changes “moving” from
one class to another through a program classes. For example,
if a method is renamed because of some change request, then
all the classes that call this method must be modified to use
its new name; in turn, other classes may change because of
these changes in these methods.

Change impact analysis has two main goals: supporting
the processing of changes and enabling the traceability of
changes. It is important during development and mainte-
nance to help developers in assessing the effort to implement
some change request (typically, the more impacted classes
by a change, the greater the effort) and in performing the
most adequate changes, limiting the risk of introducing bugs
by clearly identifying classes that could be impacted. It could
also allow the prediction of future changes and of their
propagations. However, to the best of our knowledge, no
previous work studied the scope of changes in a program
and their propagation in time.

C. Change Impact Analysis and Seismology

We now define a mapping between change impact analysis
and earthquakes, summarised in Table I.

In seismology, the epicenter of an earthquake is located at
most active seismic areas. To determine the epicenter (loca-
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Concepts
Change Impact Analysis Seismology

“Important” classes Active seismic areas
Software change Earthquake
“First” changed class Epicenter
Change propagation Seismic wave propagation
“Other” changed classes Damaged sites
Class level Distance from an epicenter to a damaged site
Relationships between classes Types of soil
Types of changes Types of debris
Quantity of changes Structural damage (debris)
Scope of changes Extent of the damaged sites
Propagation of changes in time Earthquake behaviour

Table I
MAPPINGS BETWEEN CONCEPTS OF SEISMOLOGY AND SOFTWARE

CHANGE IMPACT

tion) of an earthquake seismologists analyse seismograms,
which record the seismic activities for a given location.

In change impact analysis, any class is potentially subject
to changes. Yet, changes to “important” classes will impact
more a program than “peripheral” classes. A class can be
characterised as important according to different measure.
In the following, we use four different measures to identify
important classes although our approach applies on any
classes in a program.

In seismology, several factors determine the structural
damages resulting of an earthquake, including the proximity
to the active area. Shaking is most severe near the epicenter
and drops off away from the epicenter, i.e., more the
infrastructures are near to the epicenter more the debris is
important, and in time, i.e., as time passes, the earthquake
energy decreases to zero.

In change impact analysis, changes propagate through
a program via the class relationships and other logical
couplings among classes. Yet, to the best of our knowledge,
no previous work reported observations on the propagation
of changes through the program and in time, which are the
aim of our metaphor and the subject of our empirical study.

In seismology, seismic waves propagate from the epicen-
ter of an earthquake until a damaged site, depending upon
the types of soil through which they move. An earthquake
potential damages are determined by the types of soil and by
the construction of the buildings within the damaged sites.

In change impact analysis, changes propagate from the
epicenter class to the impacted class, depending upon the
types of relationships among these classes. The potential
impact of a change on other classes may be determined by
the design quality of the classes, typically reflected by the
cohesion of and coupling among classes.

Using this mapping between change impact analysis and
seismology, we now present an approach to identify the
classes impacted by a change to a given class. This ap-
proach is complementary to previous work in that it uses
structural and historical analyses with the specific aim to
study the scope of changes in programs and the propagation

of changes in time.

IV. APPROACH

Our approach to change impact analysis based on our
metaphor divides in four steps. Given an object-oriented pro-
gram, first, we compute various metric values to rank classes
according to their importance. Second, given an epicenter
class, we compute the “distance” from the epicenter class
to each class of the program, using a bit-vector algorithm:
all classes that are directly connected to the epicenter class
are assigned to the level 1, the classes that have a direct
relationship with one of these classes are put in level 2,
and so on. Third, we use a time window of duration T and
extract all the commits that happened after any change to the
epicenter class and within the chosen time window. Fourth,
we build the graph describing the propagation of changes
from the epicenter class to all other related classes, both
through the class levels and in time. With this graph, we
can then observe and discuss (1) the scopes of the changes
and (2) the propagation of changes in time. We now give
more details of each step.

