
An Empirical Study of the Relationships between
Design Pattern Roles and Class Change Proneness

Massimiliano Di Penta1, Luigi Cerulo1, Yann-Gaël Guéhéneuc2, and Giuliano Antoniol3
1 RCOST – Department of Engineering, University of Sannio, Italy

2 Ptidej Team – GEODES Lab. – DIRO, Université de Montréal, Québec, Canada
3 SOCCER Lab. – DGIGL,́Ecole Polytechnique de Montréal, Québec, Canada

Abstract

Analyzing the change-proneness of design patterns and
the kinds of changes occurring to classes playing role(s) in
some design pattern(s) during software evolution poses the
basis for guidelines to help developers who have to choose,
apply or maintain design patterns. Building on previous
work, this paper shifts the focus from design patterns as
wholes to the finer-grain level of design pattern roles.

The paper presents an empirical study to understand
whether there are roles that are more change-prone than
others and whether there are changes that are more likely
to occur to certain roles. The study relies on data extracted
from the source code repositories of three different systems
(JHotDraw, Xerces, and Eclipse-JDT) and from 12 design
patterns. Results obtained confirm the intuitive behavior
about changeability of many roles in design motifs, but also
warns about properly designing parts of the motif subject to
frequent changes.

1 Introduction

The design pattern idea is likely to be one of the most
relevant contributions to the field of software engineeringin
the past 20 years; the book of Gammaet al.[9] is one of the
most influential software engineering book; it has deeply
changed object orientation with a profound influence on the
way of designing and developing object oriented software.

Design patterns [9] are solutions to recurring problem in
software system design that help in improving reusability,
maintainability, comprehensibility, and robustness. Design
patterns suggestdesign motifs, which are prototypical solu-
tions to design problems. The application of design patterns
in a system results inoccurrencesof their motifs being dis-
seminated in its source code. Despite 13 years passed from
the Gammaet al. book [9] publication, many fundamen-
tal questions still remain unanswered. Design patterns are
expected to promote software evolution; they easy mainte-

nance tasks by explicitly identifying class roles and by lo-
calizing where extension and changes should occur.

This paper presents a study of the evolution of classes
playing different roles in design motifs to understand
whether (i) there are roles that are more change-prone than
others and (ii) there are some kinds of changes that oc-
cur more to certain roles than to others. Kinds of changes
include: change to method implementation, method addi-
tion/removal, attribute addition/removal, and extensionby
subclassing. Gammaet al.’s book [9] provides hints on
the changeability of classes playing roles in different mo-
tifs but, to the best of our knowledge, no empirical study
has been performed to verify if the current practice confirm
the intuition of these authors or to assess if different roles
for a given pattern behave differently in term of kinds and
frequency of changes. Deviation from the expected theo-
retical or logical change behavior may indicate a poor un-
derstanding or an improper patterns usage, as well as an
extension from intended initial pattern design to new ap-
plications. Empirical evidence on kinds and frequency of
changes in different pattern roles is crucial to conceive and
design a new generation of recommender systems [19] aim-
ing at supporting object-oriented design pattern evolution
and maintenance.

Recently, Aversanoet al. presented a study on the evolu-
tion of design motifs in three different systems [2], with the
objective of investigating (i) how frequently design motifs
change, (ii) what kinds of changes different motifs are sub-
ject to, and (iii) what is the ability of motifs to make a sys-
tem more robust to change. This previous study considered
the occurrences of the motifs as “wholes” and inferred the
characteristics of the changes from all the classes playing
roles in the motifs. It did not analyze whether classes play-
ing different roles exhibited different change frequency,and
different kinds and amount of changes. This study builds
upon and extends the previous contribution.

The empirical study is performed using three different
systems from three different domains: JHotDraw, Xerces,
and Eclipse-JDT, and the 12 design patterns presented in Ta-



ble 2. The design motif identification was performed using
the DeMIMA approach and tool [12]; DeMIMA not only
identifies the classes, but also the different roles played by
classes in occurrences of motifs. We report new evidence on
kind and frequency of changes; evidence often confirms the
intuitive behavior—e.g., concrete classes tend to be more
subject to changes than abstract classes—but sometimes, in
a few more complex cases, it contradicts the expected intu-
itive behavior. Results suggest that developers must care-
fully design classes playing within a motif roles that will
likely be subject to frequent changes and kinds of changes
(e.g., in the method interfaces) that will likely impact else-
where in the system.

This paper is organized as follows. Section 2 presents
related work. Section 3 summarizes the design motif iden-
tification approach. Section 4 describes the extraction of
the data required to perform the empirical study. Section
5 describes the context and research questions of the study.
Section 6 reports the results of the study. Section 7 provides
a discussion of the results and of threats to their validity.Fi-
nally, Section 8 concludes and outlines future work.

2 Related Work

Historical data on the changes of open-source systems
allowed researchers to empirically investigate on the evo-
lution of various software entities, such as clones [10, 14]
or design motifs [2]. Some studies considered changes be-
tween releases, i.e., stable snapshots released after some
amount of changes, while others exploited the historical
data available in versioning systems, such as CVS or SVN.
This data describes changes close in time and represents
the developers’ activities, such as bug fixing, refactoring,
feature enhancement [8]. Such data has been used to pre-
dict change propagation [23, 24], identify cross-cutting
concerns [4, 5], detect logical coupling among modules
[8], identify common error patterns [17], or identify fix-
inducing changes [15].

