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Abstract

Feature identification is a well-known technique to iden-

tify subsets of a program source code activated when exer-

cising a functionality. Several approaches have been pro-

posed to identify features. We present an approach to fea-

ture identification and comparison for large object-oriented

multi-threaded programs using both static and dynamic

data. We use processor emulation, knowledge filtering, and

probabilistic ranking to overcome the difficulties of collect-

ing dynamic data, i.e., imprecision and noise. We use model

transformations to compare and to visualise identified fea-

tures. We compare our approach with a naive approach

and a concept analysis-based approach using a case study

on a real-life large object-oriented multi-threaded program,

Mozilla, to show the advantages of our approach. We also

use the case study to compare processor emulation with sta-

tistical profiling.

Keywords: Program understanding, dynamic and static

analyses, feature analysis, meta-modelling.

1 Introduction

Maintenance of legacy software involves costly and te-

dious program understanding tasks to identify and to un-

derstand data structures, functions, methods, objects, and

classes and, more generally, any high-level abstractions

required by maintainers to perform their tasks. Source

code browsing is the most common activity performed dur-

ing software maintenance because obsolete (or missing)

documentation forces maintainers to rely on source code

only. Unfortunately, source code browsing becomes very

resource consuming as the size and the complexity of pro-

grams increase.

An alternative to source code browsing is automated de-

sign recovery. Central to design recovery is the recovery of

higher-level abstractions beyond those obtained by examin-

ing the system itself [4]. We propose an approach to support

the recovery of higher-level abstractions through program

feature identification and comparison. We define a fea-

ture of a program as a set of data structures (i.e., fields and

classes) and operations (i.e., functions and methods) partic-

ipating in the realisation of a user-observable functionality

in a given scenario. The scenario details the particular con-

ditions of realisation of the functionality: For example in a

web browser, accessing a page from the bookmarks corre-

sponds to one feature, adding a Uniform Resource Locator

(URL) to the bookmarks is another feature.

In this paper, we describe our approach of building

micro-architectures, subsets of a program architecture [10],

from feature identification using static and dynamic data.

We assume that the program source code is available and

that a compiled version of the program can be exercised un-

der different scenarios. We use data collected from the real-

isation of a functionality, under different scenarios, to filter

static data modelled as class diagrams, thus relating classes

with features and with scenarios, and highlighting differ-

ences among features. Maintainers can use our approach to

build and to compare micro-architectures to locate respon-

sibilities and feature differences precisely.

Our approach decomposes in a process and a set of tools

to support the process. The process makes use of proces-

sor emulation, knowledge filtering, probabilistic ranking,

and model transformations to support the analysis of large

multi-threaded object-oriented programs and to deal with

imprecision and noise.

We evaluate the usefulness of our approach through the

analysis of the MOZILLA web browser using two basic sce-

narios in one case study of features identification and com-

parison. We compare our approach with a naive approach

and a concept analysis-based approach with the same sce-

narios. We show that our approach is scalable and overcome

limitations of existing approaches.



The main contributions of this paper are summarized

as an approach to feature identification and comparison in

large multi-threaded object-oriented programs using static

and dynamic data, knowledge-based filtering, and proba-

bilistic ranking. We present an experimental comparison of

our approach when supporting program understanding tasks

with a naive grep-based approach and a concept analysis-

based feature identification technique. Finally, we discuss

the impact of the precision of two different tools representa-

tive of statistical profilers and of simulation tools on feature

identification and, thus, on program understanding tasks.

The remainder of the paper is organised as follows: Sec-

tion 2 summarises previous work and their limitations; Sec-

tion 3 presents our approach—the process and the tools—to

feature identification and comparison; Section 4 describes

the case study with MOZILLA; Section 5 concludes with

future work.

2 Related Work

Our work relates to static and dynamic program anal-

ysis, to feature analysis, meta-modelling and model trans-

formation techniques. The following sub-sections describe

related work in each category.

Static and Dynamic Analysis. Program instrumentation

via source-to-source translation is a common technique to

collect dynamic data. For example, Ernst et al., with

DAIKON, focus on dynamic techniques for discovering in-

variants in traces [9]. However, DAIKON does not offer

front end for C++.

Jeffery and Auguston [13] present the UFO dynamic

analysis framework. This framework combines a language

and a monitor architecture to ease building new dynamic

analysis tools. The main limitations of the UFO frame-

work in the context of our work is the lack of support for

C++ and possible implementation and optimisation issues.

