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Abstract—Information retrieval (IR) approaches have
proven useful in recovering traceability links between free-
text documentation and source code. IR-based traceability
recovery approaches produce ranked lists of traceability links
between pieces of documentation and source code. These
traceability links are then pruned using various strategies
and, finally, validated by human experts. In this paper we
propose two contributions to improve the precision and recall
of traceability links and, thus, reduces the required human
experts’ manual validation effort. First, we propose a novel
approach, Trustrace, inspired by Web trust models to improve
the precision and recall of traceability links: Trustrace uses any
traceability recovery approach to obtain a set of traceability
links, which rankings are then re-evaluated using a set of other
traceability recovery approaches. Second, we propose a novel
traceability recovery approach, Histrace, to identify traceability
links between requirements and source code through CVS/SVN
change logs using a Vector Space Model (VSM). We combine
a traditional recovery traceability approach with Histrace to
build TrustraceVSM, Histrace in which we use Histrace as one
expert adding knowledge to the traceability links extractted
from CVS/SVN change logs. We apply TrustraceVSM, Histrace on
two case studies to compare its traceability links with those
recovered using only the VSM-based approach, in terms of pre-
cision and recall. We show that TrustraceVSM, Histrace improves
with statistical significance the precision of the traceability links
while also improving recall but without statistical significance.

Keywords—Traceability, requirements, source code, experts,
trust-based model.

I. INTRODUCTION

Preliminary to any software evolution task, a developer
must understand the project landscape [1] and, in particular,
the system architecture, design, implementation, and the
relations between the various artifacts and code sections
using any available documentation. Traceability links be-
tween the documentation associated with the development
and maintenance cycle of the system and its source code
are helpful in reducing program comprehension effort.

Existing comprehension models share the idea that pro-
gram comprehension occurs in a bottom-up manner [2], [3],
a top-down manner [4], [5], or some combination thereof
[6], [7], [8]. They also agree that developers use different
types of knowledge during program comprehension, ranging
from domain specific knowledge to general programming
knowledge [4], [9], [10]. Traceability links between code
sections and related sections of the documentation aid both

top-down and bottom-up comprehension [11].
Information Retrieval (IR) approaches [12] have proven

useful in recovering traceability links and various approaches
have been applied to recover links, from Vector Space Mod-
els (VSM) and probabilistic models [13], to Latent Semantic
Indexing (LSI) [14], and to Latent Dirichelet Allocation
(LDA) [15], with various success [16]. Traceability recov-
ery approaches assume the availability of high-level free-
text documentation and infer links between pieces of this
documentation and source code entities using an indexing
process producing a ranked list of traceability links [17].

Unfortunately, as the source code evolves, its accompa-
nying documentation is often not updated and maintaining
the traceability links between evolving software artifacts and
the consistency of existing links is tedious and error-prone
[18] and, thus, frequently neglected by developers due to
the pressure to reduce the time to market and to move on to
the next change. Consequently, traceability links become less
relevant and should be recomputed and revalidated manually,
which is costly and time-consuming.

We propose two contributions to improve the precision
and recall of traceability links. First, we propose a novel
approach, Trustrace, inspired by Web trust models [19], [20],
[21], [22] to improve precision and recall of traceability
links: Trustrace uses any traceability recovery approach as
the basis on which it applies various experts’ opinions [23]
to remove and–or adjust the rankings of the traceability
links. The experts can be human experts or other traceability
recovery approaches.

Second, we show how Trustrace improves traceability
recovery accuracy using Histrace, an expert supporting the
identification of traceability links between requirements and
source code through CVS/SVN change logs and a Vector
Space Model (VSM). In any organization developing soft-
ware, there are many heterogeneous sources of information
available, including CVS/SVN repositories, bug-tracking
systems, mailing lists, forums, and blogs. Histrace uses
CVS/SVN change logs to build traceability links between
high-level documentation and source code entities, observing
that log messages are tied to changed entities and, thus, can
be used to infer traceability links.

We combine a traditional recovery traceability approach
with Histrace to build TrustraceVSM, Histrace in which we
use Histrace as one expert commenting the traceability

1



links recovered using the VSM-based approach. We apply
TrustraceVSM, Histrace on two case studies to compare its
traceability links with those recovered using only the VSM-
based approach, in terms of precision and recall. The objects
of our case studies are Pooka v2.0 and SIP Communi-
cator v1.0-draft, whose requirement have been previously
documented and manually traced to source code entities.
We show that TrustraceVSM, Histrace improves with statistical
significance the precision of the traceability links while
also improving recall but without statistical significance. We
thus show that our trust-based approach indeed improves
precision and recall and also that CVS/SVN change logs
are useful in the traceability recovery process.