A. Step 1: Measuring Class Importance

Our approach applies to any class, chosen as epicenter
class, which is different from earthquakes that are due to
specific seismic sources. Yet, as with earthquakes, we are
interested in the most important seismic sources, which
could cause the most damage. Thus, in this paper, we
identify the most “important” classes in a program using
a history-based metric and a PageRank-based metric and a
combination thereof.

1) History-based Metric: We define the history-based
metric as the number of all commits related to a given class
in the entire history of the program, extract from the program
version-control system. This measure represents the quantity
of changes to a class. It does not consider the size and the
type of a change.

We use Ibdoos, our framework for the analysis of control-
version systems, to compute the numbers of changes to every
classes in a program. Ibdoos provides parsers for various
format of change logs, including CVS, Git, and SVN, and
stores all commits in a database, which we then query to
obtain the numbers of changes per classes. We define the
number of changes to a class as h(c) for any class c.

2) PageRank-based Metric: PageRank [23] is the one of
the main algorithms used by the Google search engine to
measure the relative importance of Web pages. PageRank
takes backlinks into account and propagates the PageRank
value of a page through links: a page becomes important
if the sum of the values of its backlinks is high. Using
PageRank, we can measure the relative importance of each
class in a program. A class is important if it has incoming
relationships from other (preferably important) classes. If a
class is the only reference of a very important class, it might
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Figure 2. Representations of a simple example program (from [26]).

be ranked higher than another class in relationship with low-
ranked classes. We use the algorithm previously developed
by Kpodjedo [24] to compute the PageRank value, pr(c),
and rank, r(c), of any class c: the lower its rank, the more
important the class.

3) Combination of the History- and PageRank-based Met-
rics: We combine history- and PageRank-based metrics by
dividing the rank of each class by the number of changes
to the class. Thus, given two classes with equal ranks, the
most important class of the two is the one with the greater
number of changes, which lead to its rank to become lower
than that of the other class. We thus define rh(c) = r(c)

h(c) .
The combination of the two metrics rh provides an accu-

rate assessment of the importance of a class in a program,
taking into account both the program structure (through the
PageRank-based metric) and the program history (through
the history-based metric). The combination rh ranks the
most critical classes first, which should then be analysed
to analyse their impact on the other classes of a program
when they are changed by developers.

B. Step 2: Identifying Class Levels

Change propagation depends on the type and level of cou-
pling among classes. We represent the “distance” between
two classes as the difference of class levels between the
two classes, with respect to the epicenter class. We use a
bit-vector algorithm [25] that applies bounded number of
operations to an input vector, regardless of the length of the
input, to compute the class levels, given an epicenter class.

We fist convert a program into a string because bit-vector
algorithms work with strings. Figure 2 shows an example of
a string representation of a program design. We obtain such
a string by applying the Simplex and the Chinese postman
algorithm, as explained in our previous work [26].

Using the program string representation, we build the
characteristic vectors of each token in the representation.
The characteristic vector of a token t associated with the
string x = x1...xm, is t = (t1...tm):

ti =
{

1 if xi = t
0 otherwise.

For example, the characteristic vectors of A, in, and B shown
in Figure 2 are:

A = 10000000000000000︸ ︷︷ ︸
18

in = 0101000100010000000︸ ︷︷ ︸
7

B = 0010001000100000000︸ ︷︷ ︸
8

Using the characteristic vectors, we identify all classes
that are directly connected to some class A by computing
conjunctions between the characteristic vector of A, that of
all the relationships (e.g., in, co, cr, as, ag), and that of all
the other classes (e.g., B). For example, to identify all classes
directly related to A through the inheritance relationship in,
we compute:

(→→ A) = 0010000000000000000000︸ ︷︷ ︸
16

(→ in) = 0010100010001000000︸ ︷︷ ︸
6

B = 0010001000100000000︸ ︷︷ ︸
8

R = (→→ A)∧ (→ in)∧B

= 00100000000000000000000︸ ︷︷ ︸
16

and assess whether the bit vector R is null (contains only
zeroes). If R is not null, then class B is in level 1 with respect
to A, else it belongs to another level. We repeat this process
with all classes, all relationships, and all possible shifts to
identify the set classes at level 2, i.e., the set of classes that
have a relationship with one of those of level 1, and so on.

