
Ptidej: A Flexible Reverse Engineering Tool Suite
Demonstration – Approach

Yann-Gaël Guéhéneuc
Département d’informatique et de recherche opérationnelle

Université de Montréal – CP 6128 succ. Centre Ville
Montréal, Québec, Canada, H3C 3J7

guehene@iro.umontreal.ca

Abstract

The Ptidej project started in 2001 to study code
generation from and identification of design patterns.
Since then, it has evolved into a complete reverse-
engineering tool suite that includes several identifica-
tion algorithms for idioms, micro-patterns, design pat-
terns, and design defects. It is a flexible tool suite
that attempts to ease as much as possible the develop-
ment of new identification and analysis algorithms. In
this demonstration, we first present the key features of
the tool suite and several identification algorithms. We
then discuss the architecture and design choices of the
tool suite and lessons learned in developing the suite.

1 Context

Maintenance of object oriented systems is a major
concern both in industry and research. Despite the
promises of object oriented (OO) programming, main-
tenance of OO systems amounts to 50 percent of the
cost of programs and maintainers spend 75 percent of
their time understanding code and documentation.

Maintainers must be aware of the design choices
made during development to modify adequately a sys-
tem. In particular, design choices include the structure
of and relationships among classes.

However, design choices are often scattered in the
code because, with available OO programming lan-
guages, they do not transcribe directly into code: de-
velopers usually must write many lines of code to im-
plement their choices. Moreover, documentation, if
any, is often obsolete.

Consequently, design choices are recovered manu-
ally, which is time and resource consuming. Fortu-
nately, design choices are often implemented by follow-
ing recurring patterns.

2 Problem
Maintainers need tools to recover design choices

from code based on their originating patterns. These
tools must be semi-automated considering the large
size of current OO systems. There exist several types
of patterns. Of interest in this demonstration are id-
ioms, micro-patterns, design patterns, and design de-
fects (code smells and antipatterns).

Idioms are low-level patterns specific to some pro-
gramming languages and to the implementation of par-
ticular characteristics of classes or their relationships.
They are intra-class patterns describing typical imple-
mentation of, for example, relationships, object con-
tainment, and collection traversal.

Micro-patterns have been recently introduced [6] as
well-defined idioms pertaining to the design of classes
in object-oriented programming.

Design patterns [5] are recurring inter-class patterns
that define solutions to common design problems in the
organisation of classes. They are defined in terms of
classes and relationships using idioms.

Design defects are the “opposite” of design patterns.
They describe “bad” solutions to recurring design prob-
lems. They can be low-level and are then called code
smells [4] or higher-level, such as antipatterns [1].

3 Related Work
Several researchers have tackled the problem of iden-

tifying design choices and patterns. We cite here only
three well-known tools for lack of space.

FAMOOS [2] is a complete and industrial-strength
reverse-engineering environment based on Smalltalk. It
includes a language-independent meta-model, FAMIX,
and various identification algorithms. It is under con-
stant development and evolution and has been used by
many researchers across the world.

IntensiVE [9] is an environment that seamlessly in-
tegrates with a software development environment to
support the definition, manipulation, and verification

1



of intensionally defined sets of source code entities. It
uses the SOUL [11] declarative meta-programming lan-
guage, which has been used to identify design patterns.

Fujaba [10] provides an easy to extend UML, story-
driven modelling, and graph transformation platform
with the ability to add plug-ins. Experiments has been
performed to add a pattern identification plug-in.

However, to the best of our knowledge, no existing
tool offers algorithms to identify all the patterns of in-
terest in this demonstration.

4 Solution

We demonstrate the Ptidej tool suite, a reverse-
engineering environment designed to ease the develop-
ment of pattern identification algorithms.

The main abilities of the tool suite are its flexibil-
ity and extensibility to allow various algorithms to live
and interact harmoniously. As of 2007, the tool suite
includes algorithms for idioms, micro-patterns, design
patterns, and design defects.

The core of the tool suite is the PADL meta-model
to represent OO systems and patterns with a unified
language, which includes all constructs found in main-
stream OO programming languages and is easily ex-
tensible. It includes parsers to built models of systems
in AOL, C++, and Java.