Finally, Ernst [8] discusses synergies and dualities be-

tween static and dynamic analyses. Reiss and Renieris [17,

18, 19] present an approach to encode dynamic data, to ex-

plore program traces, and languages for dynamic instru-

mentation respectively. The problem of handling large

amounts of data when performing dynamic analysis is dis-

cussed in several work, for example Hamou-Lhadj et al.

[11, 12], where the authors present an algorithm for iden-

tifying patterns in traces of procedure calls.

Feature Identification. Several works propose feature

identification techniques. However, few works attempt to

compare features with one another.

In their precursor work, Wilde and Scully [23] propose a

technique to identify features by analysing execution traces

of test cases. They use two sets of test cases to build two

execution traces: An execution trace where a functionality

is exercised; An execution trace where the functionality is

not. Then, they compare execution traces to identify the

feature associated with the functionality in the program. In

their work, the authors only use dynamic data to identify

features, no static analysis of the program is performed.

Several commonalities exist between the present work

and [5, 23]. As detailed in Section 3, our approach is close

to Wilde’s approach [5], differences being the adoption of

a knowledge-base filtering of dynamic data and a modi-

fied relevance index accounting for the population sizes of

events relevant and irrelevant to a feature of interest.

Chen and Rajlich [3] develop a technique to identify fea-

tures using Abstract System Dependencies Graph (ASDG).

In C, an ASDG models functions and global variables as

well as function calls and data flow in a program source

code. Maintainers identify, manually, features using the

ASDG following a precise process. At the opposite of

Wilde and Scully’s work, Chen and Rajlich use only static

data to identify features and a manual search, which is pro-

hibitive for large multi-threaded object-oriented programs.

Combining previous approaches, Eisenbarth et al. [6]

use both static and dynamic data to identify features in soft-

ware components. First, the authors perform a dynamic

analysis of the program using profiling techniques to iden-

tify feature, similarly to Wilde and Scully’s work. Then,

they use concept analysis techniques to relate features to-

gether and to guide a static analysis to narrow the scope of

identified features. Details on concept analysis and feature

identification were also published by the same authors in

[7]. They apply their approach on two C programs and fea-

ture identification was actually performed by means of set

operations on concepts.

Salah and Mancoridis [20] use both static and dynamic

data to identify features in Java programs. They go be-

yond feature identification by creating feature-interaction

views, which highlight dependencies among features. They

define four types of views: Object-interaction view, class-

interaction view, feature-interaction view, and feature-

implementation view. Each view abstracts preceding views

to present only the most relevant data to maintainers.

Feature-interaction and implementation views highlight re-

lationships among views. However, maintainers cannot use

these views to identify and to highlight differences between

features with respect to different scenarios.

Meta-Modelling and Model Transformations. Meta-

modelling techniques have been used in several works to

model a program source code, for example, Pagel and Win-

ter [16], Sunyé [21]. Also, we concur with Thomas: “Every

models need a meta-model” [22].

A meta-model defines a language to create models
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in some universe of discourse. Models issued from a

meta-model can be visualised, compared, and modified at

run-time using operations defined at the meta-model level.

Model transformations are thus defined more precisely and

easily when a meta-model is present. Model transforma-

tions are available, for example, in the UMLAUT [21] tool,

and are central to the Model-Driven Architecture approach

[2, 15].

We build on previous work, in particular on Wilde and

Scully’s precursor work and on Salah and Mancoridis’

work, to identify features in large multi-threaded object-

oriented C++ programs and to compare features from dif-

ferent scenarios.

3 Our Approach: Process and Tools

In a Nutshell. A feature links a model of a program

architecture with the program dynamic behaviour. First,

we build a model of a program architecture. Second,

we identify features to provide maintainers with sub-

sets of the program architecture—micro-architectures—

representing classes, methods, and fields that take part in a

feature of interest. Third, we compare the different features,

the micro-architectures, to highlight their differences.

Our feature identification and comparison process uses

both static and dynamic data collected from a program

source code and from its execution using processor emu-

lation.

We adopt an approach inspired by Wilde [5] to filter and

to extract dynamic data during feature identification: We

associate events with features using a relevance index, a

ranking quantifying the probability that an event is rele-

vant to a feature under study. As in [5], we avoid the use

of set manipulations (set difference or intersection). In-

deed, approaches based on set manipulations assume that

events, relevant and irrelevant, are either present or absent,

and that events are registered correctly. Unfortunately, it

is very difficult (sometimes impossible) to control all the

variables that influence dynamic data collection in multi-

threaded or distributed programs, which is a threat to set-

based approaches.