C. Step 3: Identifying Impacted Classes

We mine the version-control system of a program to
extract data related to the history of the epicenter class. We
collect, for each change impacting the epicenter class and
within a time window after the change for T milliseconds:
(1) the names of all classes that are involved in any change
and (2) the number of changes of each class changed after
the epicenter class changed. We use for time window a value
of T that we compute as the median of the durations between
two changes to the epicenter class.

We again use Ibdoos framework to write queries against
its database to collect at each point in time where a given
epicenter class changes and during T milliseconds, the
names of all subsequently changed classes and the number
of changes that these classes underwent.

For example, given an epicenter class A, as shown in
Figure 2, and assuming that, within T milliseconds of a
change C1 to A, both classes B and F changes. Then, we
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Programs Classes Representations Releases Dates(in tokens)

Rhino v1.6.R5 163 40,803 11 10/05/1999
449 266,265 19/11/2006

Xerces-J v2.11.0 5,100 162,583 39 05/11/1999
12,585 1,195,353 01/01/2010

Table II
STATISTICS FOR THE PROGRAMS FROM THEIR FIRST TO THEIR LAST

STUDIED RELEASES.

will associate the sets {B,F} and {ncT (B),ncT (F)} to C1,
where nc returns the number of changes to a class within a
time frame T .

D. Step 4: Visualising Change Propagation

In this last step, we build the the 3D graph visualising
the propagation of changes to a given epicenter class to all
other classes, through the levels and time. The axes of the
graph are time, levels, and number of changes.

For example, Figure 3 shows the graph obtained using
class TypeValidator as epicenter. Given a date, it shows the
number of changes to the epicenter class and the propagation
of these changes to classes in other levels around the
epicenter class. We compute the number of changes at each
level as the sum of the number of changes to each class
belonging to that level. Thus, in Figure 3, we observe that:

• At date 0, TypeValidator was changed a bit and classes
in other levels did not change dramatically.

• At date 8, TypeValidator was changed dramatically and
its change propagated to classes at levels 2 to 5.

We further discuss this figure and others in our following
empirical study to answer our three research questions.

V. EMPIRICAL STUDY DESIGN

Following the Goal Question Metric (GQM) methodology
[27], the goal of our study is to show the applicability and
usefulness of our metaphor and mapping, with the purpose
of gathering interesting observations on change propagation
and confirming these observations with external information.
The quality focus is that observing the propagation of
changes helps developers assess their change efforts and
perform more adequate changes. The perspective is of both
researchers and practitioners who should be aware of the
scope and the potential consequences in time of a change to
estimate the effort required for future maintenance tasks.
The observed phenomena can help for making decisions
concerning the process of future software projects. The
context of our study is both the comprehension and the
maintenance of programs.

A. Objects

The objects of our study consist of two open source
programs Rhino and Xerces-J. Table II presents some de-
scriptive statistics of these programs.

Epicenter Classes pr(c) r(c)
IdScriptableObject 0.057838 1
Context 0.043243 2
Kit 0.038378 3
BaseFunction 0.027838 7

Table III
EPICENTER CLASSES IN RHINO

Epicenter Classes pr(c) r(c) h(c) rh(c)
TypeValidator 0.020261 3 25 0.12
XMLEventImpl 0.017062 6 21 0.28
DeferredDocumentTypeImpl 0.006441 25 68 0.36
XMLEntityScanner 0.002602 76 194 0.39

Table IV
EPICENTER CLASSES IN XERCES

Rhino1 is an open-source implementation of JavaScript
written entirely in Java. Xerces-J2 is an open-source family
of software packages for parsing and manipulating XML.

We choose these programs because they are medium-sized
open-source programs, yet small enough to manually verify
our observations on the propagation of changes and to man-
ually confirm our observations using external information
from various sources, such as bug reports.

B. Research Questions

We investigate if it is possible to apply our metaphor and
mapping to observe the propagation of changes in scope and
in time. We want to confirm that the observations of change
propagation using our approach, based on our metaphor,
provide useful insights to developers regarding the scope
and time of impacted classes given a change. This study
aims answering the following research questions:

• RQ1: Is it possible to find external information that
support our observations on the impact of changes
according to our metaphor?

