
Understanding Interactive Debugging with Swarm
Debug Infrastructure

Fabio Petrillo∗†, Zéphyrin Soh†, Foutse Khomh†, Marcelo Pimenta∗, Carla Freitas∗, Yann-Gaël Guéhéneuc†
∗Federal University of Rio Grande do Sul, RS, Brazil
†École Polytechnique de Montréal, QC, Canada

E-Mails: fabio@petrillo.com,{mpimenta, carla}@inf.ufrgs.br,{zephyrin.soh,foutse.khomh,yann-gael.gueheneuc}@polymtl.ca

Abstract—Debugging is a laborious activity in which de-
velopers spend lot of time navigating through code, looking
for starting points, and stepping through statements. In this
paper, we present the Swarm Debug Infrastructure (SDI) with
which researchers can collect and share data about developers’
interactive debugging activities. SDI allows collecting and sharing
debugging data that are useful to answer research questions about
interactive debugging activities. We assess the effectiveness of the
SDI through an experiment to understand how developers apply
interactive debugging.

I. INTRODUCTION

Debugging is a common activity during software develop-
ment, maintenance, and evolution [1] during which developers
use debugging tools to detect, locate, and correct faults.
Debugging tools can be interactive or automated. Interactive
debugging tools, a.k.a. debuggers, such as gdb [2] have been
used by developers for decades. Modern debuggers are often
integrated in development environments, e.g., DDD [3] or
the debuggers of Eclipse, Netbeans, Intellij IDEA, Visual
Studio Integrated Development Environments (IDEs). With
debuggers, developers navigate through the code, looking for
locations to place breakpoints, and stepping into statements.
While stepping, developers can traverse method invocations,
toggle one or–more breakpoints, stop and–or restart execu-
tions. This exploration process allows developers to gain
knowledge about programs and the causes of faults, allowing
them to fix the faults.

In this paper, we propose the Swarm Debug Infrastructure
(SDI), an open-source infrastructure1 integrated into Eclipse,
which allows practitioners and researchers to collect and share
fine-grained data about developers’ interactive debugging ac-
tivities. Through an experiment conducted with 10 participants
and three real faults in JabRef, we show how the data collected
using the SDI can improve our understanding of developers’
debugging activities.

II. THE SWARM DEBUG INFRASTRUCTURE

The Swarm Debug Infrastructure (SDI) provides tools for
collecting, sharing, and retrieving debugging data collected
during developers’ debugging activities using the Eclipse IDE2

and its integrated debugger. It is organized in three main
modules: (1) the Swarm Debug Services; (2) the Swarm Debug
Tracer; and, (3) Swarm Debug Views.

1https://github.com/SwarmDebugging
2https://www.eclipse.org/

Fig. 1: The SDI metadata

A. Swarm Debug Services

The Swarm Debug Services (SDS) provide the infrastructure
needed by the Swarm Debug Tracer (SDT) to store and, later,
share debugging data from and between developers. The SDT
sends RESTful messages that are received by a SDS instance
that stores them. We choose and define domain concepts to
model software projects and debugging data. Figure 1 shows
the meta-model of these concepts using an entity-relationship
representation. The concepts are inspired by the FAMIX Data
model [4].

The SDS provides several services for manipulating, query-
ing, and searching collected data: (1) Swarm RESTful API;
(2) SQL query console; (3) full-text search API.

1) Swarm RESTful API: The SDS provides a RESTful
API to manipulate debugging data using the Spring Boot
framework3. Create, retrieve, update, and delete operations are
available through HTTP requests and respond with a JSON
structure.

2) SQL Query Console: The SDS provides a console avail-
able at http://db.swarmdebugging.org to receive SQL queries
(SQL) on the debugging data, providing relational aggrega-
tions and functions.

3) Full-text Search Engine: The SDS also provides an
ElasticSearch4, which is a highly scalable open-source full-

3http://projects.spring.io/spring-boot/
4https://www.elastic.co/

Fig. 2: The Swarm Tracer architecture

text search and analytic engine, to store, search, and analyse
the debugging data. The SDS instantiates an instance of
the ElasticSearch engine and offers a console for executing
complex queries on the debugging data.

