
Playing Roles in Design Patterns:
An Empirical Descriptive and Analytic Study

Foutse Khomh1, Yann-Gaël Guéhéneuc1, and Giuliano Antoniol2

1 Ptidej Team—DGIGL, École Polytechnique de Montréal, Québec, Canada
2 SOCCER Lab.—DGIGL, École Polytechnique de Montréal, Québec, Canada

E-mail: {foutsekh,guehene}@iro.umontreal.ca,antoniol@ieee.org

Abstract

This work presents a descriptive and analytic study
of classes playing zero, one, or two roles in six differ-
ent design patterns (and combinations thereof). First,
we answer three research questions showing that (1)
classes playing one or two roles do exist in programs
and are not negligible and that there are significant dif-
ferences among the (2) internal (class metrics) and (3)
external (change-proneness) characteristics of classes
playing zero, one, or two roles. Second, we revisit a
previous work on design patterns and changeability and
show that its results were, in a great part, due to classes
playing two roles. Third, we exemplify the use of the
study results to provide a ranking of the occurrences of
the design patterns identified in a program. The rank-
ing allows developers to balance precision and recall.

1. Introduction

Design patterns are proven solutions to recurrent de-
sign problems in object-oriented software design. Their
design motifs [10] describe ideal solutions that will be
either used to generate an architecture [3] or super-
imposed [12] on designed (or already existing) classes
of a program. Consequently, classes in a program may
play n roles in m motifs, with n > 0, m > 0.

Yet, to the best of our knowledge, previous work
considered that classes either play no role or some
role(s) in some motif(s), without distinguishing classes
playing one or more roles in one or more motifs. It ne-
glected that classes may play many different roles and
considered role playing as a all-or-nothing characteris-
tic of classes. This coarse-grained perspective prevents
studying finely the impact of motifs on classes.

A reason for the current coarse-grained perspective
is the lack of a method and manually-validated data

to identify and evaluate the characteristics of classes
playing one, two, or more roles with respect to classes
playing no role. Therefore, we present a descriptive
and analytic study of the impacts of playing one or
two role(s) in motifs on classes wrt. playing zero role.
We also show that previous work on design patterns
benefit from this novel fine-grain perspective.

We exemplify these benefits on previous work that
studied (1) design motif changeability and (2) motif
identification. First, Bieman [4], Di Penta [8], and oth-
ers (see Section 2) showed that classes playing some
role(s) in one design motif are more complex and–
or change-prone than classes playing no roles. They
did not distinguish classes playing different numbers of
roles. Consequently, they could only conclude gener-
ally on role change-proneness. A fine-grain perspective
allows us to revisit these previous works and show that
classes playing two roles represent, in average, 56% of
all the changes that occurred before the studied release
date while classes playing one role only 33%.

Second, Tsantalis et al. [23], Guéhéneuc and An-
toniol [10], and others (see Section 2) proposed ap-
proaches to identify occurrences of design motifs in
programs, which return unordered sets of occurrences.
Yet, a ranking would help developers focus on the most
relevant occurrences first. A fine-grain perspective al-
lows us to sketch an approach to assign ranks to oc-
currences in function of the numbers of roles played
by their classes. Applying this approach on JHotDraw
v5.1, the Decorator design motif, and the occurrences
obtained from DeMIMA [10] leads to 100% precision
and recall on the first occurrence, to be compared to
the previously reported 7.7% precision and 100% recall.

Thus, the contributions of this paper are: (1) a de-
scriptive study showing that a non-negligible propor-
tions of classes play one or two roles; (2) an analytic
study showing that internal (class metrics) and exter-
nal (change-proneness) characteristics of classes are im-



pacted differently by playing one and two roles; (3) a
revisit of previous works confirming the soundness of
our study and showing that they should be reexam-
ined with a finer-grain perspective; and, (4) a revisit of
a design pattern identification approach illustrating the
ranking of occurrences and the possible improvements
in precision and recall.

Section 3 presents the study definition and design
while Section 4 its implementation: the method, pro-
grams, and motifs to build the samples; the metrics
and their computations. Section 5 provides the study
results. Section 6 present possible threats. Section 7
revisit previous works by describing two uses of the
study results. Section 8 concludes with future work.

2. Related Work

Many pieces of work are related to design patterns,
from their definition [16] to their identification [10]. We
present here works related to the impact of design mo-
tifs on object-oriented quality and to the identification
of occurrences of motifs in programs.

Motif Impacts. Bieman and McNatt [19] per-
formed a qualitative study of the coupling between
motifs and claimed that, when motifs are loosely com-
posed and abstracted, maintainability, modularity, and
reusability are well supported by the motifs. They con-
cluded on a need for further studies to examine differ-
ent motif compositions and their impact on quality.

Di Penta et al. [8] studied the change-proneness of
roles and the kinds of changes affecting roles. Their
results confirmed the expected, theoretical impact of
motifs, e.g., in Abstract Factory, classes playing con-
crete roles change more often than these playing ab-
stract roles. They also highlighted deviations from the
intuition, e.g., in Composite, classes playing the role of
Composite can be complex and undergo many changes.

Hannemann and Kiczales [12] studied the use of
aspect-oriented programming and show that 17 of the
23 design patterns in [9] benefits from their “aspectisa-
tion” to overcome: the influence of motifs on programs
and of programs on motifs; the loss of motif modularity
and of traceability; the invasiveness of motifs; the diffi-
culty to reason about classes involved in several motifs.