• RQ2: Does our metaphor allow us to observe interesting
change patterns in scope?

• RQ3: Does our metaphor allow us to observe interesting
change patterns in time?

C. Analysis Methods

To answer RQ1, RQ2, and RQ3, we apply our approach
to Rhino and Xerces-J and Rhino.

For Rhino, we only use the PageRank-based metric and
we select the four top epicenter classes shown in Table III.
For Xerces-J, we combine the history-based and PageRank-
based metrics and we select also the top four epicenter
classes, shown in Table IV. We use two different measures of
the importance of classes to show that our approach does not
depend on the chosen classes, yet to also provide interesting
observations by selecting classes that deemed “important”

1http://www.mozilla.org/rhino/
2http://xerces.apache.org/
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Figure 3. Change propagation from TypeValidator

given some measure. Future work includes performing an
exhaustive study of change propagation for any classes and
using other measures of a class importance.

To answer RQ1, we use the eight epicenter classs selected
in Rhino and Xerces-J and, for each epicenter class, we
looked for information in the program bug trackers and
mailing lists for confirmation of our observation: that classes
found by our approach as being impacted by changes to the
epicenter classes indeed are related to the epicenter classes.
Thus, we report for each epicenter class at least one example
of external information confirming the propagation of a
change to at least one other class in another level. To answer
RQ2 and RQ3, we study the graphs of two representative
epicenter classs of Xerces for lack of space. We analyse
the graphs to assess whether, as seisms, change propagate
in clusters or with quasi-periodicity. We thus show the
applicability and usefulness of our metaphor and mapping
using external sources of information, including mailing lists
and bug reports.

VI. EMPIRICAL STUDY RESULTS

we now present the results of our empirical study.

A. RQ1: Is it possible to find external information that
support our observations on the impact of changes according
to our metaphor?

We answer positively to this question using the epicenter
classes selected in Rhino and Xerces-J.

In Rhino:
• Epicenter class IdScriptableObject and class

ScriptableObject at level 1: we found the bug ID
2563213 entitled “Regression: no serialization for
IdScriptableObject” that confirms that a change to
IdScriptableObject propagated to ScriptableObject to
make Rhino objects serialisable.

3https://bugzilla.mozilla.org/show bug.cgi?id=256321

Figure 4. Change propagation from XMLEventImpl

• Epicenter class BaseFunction and classes Context and
ScriptRuntime at level 1 and ContextFactory and
WrapFactory at level 2: we found the bug ID 2361174

entitled “Context sealing API for Rhino” that relate
BaseFunction with the classes to seal contextes.

• Epicenter class Context and classes CompilerEnvirons,
ContextFactory, and ScriptRuntime at level 1: we found
the bug ID 2558915 entitled “Compatibility issue: non
JS values stored as properties” that relate these classes.

• Epicenter class Kit and classes NativeJavaPackage and
DefiningClassLoader at level 2: we found the bug ID
2005516 that confirms that the classes are impacted by
a change to Kit.
In Xerces-J:

• Epicenter class TypeValidator and classes
PrecisionDecimalDV at level 1: we found a message7

in the mailing list stating that changes to TypeValidator
impact PrecisionDecimalDV.

• Epicenter class XMLEventImpl and classes
EntityReferenceImpl and EndDocumentImpl at
level 1 and StartElementImpl at level 2: we found a
SVN log commented in mailing list8910 that confirm
the change propagation from the epicenter class to the

4https://bugzilla.mozilla.org/show bug.cgi?id=236117
5https://bugzilla.mozilla.org/show bug.cgi?id=255891
6https://bugzilla.mozilla.org/show bug.cgi?id=200551
7http://comments.gmane.org/gmane.text.xml.xerces-j.devel/5855
8http://xerces.markmail.org/message/eskpra4vcmaugtx6?q=

XMLEventImpl+StartElementImpl
9http://xerces.markmail.org/message/33uxkvhfomocrngj?q=

XMLEventImpl+StartElementImpl
10http://xerces.markmail.org/message/3hkhyuwj6v5oa7hw?q=

XMLEventImpl+StartElementImpl+&page=2
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other classes.
• Epicenter class DeferredDocumentTypeImpl and

classes DeferredElementImpl, DeferredEntityImpl,
DeferredNotationImpl, and DeferredTextImpl at level
2: we found the on-line discussion11 showing that
changes to the epicenter class must propagate to the
other classes.