B. Swarm Debug Tracer

Swarm Debug Tracer (SDT) is an Eclipse plug-in that listens
to debugger events during debugging sessions, extending the
Java Platform Debugging Architecture (JDPA). Using the
Eclipse JPDA, events are listened by our DebugTracer that im-
plements two listeners: IDebugEventSetListener and
IBreakpointListener. Figure 2 shows the SDT archi-
tecture. After an authentication process, developers create a
debug session and toggle breakpoints. Stepping events as Step
Into, Step Over or Step Return are caught and stack trace items
are analyzed by the Tracer, extracting method invocations.

Following the foraging approach [5], the SDT only collects
invoking/invoked methods that were visited by the developer
during the debugging session, ignoring other invocations. The
debugging activity continues until the program run finishes.
The Swarm session is then completed.

C. Swarm Debug Views

On top of the SDS, the SDI implements and proposes
several tools to search and visualise the data collected during
debugging sessions. These tools are integrated in the Eclipse
IDE, simplifying their usage. They include, but are not limited
to:

1) Dynamic method call graphs: which are direct call
graphs [6], as shown by Figure 3, to display the hierarchi-
cal relations between invoked methods. They use circles to
represent methods and oriented arrows to express invocations.
Each session generates a graph and all invocations collected
during the session are shown on these graphs. The starting
points (non-invoked methods) are allocated on top of a tree and
adjacent nodes represent invocations sequences. Researchers
can navigate sequences of invocation methods pressing the F9
(forward) and F10 (backward) keys. They can also directly go

Fig. 3: Method call graph for Bridge design pattern

to a method in the Eclipse Editor by double-clicking on nodes
in the graphs.

2) Breakpoint search tool: which researchers and develop-
ers can use to find suitable breakpoints [7] when working with
the debugger. For each breakpoint, the SDS captures the type
and location in the type where the breakpoint was toggled.
Thus, developers can share their breakpoints. The breakpoint
search tool allows fuzzy, match, and wildcard ElasticSearch
queries. Results are displayed in the Search View table for
easy selection. Developers can also open a type directly in the
Eclipse Editor by double-clicking on a selected breakpoint.

In summary, through SDI, we provide a technique and
model to collect, store and share debugging session infor-
mation, contextualizing breakpoints and events during these
sessions. We also provide a tool for visualizing context-aware
debugging sessions using call graphs and a map where devel-
opers can see areas visited by his or her colleagues and know
who has already explored a project. Using web technologies,
we created real-time and interactive visualizations, providing
an automatic memory for developer explorations. SDI also
provides a tool for searching starting points and breakpoints
for software projects based on shared session information col-
lected by developers. Moreover, dividing software exploration
by sessions and its call graphs are easy to understand because
only intentional visited areas are shown on these graphs.

With SDI, one can flow through the execution of a program
and see only the points that are relevant to developers, which is
in sharp contrast with traditional visual debugging tools that
provide only data about the whole execution and one must
manipulate plenty of irrelevant paths.

III. EXPERIMENTAL STUDY WITH SDI

The SDI provides data collections, services, and tools for
researchers to understand developers’ interactive debugging
activities. To evaluate the effectiveness of the SDI, we present
a study that uses the SDI to collect data to answer three
research questions. We now present the context, the design
and the results of our experimental study.

A. Context

Studies and discussions about interactive debugging are
scarce in the literature pertaining to program comprehension,

so we could elaborate many research questions to better
understand such important software development activity, i.e.,
debugging. For the sake of space and simplicity, to illustrate
the use of the SDI, we formulate the following two research
questions:

RQ1: How many breakpoints does a developer toggle by task?
RQ2: Do developers follow similar navigation patterns through

method invocations during debugging?

B. Study Design

To answer the research questions, we proceeded as follows5:
1) Tasks Definition, Participants and Artifacts: We had

to choose debugging tasks to trigger participants’ debugging
activities. We chose to ask participants to find the locations
of real faults in an independent, open-source program. We
selected JabRef6 as target program, which is an open-source
bibliography reference manager developed in Java. We chose
JabRef because it has faults publicly reported in its issue
tracker and its domain was easy to understand by the par-
ticipants. We randomly picked three faults reported against
JabRef v3.2 in its issue tracker and asked participants to find
the locations of the faults described in issues 318, 667, and
669.

As many other experimental studies before ours, we asked
volunteers among our undergraduate and graduate students
at Polytechnique Montréal to participate in our experimental
study. After sending a general call for volunteers, 10 students
volunteered (80% male, 20% female). They were all experts
or advanced developers (70%). They all used IDEs (70%) and
debuggers (60%) frequently.