The remainder of the paper is organized as follows.
Section II discusses related. Section III presents Trustrace,
our trust-based approach while Section IV describes His-
trace, our traceability recovery approach based on CVS/SVN
change logs. Section V sketches our implementation of
Trustrace and Histrace. Section VI presents the two case
studies while Section VII reports and discusses their results.
Finally, Section IX concludes with future work.

II. RELATED WORK

Traceability recovery, concept and feature location as well
as trust models are related to our research work.

Static analyses [24], execution traces [25], and IR tech-
niques [13] have been used by researchers since the early
works on traceability recovery [13], feature location [25],
and concept recognition [26] or location [24]. Often, IR-
based approaches [13], [14], [23], use vector space models,
probabilistic rankings, or a vector space model transformed
using latent semantic indexing. Whenever available dynamic
data [25], [23] proved to be complementary and useful for
traceability recovery by reducing the search space. Recently,
high-level documentation was mapped into source code
features using a variety of information sources [27] and
the CERBERUS tool was applied to the Rhino Java ECMA
script implementation and favorably compared to a variety
of other approaches, e.g., [23] and [28].

The precision and the recall [13] of the links recovered
during traceability analyses are influenced by a variety of
factors, including the conceptual distance between high-level
documentation and low-level artifacts, the way in which
queries are formulated, and the applied IR technique. Com-
parisons have been made between different IR techniques,
e.g., [17] and [29], with inconclusive results. On certain
data set, the vector space model performs favorably in
comparison to more complex techniques, such as Jensen
inequality or probabilistic latent semantic semantic analyses
[29]. Yet, the vector space model [13] and latent semantic
indexing [14], [17] with tf− idf weighting schema [30] are
a reference baseline for both feature location [23], [31] and
traceability recovery [13], [17].

Kagdi et al. [32] presented a heuristic-based approach to

recover traceability links between software artifacts using
the software system version history. Their approach assumes
that, if two or more files co-change [33] in the system his-
tory, then there is a possibility that they have a link between
them. However, it is quite possible that two files are co-
changing but that they do not have any semantic relationship.
It is also likely that some documents evolve outside the
system version control repository and, in such a case, their
approach cannot find link from/to these documents, e.g., re-
quirement specifications. In addition, their approach does not
analyse contents of the CVS/SVN logs and files that were
committed in CVS/SVN. More importantly, in co-change-
based traceability [32], [33], [34], if two or more files have a
link but they were not co-changed then these approaches fail
to find a link. Our proposed novel approach is not dependent
on co-changes and overcomes these limitations.

Our proposed novel approach is influenced by the Web
trust model [19], [20], [21], [22]. There are two type of
trust in e-commerce: first a customer’s initial trust [22] when
she interacts with a Web site for the first time and, second,
the Web site reputation trust [35] that develops over time
and after repeated experiences. When customers hesitate
to buy things online, they may ask their friends, family,
and other buyers to make sure that they can trust a Web
site. Many researchers investigated [19], [35], [36], [21],
[22] the problem of increasing customers’ trust in a Web
site. Some researchers [19], [21] suggested that using other
sources of information can increase the trust in a Web site.
Palmer et al. [21] presented an empirical investigation of
how firms can improve customers’ trust by exploring and
using Trusted Third Parties (TTPs) and privacy statements.
Their exploratory data shows that the use of TTPs and
privacy statements increase a customer’s trust in a Web site.
Wang et al. [37] presented a novel content trust learning
algorithm that use the content of a Web site as a trust point
to distinguish trustable Web contents and spam contents.

Our proposed approach uses traceability from requirement
to source code as initial trust and then uses CVS/SVN
change logs and could also use bug reports, mailing lists,
temporal information and so on, as reputation trust for a
traceability link. As the reputation of a link increases, the
trust in this link also increases.

III. TRUSTRACE: TRUST-BASED TRACEABILITY

We introduce our novel approach, Trustrace, to improve
the trust in traceability links and thus improve the precision
and recall of any traceability recovery process by combining
experts’ opinions. Figure 1 shows the high-level architecture
of Trustrace, whose conceptual steps are detailed below.