Khomh and Guéhéneuc [21] performed an empirical
study of the impact of the 23 design patterns from [9]
on ten different quality characteristics and concluded
that patterns do not necessarily promote reusability,
expandability, and understandability, as advocated by
Gamma et al. They also studied patterns with respect
to object-oriented principles and concluded that pat-
terns do not necessarily lead to programs with good
quality. Overall, their study advocate a considered use

of patterns during development and maintenance.
Vokac et al. [24] analysed the corrective mainte-

nance of a large commercial program over three years
and studied the defect rates of classes playing roles in
design motifs. Classes in motifs were less defect prone
than others. He also noticed that the Observer and Sin-
gleton motifs are correlated with larger classes; classes
playing roles in Factory Method were more compact,
less coupled, and less defect prone than others classes;
and, no clear tendency exists for Template Method.

Motif Identification and Ranking of Occur-
rences. We refer the kind reader to our recent sur-
vey for a complete overview of design motif identifi-
cation approaches [10]. This survey shows that most
approaches do not rank the identified occurrences. For
example, Tsantalis et al. [23] proposed an approach
based on similarity scoring to identify classes poten-
tially playing a role in the design motif. This approach
is fast and has reasonable precision and recall. It is ex-
emplified on three programs and 10 design motifs. The
occurrences are not ranked by their similarity score.

Our approach, DeMIMA [10], uses explanation-
based constraint programming to provide approxima-
tions and explanations on the occurrences. It assigns
a weight to each occurrence but this weight is subjec-
tive: it essentially depends on the weight assigned to
each constraint and on the user’s choice of the relaxed
constraints; it does not consider the probability of a
class to play zero, one, or more roles.

To the best of our knowledge, only Jahnke et al.
[15] provide ranked occurrences. They used fuzzy-
reasoning nets to identify design motifs. Their ap-
proach computes, for example, the probability of a
class to be a Singleton. The main advantage of their
approach is that fuzzy-reasoning nets deal with incon-
sistent and incomplete knowledge and that each oc-
currence is assigned a probability. However, their ap-
proach requires the description of all possible approxi-
mations of a design motif and users’ assumptions.

Our study builds on this previous work, in particular
Bieman and McNatt’s work, to understand the impact
on classes of playing one role in a motif or two roles in
two different motifs. We use the study results to revisit
previous works on design motif change-proneness and
to rank identified occurrences of motifs. Spinellis’ study
[20] of four OS kernels also inspired us.

3. Study Definition and Design

Following GQM [2], the goal of our study is to study
classes playing zero, one, or two roles in some design
motifs. Our purpose is to bring generalisable, quantita-
tive evidence on the impact of playing roles on classes.



The quality focus is that playing zero, one, or two roles
impact differently classes. The perspective is that both
researchers and practitioners should be aware of the
impact of playing roles on classes to make inform de-
sign and implementation choices and to understand
and forecast the characteristics of classes. The context
of our study is both development and maintenance.

3.1. Research Questions and Hypotheses

Descriptive Question. The first research question
is descriptive and assesses the extent of classes playing
zero, one, or two roles in a general population of classes.

• RQ1: What is the proportion of classes playing
zero, one, or two roles in some motif(s)?

Analytic Questions. The two following questions
are analytic and divide in two sets of null hypotheses.

• RQ2: What are the internal characteristics of a
class that are the most impacted by playing one
or two roles wrt. zero role?

• RQ3: What are the external characteristics of a
class that are the most impacted by playing one
or two roles wrt. zero role?

For any metric m measuring some internal or ex-
ternal characteristics of a class, we test the set of null
hypotheses: H0mi/j : the distribution of the values of
metric m for the classes playing i ∈ [1, 2] role(s) is sim-
ilar to that of classes playing j ∈ [0, 1] ∧ j 6= i role.

We relate the following independent and dependent
variables to assess the proportions of classes playing
different roles and to test the previous null hypotheses.

3.2. Independent Variables

In an ideal situation, we would know the general
population of all possible classes and know the number
of roles played by any class. Then, we would use the
sub-populations of classes playing zero, one, or more
roles to answer the research questions. However, this
situation is impossible because the population of all
possible classes is so large and, in general, a class does
not know if it plays any roles.

Therefore, the independent variables are three sam-
ples of classes playing zero, one, and two roles in design
motifs. We limit our study to two roles and will con-
sider more roles in future work. We name these sam-
ples the 0-, 1-, and 2-role samples. The samples must
be large enough to be statistically representative but
small enough to make it possible for manual inspec-
tion. The method to build these samples along with
its implementation are presented in Section 4.

3.3. Dependent Variables

The dependent variables are the metrics measuring
classes internal and external characteristics. We choose
to study a large number of metrics, as previous work
[20], to assess all the possible impacts of role playing.

Internal Characteristics are related to class
themselves and are measured using 56 different met-
rics from the literature, including Briand et al.’s class-
method import and export coupling [5]; Chidamber
and Kemerer’s Coupling Between Objects (CBO), Lack
of Cohesion in Methods (LCOM5), and Weighted
Method Count (WMC) [6]; Hitz and Montazeri ‘C’ con-
nectivity of a class [13]; Lorenz and Kidd numbers of
new, inherited, and overridden methods and total num-
ber of methods [17]; McCabe’s Cyclomatic Complexity
Metric (CC) [18]; Tegarden et al.’s numbers of hierar-
chical levels below a class and class-to-leaf depth [22].
The definitions of all the metrics is available on-line1.

External Characteristics are limited in this study
to the change-proneness of classes. A class is change-
prone if, at a given time, it has been changed more
than other classes. Change-proneness is assessed by
computing the numbers and frequencies of past and
future changes per class. Future work will study issue-
proneness as well as other external characteristics.