We provided participants with instructions by email and in
two documents. The first document explained how to install
and configure all tools to perform a warm-up task and the
experimental study. We also used the warm-up task to confirm
that the participants’ environments were correctly configured
and that the participants understood the instructions. The
warm-up task was described using a video to guide the
participants. We make available this video on-line7.

The second document presented the three issues with a
description and some piece of information to reproduce the
faults. To reduce the participants’ effort to reproduce the
faults, we offered videos demonstrating step-by-step how to
reproduce the faults. We also provided the participants with an
electronic form to report external data about their debugging
activities, including their numbers of years of programming
experience, their undergraduate or graduate program, their
level of tiredness, and others.

For this experimental study, we used Eclipse Mars and
Java 8, the SDI and its Swarm Debug Tracer plug-in, and
two Java projects: an in-house Tetris game for the warm-
up task and JabRef v3.2 for the experimental study. All

5All artifacts, tutorials, raw data, survey forms, and spreadsheets are
available at http://swarmdebugging.org/publications/icpc2016.

6http://www.jabref.org/
7https://youtu.be/U1sBMpfL2jc

participants received the same Workspace, provided by our
artifact repository.

2) Data Collection and Analysis: After installing the envi-
ronment (Eclipse and the SDI), each participant executed the
warm-up task. This tasks consisted in starting a debugging
session, toggling a breakpoint, and debugging a Tetris program
to locate a given fault. All participants completed this task
successfully (mortality rate 0%). After the warm-up task, each
participant executed debugging sessions to find the locations
of the faults described in the three selected issues. We did
not set a time constraint but suggested 20 minutes by fault.
We asked participants to control their fatigue, asking them to
go to the next task if they felt tired while informing us of
this situation in their reports. Finally, each participant filled a
report to provide their answers and other information, whether
they completed the three tasks successfully or not. All services
were available on our server8 during this debugging sessions
and the experimental data were collected in the course of seven
days.

After the 10 participants completed the debugging sessions
(successfully or not), we used the tools provided by the SDI on
the data collected by the SDI to answer each research question.
To answer RQ1, we use the following SQL query, with which
we can extract all the breakpoints set during each session and
find a relationship between breakpoints and tasks:

select s.id, count(*) from breakpoint b,
type t, session s where b.type_id = t.id
and t.session_id = s.id
group by s.id order by s.id

Finally, to answer RQ2, we plotted the call graph of each
debugging session using the SDI. We organized these graphs
by tasks and by numbers of invocations, analyzing each graph
to identify navigation patterns.

C. Results

RQ1: How many breakpoints does a developer toggle by task?

Applying the analysis described previously, we conclude
that participants toggled between one or two breakpoints by
task, independently of success or failure of locating the source
of the faults and independently of the complexity of the tasks.
We explain this result by the relative simplicity of the chosen
program, its domain, and its issues. Future works are necessary
to replicate this experimental study to confirm or infirm this
observation.

RQ2: Do developers follow similar navigation patterns
through method invocations during debugging?

By visualising the call graphs generated using the SDI,
we observed two distinct debugging navigation patterns: (1) a
fuzzy debugging pattern and (2) a straight debugging pattern.
In the fuzzy debugging pattern, the method invocation graph
presents several branches, showing that participants adopted an

8http://server.swarmdebugging.org

(a) Straight pattern (b) Fuzzy pattern

Fig. 4: Examples of straight and fuzzy debugging patterns

exploratory approach. Figure 4b shows two typical fuzzy de-
bugging graphs. In the straight debugging pattern, participants
followed a straight or quasi-straight set of method invocations
to achieve their tasks, as shown in Figure 4a.

Furthermore, we identified a strong correlation between
expertise and navigation patterns: the more expert the par-
ticipants, the more straightforward their navigation patterns.
Future work will further study this correlation to confirm its
existence and provide explanations and, possibly, recommen-
dations to developers during debugging activities.

D. Discussions

As any empirical study, this experimental study is subject
to limitations that threaten the validity of its results. The first
limitation pertains to the number of participants involved in the
study. With 10 participants, we can not claim generalization
of the results. However, we accept this limitation because
the goal of the study was to show the effectiveness of the
data collected by the SDI to obtain insights about developers’
debugging activities. Future studies with larger numbers of
participants and more systems and tasks are needed to confirm
or infirm the results of this study. The SDI and all the
material used in our experimental study are publicly available
at http://swarmdebugging.org/publications/icpc2016.