A. Definitions

In Trustrace, we represent a traceability link as a triple
{source document, target document, and similarity}. Let
R = {r1, . . . , rN} be a set of requirements or high-level
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Figure 1. Trust-based requirement traceability process

documents, C = {c1, . . . , cM} be a set of implementing
classes. Let T = {T1, . . . , TP } be a collection of sets where
each set Ti = {t1, . . . , tNi

} is a set of homogeneous pieces
of information, for example the set of all CVS/SVN commits
or of all bug-tracking reports, and so on.

Then, let us assume that, for each Ti ∈ T , it is possible
to define a function δTi

mapping one element of Ti into
a subset of C or the empty set. For example, if Ti is a
set of bug reports, then, for a given bug report tk, δTi

(tk)
returns the set of classes affected by tk, with δTi(tk) ⊆ C.
We describe in details such a δ function for the set Ti of
CVS/SVN commits in the following Section IV.

Consequently, we can define R2C as the set of traceability
links recovered between R and C and, for each set Ti ∈ T ,
a set R2CTi generated by each piece of information tk:

R2CTi(rj , tk) = {(rj , cs, σj,k)|cs ∈ δTi
(tk) & tk ∈ Ti}

Finally, let us define two functions α and φ: the first func-
tion, α(ri, cj , σi,j), returns the pair of involved documents
(or the set of pairs), thus (ri, cj) while, the second function,
φ(ri, cj , σi,j), returns the similarity score σi,j .

B. Model

Trustrace uses the set of candidate links lrc =
(rj , cs, σj,s) with j ∈ [1, . . . , N ] and s ∈ [1, . . . ,M ]. It
also uses the sets of candidate links lrt = (rj , tk, σ

′
j,k) with

j ∈ [1, . . . , N ] and k ∈ [1, . . . , Ni] generated from each
set of some other pieces of information Ti and for each
requirement rj ∈ R.

Indeed, for each set Ti ∈ T , Trustrace builds a set of
trustable links Tri as follows:

Tri = {(rj , cs, σj,k) |
∃ tk ∈ Ti : (rj , cs) ∈ α(R2CTi(rj , tk))(1)

& (rj , cs) ∈ α(R2C)}

The last rule (rj , cs) ∈ α(R2C) may over-constrain the
problem as it imposes that a link be present in the base-line
set R2C. We plan to lessen this rule in future version of
Trustrace. Because pair of documents (rj , cs) may appear
in several links in R2CTi, Trustrace re-assigns scores to

document pairs in Tri according to the frequency of the
pairs. Let TCi(rj , cs) be the restriction of Tri on (rj , cs),
i.e., the set {(rj , cs, σ′j,s) ∈ Tri} , then Trustrace re-assigns
to TCi(rj , cs) elements a new similarity σ∗j,s computed as:

σ∗j,s =
σj,s +

∑
l∈TCi(rj ,cs)

φ(l)

|TCi(rj , cs)|+ 1
(2)

where σj,s is the similarity between the requirement rj and
the class cs as computed in R2C and φ(l) is the similarity
of elements in the link l of TCi(rj , cs), i.e., σ′j,s. The higher
the evidence (i.e.,

∑
l∈TCi(rj ,cs)

φ(l)) provided by links in
TCi, the higher the new similarity σ∗j,s; in the contrary, little
evidence decreases σ∗j,s relatively to other similarities.

Then, Trustrace assigns a trust level to each link in Tri
using the ψ function defined as:

ψj,s(Tri) = λiσ
∗
j,s + (1− λp)

|TC(rj , cs)|
maxn,m |TCi(rn, cm)|

(3)

where λp ∈ [0, 1]. In essence, with this ψ function, the more
often a pair (rj , cs) exists in R2CTi, the more we can trust
this link (if such a link is also present in R2C). Trustrace
model is thus similar to the Web model of users’ trust: the
more users buy from a Web merchant, the higher the users’
trust of this merchant.

Finally, Trustrace merges the trust levels of each Tri into
a global level of trustworthiness:

ψ∗j,s =
∑
p

βp ψj,s(Trp) (4)

with
∑
p

βp = 1

and 0 ≤ βp ≤ 1

and where the βp coefficient states our general level of trust
in each source of information. For example, we may trust
more CVS/SVN commits over bug reports and, thus, the βp
coefficient of the former will be higher than that of the latter.
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IV. HISTRACE: CVS/SVN CHANGE LOGS-BASED
TRACEABILITY RECOVERY

In this paper, we apply our model to a single source of
information, i.e., the set T0 of CVS/SVN commits, and, thus,
ψ∗j,s = ψj,s with β = 1.