The computation of the internal and external char-
acteristics is described in Section 4. In Section 5, we
report the metrics that proved to be significantly im-
pacted by the number of roles played by classes and
also discuss the not-impacted metrics.

3.4. Descriptive and Analytic Analyses

We use the following analyses to answer the research
question with independent and dependent variables.

RQ1. Given a population of classes from 6 programs,
we computed the classes playing zero, one, and two
roles with our identification approach DeMIMA. Then,
we compute the accuracy of our approach for one and
two roles by manually validating classes playing roles
in the identified occurrences. With this precision, we
extrapolate the proportions of classes playing zero, one,
and two roles in the general population.

RQ2 and RQ3. We use the Wilcoxon rank-sum test
to compute for each metric and each pair of samples (0-
role, 1-role), (0-role, 2-roles), and (1-role, 2-role), the
p-values for the corresponding null hypotheses. The
Wilcoxon rank-sum test is a non-parametric statisti-
cal hypothesis test that assesses whether two samples

1http://wiki.ptidej.dyndns.org/research/pom.



come from a same distribution or not. It allows us to
attempt rejecting the null hypotheses while making no
assumptions on the normality of the samples.

4. Study Implementation

The following subsections detail the building of the
samples and the computation of the metrics.

4.1. Size of the Samples

We compute the sample size in two steps: (1) we as-
sume the normality of the population and we compute
the sample size needed for a two-sample t-test; and, (2)
we adjust this size based on the Asymptotic Relative
Efficiency (ARE) [14] of the two-sample Wilcoxon test.

We choose a typical power of 0.8, i.e., we seek 80%
chance of finding statistical significance if the specified
effect exists. We also choose a typical significance level
of 0.05 because we seek to reduce the possibility that
the probability is due to chance alone.

With this power and significance level, we study the
relation between effect size and sample size to choose
the adequate sample size for a two-sample t-test, as-
suming the normality of the distribution. Following
Cohen’s work [7], we chose a medium effect size of 0.58
that corresponds to a sample size of 50 classes.

The ARE represents the asymptotic limit of the ra-
tio of the sample sizes needed to achieve equal power
for two statistical tests: given a sample size for a statis-
tical test A achieving a power p, the sample size needed
for a test B to achieve the same power p is obtained
from the ARE of A wrt. B. We compute the sample
size for the two-sample Wilcoxon test that ensures the
same power as the t-test, with no assumption of the dis-
tribution. The ARE for the two-sample Wilcoxon test
is never less than 0.864 [14], we choose to be conserva-
tive and therefore divide the sample size for a t-test by
0.864. We obtain a sample size of 58 classes.

4.2. Selection of the General Population

We choose six programs to form the general popula-
tion of classes from which to build the n-role samples:
ArgoUML v0.18.1, Azureus v2.1.0.0, Eclipse JDT Core
plug-in v2.1.2 (JDT Core v2.1.2), JHotDraw v5.4b2,
Xalan v2.7.0, and Xerces v1.4.4. These programs are
written in Java and open source. They are of differ-
ent domains, sizes, complexity, and maturity. Table 1
summarises facts on these programs.

ArgoUML is a full-fledged UML modelling tool with
code generation and reverse-engineering capabilities. It
provides the user with a set of views and tools to model

Programs NOC K
L
O

C

R
e
le

a
s
e

D
a
t
e
s

P
a
s
t

C
h
a
n
g
e
s

F
u
t
u
r
e

C
h
a
n
g
e
s

ArgoUML v0.18.1 1,267 203 30/04/05 20,290 12,617
Azureus v2.1.0.0 591 84 1/06/04 18,304 483
JDT Core v2.1.2 669 185 3/11/03 23,243 26,923
JHotDraw v5.4b2 413 45 1/02/04 5,793 51
Xalan v2.7.0 734 259 8/08/05 12,298 1,714
Xerces v1.4.4 306 87 13/10/03 5,213 1,209
Total 3,980 862 6 releases 85,141 42,997

Table 1. Statistics for the six programs. (Fu-
ture refers to the time between the release dates
and 31/01/09.)

Programs E
x
p
e
c
t
e
d

Z
e
r
o

R
o
le

O
n
e

R
o
le

T
w

o
R

o
le

s

ArgoUML v0.18.1 17 17 10 10
Azureus v2.1.0.0 9 9 9 9
JDT Core v2.1.2 10 10 17 17
JHotDraw v5.4b2 6 6 6 6
Xalan v2.7.0 11 11 11 11
Xerces v1.4.4 5 5 5 5
Total 58 58 58 58

Table 2. Distribution of the sample size among
the programs of our strata.

programs using UML diagrams, to generate the corre-
sponding code skeletons and to reverse-engineer dia-
grams from existing code. Azureus (now called Vuze)
is a bit-torrent client. Bit torrent is a protocol to ex-
change data among peers across a network. Azureus
provides advanced user-interface and implementation
of the protocol. JDT Core is an Eclipse plug-in that
implements the infrastructure for the Java IDE of the
Eclipse platform. It provides a Java model and ca-
pabilities to parse, manipulate, and rewrite Java pro-
grams. JHotDraw is a graphic framework for drawing
2D graphics. It was created in October 2000 by Beck
and Gamma with the purpose of illustrating the use of
design patterns. Xalan is an XSLT processor for trans-
forming XML documents into other document types
(HTML, text, and so on). It implements the XSLT
and XPath standards. Xerces is a Java XML parser
which supports XML, DOM, and SAX.