Biemanet al. [3] analyzed four small systems and one
large system to study the change proneness of classes play-
ing roles in some design motifs. In this paper, we perform a
finer-grain study that distinguishes among different kindsof
changes. Also, we distinguish each role played by a class.
Vokáč [21] analyzed the corrective maintenance of a large
commercial system over three years, comparing the defect
rates of classes participating in design motifs against those
that did not. He found that participating classes are less
bug prone than others. We cast the study in this paper into
both corrective maintenance and evolution tasks, and con-
sider the roles of the classes.

Precheltet al. [18] performed a series of controlled ex-
periments to compare design motifs with alternative, sim-
pler solutions to assess their impact on maintenance tasks.

They concluded that design motifs could be beneficial to
developers if, when applying design patterns, they would
document their choice and evaluate alternatives solutions.
Our study has a different perspective, by analyzing changes
performed to classes playing roles in design motifs during
the evolution of a software system.

Several design motif identification approaches have been
proposed in the past. Krameret al. [16] and Antoniolet
al. [1] applied graph matching techniques to class diagrams
and were able to identify occurrences of some structural
design motifs. Tsantaliset al. [20] used graph similarity
measures to identify occurrences of structural design motifs
but a careful study of the identified occurrences revealed
some imprecision. Costagliolaet al. [6] used a visual lan-
guage parsing technique to identify occurrences of design
motifs with a high precision and recall but medium scala-
bility. Heuzerothet al. [13] combined static and dynamic
analyses of class diagrams and execution traces. The accu-
racy of their approach is low, especially for occurrences that
are not executed in the dynamic analysis.

Overall, no previous study addressed the same or similar
questions to those reported in Section 5 providing evidence
of the kind and frequency of changes in different design
pattern roles.

3 Detection Approach

We use our Design Motif Identification Multi-layered
Approach (DeMIMA) to identify occurrences of design mo-
tifs [12]. A design motif is typically a class diagram de-
scribing the solution to the recurring problem addressed by
a design pattern. By design, DeMIMA ensures 100% recall
and has been found to have up to 80% of precision, with an
average of 34% for the 12 design motifs in Table 2.

In DeMIMA each design motif to be identified is mod-
elled using a meta-model, PADL. The instances of PADL
describe each motif in terms of the roles, methods, associa-
tions and inheritance relationships among roles.

Wee apply DeMIMA to identify and reify occurrences of
the motifs in the source code of a program. DeMIMA uses
explanation-based constraint programming to provide auto-
matically explanations on the identified occurrences and in
particular the roles and relationships in micro-architecture
implementing an occurrence of a motif. More details can
be found in [11, 12].

4 Data Extraction Process

The process followed to extract data is similar to the pro-
cess used in our previous work [2], although here we rely on
the DeMIMA [12] design motif discovery tool instead of us-
ing tool provided by Tsantaliset al. [20], since the former
is able to identify all the roles of each motif.



In the first step of the approach we used DeMIMA to
identify occurrences of design motifs on each release of the
systems under study. DeMIMA identifies each role for each
design motif and the class(es) playing these roles.

Once design motifs have been identified, motif occur-
rences are traced across releases. We infer the evolution
across releases of each identified occurrences making the
following assumption. An occurrence identified in release
Rj+1 is an evolution of an occurrence inRj if and only if
they share the sets of classes participating to their “main”
roles (see Table 2). We define main roles based on Gamma
et al.’s book [9] and our own experience. Table 2 presents
the main roles of each motif. Thus, we can follow the evolu-
tion of occurrences across releases as “wholes”, for example
to identify when an occurrence was introduced and when it
was modified and/or removed.

In parallel to the previous activities, snapshots are ex-
tracted and change sets identified. We group file revisions
extracted from CVS/SVN repositories in sets of logically
coupled changes performed by developers using Gallet al.’s
technique [8]. Gallet al. consider the evolution of a system
as a sequence ofsnapshots(S0, S1, . . . , Sm) generated by
a sequence ofchange sets(∆1, ∆2, . . ., ∆m). Change sets
represent the logical changes performed by developers in
terms of added, deleted, and changed source code lines.

Change sets can be extracted from a CVS/SVN history
log using different approaches. We adopt a time-windowing
approach that considers a∆k as a sequence of file revisions
that share the same author, branch, and commit notes, and
with a difference between timestamps of less than 200 sec-
onds [24]. In such a way we are able to compute the differ-
ence between two subsequent snapshots and identify which
files have been changed by a developer.

Finally, we identify the changes to occurrences by using
the change sets. We determine in which snapshot a classci

participating to an occurrence has been changed by compar-
ing the class revision in snapshotsSj−1 andSj . This com-
parison aims at identifying: (1) addition/removal/change
of/to attributes and associations; (2) addition/removal of
methods or changes to their signatures; (3) changes in
method implementation; and (4) addition/removal of sub-
classes. The presence of at least one difference between
ci,j−1 andci,j indicates that the classci, and thus the oc-
currence in which it plays a role, has been changed with
respect toSj .

5 Empirical Study Design

The goal of our study is to perform a fine-grain analy-
sis of the evolution of classes playing roles in occurrences
of design motifs, with thepurposeof determining whether
some roles are (i) more change prone, (ii) more subject to a
particular kind of changes. Thequality focusis the change-

Table 1. Characteristics of the Systems
SYSTEMS SNAPS RELEASES KNLOC CLASSES

JHotDraw 177 5.2–5.4B2 13.5–36.3 164–489
Xerces-j 4952 1.3.1–1.4.3 35.4–294.1 162–1395
Eclipse-JDT 23424 1.0–3.1 205.5–535.5 2089–6961

ability of classes playing some roles. Theperspectiveis
that of both researchers and practitioners to understand class
change proneness with respect to design motifs and the rest
of the system. Thecontextis the analysis of design mo-
tif evolution in three object-oriented open-source systems:
JHotDraw, Eclipse-JDT, and Xerces.