Thus, we now describe our novel traceability recovery
approach using the sets of requirements (i.e., R), classes
(i.e., C) and, as supplementary source of information, the
CVS/SVN commits. We consider each requirement’s textual
description, SVN/CVS commit message, and class source
code as a separate document. We implement the processing
of CVS/SVN commits and the computation of the δT0

function in the Histrace approach, which uses historical data
to recover traceability links.

A. Document Pre-processing

Depending on the input information source (i.e., R, high-
level documents, C, source code, or T0 CVS/SVN commit
transactions), we perform specific pre-processing steps to
remove irrelevant details, (e.g., CVS/SVN commit number,
source code punctuation or language keywords), split iden-
tifiers, and, finally, normalize the text using stop words
removal and stemming.

1) Requirements and Source Code: Source code files are
first processed to extract all the identifiers and comments in
each class. Trustrace then uses underscore and the Camel
Case convention to split identifiers into terms, thus produc-
ing for each class a separate document.

Trustrace then performs the following steps to normalize
documents: (i) convert all upper-case letters into lower-case
and remove punctuation; (ii) remove all stop words (such
as articles, numbers, and so on); and, (iii) perform word
stemming using the Porter Stemmer bringing back inflected
forms to their morphemes. We retain all processed identifiers
and comments of source code to create traceability links.

2) CVS/SVN Commits: To build T0, Histrace extracts
CVS/SVN commits and discards those that (i) are tagged
as “delete”, (ii) does not concern source code (e.g., changed
manual pages or documentation only), and (iii) have mes-
sages of length shorter or equal to two words. Histrace
then analyzes remaining CVS/SVN commits to extract the
messages as well the classes that (i) are still part of the
source code and (ii) have been part of the commits. Histrace
relies on the CVS/SVN diff mechanism and source code
parsing to identify modified classes. Formally, T0 is the set
of all CVS/SVN commit messages and, for any tk ∈ T0,
we have a function δT0

that returns a subset of classes
C ′k ⊂ C = {c1, . . . , cM} modified in the transactions; the
log messages are fed into a VSM model to compute σ′j,k.
Using δT0

, we can build R2CT0, see previous section.

B. Traceability Recovery Process

Trustrace traceability recovery process uses as base al-
gorithm the standard VSM [12], [13], [17]. Documents

are represented by elements in a vectors space. Different
term weighting schemes can be used to construct these
vectors. Trustrace uses the tf − idf weighting schema [12]:
a document is a vector of tf − idf weights. More precisely,
a vector entry represents a term with a weight product of a
local weight (i.e., the number of times a term appears in a
document) and the logarithm of the term inverse document
frequency (i.e., one divided by the number of document
containing the term).

Once documents (i.e., requirement descriptions, classes
source code, and SVN/CVS commit messages) are repre-
sented as element of the VSM, links are recovered assigning
a similarity value to each pair of documents (e.g., a require-
ment and a class) using the cosine similarity between doc-
ument vector representations. Cosine values are in [−1, 1]
but negative values are discarded and a link has thus a value
in [0, 1]. Finally, as in previous work [13], a ranked list of
recovered links and a similarity threshold are used to divide
links into a set of candidate links to be manually verified
and discarded links.

In summary, we build the set R2C from R and C using
VSM and Histrace builds the set Tr0 using CVS/SVN
commits by implementing δTo

. We use the simplified version
of Equation (4), because we use just one set of homogeneous
pieces of information, to re-assign similarities to the links in
R2C. Indeed, when introducing the new set T0 in Equations
(1), (2), (3), and (4), we obtain a new set of traceability links,
whose similarities have been revised using our trust model.

V. TOOL SUPPORT

FacTrace 1, for arteFACT TRACEability, provides several
modules that help from traceability recovery to traceabil-
ity links verification. FacTrace aids software engineers in
different tasks, namely, requirement elicitation, requirement
analysis, artefact traceability, and most importantly for Trust-
based traceability. FacTrace has a graphical interface to
perform different tasks. Following sections give you a brief
description of different features of FacTrace:

1) Traceability Management: FacTrace aids in recovering
traceability links between different software artefacts. For
example, traceability links among requirements, source code,
and CVS/SVN change logs. FacTrace allows experts to
create new manual traceability links as well. It supports
different level of granularity for creating traceability links.
Expert can write description for each link and other identi-
fiers specifications as well.