A similar threat exist for approaches based on con-

cept analysis: Concept analysis-based approaches, such

as Eisenbarth’s [7], cannot distinguish irrelevant but inter-

leaved events and require careful examination of lattice re-

gions to identify feature-relevant events.

Figure 1 summarises the process of feature identifica-

tion and comparison in our approach and details the pro-

cess of collecting dynamic data, using the IDEF∅1 graph-

ical language. Several tools were developed/integrated to

1http://www.idef.com/IDEF0.html

support the feature identification and comparison process.

The authors reused available tools by coupling their respec-

tive tools and other open-source tools loosely, thus ensur-

ing independence from specific CASE tools. The following

paragraphs detail each activity of the process and associated

tools.

Program Model Creation. We use static analysis to build

a model of a program architecture from its source code. A

static analysis parses C++ source code, both headers and

body files, resolves and binds the various types, and gen-

erates a model of the program architecture expressed in an

intermediate representation, the ABSTRACT OBJECT LAN-

GUAGE (AOL) format [1]. Parsers for several programming

languages, in particular for C++, exist to create AOL files.

We manipulate AOL representations using the PADL

meta-model. PADL is a language-independent meta-model

to represent object-oriented programs. It offers a set of enti-

ties to represent object-oriented programs: Class, interface,

field, method, and their relationships. It also offers a set

of parsers to build models from various sources. Parsers

can be easily added using the Builder design pattern. Thus,

we added a parser for AOL files using the JAVACUP parser

generator.

Trace Collection. The child diagram in Figure 1 (bot-

tom) shows the details of the process of collecting dynamic

data. Scenarios executions are modelled as traces; Traces

are modelled as sequences of intervals [5], which are se-

quences of events. As in [5] and [7], the definition of

an event is blurred intentionally to accommodate different

level of granularity: An event may correspond to creating

an object, entering a method, or executing a code fragment.

Two families of scenarios are considered: Those related

to a feature of interest and those which do not exercise the

feature. We exercise each scenario to collect traces. De-

pending on the scenario, the studied feature, and the loca-

tions of the intervals during the scenario, we mark intervals

as relevant to a feature or not. Intervals relevant to a feature

are likely to contain feature-relevant events. Events relevant

to a feature should always be present in feature-relevant in-

tervals. Thus, in absence of noise and imprecision, set op-

erations suffice to classify events as relevant or irrelevant

to a feature. However, the precise location of an event in

time or the identification of an event marking the exact be-

ginning/end of feature-relevant intervals is not always fea-

sible when collecting dynamic data on multi-threaded or

distributed programs. Furthermore, feature-relevant events

may be interleaved with noise, irrelevant events, and rele-

vant events may be lost because of statistical profiling im-

precision. We use processor emulation to collect precise

dynamic data when exercising scenarios and probabilistic

ranking to classify events as feature relevant or irrelevant.
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Figure 1. Feature identification and comparison process (detailed feature identification)

VALGRIND
2 is an open-source framework for debugging

and profiling x86-Linux programs. VALGRIND simulates

an x86 processor and allows the development of specialised

plugins for the dynamic analysis of memory management

or multi-threads bugs. The collected data are detailed and

precise because VALGRIND emulates the processor, at the

cost of a reduction in performance of the program under

analysis. An interesting plugin for our purposes is CALL-

GRIND/KCACHEGRIND by Josef Weidendorfer, to collect

dynamic data on called methods and functions.

Other approaches to generate trace data exists. One of

the more widely used is source code instrumentation. How-

ever, in modern multi-language systems, source code in-

strumentation requires a variety of tools not always easily

available. Further difficulties are encountered with threads

because thread instrumentation requires source code trans-

formations more complex than mere method entry and exit

instrumentation.

Finally, statistical profiling is a suitable choice when ac-

curacy is not essential and overhead must be kept low. We

use JPROF to compare statistical profiling with processor

emulation. JPROF3,4 is a statistical profiler developed by

Jim Nance for the light profiling of MOZILLA. It instan-

tiates a signal handler (controlled via an environment vari-

able), which generates interrupts at fixed times. At each

interrupt, JPROF analyses the call stack and records called

methods and functions. Thus, the analysed program runs

with little overhead but JPROF requires multiple executions

2http://valgrind.kde.org/
3http://lxr.mozilla.org/mozilla/source/tools/jprof/
4Statistical profilers, in general, do not collect traces but time spent in

functions and methods along with callees and callers, such data can be used

to build traces.

because collected data may include only a subset of all

method and function calls due to multitasking and sampling

time between interrupts.