Table 1 highlights the main characteristics of the the sys-
tems we analyzed. Table 2 briefly describes all the motifs
detected by DeMIMA that were object of our study and, for
each motif, the main roles used to trace the motif across
releases are listed.

JHotDraw1 is a Java framework for drawing 2D graph-
ics. The framework came to existence in October 2000
with the purpose of illustrating the use of design patterns.
We extracted a total of 177 snapshots from release5.2 in
March 2001 to release5.4b2 in February 2004. The size
of the framework grew almost linearly from13.5 KNLOC
(i.e., 1000 non commented lines of code) at release5.2 to
36.5 KNLOC at release5.4b2. 72 Observers, 51 Adapters,
3 Singletons, 50 Template Methods, 2687 Abstract Facto-
ries, 25 Decorators, 30 States, 43 Commands, 465 Factory
Methods, 64 Composites, and 1 Visitor were extracted from
releases5.1, 5.2, 5.3, 5.4b1, and5.4b2. Here and in the fol-
lowing, the number of instances (e.g., 25 Decorators) refers
to the number of different instances of different design mo-
tifs detected in all releases; if the same design motif with
the same roles is detected in multiple releases it is counted
just once.

Xerces-j2 is a Java XML parser. The project started in
1999 from an initial code base of IBM’s XML4J. We ex-
tracted a total of4, 952 snapshots from release1.3.1 in July
2000 to release1.4.3 in August 2001. The system grew al-
most linearly from35.4 to 294.1 KNLOC. 65 Observers, 57
Adapters, 63 Template Methods, 3958 Abstract Factories,
46 States, 76 Commands, 239 Factory Methods, 13 Com-
posites, and 12 Visitors were extracted from releases1.3.1,
1.4.0, 1.4.1, 1.4.2, and1.4.3.

Eclipse-JDTis a set of plug-ins that provides the capa-
bilities of a full-featured Java IDE to the Eclipse platform3.
This set of plug-ins is entirely in Java and its CVS reposi-
tory is divided into three types of releases: stable, integra-
tion, and nightly builds. We extracted19, 750 snapshots in
the time interval between November 2001 and June 2004,
when Eclipse3.0 was released. The size of the set grew al-

1http://www.jhotdraw.org
2http://xerces.apache.org/xerces-j
3http://www.eclipse.org



Table 2. Design patterns and the main roles of their motifs
PATTERNS DESCRIPTIONS MAIN ROLES

Abstract Factory Provides an interface for creating families of related or dependent objects without specifying their concrete
classes

Abstract Factory, Abstract Product

Adapter Converts the interface of a class into another interface clients expect. Adapter lets classes work together that
couldn’t otherwise because of incompatible interfaces

Target, Adapter, Adaptee

Command Encapsulates a request as an object, thereby letting you parameterize clients with different requests, queue or log
requests, and support undoable operations

Invoker, Command, Client

Composite Composes objects into tree structures to represent part-whole hierarchies. Composite lets clients treat individual
objects and compositions of objects uniformly

Composite, Component

Decorator Attaches additional responsibilities to an object dynamically. Decorators provide a flexible alternative to sub-
classing for extending functionality

Component, Decorator

Factory Method Defines an interface for creating an object, but let subclasses decide which class to instantiate. Factory Method
lets a class defer instantiation to subclasses

Creator, Product

Observer Defines a one-to-many dependency between objects so that when one object changes state, all its dependents are
notified and updated automatically

Subject, Observer

Prototype Specifies the kinds of objects to create using a prototypicalinstance, and create new objects by copying this
prototype

Prototype

Singleton Ensures a class only has one instance, and provide a global point of access to it Singleton
State/Strategy Allows an object to alter its behavior when its internal state changes / Define a family of algorithms, encapsulate

each one, and make them interchangeable
State/Strategy, Context

Template Method Defines the skeleton of an algorithm in an operation, deferring some steps to subclasses. Template Method lets
subclasses redefine certain steps of an algorithm without changing the algorithm’s structure

Abstract Class

Visitor Represents an operation to be performed on the elements of anobject structure. Visitor lets you define a new
operation without changing the classes of the elements on which it operates

Visitor, Element

most linearly from205.5 KNLOC to 449.4 KNLOC, while
the number of classes doubled in the first year and then grew
almost linearly in the following two years. 390 Observers, 6
Singletons, 478 Adapters, 541 Template Methods, 297 Dec-
orators, 317 States, 544 Commands, 4872 Factory Methods,
149 Composites, and 66 Visitors were extracted from re-
leases1.0, 2.0, 2.1, 2.1.2, and2.1.3.

The high number of Factories (both Abstract and
Method) detected in each system is mainly due to the fact
that we consider as participants also classes coming from
java.* packages.

5.1 Research Questions

This empirical study aims at answering the following re-
search questions:

• RQ1 – Change frequency:Are classes playing a par-
ticular role in a given design motif more change-prone
than classes playing other roles?

• RQ2 – Kind of change: Are classes playing a partic-
ular role in a given design motif more subject to par-
ticular kinds of changes?