2) Traceability Links Verification: To avoid bias when
recovering traceability links, FacTrace supports a voting
system for each link. It supports up to five experts voting
for each link. If three or more than three expert accepts
a link, then a link will be considered as a valid link by
FacTrace. Experts can change their voting option at any time.

1http://www.factrace.net
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All other experts’ voting is hidden to avoid bias. Experts can
see source code files in the source code viewer of FacTrace
to verify each link.

VI. EMPIRICAL STUDIES

We perform two case studies to assess the precision
and recall of our proposed approaches for requirement
traceability, Trustrace and Histrace. These two case studies
provide data to assess the improvement over a “traditional”
VSM-based approach and, consequently, the reduction of
the experts’ effort brought to the maintainer when tracing
requirements and validating traceability links to source code.

A. Goal

The goal of our case studies is to evaluate the
effectiveness of our novel approaches, combined into
TrustraceVSM, Histrace, in recovering traceability links against
a traditional VSM-based approach, using requirements,
source code, and–or CVS/SVN change logs as sources
of information. The quality focus is the ability of
TrustraceVSM, Histrace to recover traceability links between
high-level documents and source code in terms of precision
and recall [30]. Both measures have values in (0, 1).

Precision is defined as the number of relevant documents
retrieved divided by the total number of retrieved documents
by an approach. If the value is 1 for precision then all the
recovered documents are correct.

Recall is defined as the relevant documents retrieved
divided by the total number of relevant documents. It is
ratio between the number of documents that are successfully
retrieved and the number of documents that are relevant. If
the value is 1 for recall, then all relevant documents have
been retrieved by an approach.

The perspective is that of practitioners and researchers,
interested in recovering traceability links with greater pre-
cision and recall values than that of currently-available
traceability recovery approaches based on IR techniques.
The objects of our case studies are two open-source systems,
Pooka and SIP whose requirements, source code, and SVN
change logs are available on-line2.

B. Research Question

The research question that our case studies address is:
RQ: How do the precision and recall values of the trace-
ability links recovered by TrustraceVSM, Histrace compare
with those of a traditional VSM-based approach?

To answer this research question, we assess the precision
and recall of TrustraceVSM, Histrace when identifying correct
traceability links between requirements and source code
on the one hand and between requirements and source
code using SVN change logs on the other. We thus apply

2See also for convenience at http://www.ptidej.net/downloads/
experiments/icpc11b/

Table I
STATISTICS DESCRIBING POOKA AND SIP

Pooka SIP
Version 2.0 1.0
Number of Classes 298 1,771
Number of Methods 20,868 31,502

Source Code Sizes 244,870 LOCs 486,966 LOCs
5.39 MB 27.3 MB

TrustraceVSM, Histrace and a VSM-based approach on the two
systems seeking to reject the two null hypotheses:

H01: There is no difference in the precision of the recov-
ered traceability links when using TrustraceVSM, Histrace

or a VSM-based approach.
H02: There is no difference in the recall of the recovered

traceability links when using TrustraceVSM, Histrace or
VSM-based approach.

C. Variables

We use precision and recall as independent variable and
the approach, either a “traditional” VSM-based approach
or TrustraceVSM, Histrace, as dependent variables to empiri-
cally attempt rejecting the null hypotheses. The independent
variable corresponding to TrustraceVSM, Histrace also includes
varying values of λ as analyzed and discussed below.

D. Objects

We select the two open-source systems, Pooka and SIP,
because they satisfy several criteria. First, we select open-
source systems, so that other researchers can replicate our
experiment. Second, we avoid small systems that do not
represent systems handled by most developers. Yet, both
systems were small enough so that we were able to recover
and validate their requirements manually in a previous work.
Finally, their source code was freely available in their re-
spective SVN repositories. Table I provide some descriptive
statistics of the two systems.

Pooka3 is an email client written in Java using the
JavaMail API. It supports reading email through the IMAP
and POP3 protocols. Outgoing emails are sent using SMTP.
It supports folder search, filters, context-sensitive colors, and
so on. SIP4 is an audio/video Internet phone and instant
messenger that supports some of the most popular instant
messaging and telephony protocols, such as SIP, Jabber,
AIM/ICQ, MSN, Yahoo! Messenger, Bonjour, IRC, RSS.