Knowledge-based Filtering. In Figure 1, we introduce

the concept of knowledge-based filtering. We are not in-

terested in all classes of events, for example, graphical

events generated by the mouse or actions of reading/writing

from/to an external database or configuration files. We re-

move events irrelevant for some scenarios of interest to re-

duce the noise.

We define two families of filters, based on statistical

knowledge and on application knowledge. A frequent event

which is equally encountered in feature relevant and irrel-

evant traces is unlikely to improve the maintainers’ un-

derstanding and can be removed. Application knowledge

also helps to reduce the quantity of dynamic data. For ex-

ample, if a program uses some middleware (e.g., DCOM,

CORBA), automatically-generated code, external compo-

nents (e.g., databases), then these events can be removed

if not relevant to the feature of interest directly.

Probabilistic Ranking. We use a probabilistic ranking

technique to classify events as relevant or irrelevant to a

feature. Let F be a set of scenarios exercising a feature

of interest and F a set of scenarios not exercising the fea-

ture. Execution of scenarios in F produces a set of intervals

I∗ containing events relevant to the feature under study. We

mark these intervals as relevant via the Start / Stop signals

in Figure 1. Scenarios in F always produce intervals in I,

intervals irrelevant to the feature. However, intervals I∗ (I,

respectively) may contain irrelevant (relevant) events. We

4



adopt a strategy derived from Wilde [5] to classify events in

I∗ and I with a statistical relevance index. Three types of

events exist: e∗i , event specific to a feature; ej , event always

absent in, or irrelevant to, a feature; and ek, event likely to

participate in a feature.

In [5], Wilde maps events and components with a func-

tion δ(). We assume a simplified one-to-one mapping so

that events and components can be interchanged. Wilde

proposes the following relevance index:

pc(ei) =
NF (ei)

NF (ei) + N
F

(ei)
(1)

where NF (ei) is the number of times ei appears when ex-

ecuting scenarios in F and N
F

(ei) is the number of times

the same event is encountered while executing F scenar-

ios. Clearly, pc ranges between zero and one. It is one,

or very close to one, for any feature-relevant event e∗i , and

zero for ej . However, in our experience, events irrelevant

to a feature are still frequent in traces collected from sce-

narios in F . Indeed, any scenario is likely to decompose

in a few intervals in I∗ surrounded by many intervals in

I. Thus, we modify equation 1 to weight the sizes of the

different intervals. If NI∗ and NI are the overall numbers

of events in the two sets I∗ and I, then the frequency of

ei in I∗ is fI∗(ei) = NI∗ (ei)
NI∗

and its frequency in I is

fI(ei) = NI(ei)
NI

. We combine the previous equations to

propose the following relevance index:

r(ei) =
fI∗(ei)

fI∗(ei) + fI(ei)
(2)

Equation 2 is a renormalization of Wilde’s equation,

where events are re-weighted by population sizes to make

events comparable directly. We use Equation 2 to classify

events from sets I∗ and I. For a positive threshold t, the set

of feature-relevant events is:

E∗

t = {ei|r(ei) ≥ t} (3)

E∗
t size depends on the chosen threshold, a threshold of

100.00% means that events in E∗
t never appear in I. Equa-

tion 3 partitions events in two sets: Those relevant to the

feature and those that are unlikely to participate in the fea-

ture.

Features Models Creation. We use the program archi-

tectural model and the events classified as belonging to E∗
t

to create new models of the program that include only the

classes, methods, and fields activated when exercising some

scenarios. Such models represent “slices” of the program

and are micro-architectures of the program.

We create these micro-architectures by cloning the pro-

gram architectural model and by removing from this model,

using model transformations, all classes, fields, and meth-

ods that are not explicitly (directly or indirectly) called

when exercising a functionality.

We can create potentially an infinite number of micro-

architectures through the executions of different function-

alities of the program for different scenarios. We can

also create micro-architectures of various depths: A micro-

architecture may include the classes and only the class exer-

cised or it may include the classes that are related, directly

or indirectly, with the classes exercised. Thus, a micro-

architecture may be narrow or large arbitrarily, up to the

point where it is equal to the complete program architec-

ture.

Features Comparison. We compare and highlight differ-

ences among micro-architectures so that maintainers can

understand and compare behaviours of different function-

alities or of a same functionality with different scenarios.

We can use set intersection for features comparison be-

cause the micro-architectures are built using events classi-

fied uniquely through knowledge filtering and probabilistic

ranking.