5.2 Analysis Method

We use different kinds of statistical analyses—
performed using the R statistical environment4—to answer
the research questions:

• RQ1: We compare the differences in terms of num-
ber of changes among different roles of all occur-
rences of a motif using Kruskal-Wallis test, which is

4http://www.r-project.org

a non-parametric test for testing the difference among
multiple medians. We use the non-parametric Mann-
Whitney test to perform pair-wise comparisons among
motifs. We correct the significance level (95% in
all the tests) using Bonferroni correction,i.e., divid-
ing the significance by the number of tests performed
(the number of combinations across roles), because the
presence of significant differences implied a compari-
son among all roles for a particular motif. For sake of
simplicity, we report corrected p-values,i.e., p-values
multiplied by the number of tests performed.

• RQ2: We use proportion test to investigate whether
the proportion of changes of a given kind significantly
varies across roles of all occurrences of a given motif.

6 Empirical Study Results

Due to the lack of space, we now report the most interest-
ing results and figures of our empirical study. The interested
reader can access the complete study in [7].

6.1 RQ1 – Change frequency

Figure 1, for some selected design motifs of the three
systems, shows change frequency per roles in the set of an-
alyzed snapshots.

In JHotDraw, the Kruskal-Wallis test indicates that only
Abstract Factory (Figure 1-a, p-value< 2.2 · 10−16) and
Factory Method (p-value= 6.5 · 10−7) exhibit signifi-
cant differences among roles. For the Abstract Factory,
the Concrete Factory role exhibits a significantly higher
number of changes than the Abstract Factory role (p-value
= 1.3 · 10−15). For the Factory Method, the Concrete



���������	
 ����������������������������������������������������������
������������������������

(a) JHotDraw – Abstract Factory

� !"#$%&'() *+,+-.+*-/.01+*,0/,*+2+,0334/5,0334/5,6-+/2
789799:89:99899

(b) Xerces – Command

;<=>?@ABCDE FGHGIJKLGIMGJKLJNIGIFGHGI
OPQOQQRPQRQQPQQ

(c) Xerces – State

STUVWXYZ[\] _̂̀ab̂cdebf̂_gh_̂bb_g_ĥb̀
ijjkjjljjmjjnjjj

(d) Eclipse-JDT – Adapter

opqrstuvwxy z{|}~��}~|}�|~{�{z{|}~��}~|}�|~{�{|}��}�{��|}��}�{��
����������������

(e) Eclipse-JDT – Decorator

����������� ����������������������� ��������������¡�������
¢££¤££¥££¦££§£££

(f) Eclipse-JDT – Observer

Figure 1. Examples of significant change frequency among rol es.

Creator role changes more than the Creator role (p-value
= 0.04).

In Xerces, significant differences exist for Abstract Fac-
tory (p-value< 2.2 · 10−16), Factory Method (p-value
= 4.1 · 10

−8), Command (Figure 1-b, p-value= 0.01),
State (Figure 1-c, p-value= 0.004), and Composite (p-
value= 0.0008). For Abstract Factory, similarly to JHot-
Draw, the Concrete Factory role changes more than the Ab-
stract Factory role (p-value= 1.3 · 10−15). For Factory
Method, similarly to JHotDraw, the Concrete Creator role
changes more than the Creator role (p-value= 2.4 · 10−7).
For Command, the Client role changes more than the Com-
mand role (p-value= 0.02). In State/Strategy, the Concrete
State changes more than the State role (p-value= 0.04). Fi-
nally, for Composite, the Composite role changes more than
the Component role (p-value= 9.1 · 10

−4).
In Eclipse-JDT, we identify significant differences

among roles for several motifs, also considering that the
number of motifs instances and of snapshots was higher
than for other systems:

• Adapter (Figure 1-d, p-value= 3.7 · 10−6): the Client
(p-value= 1.7 · 10−5) and Adapter roles (p-value=
0.007) change more than the Target role;

• Composite (p-value= 0.0002): the Composite role
changes more than the Component role (p-value=

9.2 · 10−5);

• Decorator (Figure 1-e, p-value< 2.2 · 10−16): the
Component (p-value= 5.9 · 10−7), Concrete Deco-

rator (p-value= 1.3 ·10−15) and Concrete Component
(p-value< 2.2 ·10−7) roles change more than the Dec-
orator role; the Concrete Component change more than
the Component role (p-value= 3.9 · 10−4);

• Factory Method (p-value< 2.2 · 10
−16): the Con-

crete Creator role changes more than the Creator role
(p-value= 1.3 · 10−15); the Concrete Product role
changes more than the Product role (p-value= 6.5 ·

10−6);

• Template Method (p-value= 2.9 · 10−6): the Client
role changes more than the Abstract Class role (p-value
= 4.0 · 10−6);

• Command (p-value= 1.7 · 10
−6): the Client role

changes more than the Command role (p-value6.2 ·

10−6);

• Observer (Figure 1-f, p-value= 3.1 · 10−11): the Con-
crete Observer role changes more than the Observer
role (p-value= 5.5 · 10−13);

• State (p-value= 0.02): the Context role changes more
than the State role (p-value= 0.004).