• Epicenter class XMLEntityScanner and class
XMLParser at level 3: we found the bug ID
1099 12 with subject “XMLEntityScanner is not
correctly processing QName” that relate the changes
to XMLEntityScanner with changes to XMLParser.

B. RQ2: Does our metaphor allow us to observe interesting
change patterns in scope?

The shape of the curve of the change propagation in
Figure 1 is similr to that in the Figure 3. TypeValidator
changes dramatically at the 8th period and we observe that
its change impacts other classes up to level 6. This behaviour
is similar to that of earthquakes with high magnitude and
that impact site far away. Also, we could argue that the
major changes at level 5 could be an earthquake on its
own, triggered by the changes to TypeValidator as in an
after shock. Such after shock are common with earthquake
with high magnitude, such as with the 2004 Tsunami that
hit Indonesia13, which had an after shock of magnitude 8.7,
leading seismologists to debate as to whether this earthquake
was an after shock or a “triggered” earthquake.

For epicenter class XMLEventImpl, we observe a differ-
ent behaviour: the impact of changes are limited to near
classes even if the magnitude of the change is high. The
maximal level reached by the change propagation is 2. The
numbers of changes at level 1 are greater that that at the
level 2. The change of the class XMLEventImpl do not lead
to after shocks and do not trigger other earthquakes. The in-
terpretation of this observation is that class XMLEventImpl
could be well designed or is little coupled to other classes.

C. RQ3: Does our metaphor allow us to observe interesting
change patterns in time?

We answer positively to the question about identifying the
maximum distance of a change propagation.

Figure 3 illustrates the change propagation phenomena for
the epicenter class TypeValidator, we noticed that the change
impact propagate until the fourth level (at most) and then it
decreases significantly. We find quasi-periodic behavior in
the avalanche time series, i.e., we notice the a quasi-periodic
recurrence of large earthquakes (with high magnitude) that
are separated the sequences of small earthquakes.

11http://xerces.markmail.org/search/?q=DeferredDocumentTypeImpl#
query:DeferredDocumentTypeImpl+page:2+mid:iyb37kwel5rdmaod+state:
results

12https://issues.apache.org/jira/browse/XERCESJ-1099
13http://en.wikipedia.org/wiki/2004 Indian Ocean earthquake and

tsunami

Figure 4 shows that the epicenter class XMLEventImpl
change impact is very important for the first level, after that
it decreases through the second and third levels. It shows
also that the epicenter class XMLEventImpl.java is like an
active earthquake zone that is always subject to frequent
earthquakes with almost the same magnitude.

VII. DISCUSSIONS

We now discuss our approach and its empirical study.

A. Empirical Study Observations

For each epicenter we tracked the classes that changes un-
til another change of this class and noticed sometimes after
shocks between the changes of the epicenter classes. Future
work includes studying these after shocks and assessing their
“back” impact on the epicenter classes as well as on other
classes.

We observed that some classes changes frequently and are
changed periodically by developers. This observation could
help developers be aware of classes that they should consider
changing even if their changes is not directly linked to these
classes.

B. Other Metrics to Identify Epicenter Classes

With our approach, we identified epicenter classes using
two measures. However, the number of commit is not nec-
essarily significant because it can be due to minor changes
to the classes. So we suggest also other measures to identify
epicenter classes.

In future work, we plan to use structural-based and
relationship-based metrics. We define the structural-based
metric as the percentage of public methods and public
attributes that are added in, modified, or deleted from a class
between one release and the next. This measure is based on
the the observation that any change in the public interface
of a class can trigger a large amount of changes in other
classes, due to the coupling among classes. Let ci be a class
in release i and I(ci) be the set of public and protected,
local and inherited, methods of ci. We could compute the
structural-based metric of ci as:

s(c) =
2×|I(ci+1)− I(ci)|

I(ci)+ I(ci+1)
.