Other threats to the validity of our results concern their
internal, external, and conclusion validity. We accept these
threats because the aim of the experimental study was to show
the effectiveness of the SDI to collect and share data about
developers’ interactive debugging activities, not to answer with
strong statistical significance the research questions. Future
work is needed to perform in-depth experimental studies with
these research questions and other, possibly drawn from the
questions that developers asked found by Sillito et al. [8].

IV. CONCLUSION

In this paper, we introduce a novel approach for debug-
ging (i.e., swarm debugging) and propose the Swarm Debug
Infrastructure (SDI), an open-source infrastructure integrated
into Eclipse, to collect and share fine-grained data about
developers’ interactive debugging activities. The SDI collects
data in the background during debugging activities without
altering the performance of the IDE. The SDI stores data on
a remote server using an asynchronous execution and, thus,

does not suffer from performance or memory issues as could
omniscient debuggers [9] or tracing-based approaches [10].

We described the SDI and showed through an experiment
that we can use the SDI to collect and share data about
the developers’ debugging activities while fixing real faults.
The experiment pertained to three real faults in JabRef and
collected data from 10 participants. We used the collected
data to answer two research questions showing that the SDI
collect data relevant to the developers’ debugging activities.
From the research questions we observed that (1) developers
toggled only one or two breakpoints by activity; (2) there is no
correlation between numbers of breakpoints and developers’
expertise; (3) there is no correlation between the numbers of
breakpoints and task complexity, and (4) developers follow
different debugging patterns.

This paper is only a first step towards fully understanding
debugging activities. In future work, we plan to extend the SDI
into a full context-aware debugger, adding new ways to share
and visualise debugging sessions. We also plan to integrate
the SDI with a bug tracking system, improve the breakpoint
search, associate issues tracking information with breakpoints.
Finally, we will perform new empirical studies on developers’
debugging activities using the SDI.

ACKNOWLEDGMENT

We thank the programmers who participated in our case
study, supporting and improving our work with several insight-
ful ideas and discussions. This work has been partly supported
by the Natural Sciences and Engineering Research Council
of Canada and the Canada Research Chair on Patterns in
Mixed-language Systems, and CNPq (Conselho Nacional de
Desenvolvimento Cientfico e Tecnolgico), Brazil.

REFERENCES

[1] A. S. Tanenbaum and W. H. Benson, “The people’s time sharing system,”
Software: Practice and Experience, no. 2, pp. 109–119, apr.

[2] Stallman, R. Pesch and S. Shebs, Debugging with GDB - The GNU
Source-Level Debugger. GNU Press, 2002.

[3] P. Wainwright, “GNU DDD - Data Display Debugger,” 2010.
[4] S. Demeyer, S. Ducasse, and M. Lanza, “A hybrid reverse engineering

approach combining metrics and program visualisation,” Reverse Engi-
neering, 1999. . . . , no. Section 3.

[5] D. Piorkowski and S. Fleming, “The whats and hows of programmers’
foraging diets,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems CHI ’13. Paris, France: ACM, pp.
3063—-3072.

[6] D. Grove, G. DeFouw, J. Dean, and C. Chambers, “Call graph construc-
tion in object-oriented languages,” Proceedings of the 12th ACM SIG-
PLAN conference on Object-oriented programming, systems, languages,
and applications - OOPSLA ’97, pp. 108–124.

[7] S. D. Fleming, C. Scaffidi, D. Piorkowski, M. Burnett, R. Bellamy,
J. Lawrance, and I. Kwan, “An Information Foraging Theory Perspective
on Tools for Debugging, Refactoring, and Reuse Tasks,” ACM Transac-
tions on Software Engineering and Methodology, no. 2, pp. 1–41.

[8] J. Sillito, G. C. Murphy, and K. D. Volder, “Asking and answering
questions during a programming change task,” IEEE Transactions on
Software Engineering, vol. 34, no. 4, pp. 434–451, July/August 2008.

[9] G. Pothier and É. Tanter, “Back to the Future: Omniscient Debugging,”
IEEE Software, no. 6, pp. 78–85, nov.

[10] P. Ohmann and B. Liblit, “Lightweight control-flow instrumentation and
postmortem analysis in support of debugging,” in 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, nov, pp. 378–388.