We use model transformation techniques to highlight

differences among micro-architectures: Given an “origin”

micro-architecture, we compute the set of model transfor-

mations required to transform this micro-architecture in an-

other “destination” micro-architecture. We use this set of

transformations to add classes, methods, and fields missing

to the “origin” micro-architecture with respect to the “desti-

nation” micro-architecture and to distinguish in the “origin”

micro-architecture classes, methods, and fields not included

in the “destination” micro-architecture. The modifications

in the “origin” micro-architecture are described using spe-

cific entities of the meta-model to highlight differences be-

tween micro-architectures.

Micro-architectures are also models of the PADL meta-

model, we develop a Visitor to compare micro-architectures

among themselves. Features identification and compari-

son are independent of the order in which we store classes,

fields, and methods.

4 Case Study

Our feature identification and comparison process aims

at assisting program understanding tasks of large multi-

threaded object-oriented programs by identifying the micro-

architectures implementing some features of interest and by

highlighting the classes, fields, and methods activated. We

realise a study to assess the usefulness of our approach by

mimicking a program understanding task assuming no pre-

vious knowledge of the program to identify a feature. We

need at least two scenarios in our case study to build the

intervals sets I∗ and I.
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4.1 Object of the Case Study

MOZILLA5 is an open-source web browser ported on al-

most all known software and hardware platforms. It is large

enough to represent a real world program. MOZILLA size

ranges in the millions of lines of code (MLOC). It is de-

veloped mostly in C++. C code accounts only for a small

fraction of the program. We do not include in our study

Java, IDL, XML, HTML and scripting language configura-

tion and support.

The latest MOZILLA versions include more than 10,000

source files for a size of up to 3.70 MLOC decomposing in

about 3,500 subdirectories. MOZILLA consists of 90 mod-

ules maintained by 50 different module owners. We use

version 1.5.1 for our case study.

Numbers (MLOC) Numbers

Header files 8,055 (1.50) Classes 4,853

C files 1,762 (0.90) Methods 53,617

C++ files 4,204 (2.00) Specialisations 5,314

IDL files 2,399 (0.20) Associations 17,362

XML files 283 (0.12) Aggregations 6,727

HTML files 2,231 (0.19)

Java files 56 (0.06)

Table 1. Mozilla v1.5.1 sizes

Table 1 gives an overview of the sizes of the web

browser. Figures reported should be considered as orders

of magnitudes rather than as absolute values. Indeed, sev-

eral factors influence these figures, such as the reverse en-

gineering tools and the parsing techniques used [14] or

the way in which certain programming language features

are considered. In our case study, we choose to use con-

servative reverse-engineering techniques: We apply strict

reverse-engineering rules such that we classify as classes

only entities declared as classes according to the C++ syn-

tax. We consider structures and complex templates (e.g.,

templates mixed with structures) as outside of the bound-

ary of reverse-engineered models and do not recover their

attributes, methods, and files locations.

4.2 Scenarios and Task of the Case Study

One of the key functionality of a web browser is the abil-

ity to store and to access URL. We consider the following

scenarios:

• Scenario 1: A user visits an URL: She opens

MOZILLA, clicks on a previously book-marked URL,

waits for the page to be loaded, and closes the web

browser.

• Scenario 2: The user acts as above but, once the page

is loaded, she saves the URL using the mouse right

button and closes the web browser.

5http://www.mozilla.org

Sequences of actions between the scenarios are the same

but for the book-marking action in Scenario 2. Thus, in-

tuitively, all classes activated in Scenario 1 are present in

Scenario 2 (but not vice-versa).

Program Understanding Task. We formulate the fol-

lowing program understanding task: “Identify classes,

fields, and methods activated when an URL is saved in Sce-

nario 2 with respect to Scenario 1”.

Objective. We want to assess the usefulness of our ap-

proach by identifying feature related to Scenario 2 with re-

spect to Scenario 1.

Assessment. We assess our objective in two steps. First,

we tackle the program understanding task with a naive

approach based on usual string-matching tools, with a

concept analysis-based technique from the literature [7],

and with our feature identification and comparison pro-

cess. We compare and discuss our results with results ob-

tained with the naive and concept analysis-based approach.

We also use this case study to compare processor emula-

tion (VALGRIND) with statistical profiling (represented by

JPROF).

The activity of compiling a version of MOZILLA re-

quired about 30 minutes on a Pentium IV laptop running

RedHat enterprise workstation. A single execution, about

5 minutes, is sufficient to gather dynamic data with VAL-

GRIND. VALGRIND raw data are saved in ASCII and are

mapped to sets I∗ and I subsequently.

Several execution are required with JPROF to minimise

the probability that relevant data are not sampled due to the

granularity of the interrupts and of Linux process context

switching. Collecting JPROF profiling data require about

20 minutes for any scenario (20 executions). JPROF data

are saved in HTML.