E. Gathering and Pre-processing Requirements, Source
Code, and SVN Change Logs

We now details how we gather and prepare the input data
necessary to our case studies.

3http://www.suberic.net/pooka/
4http://www.jitsi.org/
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Figure 2. Excerpt of FacTrace UI

<logentry revision="1741">
<author>akp</author>
<date>2008-10-18T16:14:08.529138Z</date>
<paths>

<path kind="" action="M">/trunk/pooka/todo</path>
<path kind="" action="M">/trunk/pooka/src/net/

suberic/pooka/gui/NewMessageDisplayPanel.java
</path>
<path kind="" action="M">/trunk/pooka/src/net/

suberic/pooka/NewMessageInfo.java
</path>

</paths>
<msg>

fixing a bug where the cc: on reply-all doesn’t
get cleared out if the cc field is set to empty.

</msg>
</logentry>

Figure 3. Excerpt of Pooka SVN Log

Requirements: In a previous work [38], we used Pre-
requir [39] to recover requirements for Pooka and SIP.
We recovered 90 and 82 functional requirements for both
systems respectively.

We used these previously-built requirements to create
manually traceability links between requirements and source
code. Two of the authors created traceability links and the
third author verified all the links to accept or reject them. We
used FacTrace to create/verify the manually-built traceability
links, which form two oracles, OraclePooka and OracleSIP, of
respectively 546 and 949 traceability links for Pooka and
SIP and which we use to compute the precisions and recalls
of TrustraceVSM, Histrace and of the VSM-based approach.

Source Code: We downloaded the source code of
Pooka v2.0 and SIP v1.0-draft from their respective SVN
repositories. Table I provides descriptive statistics of the
two set of source code. We made sure that we could
compile and run both systems by setting up the appropriate
environments and downloading the relevant libraries before
building traceability links.

SVN Change Logs: Figure 3 shows an excerpt of a log
message of Pooka. There are 1, 743 and 8, 079 SVN change
logs for Pooka and SIP respectively. We perform the data
pre-processing steps on both systems’ SVN commits with
the help of FacTrace. After performing the pre-processing
steps, we obtained 1, 453 and 6, 289 SVN commits for

Pooka and SIP respectively, because there were many SVN
commit messages that did not concern source code files. For
example, revision 1604 in Pooka points only to HTML files
but for one Java file, FolderInternalFrame.java.
Therefore, we only kept the Java file and removed any
reference to the HTML files. We stored all filtered SVN
commit messages and related files in a database.

Document Pre-processing: We extracted all the iden-
tifiers from Pooka and SIP requirements, source code, and
filtered SVN commit messages using FacTrace. The output
of this step are the three corpora that we use for creating
traceability links as explained in Sections III and IV.

F. Building Sets of Traceability Links

First, we use a VSM-based approach to create traceability
links between requirements and source code, which creates
11, 056 and 79, 422 links for Pooka and SIP, respectively.

Second, we process Pooka and SIP SVN commit mes-
sages and requirements to create traceability links between
requirements and source through the change logs using our
approach Histrace. For each requirement and each filtered
SVN commit messages, we extract all the source code files
that were committed in SVN with current commit message
and then link all recovered source code files directly to the
requirement through the SVN commit message.

For example, we trace Pooka requirement “it should have
spam filter option” to the SVN commit message “adding
prelim support for spam filters”, SVN commit revision
number 1133. Then, we recover all the source code files
related to this commit, i.e., SpamSearchTerm.java and
SpamFilter.java. Finally, we create a direct trace-
ability link to the files SpamSearchTerm.java and
SpamFilter.java to the requirement “it should have
spam filter option”.

Third, we apply our approach TrustraceVSM, Histrace using
every traceability links between requirements and source
code, both built in the first and second steps. Essentially,
if the same traceability link exist between requirement and
source code through some SVN commit message, then we
marked this link as trustable and counted the number of
occurrences of that link. This last step returns 6, 329 and
39, 445 trustable links for Pooka and SIP respectively.

G. Analysis Method

We performed the following analysis on the recovered
trustable links to answer our research questions and attempt
rejecting our null hypotheses.