4.3. Selection of the Motifs and their Roles

We select six design motifs used in previous work
[8, 23]: Command, Composite, Decorator, Observer,
Singleton, and State. We follow [8] in their choice of
the motifs main roles. We only study main roles be-



Patterns Descriptions Main Roles
Command Encapsulates a request as an object, thereby letting you parameterize clients with different

requests, queue or log requests, and support undoable operations
Command, Invoker

Composite Composes objects into tree structures to represent part-whole hierarchies. Composite lets
clients treat individual objects and compositions of objects uniformly

Component, Composite

Decorator Attaches additional responsibilities to an object dynamically. Decorators provide a flexible
alternative to subclassing for extending functionality

Component, Decorator

Observer Defines a one-to-many dependency between objects so that when one object changes state,
all its dependents are notified and updated automatically

Observer, Subject

Singleton Defines a mechanism that ensure that the same instance of a class is used throughout a
program execution

Singleton

State Allows an object to alter its behavior when its internal state changes Context, State

Table 3. Chosen design patterns and the main roles of their motifs.

cause (1) they are most likely to impact classes, as con-
firmed by the following results, and (2) they allow us
to concentrate on a fewer number of roles during the
manual validation. In the following, roles are named
using the notation <Pattern Name> . <Role Name>.

In addition to choosing the roles of interest, we must
also select pairs of roles for classes playing two roles.
We exclude pairs with the same role because identical
roles in different motifs must have similar characteris-
tics, e.g., among the six motifs, Component is the only
role that appears twice with similar structure albeit
slightly different semantics. We exclude pairs involv-
ing roles from the same motif because a class play-
ing both the roles of Composite.Component and Com-
posite.Composite must be a degenerated case. Conse-
quently, we retain 45 possible pairs.

4.4. Building of the Samples

Building the n-role sample, with n ∈ [0, 2], consists
of searching in the general population for three sets
of 58 classes playing n roles. We reduce the search
space using our DeMIMA approach because it ensures
100% recall by automatically relaxing appropriate con-
straints and has up to 80% of precision, with an average
of 40% for the six design motifs in Table 3 in a set of
programs different from these used in this study.

We applied DeMIMA on the classes in the general
population and obtain candidate classes playing (at
least) one role in the selected motifs. We automati-
cally divided this set in two 1- and 2-role subsets.

Then, for each subset, we studied each class (its code
source, comments, hierarchy, relationships) to decide
whether it plays one role (respectively two roles) using
a voting process: the authors and a post-doc. student
marked independently each class as true when a class
played one role (respectively, two roles) or false else.
Each class was marked by only three persons to avoid
ties. Then, a class was assigned to the 1-role sample
(respectively, 2-role sample) if the majority marked it
as true, else it was excluded. We stopped the voting
process as soon as the samples were completed.

In total, 238 classes were manually validated: 81
classes where false positives, i.e., classes playing no role
but belonging to occurrences identified by DeMIMA;
88 classes played 1 role; and, 69 classes played 2 roles.
Finally, from the classes not included in any of the oc-
currences identified by DeMIMA, we selected randomly
and validated manually 58 classes playing 0 role.

The distribution in the samples of the classes from
the general population must be representative of the
population. We distributed the 58 classes per sam-
ple along the strata formed by the six programs. We
computed stratified sample sizes so that each stratum
reflected the proportional size of one program with re-
spect to the others. For example, JHotDraw v5.4b2
makes up 10.38% of the general population. So, it had
to provide 10.38% of the 58 classes in each sample.
Thus, we ensured that the results equally reflect the
six programs. The second column in Table 2 shows
the expected size of each stratum, i.e., the expected
numbers of classes of each program in each sample.

We could not find enough 1- and 2-role classes in Ar-
goUML. Therefore, we made up for the reduced num-
ber of classes in ArgoUML by using more classes from
JDT Core. The fourth and fifth columns in Table 2
show the actual repartitions of classes in the 1- and
2-role samples. We replicated our study on the gen-
eral population without JDT Core and on JDT Core
exclusively and noticed the same trends.

4.5. Computing Dependent Variables

We compute the dependent variables using two dif-
ferent frameworks.

Internal Characteristics are computed using the
PADL meta-model and parsers and the POM frame-
work [11]. PADL models of programs are obtained us-
ing the Java parser and the metric values are computed
by applying each metric on each class of the models.

External Characteristics are computed using the
Ibdoos framework. Ibdoos extracts commit informa-
tion from any CVS, GIT, or SVN repository and stores
this in a database. We implemented queries to count



Programs C
a
n
d
id

a
t
e
s

O
n
e

R
o
le

T
w

o
R

o
le

s

ArgoUML v0.18.1 21
3 10

14.28% 47.61%

Azureus v2.1.0.0 64
22 19

34.37% 29.68%

JDT Core v2.1.2 67
30 22

44.77% 32.83%

JHotDraw v5.4b2 30
11 13

36.66% 43.33%

Xalan v2.7.0 55
23 11

41.81% 20.00%

Xerces v1.4.4 29
10 11

34.48% 37.93%

Total 266
99 86

37.21% 32.33%

Table 4. Validated precisions of DeMIMA.

Programs T
o
t
a
l

O
n
e

R
o
le

T
w

o
R

o
le

s

ArgoUML v0.18.1
1,267 51 316
100% 4.02% 24.94%

Azureus v2.1.0.0
591 67 75

100% 11.33% 12.69%

JDT Core v2.1.2
669 46 178

100% 6.88% 26.60%

JHotDraw v5.4b2
413 24 101

100% 5.81% 24.45%

Xalan v2.7.0
734 36 104

100% 4.90% 14.16%

Xerces v1.4.4
306 94 56

100% 30.72% 18.30%

Total
3,980 318 830
100% 7.99% 20.85%

Table 5. Extrapolated numbers and percent-
ages of classes playing no, one, or two roles.

the numbers and frequencies of changes for each class
before and after the release dates of the six programs.