4.3 Results with a Naive Approach

The task of identifying a feature is similar to an infor-

mation retrieval task. A naive maintainer would attempt to

perform the understanding task by searching files with tools

supporting string and regular expressions matching, such as

the Unix utility grep. For example, she would search for

files containing the term add or synonyms such as store and

save. Several combinations in conjunction or alternative

with synonyms and abbreviations to the term bookmark are

possible (e.g., url, bookm, link, ref ). When performing such

a process, results are not very encouraging. Data in Table 2

suggests that only a conjunction of terms could reduce rea-

sonably the number of files to be inspected to identify the

feature responsible to save a bookmark.
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Terms Occurrences Terms Occurrences

add 3,482 bookm 15

store 877 link 732

save 639 ref 2,632

url 782 uri 3914

Table 2. Mozilla v1.5.1 term occurrences over
7,411 files (C, C++ and header files)

Various combinations of terms and synonyms such as

add and link produce hits in the hundreds or thousands. A

more careful selection of terms would reduce the number of

hits drastically. Indeed, by imposing the match of bookm

and link, ref or url, only 14 hits are returned. Even more

promising is the match of bookm and add, which returns 8

hits.

However, this matches are string-based at file level.

There is no way to distinguish a meaningful match with

unwanted matches automatically. The maintainer cannot

know whether she should also consider one of the other

thousands matches or if she missed relevant information be-

cause the correct string was not searched.

A more clever approach would be to perform query op-

erations on trace data. Regular expressions matching per-

formed on VALGRIND (JPROF, respectively) data returns

limited numbers of hits, depending on the matched string.

For example, matchings for the terms bookm and link re-

turn 51 (45) and 44 (18) matches, respectively. However,

matchings for other terms, such as ref or add, return more

than 3,000 (500) hits. Thus, even if trace data are available,

regular expressions matching is not sufficient to focus the

search regardless of the query, i.e., without previous knowl-

edge.

4.4 Results with Concept Analysis

As recognised and proposed in [6, 7], feature identifica-

tion can be performed using concept analysis. For example,

called methods can be considered as the objects and sce-

narios as the attributes in some concepts, then the concept

lattice represents relations between scenarios, i.e., activated

features.

Method calls (distinct called methods)

in I
∗ in I

Startup 0 (0) 92,622,767 (22,507)

Shutdown 0 (0) 24,256,743 (12,007)

Scenario 1 63,154,231 (22,542) 92,781,994 (22,592)

Scenario 2 36,105,209 (17,134) 134,849,884 (26,415)

Table 3. Mozilla v1.5.1 Valgrind I∗ and I typi­

cal sizes when exercising the scenarios

Table 3 reports typical sizes of I∗ and I in number of

events as collected with VALGRIND. It reports the cumu-

lative number of all events observed (i.e., if a method is

called 10 times, then 10 events are counted), including Java

method calls and C functions but not system calls or sys-

tem library calls. We are not interested in features related

to browser startup and shutdown, so we do not distinguish

I∗ and I in these particular scenarios. We decompose

Scenario 1 and 2 between methods called during browser

startup (i.e., I) and the action to access a bookmark (i.e.,

I∗). The focus of the program understanding task is to

identify classes and methods which characterise Scenario

2, which are part of the 36,105,209 I∗ method calls.

We create a formal context C = (O, A,R) for Scenario

1 and Scenario 2 following the approach presented in [7].

We consider I∗ and I for Scenario 1 and 2 as four sub-

scenarios. A, the set of attributes, contains four symbols to

represent I∗ and I for Scenario 1 and Scenario 2. O, the

set of objects, contains all distinct methods activated when

exercising Scenario 1 and Scenario 2. There are about

30,000 distinct methods present in the I∗ and I sets for

Scenario 1 and Scenario 2. R is a binary relation; a pair

(o, a) is in R if the method m ∈ O is called when the sub-

scenario s ∈ A is performed.

The resulting lattice contains 11 concepts (excluding top

and bottom); concepts ranges with a minimum of 13,325

and a maximum of 26,613 contained methods. Concepts

inspection is difficult given the number of contained meth-

ods. A more realistic approach is to inspect set difference

of attribute sets (i.e., sets of methods). We target methods

used to save one bookmark, which should be present only

in one concept, because we are interested in Scenario 2. A

poor strategy is to consider the union of pairwise set differ-

ences between the 11 concepts, because this union contains

15,125 different methods.