We compute the F-measure of the trustable links in
comparison to OraclePooka and OracleSIP to find the optimal
λ values for the Equation (3) in the Trustrace model in
Section III for Pooka and SIP. Figure 4 shows the graph
with different λ values in which the shaded area shows that
λ values between 0.9 and 0.5 yield close F-measures. We
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Figure 4. F-measure in function of λ values

favor precision over recall and therefore we select λ = 0.9
and λ = 0.7 for Pooka and SIP, respectively.

We use OraclePooka and OracleSIP to compute the precision
and recall values of the VSM and TrustraceVSM, Histrace

approaches. The VSM approach assigns a similarity value
to each and every traceability links, whereas Trustrace uses
its model (see Section III-A) to assign trust value to each
link. We use a threshold t to prune the set of traceability
links, keeping only links whose similarities or trust values
are greater than or equal to t ∈ [0, 1]. We use different
values of t from 0.01 to 1 per steps of 0.01 to obtain
different sets of traceability links with varying precision and
recall values, for both approaches. We use these different
sets to assess which approach provides better precision and
recall values. Then, we use the Mann-Whitney test to assess
whether the differences in precision and recall values, ,
in function of t, are statistically significant between the
VSM and TrustraceVSM, Histrace approaches. Mann-Whitney
is a non-parametric test; therefore, it does not make any
assumption about the distribution of the data.

VII. RESULTS

Figure 5 shows the precision and recall values of VSM
and TrustraceVSM, Histrace. It shows that TrustraceVSM, Histrace

provide better precision values while recall values follow
closely the values of the VSM approach. It thus shows that
Trustrace improves over VSM results.

Table II shows the average precision, recall, and p-values
calculated by comparing the differences between the VSM
and TrustraceVSM, Histrace approaches. Average precision and
recall values for both approaches show that Trustrace in-
crease precision without impacting dramatically recall.

We have statistically significant evidence to reject the
H01 hypothesis. Table II shows that the p-values for the
precision values are below the standard significant value,
a = 0.05. Trustrace increases up to 12% precision and 3%
recall. However, p-values for the differences in recall values
are not statistically significant, thus we cannot reject H02.

Thus, we answer the RQ as follow: Trustrace helps to re-
cover more correct links than traditional IR-based approach.
Our proposed approaches do not influence the recall of the
recovered links statistically.

VIII. DISCUSSION

We now discuss lesson learned from applying our ap-
proaches on the case studies and our preliminary experience
in using TrustraceLSI, Histrace instead of TrustraceVSM, Histrace.

A. Lesson Learnt

The case studies support our claim that Trustrace com-
bined with IR-based approaches is effective in increasing
the precision of requirement traceability while improving
slightly recall. Our novel approach performs better than a
single IR-based approach.

Automated traceability link recovery approaches use
thresholds based on similarity values to accept or reject a
link. It is quite possible that, with only similarity values, an
expert accepts a false link and–or that she misses a true link
with a similarity value below the threshold value. Trustrace
uses a trust model to re-assigns similarity values to each
link, similarity values based on the trust that the expert puts
into each source of information and that helps her to recover
links with a better precision.

Thus, Trustrace dramatically reduces the total number of
recovered links (see Section VI-F), which allow an expert
to verify less traceability links. Our case studies with Pooka
and SIP show that as the size of the change log increases,
TrustraceVSM, Histrace provides better precision (see Table II).

While creating OraclePooka and OracleSIP, we tagged some
requirements as unsupported features. While we ran the
experiment, we found that Hisrace produced some links to
those unsupported features. We manually verified these links
and found that the source code related to those features
indeed exists. This observation shows that Histrace not only
helps to recover traceability links but also may help in
evolving traceability links: if an expert creates traceability
links and, after some years, wants to update traceability
links, then she does not need to create/verify all the links
again. She could run Hisrace and–or TrustraceVSM, Histrace to
obtain possible missing links that she can finally verify.

For example, in Pooka, we declared the drag and drop
feature as an unsupported feature. Yet, Histrace produced
some traceability links to this requirement. We manually
verified and found that developers implemented the drag and
drop feature partially but named it “dnd” while writing “this
is drag and drop feature” in some SVN commit messages.
We looked for all such cases in Pooka and SIP and updated
OraclePooka and OracleSIP and used these oracles in our
case studies. This example shows that Trustrace can indeed
help experts in recovering from human mistakes and the
limitations of single approaches.
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Figure 5. Precision and recall values, from 0.01 to 1 by step 0.01

Table II
POOKA AND SIP RESULTS

Precsion Recall
VSM Trustrace p-value VSM Trustrace p-value

Pooka 42.27864472 54.34682496 0.01821 11.13503614 12.59909245 0.707
SIP Communicator 14.23119197 25.12689933 2.64E-05 13.4203345 16.63373727 0.4894

B. TrustraceLSI, Histrace vs. TrustraceVSM, Histrace

We also used LSI to create traceability links between
requirements and source code. We used K = 50 and
K = 200 to reduce the LSI dimensions for Pooka and SIP,
respectively. We then used Trustrace with LSI approach to
create trustable links, through TrustraceLSI, Histrace, and found
that Trustrace again produced traceability links with better
precision and recall values than the LSI approach alone.