5. Study Results

We analyse the metrics values computed on the
classes in the samples to answer the research questions.

RQ1. To answer our first research question, “What is
the proportion of classes playing zero, one, or two roles
in some motifs in a program?”, we extrapolate, for each
program and each motif, the number of classes playing
zero, one role, and two roles in the motifs.

First, from the class subsets, we compute the accu-
racy of DeMIMA as the number of classes in a subset
indeed playing zero, one, or two roles with respect to
the total numbers of classes in the subsets. Table 4
summarises this accuracy using all manually validated
classes (reported in the Candidates column) and shows

that it varies across motifs and programs. It highlights
the need for more detailed studies of the accuracy of
identification approaches. Indeed, current approaches
report their precision and recall in function of the mo-
tifs but not of the programs. Reporting variations in
terms of programs could help the community to fo-
cus on programs in which the identification is difficult.
Such a focus would lead to a better understanding of
the impact of program design and implementation on
analysis tools and to a collection of difficult programs.

Second, we extrapolate in Table 5 the numbers of
classes playing one and two roles from the previous
accuracy and the numbers of candidate classes in each
program. Table 5 shows that the percentage of classes
playing one or two roles in any of the six selected design
motif varies from 4.02% to 30.72%.

The answer to RQ1 is that classes playing one or two
roles do exist in programs and are not negligible, which
confirms the need to understand the characteristics of
classes playing different numbers of roles.

RQ2. To answer RQ2, “What are the internal char-
acteristics of a class that are the most impacted by
playing one or two roles?”, we test the null hypotheses
H0mi/j , i ∈ [1, 2], j ∈ [0, 1] ∧ j 6= i for the 56 metrics.
We first discuss unchanged metrics and then metrics
whose distributions vary between each pair of samples.

There are 8 metrics whose distributions did not
change significantly between the three samples: ANA,
connectivity, CP, DSC, MFA, NOH, PP, and RPII.
These metrics are therefore unlikely to be of interest
when assessing the impact of role playing and could
be excluded from future studies on design motifs. This
finding was predictable for CP, PP, RPII because these
metrics measure the structure of the packages of a sys-
tem rather than the structure of its classes. The same
explanation applies to DSC and NOH, which count re-
spectively the total number of classes and the number
of class hierarchies in a system. The finding for ANA,
connectivity, and MFA is surprising because we ex-
pected that classes playing roles in design motifs would
inherit more from and would be more “connected” to
other classes. We explain this finding by the specific
definitions of these three metrics because the values of
other metrics related to inheritance and coupling sig-
nificantly change between the samples.

There is a statistically significant difference between
classes playing zero and one role for 29 metrics. These
metrics characterise coupling, cohesion, inheritance,
size and polymorphism, and complexity. The trends
are a decrease in metric values for only four metrics:
LCOM1, LCOM2, WMC1, and RRTP. This finding is
explained again by the implementations of the metrics:



1 role vs. 0 role 2 role vs. 0 role 2 role vs. 1 role
Unsignificant change ANA, connectivity, CP, DSC, MFA, NOH, PP, and RPII
Significant ↗ CIS, CLD, DCAEC, DCMEC, EIC,

EIP, ICHClass, LCOM5, MOA,
NCM, NCP, NMA, NMD, NMDEx-
tended, NMO, NOC, NOD, NOM,
NOParam, NOPM, PIIR, REIP,
RFP, SIX, WMC

ACAIC, ACMIC, AID, CAM, CBO,
CBOin, CBOout, CIS, CLD, co-
hesionAttributes, DAM, DCAEC,
DCC, DCMEC, DIT, EIC, EIP, ICH-
Class, LCOM1, LCOM2, LCOM5,
McCabe, MOA, NAD, NADEx-
tended, NCM, NCP, NMA, NMD,
NMDExtended, NMI, NMO, NOA,
NOC, NOD, NOM, NOP, NOParam,
NOPM, PIIR, REIP, RFP, RTP, SIX,
WMC, WMC1

ACMIC, CAM, CBO, CBOin,
CBOout, cohesionAttributes, DAM,
DCC, ICHClass, LCOM1, LCOM2,
LCOM5, McCabe, MOA, NAD,
NADExtended, NMD, NMO, NOA,
NOM, NOP, SIX, WMC, WMC1

Significant ↘ LCOM1, LCOM2, RRTP, WMC1 RRFP, RRTP CLD

Table 6. Metrics Trends. (↗ or ↘ represent a significant increase (respectively, decrease) of, for example,
the metrics values of 1-role classes compared to these of 0-role classes. Metrics that do not appear in a cell
are those which values changed with no statistical significance.)

LCOM1 and 2 have been superseded by LCOM5, which
changes significantly, while WMC1 weighs each method
by 1 and RRTP is related to packages. The others
metrics see a statistically significant increase in their
values. Among these, we can quote: CBO, DCAEC,
LCOM5, McCabe, SIX, WMC. We explain this finding
by the fact that playing roles implies responsibilities,
thus classes playing one role have more responsibilities
than classes playing zero role, which results in classes
being more complex (McCabe, SIX, WMC), more cou-
pled (CBO, DCAEC), and less cohesive (LCOM5), as
examples. We conclude that playing one role impact
classes wrt. playing zero role.