A more careful manual inspection identifies in one con-

cept the attributes specific to Scenario 2 I∗. Thus another

approach could be to compute the union of pairwise set dif-

ferences between this one concept and the other 10 con-

cepts. This approach reduces the number of methods to be

inspected, but still the number lies in the range of thousands.

An efficient manual inspection consists in inspecting the

lattice to identify concepts corresponding to the I∗ sets of

Scenario 1 and Scenario 2 and to compute set difference

between these two concepts only. Thus, 1,038 methods are

retained: These are candidate methods to implement Sce-

nario 2 specific functionality.

Above considerations support the idea that concept anal-

ysis is a powerful tool but results can be discouraging and

need to be complemented by heuristics or other approaches

to focus the search. Concept analysis is more selective and

better narrows the search than a naive approach. However,

it suffers of the problem of set difference.
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Similar results were obtained when JPROF traces were

analysed, JPROF data are not reported due to lack of space.

4.5 Results with our Approach

We use the collected data, in Table 3, to filter MOZILLA

architectural model and to extract two micro-architectures

corresponding to Scenario 1 and to Scenario 2.

Starting the browser, waiting for the main window to ap-

pear, and closing the browser corresponds to a functionality

and a feature included in both Scenario 1 and Scenario 2

but irrelevant to the features of interest. Mouse and widget

events are also noise irrelevant to the program understand-

ing task.

Thus, as explained in Figure 1, we use events in the I∗

and I sets for Scenario 1 and Scenario 2, in Table 3, to de-

fine a knowledge-based filter to reduce noise. We consider

methods present in both I∗ and I sets with a frequency

higher than the lower quartile as irrelevant to Scenario 1

and Scenario 2.

The I and I∗ sets in Table 3 contain 28,654 and 23,733

distinct called methods respectively. Out of 28,654 called

methods in I (23,733 in I∗, respectively), there are 17,758

methods matching the filtering criterion (i.e., present in I
and I∗ with a frequency greater than the lower quartile). We

flag these 17,758 methods as irrelevant and exclude them

from further consideration. We assume a situation with no

previous knowledge (accumulated, domain, or application).

We remove simply events that are unlikely to participate in

the features (if they participated, they would be hardly ever

distinguishable from the noise).

Method calls (distinct called methods)

in I
∗ in I

Startup 0 (0) 1,161,419 (6,995)

Shutdown 0 (0) 3646 (1,824)

Scenario 1 14,428 (5,551) 1,168,879 (6,984)

Scenario 2 6,592 (2,796) 1,178,330 (9,051)

Table 4. Mozilla v1.5.1 Valgrind I∗ and I fil­
tered sizes

Filtering the noise reduces dynamic data sizes consid-

erably. Table 4 reports the data in Table 3 with irrelevant

method calls removed. We use these dynamic data to cre-

ate a ranked list of methods, according to equation 1 and 2.

Both equations highlight 274 events of type e∗i , i.e., meth-

ods that are specific to Scenario 2. These methods belongs

to about 80 different classes (see Table 6). The actual num-

ber of different classes depends on how we count templates,

i.e., if we consider nsCOMPtr<nsIRollupListener>

as atomic or as composed of two classes nsCOMPtr and

nsIRollupListener and thus contributing twice.

On the contrary to the naive approach, our approach

allows ranking, with the relevance index, the classes and

methods contributing to a micro-architecture implementing

a feature. Clearly, the 274 events of type e∗i belong to the

set of the 1,038 events discovered by concept analysis. The

e∗i events are feature-specific and can also be discovered

through set operations.

t

E
∗

t
size

(i.e., number of methods)

Equation 1 Equation 2

100.00% 274 274

99.90% 274 295

99.00% 274 2,273

98.00% 274 2,626

97.00% 274 2,697

96.00% 274 2,760

95.00% 274 2,796

90.00% 274 2,796

50.00% 515 2,796

Table 5. Mozilla v1.5.1 E∗
t size with different t

for Scenario 2 with Valgrind

E
∗

1
JPROF VALGRIND

Added classes 147 10

Removed classes 144 3

Modified behaviour 691 73

Table 6. Mozilla v1.5.1 scenarios overall class

differences

Classes and methods counted in Table 5 and Table 6

are the result of feature identification to identify Scenario

2 micro-architecture. This micro-architecture implements

the functionality of interest and thus program understand-

ing is limited to its classes. There are 274 methods par-

ticipating exclusively to Scenario 2 (i.e., with a relevance

index of 100.00% elements of E∗
1 ) when using VALGRIND,

these methods belong to 10 + 3 + 73 = 86 classes. These 86

classes are the classes that a maintainer must inspect. The

86 classes must be compared to the 878 classes containing

the 2,796 methods when using a threshold 50.00%

As shown in Table 5, Equation 2 weights events

in a different way than Equation 1. For example,

method nsMenuFrame::IsMenu() appears one time

in I and two times in I∗, Equation 2 relevance in-

dex is 99.92% while Equation 1 index is 66.66%.