We could also use a relationship-based metric computed
as the percentage of a relationships that were added to or
deleted from a class between one release and the next. It
refers to the extent to which part of a design is not preserved
throughout the evolution of the program.

C. Threats to Validity

Several threats potentially impact the validity of our
empirical study.
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Construct validity: Construct validity concerns the re-
lation between theory and observations. We took care to
manually confirm the observations resulting from our ap-
proach, including using previously manually-validated data
[28]. The time windows of observation may affect our
observations. A too long time window would be misleading
while a very narrow time window would not allow to observe
interesting facts. Conservatively, we chose a class-dependent
time window: the median of time between two subsequent
changes, because the median is robust to extreme outliers
and thus minimises spurious changes induced by too large
time windows on classes connected to epicenter classes.
However, we may not have used the most revealing time
windows. More investigation is needed to better understand
the role of time windows. Finally, it is possible, despite
the confirmation using external sources of information, that
some classes reported as impacted by a change did actually
change for reason independent of the changes to the epicen-
ter class classes. Further analyses are necessary to study the
precision and recall of our approach.

Internal Validity: The internal validity of a study is the
extent to which a treatment impacts the dependent variable.
The internal validity of our study is not threatened because
we have not manipulated the independent variable, extent of
the change propagation.

External Validity: The external validity of a study
relates to the extent to which we can generalise its results.
Our investigation is limited to two Java programs and four
epicenter classes and, thus, we cannot claim any generali-
sation. Future work includes replicating our study to other
programs, all their classes, and confirming our observations
with other external sources of information.

Conclusion validity: Conclusion validity threats deals
with the relation between the treatment and the outcome.
Our study is essentially qualitative in its nature, it did not
require any statistical test and, thus, its conclusion validity
is not a concern.

VIII. CONCLUSION AND FUTURE WORK

Existing approaches for change impact analysis are based
on the software structure and use static, dynamic, textual,
and–or historical analyses [4], [8]–[13]. However, to the best
of our knowledge, none of these approaches have been used
to study: (1) the scope of changes in a program and (2) the
propagation of changes in time.

Consequently, we proposed a novel approach to change
impact analysis specifically designed to study the scope and
the propagation of changes, based on a metaphor between
seismology and change impact analysis. Our approach con-
siders changes to a class as a seism that propagates through
the program following the class levels, defined by direct
relationships among classes, and that impacts other classes
with different extent, depending on (1) their relationships

with the epicenter class and (2) the moments in time at which
developers change impacted classes.

We showed the applicability and the usefulness of our
approach by applying it to Rhino and Xerces-J and using
its results to answer three research questions: RQ1: Is it
possible to find external information that support our obser-
vations on the impact of changes according to our metaphor?
RQ2: Does our metaphor allow us to observe interesting
change patterns in scope? RQ3: Does our metaphor allow
us to observe interesting change patterns in time?

Using qualitative evidence from external sources of infor-
mation and analyses of the graphs built by our approach, we
answered these research questions positively and confirmed
that: (1) like with earthquakes dramatic consequence, we
can find external information in mailing lists and bug reports
confirming the observed change propagation and its negative
impact on the impacted classes and (2) like earthquakes,
changes propagate in programs with decreasing impact as
the number of levels from the changed class increase and as
time passes.

Future work includes applying our metaphor and our
approach to other programs to confirm the adequation of the
two phenomena: earthquake and change impact. We will also
adapt seismology models to predict changes to classes. In
the case of earthquakes, seismologists are interested in debris
forecasting, to predict the quantity of damage and seek to
minimise the earthquake impact through the improvement
of construction standards. Earthquake prediction technique
generally use probabilistic methods to predict earthquake
risk using past history. Seismologists also use the geological
composition and structures of the Earth because they are
important factors to predict damage. We will study the pos-
sibility of using the data about previous changes to forecast
“earthquakes” that could occurs in a program, their potential
damages, and the factors influencing their propagations.
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