Atop PADL are several levels of analyses, which de-
pend on the data required by the analyses. The first
level consists of PADL analyses performed directly on
models of systems and patterns. It includes analyses
to enrich a model with data on accessors and binary
class relationships [8]. It also includes analyses to gen-
erate UML models where classes, methods, and fields
are stereotyped according to the UML v1.5 specifica-
tions [7]. Finally, the identification of micro-patterns
is defined as a PADL-level analysis.

The second level of analyses consists of UI-related
analyses performed on models of systems and patterns
to change their graphical representations. It includes
analyses to highlight the differences between two mod-
els at the method- and class-levels. It also includes the
identification of design patterns and defects.

Finally, the third level of analyses consists of UI
extensions, allowing a richer interaction between the
analyses and the user. It allow exporting models to
external tools such as Dotty or Sugibib [3] as well as
annotating models with user data.

The main novelties shown in this demonstration are
the new user interface and its Sugiyama-based layout
algorithm. We also show the model browser that allows
analysing and displaying models of large systems.

5 Lesson Learned and Conclusion
The Ptidej tool suite attempts to ease the develop-

ment of pattern identification algorithms; through its
development we have learned several lessons.

First, flexibility is of major importance when de-
veloping a research tool. Future needs and research
directions are unknown and thus it is important to
divide the implementation into manageable, indepen-
dent packages. The layered architecture is certainly the
most suitable architecture.

Second, stability, in particular of the core level, is
crucial to allow students and researchers to work with
the tool suite. Indeed, students and researchers are
“tough customers” who may be very demanding and
loose interest quickly in front of buggy tools.

Finally, usability is a major concern. More and
more, researchers are asked to create link with indus-
try; involve B.Sc., M.Sc., and Ph.D. students; and
share their tools. A usable UI helps in fostering a re-
search community and disseminating ideas but is a real
challenge to implement in a flexible way. For that rea-
son, we choose to maintain our own tool suite rather
than depend on third-party tools, such as Eclipse.

References
[1] W. J. Brown, R. C. Malveau, W. H. Brown, H. W. M. III,

and T. J. Mowbray. Anti Patterns: Refactoring Software,
Architectures, and Projects in Crisis. John Wiley and Sons,
1st edition, March 1998.

[2] S. Demeyer, S. Ducasse, and S. Tichelaar. Why unified is not

universal. In proceedings of the 2nd UML conference, pages
630–644. Springer-Verlag, October 1999.

[3] H. Eichelberger. The syntax of UMLscript. Department of
Computer Science, University of Wuerzburg, October 2002.

[4] M. Fowler. Refactoring – Improving the Design of Existing
Code. Addison-Wesley, 1st edition, June 1999.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns – Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1st edition, 1994.

[6] Y. Gil and I. Maman. Micro patterns in java code. In proceed-

ings of the 20th conference on Object-Oriented Programming
Systems Languages and Applications, pages 97–116. ACM
Press, October 2005.

[7] Y.-G. Guéhéneuc. A systematic study of UML class diagram
constituents for their abstract and precise recovery. In Pro-
ceedings of the 11th Asia-Pacific Software Engineering Con-
ference. IEEE Computer Society Press, November-December
2004.

[8] Y.-G. Guéhéneuc and H. Albin-Amiot. Recovering binary class
relationships: Putting icing on the UML cake. In Proceed-
ings of the 19th conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 301–314. ACM
Press, October 2004.

[9] K. Mens, A. Kellens, F. Pluquet, and R. Wuyts. Co-evolving
code and design with intensional views – a case study. In Com-
puter Languages, Systems, and Structures, June 2006.

[10] J. Niere, J. P. Wadsack, and A. Zündorf. Recovering UML di-
agrams from Java code using patterns. In proceedings of the
2nd workshop on Soft Computing Applied to Software Engi-
neering, pages 89–97. Springer-Verlag, February 2001.

[11] R. Wuyts, K. Mens, and T. D’Hondt. Explicit support for soft-
ware development styles throughout the complete life cycle.
Technical Report Vub-Prog-TR-99-07, Programming Technol-
ogy Lab, Vrije Universiteit Brussel, April 1999.

2