There is a statistically significant difference between
classes playing zero and two roles for 48 metrics, with,
for each metric, an increase of its values for classes
playing two roles, except for RRFP and RRTP. This
finding was expected because RRFP and RRTP con-
cern packages. For the 46 other metrics, the argument
of added responsibilities with each role can also help
explain the impact of 2-role classes on metric values
in comparison to the impact of classes playing zero
role. Having more responsibilities, classes become more
complex (McCabe, WMC, WMC1, SIX), more coupled
(CBO, DCAEC, DCC, DCMEC), inherit more from
their superclasses (CLD, DIT, NOC, NOD), and use
more polymorphism (MOA, NMA, NMD). Therefore,
we conclude that playing two roles has a major impact
on classes, in particular in comparison to the impact of
playing zero role. Playing two roles should be carefully
considered during design and implementation.

The change in the distributions of the metrics values
between classes in the 2- and 1-role samples is signifi-
cant for 26 metrics, among which: CAM, CLD, DCC,
LCOM5, McCabe, SIX, WMC. We observe that the
more they play roles, the more classes are complex (Mc-
Cabe, SIX, WMC, WMC1), are coupled (CBO, DCC),
inherit (NOP), and use polymorphism (MOA, NAD,
NMO). The values of CLD decrease significantly, pos-

sibly hinting at more shallow inheritance tree thank to
the elegant solutions provided by the motifs. We con-
clude that, indeed, playing two roles has a significant
impact on classes that cannot be accounted for by the
fact that they play two different one roles.

Consequently, the answer to RQ2 is that, wrt. the
studied metrics, playing two roles has a major impact
on classes when compared to playing zero or one role.

RQ3. We answer the last research question, “What
are the external characteristics of a class that are the
most impacted by playing one or two roles?”, by carry-
ing null hypothesis tests on the numbers and frequen-
cies of past and future changes in the three samples,
extracted from the version repositories of the programs.

We can reject the null hypotheses related to the ex-
ternal metrics for 1-role and 2-role classes wrt. 0-role
classes with statistical significance. We cannot reject
the null hypotheses for 2-role classes when compared
to 1-role classes.

These results confirm previous works on the change-
proneness of classes playing roles in some design motifs,
for example [4, 8]. We perform in Section 7 a deeper
analysis that shows that 2-role classes are the cause
of the greater parts of the changes (56%) with 1-role
classes causing only 33% of changes.

The answer to RQ3 is that playing roles do impact
the number of changes as well as the frequencies of the
changes. It confirms that playing roles has a major
impact on change-proneness.

6. Threats to Validity

The results of any empirical studies are subject to
the following threats to their validity.

Construct Validity. There is actually no agreed-
upon definition of motif composition. In this study,
we define a motif composition as the implementation



of two different roles in two different motifs by a same
class. We only considered pairs of roles and ignored the
effect of the particular roles on a class. We also explic-
itly excluded auto-composition, i.e., a class playing two
different roles in a same motif. Future work should dis-
tinguish compositions based on their roles and further
study auto-compositions. Also, we purposefully stud-
ied only main roles of design patterns. Future work
includes extending our study to all roles.

Internal Validity. Our approach relies on the pre-
cision of the automatic detection technique DeMIMA.
The results include false positive. We try to limit the
number of false positive through a manual validation.
However, the manual validation is a tedious task that
leads to resilience and the experimenter bias: some
false positive class may pass the validation because it
“looks like” a motif. An approach that would pro-
vide a better precision is to use a manually validated
repository of motifs such as P-MARt [11]. However,
P-MARt does not contain enough data as of now to
perform such a study. We used as a baseline for our
study of classes playing 1-role and 2-role, the 0-role
population of classes playing none of the 11 roles con-
sidered in our study. However, among these classes,
some may be playing one or two roles in other design
motifs. Future work should extend this study to cover
the 23 patterns from Gamma et al. [9]

External Validity. We studied six programs of dif-
ferent sizes, domains, maturity, and complexity. How-
ever, these programs are all open-source programs writ-
ten in Java. We choose six design patterns among the
many available. The results could be different with in-
dustrial programs, other object-oriented programming
languages, and different design patterns.

Reliability validity. This threat concern the pos-
sibility of replicating this study. We attempted to pro-
vide all the necessary details to replicate our study.
Moreover, both Eclipse source code repository and
issue-tracking system are available to obtain the same
data. Finally, the data from which our statistics have
been computed is available on-line2.

Statistical Validity. In Section 4, we presented
the process to build the sample size of our study. We
could not find enough classes playing one role and two
roles in ArgoUML and, therefore, used more classes
from JDT Core. We assess the impact of this selection
on the conclusions of our study by replicating the study
on the population without JDT Core and on JDT Core
exclusively. We obtained for these two additional stud-
ies the same trends on the results.

Conclusion Validity. There is no threat to the
validity of the conclusion of this study as there is a di-

2http://www.ptidej.net/downloads/experiments/icsm09/

rect relation between the chosen metrics and the overall
internal quality of a class.

7. Discussions

We now exemplify the use of our study results by
revisiting previous works and sketching an approach to
rank occurrences of identified design motifs.

7.1. Previous Work Comparison and Revisit

Bieman and McNatt’s Work. We observe that
playing one or more roles in a design motif decreases
the cohesion of classes (increases of the LCOM? met-
rics) while increasing their coupling (increase of the
coupling metrics). This result confirm Bieman and Mc-
Natt’s claim [19] that design motifs impact the cohesion
and coupling of programs.

Hannemann and Kicazles’ Work. We explain
the decrease in cohesion and increase in coupling by
suggesting that design motif-related methods may be
orthogonal to the responsibilities of the classes and thus
reduce their cohesion. Therefore, our study confirms
that design motifs are often “cross-cutting concern”
that could benefit from being “separated” from the
program using, for example, aspect-oriented program-
ming. We thus bring quantitative support to previous
work on rewriting design motifs as aspects [12].