6.2 RQ2: Kind of Change

In JHotDraw, we find that for all motifs, but Decorator
and Prototype, classes playing any role mostly change be-
cause of (M)ethod addition/removal. Proportions are be-
tween 52% and 81%. For Abstract Factory (p-value<



����������	
������� ����������������������������������������������������
����� �!�"�� #$

%
# &$%#&$

%
# &$%
(a) JHotDraw – Decorator

'()*(+,-./0123456789 :;<=<=>:?@AB?C=@<C@;?=?:;<=<=>:?
DEEFEGEHEIEE JKL

MJLJ
(b) JHotDraw – Prototype

NOPQORSTUVWXYZ[\]̂_̀ abcdbefegabcdbhigf
jkklkmknkokk pqr

s
pqrs

(c) Xerces – Composite

tuvwuxyz{|}~�������� ��������������������������������������������
������������ � ������

�
���

����
(d) Xerces – Factory Method

��� �¡¢£¤¥¦§̈©ª«¬®̄ °±²°³́µ́¶·́³̧ ³́±¶·́³̧ ³́·¹¶º́°µ°±²°³́µ́»¹¶º́°µ
¼½½¾½¿½À½Á½½ Â ÃÄÅÃÄ

Å
ÂÃÄ
Å

Â ÃÄÅ
(e) Xerces – Observer

ÆÇÈÉÇÊËÌÍÎÏÐÑÒÓÔÕÖ×Ø ÙÚÛÜÝÞÜßÜàÜÝÙÚÛÙáÝÜÝßÜàÜÝ
âããäãåãæãçãã è éêëèéê

ë
è éêë

(f) Xerces – State

ìíîïíðñòóôõö÷øùúûüýþ ÿ��ÿ�������������	�ÿ����
ÿ�
����������������ÿ�����ÿ��ÿ�����������
����������� ��

�
��
�

��
�

���
�

��
�

� ��
�

(g) Xerces – Visitor

���������� !"#$%&'() *+*,-./-*/0.-123.4-*+,*-..
566768696:66 ; <=

>
;<
=>; <=

>
;<=
>

(h) Eclipse-JDT – Adapter

?@AB@CDEFGHIJKLMNOPQ RSTUVWUXUYUVRSTRZVUVXUYUV
[\\]\̂\_\̀\\ abc

d
abc
d

ac
d

(i) Eclipse-JDT - -State

Figure 2. Examples of Kinds of Changes in Roles (A: Attribute change; M: Method; I: Implementation;
H: inHeritance).

2.2 · 10−16), the Concrete Factory role changes more, while
the Concrete Product role changes less. For Command (p-
value= 0.001), Factory Method (p-value< 2.2 · 10−16),
and Observer (p-value= 9.7 · 10−14), proportions signifi-
cantly vary among roles.

For Decorator (see Figure 1-a), all classes have a large
proportion of changes due to (M)ethod addition/removal,
however classes belonging to the Concrete Decorator role
mostly change because of (I)mplementation changes with
a proportion of 39%. For both kinds of changes (p-values
= 0.0004 and< 2.2 · 10−16), proportions of changes sig-
nificantly vary among roles.

For Prototype (see Figure 2-b), (I)mplementation
changes significantly differed among roles (p-value=

0.005) and are the largest proportion for all roles (75% for
Client, 100% for Concrete Prototype), but for the Prototype
role, where the largest proportion of 55% is due to (M)ethod

addition/removal.

For Visitor, no statistical conclusion is possible due to
the limited number of changes and occurrences.

In Xerces, (M)ethod addition/removal is the most fre-
quent change for Abstract Factory (with a higher propor-
tion of 75% for the Concrete Product role), Adapter (with
a higher proportion of 67% for the Client role), Command
(with a higher proportion of 78% for the Receiver role), and
Template Method (with a higher proportion of 66% for the
Client role).

For Composite (see Figure 2-c), Composite classes
mainly have (M)ethod addition/removal changes (propor-
tion of 77%) while the Component role has more addi-
tion/removal of subclasses (H) with 38%.

For Factory Method (see Figure 2-d), the Concrete Prod-
uct role has mostly (M)ethod addition/removal changes
with a proportion of 43%, and (I)mplementation changes



with 38%. The Concrete Creator role has mostly
(I)mplementation changes with a proportion of 72%.
(M)ethod addition/removal changes dominate in the Creator
and Product roles with 49% and 33% respectively.

For Observer (see Figure 2-e), (M)ethod addi-
tion/removal changes predominate for Concrete Observer
with 74%, Concrete Subject with 75%, and Subject with
71%, and Observer has mostly changes in hierarchies (H)
with 58%.

For State/Strategy (see Figure 2-f), the Context and
State/Strategy roles have a higher proportion of (M)ethod
addition/removal changes with 53% and 63% respectively,
while the Concrete State/Strategy have a higher proportion
of (I)mplementation changes.

Finally, for Visitor (see Figure 2-g, (M)ethod addi-
tion/removal changes predominate for all roles but for the
Concrete Visitor role, which has mostly changing to its sub-
classes with a proportion of 60%.

Results of proportion tests indicate a significant differ-
ence among roles for all kinds of changes but for (A)ttribute
changes for Composite (p-value= 1) and for Observer (p-
value= 0.37).

In Eclipse-JDT, proportions of changes vary among mo-
tifs and roles. In particular:

• For Adapter (see Figure 2-h), Adaptee and Target roles
mainly have changes to their subclasses with a propor-
tion of 36% and 49% respectively. The changes to the
Adapter and Client roles are almost equally distributed
among kinds of changes, however for changes to their
subclasses (H) below 10%.

• For Composite, the Component role has mostly
changes to its subclasses with a proportion of 56%,
while the Leaf role has all kinds of changes almost
equally distributed, however with no changes to its
subclasses at all.

• For Decorator, all roles but the Component role are
subject to all kinds of changes, but the subclassing
changes. The Component role undergoes changes to
its subclasses, with a higher proportion for (M)ethod
addition/removal (32%).

• For Command, the Client and Invoker roles have
changes equally distributed across all kinds with sub-
classing changes below 10%.

• For Factory Method, we notice that the Creator and
Product roles have mostly changes to their subclasses
(43% and 47%); such kind of changes is below 5% for
the other roles.

• For Template Method, subclassing changes (H) are
the most frequent for Abstract Classes (49%) and
(M)ethod addition/removal for Clients (39%).