However, using different K values for LSI can produce
different results. Thus, in future work, we will perform
a detailed empirical study based on different K values
for LSI and compare them with TrustraceLSI, Histrace and
TrustraceVSM, Histrace.

Trustrace works as an extension to any existing IR-based
approach. We cannot claim that Trustrace will perform the
same as with the VSM approach: it may increase or decrease
precision and recall values. We plan to perform more exper-
iments using various IR-based approaches to study whether
Trustrace is effective with all these approaches.

C. Threats to Validity

Several threats potentially impact the validity of our
experimental results.

Construct validity: Construct validity concerns the rela-
tion between theory and observations. The degree of impre-
cision of automatic requirement traceability was quantified
by means of a manual validation of the precision and recall
of the approach, using manually-built oracles. First, two
authors created manual traceability oracles and then the
third author verified their content to avoid imprecision in
the measurements. Moreover, we improved the oracles after
applying TrustraceVSM, Histrace and discovering missing links.

Internal Validity: The internal validity of a study is the
extent to which a treatment effects change in the dependent
variable. The internal validity of our empirical study could
only be threatened by our choice of the λ value: other values
could lead to different results. We mitigated this threat by
studying the impact of λ on the F-measure of our approach
in Section VI-G, see in particular Figure 4.

External Validity: The external validity of a study
relates to the extent to which we can generalize its results.
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Our case studies are limited to two systems, Pooka and
SIP. Yet, our approach is applicable to any other systems.
However, we cannot claim that the same results would be
achieved with other systems. Different systems with different
SVN change logs, SVN commit messages, requirements,
and source code may lead to different results. However, the
two selected systems have different SVN change logs, SVN
commit messages, requirements, and source code quality.
Our choice reduces the threat to the external validity.

Conclusion validity: Conclusion validity threats deals
with the relation between the treatment and the outcome.
The appropriate non-parametric test, Mann-Whitney, was
performed to statistically reject the null-hypotheses, which
does not make any assumption on the data distribution.

IX. CONCLUSION AND FUTURE WORK

Information Retrieval approaches [12] have proven useful
in recovering traceability links. We proposed two contribu-
tions to improve the precision and recall of traceability links.

First, we proposed a novel approach, Trustrace, inspired
by Web trust models [19], [20], [21], [22] to improve
precision and recall of traceability links: Trustrace uses
any traceability recovery approach as the basis on which
it applies various experts’ opinions [23] to remove and–or
adjust the rankings of the traceability links. The experts can
be human experts or other traceability recovery approaches.

Second, we proposed Histrace, an expert supporting the
identification of traceability links between requirements and
source code through CVS/SVN change logs, using a VSM.
Histrace uses CVS/SVN commit messages to build traceabil-
ity links between high-level documentation and source code
entities, observing that messages are tied to changed entities
and, thus, can be used to infer traceability links between
high-level documentation and source code entities.

We combined a VSM-based approach with Histrace to
build TrustraceVSM, Histrace in which we use Histrace as one
expert commenting the traceability links recovered using the
VSM-based approach. We applied TrustraceVSM, Histrace on
Pooka and SIP to compare its traceability links with those
recovered using only the VSM-based approach, in terms of
precision and recall. We showed that TrustraceVSM, Histrace

improves with statistical significance the precision of the
traceability links without decreasing recall.

We thus showed that our trust-based approach indeed im-
proves precision and recall and also that CVS/SVN change
logs are useful in the traceability recovery process. In future
work, we plan more experiments with other combination of
IR-based approaches to further improve the precision and
recall values. We will also perform more experiments on
heterogeneous software artefacts to measure the usefulness
of these other artefacts for a traceability recovery process.
In particular, we are currently building new traceability
approaches using bug reports and mailing lists.
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