Di Penta et al.’s Work. We revisit Di Penta et
al.’s study of the numbers and frequencies of changes
of classes playing roles. We compare the set of classes
playing some roles, as identified by DeMIMA, which is
the union of the samples of 1- and 2-role classes with
the sample of false positive classes, noted 0FP , with the
set of classes playing really zero role: 0-role sample vs.
(0FP -role ∪ 1-role ∪ 2-role) sample. This comparison
yields a p-value of 1.973e-14 < 0.05, thus confirming
the previous work as well as the statistical validity of
our three samples.

It appears from our study that, in average, the num-
bers of changes prior to the releases of the studied pro-
gram for classes playing two roles accounts for 56% of
the total number of past changes. Also, classes playing
two roles change 1.52 times more than classes playing
one role. Classes playing zero and one role account re-
spectively for 33% and 11% of past changes. Classes
playing one role change more than two role classes af-
ter the studied release of the programs. They change
1.46 times more than the 2-role classes and they ac-
count for 61.53% of the total number of future changes.
We explain this result by the fewer numbers of future
changes, shown in Table 1: in total, there are twice as
much past changes than future changes. Therefore, we



bring evidence that the results found by Di Penta et
al. was largely due to classes playing two roles.

We conclude that developers should be careful with
classes playing roles, in particular 2-role classes, be-
cause they have internal and external metric values
that are significantly higher than these of other classes:
they are more change-prone, less cohesive, more cou-
pled, more complex, and more issue-prone.

7.2. Ranking Design Motif Occurrences

We get inspiration from previous works by Antoniol
et al. [1], Guéhéneuc et al. [11], and Jahnke et al. [15]
to use the study results to rank occurrences.

First, we assign to each class in a program its proba-
bility to play one or more roles in a design motif using
its metrics values. We select a set of discriminating
metrics for the 0-, 1- and 2-role classes from Table 6.
Then, we plot the distributions of these metrics for the
0-, 1- and 2-role samples. Finally, we find the thresh-
olds characterising these samples for each selected met-
rics by superposing the curves of each selected metrics.

Second, the probability of a class is computed by
interpolation as the distance between the values of its
metrics and the thresholds characterising each samples.
We aggregate these probabilities with the min and max
fuzzy logic operators. Finally, from the probability of
classes, we assign a probability to an occurrence as:

pO =
∑n

i=1 αi × pCi∑n
i=1 αi

where pO is the probability of the occurrence to be a
true positive; pCi

is the probability of the class playing
the ith role in the occurrence to play one or more roles;
and, αi is a weight to discriminate roles.

We apply this naive approach using the metrics
CAM, CBO, LCOM5, McCabe, MOA, NAD, NMO,
SIX, and WMC. These metrics have proven in this
study to be the most discriminating of classes play-
ing 0, 1, and 2 roles. We choose ∀i ∈ [1, n], αi = 1.
We apply this approach on the occurrences identified
by DeMIMA in JHotDraw v5.1. We choose JHotDraw
v5.1 to be able to compare with our previous work [10]
ans also to show that our naive approach can be applied
successfully on a different set of programs.

Figure 1(a) shows that, in the case of Decorator, our
naive approach assigns the higher rank to the true pos-
itive occurrence. The precision and recall are therefore
100% when considering the first occurrence. These are
to be contrasted to the 7.7% precision and 100% recall
obtained by DeMIMA with no ranking [10].

Figure 1(b) shows that, in the case of State (or
Strategy), our approach rank occurrences with less ef-

ficiency. Still, the precision of 33.3% with 100% recall
obtained on the 18th occurrence must be compared to
the DeMIMA precision of 28.6%. Also, if a recall of
100% is not mandatory, precision reaches 38.5% on the
13th occurrence.

We obtain results for the other four motifs in-
between those presented for Decorator and State.
Therefore, this naive approach allows reducing the de-
velopers’ efforts by presenting true positive occurrences
first and modulating precision and recall.

We conclude that our study results allow ranking the
occurrences obtained from a design pattern identifica-
tion approach using the number of roles likely to be
played by classes. This ranking reduces the develop-
ers’ efforts and allows developers to balance precision
and recall as they see fit.

8. Conclusion

In this paper, we presented a study of the impact of
playing one or two roles in a(some) motif(s) for a class.
We answered the following research questions: RQ1.
In average, 8.24% (respectively 17.81%) of the classes
of the six studied programs played one role (respec-
tively two roles) in some motifs. These percentages are
not negligible and therefore justify a posteriori the in-
terest in design motif identification and a priori future
studies on the impact of motifs on programs. RQ2.
There is a significant increase in many metric values,
in particular for classes playing two roles. These in-
creases confirm a posteriori the warning addressed to
the community by Bieman, Beck, and others on the
use of design patterns. RQ3. There is a significant
increase in the frequencies and numbers of changes of
classes playing two roles. We thus confirmed on new
samples the previous results by Di Penta et al.

We justify the usefulness of this study by revisit-
ing previous work and proposing a naive approach to
rank occurrences. We show that developers should be
wary of classes playing two roles because they have
significantly higher metric values and represent 56% of
changes while 1-role classes only 33%.

We also sketched a naive approach to illustrate the
possibility of ranking occurrences using the metrics
characterising 1- and 2-role classes. This approach
leads to a precision and recall of 100% for the first
occurrence of the Decorator. Extending on this naive
approach, a new family of design pattern identification
approaches could be designed to include the knowledge
of the numbers of roles played by classes.

As future work, we plan to further study the impact
of unique design motif on metrics values with the intu-
ition that some motifs actually do fulfill (part of) the



(a) Precision and recall of the identification of Decorator. (b) Precision and recall of the identification of State.