• For Observer, (M)ethod addition/removal are the most
frequent for Concrete Observers (48%), Concrete Sub-
jects (40%), and Subjects (38%). Subclassing changes
(H) are most frequent for the Observer role (73%).

• For Prototype, the number of changes and of oc-
currences are small, and no significant difference is
found among roles for (A)ttribute and (M)ethod addi-
tion/removal.

• For State/Strategy (see Figure 2-i), changes for the
Concrete State/Strategy and Context roles are equally
distributed across all kinds of changes but for subclass-
ing changes.

• For Visitor, Client role has mostly (I)mplementation
changes (48%), while Concrete Element role has
32% and 31% and (M)ethod addition/removal and
(I)mplementation changes.

7 Discussion

We discuss the results by comparing intuition and prac-
tice for each motif with observations gathered from the em-
pirical data. We can therefore attempt to confirm/refute in-
tuition and put into perspective the data by inspecting the
source code. Due to space limitation, we only report discus-
sion when evidence or interesting findings have been dis-
covered, thus for example we omit discussion of both Pro-
totype and the Singleton. The first because no evidence on
role change frequencies or kind or differences were found;
the latter since not only no evidence was found, but also its
intent is to provide an unique access point rather than mak-
ing the system robust to changes; in other wordsRQ1and
RQ2have no meaning for the Singleton.

Abstract Factory. Intuition: Any change to the set of Ab-
stract Products will impact the interface of the Abstract Fac-
tory and all the Concrete Factories. Depending on the sys-
tem, new Products may be added, removed, or modified but
we could expect that little change would happen to the Prod-
ucts in mature systems as they usually form the core of their
functioning, for example a set of widgets in a graphic li-
brary. Changes to the Abstract Factory interface could hap-
pen, but mostly to the non-Product related methods, for ex-
ample helper methods or constructors. Such changes could
happen in any release. Therefore, we could expect the set of
Factories and Products to change rarely, the Factories being
more change-prone than the products.

Observation: The intuition is confirmed both in JHot-
Draw and Xerces, where Concrete Factories change more
frequently than Abstract Factories. However, (M)ethod ad-
dition/removal changes, affecting their interfaces, are the



most common changes even for Abstract Factories. The im-
portance of such changes could be explained by the fact that
both systems underwent major refactorings in which the
common interface to the Concrete Factories were adapted
to the new designs.

Adapter. Intuition: The intent of the Adapter motif is to
separate the Target from the Adaptee through the Adapter
to allow them to change without impacting one another.
Therefore, we could expect the Target and Adaptee roles
to change separately, while any change would impact the
Adapter. Given the important role of the Target with respect
to Clients, we could expect Targets to be less change-prone
than Adaptees.

Observation:The intuition is confirmed in Eclipse-JDT
as Adapters exhibit more changes that Targets. The most
common change for Adaptees is change to their subclasses,
i.e., new Adapters are modified/added to adapt to chang-
ing/new Targets.

Command. Intuition: The Command interface defines
usually only one method, typicallyexecute(), and therefore
can be expected to be little subject to changes. On the con-
trary, the Receiver defines the methods performing the con-
crete actions and therefore would probably evolve as the
system evolves and be, consequently, more change prone.

Observation: The intuition is confirmed in Xerces,
where Receivers change more than Commands, although
the difference is not significant. In all the three systems
Commands appear to be less prone than other roles, espe-
cially less prone than Clients.

Composite. Intuition: The Component interface defines
the methods that must be implemented by both the Com-
posite and the Leaves, in a mature system, we could expect
this interface to change rarely. The Composite implements
an iterator over its set of Leaves. Therefore, we could ex-
pect also the Composite to change rarely. The Leaves im-
plement the algorithms that must be triggered recursively
by the Composite. These algorithms are system and con-
text dependent. Consequently, the Leaf role is more change
prone than both the Component and the Composite roles.
We could also expect the Composite and Leaf roles to si-
multaneously adapt to changes occurring in the Component.

Observation:The intuition is not confirmed. In JHot-
Draw, no significant difference is found among roles; in
Xerces changes are concentrated in Composites, while
Leaves do not change at all; finally, in Eclipse-JDT, Com-
posites change more than Components, while no significant
difference is found with Leaves. As expected, Component
has mainly subclassing changes. In many cases, classes
playing the role of Composite have to handle non trivial
tasks, thus they are subject to a high number of changes.

For example, in JHotDraw a composite figure has to prop-
erly handle the layouting of all the figures part of the com-
position.

Decorator. Intuition: Similarly to the Composite motif,
the Concrete Components are probably more change prone
than the Component and Decorator roles. The Concrete
Decorators might change independently from Components
and Decorators, since they are system and context depen-
dent. Therefore, we could expect that the Concrete Compo-
nents be change prone, as would the Concrete Decorators.

Obervation: The intuition is confirmed in Eclipse-JDT,
where Concrete Components and Decorators are more
change prone than other roles. Nothing can be said for
other systems. On the other hand, it is worth to be noted
that, although a high change frequency is expected for Con-
crete Decorators, Decorators often have a higher change fre-
quency. As for the Composite, this is due to the fact that
Decorators have to handle complex tasks and in these case
they might be involved in tasks not properly part of the mo-
tif, as discussed in Section 7.1.

Factory Method. Intuition: Similarly to the Abstract
Factory motif, we could expect that any change to the Con-
crete Products would impact the Concrete Creators, while
the Creator would change depending on the system and on
the context.