Further insight is gained when considering method

morkFile::FileIoOpen(), which appears two times

in both I and I∗ sets in Table 4. Equation 2 gives an in-

dex of 99.85% because I∗ contains 6,592 (2,796 distinct)

method calls and I contains 4,698,914 (10,392 distinct)

methods calls, while Equation 1 gives an index of 50.00%

regardless of the higher frequency of the method in I∗ with

respect to I.
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Figure 2. Example of feature comparison for
Scenario 1 and Scenario 2

The number of classes and methods that a maintainer

must inspect is further reduced substantially if the inspec-

tion process is driven by the semantics conveyed by names

of classes, fields, and methods. If we apply a strategy

similar to the naive approach to classes and methods in

Table 6, the number of classes to be inspected is narrowed

dramatically. Only one class with modified behaviour is

highlighted: Class nsBookmarksService, belongs to

both Scenario 1 and Scenario 2, in Scenario 2 it adds

to the micro-architecture of Scenario 1 calls to methods:

AddBookmarkImmediately, CreateBookmark,

CreateBookmarkInContainer, InsertResour-

ce, and getFolderViaHint. Another modified class

nsComputedDOMStyle and a method AddRef are also

highlighted, but we discard the method AddRef form

inspection immediately because it has no parameter.

The effort required to build mental models and abstrac-

tions or to verify conjectures may be alleviated by the adop-

tion of environments and tools supporting program under-

standing tasks. Figure 2 shows the user-interface of the

PTIDEJ tool suite, which highlights differences between the

feature of Scenario 1 and Scenario 2. Our approach al-

lows maintainers to identify differences between features

precisely. However, the precision of feature comparison is

influenced by the precision of the tools collecting the data

dynamically: A less precise tool leads to a larger number of

classes, methods, and fields to be inspected.

Scenario 1 Scenario 2

JPROF VALGRIND JPROF VALGRIND

Classes 973 2,216 1,179 2,223

Methods 6,170 24,246 6,407 24,409

Table 7. Mozilla v1.5.1 data for Scenario 1 and
Scenario 2

4.6 Discussion

Table 7 summarises the data collected with the two tools.

Table 7 represents the worst case scenario when I∗ and I
are not distinguished. It is not a surprise that JPROF and

VALGRIND results are different. However, such a big dif-

ference may represent a serious problem for approaches

based solely on set operations or concept analysis. In

fact, we cannot be sure that a relevant event is always col-

lected. A careful investigation of Scenario 2 JPROF dy-

namic data revealed that out of 20 scenario repetitions,

the event AddBookmarkImmediatelywas not sampled

four times, which is about a 20.00% error. This fact also

calls for more complex and sophisticated approaches with

respect to approaches based on set intersection or set differ-

ences. The difference between VALGRIND and JPROF, in

Table 7, and the above consideration show that JPROF data

are under sampled and that more executions are needed to

collect data equivalent to VALGRIND. However, further in-

vestigation is needed to validate our conjecture and to es-

tablish guidelines on how many samples should be reason-

ably collected if a profiler or statistical sampling are used.

Moreover, statistical sampling also affects relevance index

values: Under sampling a relevant index potentially results

in a larger number of candidate events to inspect during pro-

gram understanding tasks.

5 Conclusion

We proposed an approach to feature identification and

comparison based on consolidated tools and techniques

such as parsing, processor emulation, and reverse engineer-

ing, to integrate static and dynamic data to support program

understanding of large multi-threaded object-oriented pro-

grams. We compared the usefulness of our approach to

identify classes, fields, and methods supporting a function-

ality of the MOZILLA web browser (3.70 MLOC) to save a

visited page with a naive grep-based approach and with an

approach relaying on concept analysis.

Our approach allows reducing the quantity of data to pro-

cess and thus has no scalability issues. It produces a ranked
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list of methods and classes participating in a feature and it

can be extended to study feature evolution easily. It allows

extracting and studying any micro-architecture and compar-

ing micro-architectures evolutions.

We will devote future work to study the influence of

increased depth of micro-architectures, to define results

of features comparisons precisely, and to study alternative

means, such as layered views, to improve features inspec-

tions.
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