Figure 1. Precision and Recall.

intrinsic responsibilities of classes. We will also repli-
cate this study on other motifs and programs as well
as study classes playing three roles and more to con-
firm its generalisability. We also plan to further study
the ranking of occurrences using other a more sophis-
ticated approach, other identification approaches, and
other programs. Also, the use of Bayesian beliefs net-
works to assign probabilities presents a great potential
of obtaining better ranking and thus improving further
the precision of identification approaches.

Acknowledgements. We thank Simon Denier for
fruitful discussions and his help extracting the data.
This work has been partly funded by Égide Lavoisier
(France) and the NSERC and CFI (Canada).

References

[1] G. Antoniol, R. Fiutem, and L. Cristoforetti. Design pattern

recovery in object-oriented software. In Proceedings of the 6th

International Workshop on Program Comprehension, pages
153–160. IEEE Computer Society Press, June 1998.

[2] R. Basili and D. M. Weiss. A methodology for collecting valid
software engineering data. In IEEE Transactions on Software
Engineering, 10(6):728–738, November 1984.

[3] K. Beck and R. E. Johnson. Patterns generate architectures. In

Proceedings of 8th European Conference for Object-Oriented
Programming, pages 139–149. Springer-Verlag, July 1994.

[4] J. M. Bieman, D. Jain, and H. J. Yang. OO de-
sign patterns, design structure, and program changes: An
industrial case study. In Proceedings of the Interna-
tional Conference on Software Maintenance, pages 580–
589, http://www.dsi.unifi.it/icsm2001/, November 2001. IEEE
Computer Society.

[5] L. Briand, P. Devanbu, and W. Melo. An investigation into

coupling measures for C++. In Proceedings of the 19th Inter-
national Conference on Software Engineering, pages 412–421.
ACM Press, May 1997.

[6] S. R. Chidamber and C. F. Kemerer. A metrics suite for object-
oriented design. Technical Report E53-315, MIT Sloan School
of Management, December 1993.

[7] J. Cohen. Statistical Power Analysis for the Behavioral Sci-
ences. Academic Press, New York, 2nd edition, 1988.

[8] M. Di Penta, Luigi Cerulo, Y.-G. Guéhéneuc, and G. Antoniol.
An empirical study of the relationships between design pattern
roles and class change proneness. In Proceedings of the 24th

International Conference on Software Maintenance (ICSM).
IEEE Computer Society Press, September–October 2008. 10
pages.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns – Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1st edition, 1994.

[10] Y.-G. Guéhéneuc and G. Antoniol. DeMIMA: A multi-layered
framework for design pattern identification. In Transactions
on Software Engineering (TSE), 34(5):667–684, September
2008. 18 pages.

[11] Y.-G. Guéhéneuc, H. Sahraoui, and Farouk Zaidi. Finger-

printing design patterns. In Proceedings of the 11th Working
Conference on Reverse Engineering (WCRE), pages 172–181.
IEEE Computer Society Press, November 2004. 10 pages.

[12] J. Hannemann and G. Kiczales. Design pattern implementa-

tion in Java and AspectJ. In Proceedings of the 17th Confer-
ence on Object-Oriented Programming, Systems, Languages,
and Applications, pages 161–173. ACM Press, November 2002.

[13] M. Hitz and B. Montazeri. Measuring coupling and cohesion in

object-oriented systems. In Proceedings of the 3rd Interma-
tional Symposium on Applied Corporate Computing, pages
25–27. Texas A & M University, October 1995.

[14] M. Hollander and D. A. Wolfe. Nonparametric Statistical
Methods. John Wiley and Sons, inc., 2nd edition, 1999.

[15] J. H. Jahnke and A. Zündorf. Rewriting poor design patterns
by good design patterns. In Proceedings the 1st ESEC/FSE
workshop on Object-Oriented Reengineering. Distributed Sys-
tems Group, Technical University of Vienna, September 1997.
TUV-1841-97-10.

[16] H. Kampffmeyer and S. Zschaler. Finding the pattern you
need: The design pattern intent ontology. In Proceedings of the
10th International Conference on Model Driven Engineering
Languages and Systems, pages 211–225. Springer, September–
October 2007.

[17] M. Lorenz and J. Kidd. Object-Oriented Software Metrics: A
Practical Approach. Prentice-Hall, 1st edition, July 1994.

[18] T. J. McCabe and C. W. Butler. Design complexity mea-
surement and testing. In Communications of the ACM,
32(12):1415–1425, December 1989.

[19] W. B. McNatt and J. M. Bieman. Coupling of design patterns:
Common practices and their benefits. In Proceedings of the
25th Computer Software and Applications Conference, pages
574–579. IEEE Computer Society Press, October 2001.

[20] D. Spinellis. A tale of four kernels. In Proceedings of the 30th

International Conference on Software Engineering, pages
381–390. ACM Press, May 2008.

[21] Foutse Khomh and Y.-G. Guéhéneuc. Do design patterns
impact software quality positively? In Proceedings of the
12th Conference on Software Maintenance and Reengineer-
ing (CSMR). IEEE Computer Society Press, April 2008. Short
Paper. 5 pages.

[22] D. P. Tegarden, S. D. Sheetz, and D. E. Monarchi. A software
complexity model of object-oriented systems. In Decision Sup-
port Systems, 13(3–4):241–262, March 1995.

[23] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and
S. Halkidis. Design pattern detection using similarity scoring.
In Transactions on Software Engineering, 32(11), November
2006.

[24] M. Vokác. Defect frequency and design patterns: An empirical
study of industrial code. In Transactions on Software Engi-
neering, 30(12):904–917, 2004.