Observation: In all the systems, the intuition is con-
firmed: Concrete Creators change more than Creators. For
Eclipse-JDT, Concrete Products also change more than
Products. Differently from the Abstract Factory motif, Ab-
stract Classes (Creators and Products) mainly have sub-
classing changes rather than (M)ethod addition/removals.

Observer. Intuition: The Subject and Observer in-
terfaces define the set of methods that their respec-
tive implementations—Concrete Subjects and Concrete
Observers—should implement. Therefore, we could ex-
pect these two roles to change rarely. On the contrary, the
roles Concrete Subject and Concrete Observer are system
and context dependent and would change according to the
developers’ needs.

Observation:Results from Eclipse-JDT confirm the in-
tuition. Also, concrete classes tend to have (M)ethod ad-
dition/removal changes, while abstract classes tend to have
subclassing changes, as expected.

State/Strategy. Intuition: The State/Strategy role defines
an interface, typically embodied in a methodhandle()(or
execute()), to be used by Clients. Therefore, we could ex-
pect this role to be less change prone than the Concrete
States/Strategies, which implement the concrete logic of the



States/Strategies and are thus dependent on the system and
its context. We also expect that Contexts change more than
States/Strategies.

Observation: The intuition is confirmed in Xerces,
where Concrete States change more than States. In Eclipse-
JDT, we observe that Contexts classes change more than
State classes.

Template Method. Intuition: The Template Method mo-
tif is typically used in class-based programming languages
to offer some flexibility in the implementations of a set of
methods, typically called “primitive operations”. There-
fore, we could expect the Concrete Classes implementing
these operations to be more change prone than the Abstract
Classes.

Observation:The intuition is confirmed in Eclipse-JDT
only, where Abstact Classes change less than Concrete
Classes. As expected, Abstract Classes mainly underwent
subclassing changes, while Concrete Classes underwent
more (M)ethod addition/removal and (I)mplementation
changes.

Visitor. Intuition: Similarly to the Abstract Factory motif,
the Visitor separates between a set of Elements, represent-
ing usually a data structure, and a set of Visitors performing
operations on this structure. Therefore, we could expect the
Elements to change less in mature systems than the Con-
crete Visitors.

Observation:Nothing can be said regarding the frequen-
cies of changes. We notice a high proportion of subclassing
changes in Concrete Visitors for both Xerces and Eclipse-
JDT. We would have expected high proportion for Visitors
rather than for Concrete Visitors. This proportion suggests
that developers of Xerces and Eclipse-JDT tend to reuse
Concrete Visitors to create new ones.

7.1 Threats to Validity

Construct Validitythreats concern the relationship be-
tween theory and observation. They are mainly due to the
precision and recall of DeMIMA, although reported recall
is 100% and precision between 34% and 80% on average.
These figures are consistent with the precision and recall
of other approaches considering that all roles are identified.
We encountered no scalability issue. Another threats to con-
struct validity depends on the fact that we analyze changes
on classes that play a role in a motif, although these changes
might be related to pieces of functionality a class imple-
ments outside the motif. We limit this threat by perform-
ing a manual inspection of changes reporting and discussing
(see Section 7) unexpected or contradictory cases.

Threats tointernal validitydid not affect this study, being
an explorative study [22].

Threats toexternal validityconcern the generalization of
our conclusions. We considered three systems with differ-
ent domains and sizes. Future work should include repro-
ducing this study with other systems and programming lan-
guages. We considered a convenient sampling of 12 out of
23 motifs from Gammaet al.’s book: those currently de-
tected by DeMIMA.

Threats toreliability validity concern the possibility of
replicating our study and obtaining consistent results. The
source code of the three systems is publicly available;
DeMIMA is described in [12], and this paper describes
our analyses. Statistical conclusions were supported by
Kruskal-Wallis tests for analyzing multiple medians, Mann-
Whitney tests for un-paired comparisons of two medians,
corrected using Bonferroni correction, and proportion test
for comparing proportions.

8 Conclusion and Future Work

This paper reported an empirical study aimed at inves-
tigating on the frequency and on the kind of changes of
classes playing different roles in a set of design motifs, cor-
responding to well-known and widely used object oriented
design patterns.

Our findings on three open source Java systems of dif-
ferent size and from different domains—namely JHotDraw,
Xerces-J, and Eclipse-JDT—often confirm the expected and
intuitive behavior. For example, in the Adapter motif,
classes playing the role of Adapter is more change prone,
while for the Adaptees we can mainly observe changes in
its number of subclasses. In a similar way, intuition is
confirmed for the Abstract Factory and Command. For
the former, Abstract Factories and Products change less
frequently than concrete ones; for the latter, Receivers
change more frequently than Commands. Overall, the ob-
tained results suggest to carefully design—e.g., in terms of
method interfaces—roles more subjects to changes, since
their change proneness can make other parts of the sys-
tem less robust to changes. This confirms and makes even
stronger the suggestions made in paper [2] about carefully
designing patterns playing a crucial role in the application.

There are, however, many cases where the actual, ob-
served changes deviates from the intuition and from the
common wisdom. For example, in the Composite motifs
classes playing the role of Composite can be more complex
than expected and because of that undergoing a high num-
ber of changes.

Future works will be devoted to extend the empirical in-
vestigation to a larger set of systems, to investigate on dif-
ferent roles co-changes, and to find evidence of correlations
between kind of changes, frequency of changes and defects
in classes playing particular roles in the motifs.



9 Acknowledgments

Massimiliano Di Penta and Luigi Cerulo are partially
supported by the project METAMORPHOS (MEthods and
Tools for migrAting software systeMs towards web and ser-
vice Oriented aRchitectures: exPerimental evaluation, us-
ability, and tecHnOlogy tranSfer), funded by MiUR (Minis-
tero dell’Università e della Ricerca) under grant PRIN2006-
2006098097.

References

[1] G. Antoniol, G. Casazza, M. Di Penta, and R. Fiutem.
Object-oriented design patterns recovery.Journal of Sys-
tems and Software, 59(2):181–196, 2001.

[2] L. Aversano, G. Canfora, L. Cerulo, C. Del Grosso, and
M. Di Penta. An empirical study on the evolution of design
patterns. InESEC-FSE ’07: Proceedings of the the 6th joint
meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of
software engineering, pages 385–394, New York, NY, USA,
2007. ACM Press.

[3] J. M. Bieman, G. Straw, H. Wang, P. W. Munger, and R. T.
Alexander. Design patterns and change proneness: An ex-
amination of five evolving systems. In9th International
Software Metrics Symposium (METRICS’03), pages 40–49.
IEEE Computer Society, 2003.

[4] S. Breu and T. Zimmermann. Mining aspects from ver-
sion history. In S. Uchitel and S. Easterbrook, editors,21st
IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE 2006), pages 221–230. ACM Press,
September 2006.

[5] G. Canfora, L. Cerulo, and M. Di Penta. On the use of
line co-change for identifying crosscutting concern code.In
22nd IEEE International Conference on Software Mainte-
nance (ICSM 2006), 24-27 September 2006, Philadelphia,
PA, USA, pages 213–222, 2006.

[6] G. Costagliola, A. De Lucia, V. Deufemia, C. Gravino, and
M. Risi. Design pattern recovery by visual language parsing.
In 9th European Conference on Software Maintenance and
Reengineering (CSMR 2005), 21-23 March 2005, Manch-
ester, UK, pages 102–111, 2005.

[7] M. Di Penta, L. Cerulo, Y.-G. Guéhéneuc, and G. Antoniol.
An empirical study of the relationships between
design pattern roles and class change proneness. Tech-
nical report, RCOST - Univ. of Sannio, Italy, 2008.
http://rcost.unisannio.it/mdipenta/rolesTR.pdf.

[8] H. Gall, M. Jazayeri, and J. Krajewski. CVS release history
data for detecting logical couplings. InIWPSE ’03: Pro-
ceedings of the 6th International Workshop on Principles of
Software Evolution, page 13. IEEE Computer Society, 2003.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object Oriented Software.
Addison-Wesley, 1995.

[10] R. Geiger, B. Fluri, H. C. Gall, and M. Pinzger. Relation
of code clones and change couplings. InProceedings of the
9th International Conference of Funtamental Approaches to

Software Engineering (FASE), number 3922 in LNCS, pages
411–425, Vienna, Austria, March 2006. Springer.

[11] Y.-G. Guéhéneuc and H. Albin-Amiot. Recovering binary
class relationships: Putting icing on the UML cake. In
D. C. Schmidt, editor,Proceedings of the19th Conference
on Object-Oriented Programming, Systems, Languages, and
Applications, pages 301–314. ACM Press, October 2004.

[12] Y.-G. Guéhéneuc and G. Antoniol. DeMIMA: a multi-
layered framework for design pattern identification.Trans-
actions on Software Engineering, December 2007.Under
revision.

[13] D. Heuzeroth, T. Holl, G. Högström, and W. Löwe. Auto-
matic design pattern detection. In11th International Work-
shop on Program Comprehension (IWPC 2003), May 10-11,
2003, Portland, Oregon, USA, pages 94–103, 2003.

[14] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An em-
pirical study of code clone genealogies. InProceedings
of the European Software Engineering Conference and the
ACM Symposium on the Foundations of Software Engineer-
ing, pages 187–196, Lisbon, Portogal, September 2005.

[15] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead. Au-
tomatic identification of bug-introducing changes. InASE
’06: Proceedings of the 21st IEEE International Conference
on Automated Software Engineering (ASE’06), pages 81–90.
IEEE Computer Society, 2006.

[16] C. Krämer and L. Prechelt. Design recovery by automated
search for structural design patterns in object-oriented soft-
ware. InProceedings of IEEE Working Conference on Re-
verse Engineering, pages 208–215, 1996.

[17] B. Livshits and T. Zimmermann. Dynamine: finding com-
mon error patterns by mining software revision histories. In
ESEC/FSE-13: Proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIG-
SOFT international symposium on Foundations of software
engineering, pages 296–305. ACM Press, 2005.

[18] L. Prechelt, B. Unger, W. F. Tichy, P. Brössler, and L. G.
Votta. A controlled experiment in maintenance comparing
design patterns to simpler solutions.IEEE Trans. Software
Eng., 27(12):1134–1144, 2001.

[19] P. Resnick and H. R. Varian. Recommender systems.Special
Issue of the Commun. ACM, 40(3):56–89, 1997.

[20] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T.
Halkidis. Design pattern detection using similarity scoring.
IEEE Trans. Software Eng., 32(11):896–909, 2006.

[21] M. Vokáč. Defect frequency and design patterns: An em-
pirical study of industrial code.IEEE Trans. Software Eng.,
30:904–917, 2004.

[22] R. K. Yin. Case Study Research: Design and Methods -
Third Edition. SAGE Publications, London, 2002.

[23] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll.
Predicting source code changes by mining revision history.
IEEE Trans. Software Eng., 30:574–586, sep 2004.

[24] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. InICSE
’04: Proceedings of the 26th International Conference on
Software Engineering, pages 563–572. IEEE Computer So-
ciety, 2004.


