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Abstract—Poorly-chosen identifiers have been reported in the
literature as misleading and increasing the program compre-
hension effort. Identifiers are composed of terms, which can be
dictionary words, acronyms, contractions, or simple strings. We
conjecture that the use of identical terms in different contexts
may increase the risk of faults. We investigate our conjecture
using a measure combining term entropy and term context
coverage to study whether certain terms increase the odds ratios
of methods to be fault-prone. Entropy measures the physical
dispersion of terms in a program: the higher the entropy, the
more scattered across the program the terms. Context coverage
measures the conceptual dispersion of terms: the higher their
context coverage, the more unrelated the methods using them. We
compute term entropy and context coverage of terms extracted
from identifiers in Rhino 1.4R3 and ArgoUML 0.16. We show
statistically that methods containing terms with high entropy and
context coverage are more fault-prone than others.

Index Terms—Source Code Identifiers; Program Comprehen-
sion; Fault Models; Information Retrieval; Entropy.

I. INTRODUCTION

The identification of faulty source code entities is generally
based on product metrics, such as size, cohesion, or coupling
(e.g., [1], [2], [3]), as well as process-oriented metrics, such
as number of file changes (e.g., [4]). However, we believe
that fault proneness is a complex phenomenon hardly captured
solely by structural characteristics of code entities. Indeed,
several studies showed that identifiers impact program com-
prehension (e.g., [5], [6], [7], [8]) and code quality (e.g., [3],
[9], [10]). We concur with Deißenböck and Pizka’s observation
that proper identifiers improve quality and that identifiers
should be used consistently [6]. Source code with high quality
identifiers, carefully chosen and consistently used in their
contexts, likely ease program comprehension and support
developers in building consistent and coherent conceptual
models.

In this paper, we present, to the best of our knowledge,
the first empirical study on the relation between the terms
composing identifiers and fault proneness. Terms are identifier
components (e.g., get and String are the terms composing
getString). We conjecture that a term should carry a single
meaning in the context where it is used. Terms referring to
different concepts or used inconsistently in different contexts
may increase the program comprehension burden by creating
a mismatch between the developers’ cognitive model and the

intended meaning of the term, thus ultimately increasing the
risk of fault proneness.

Context definition is left intentionally blurred as it may
stand for a code region (e.g., method or attribute, class or
component) as well as for the developers’ knowledge and
mental models of any given code region or artifact. Misun-
derstanding impacts the cognitive process and is difficult to
quantify. We use linguistic information extracted from a given
code region as a surrogate of the developers’ mental models.
More precisely, linguistic information extracted from methods
and attributes is used to quantify term entropy and context
coverage. Term entropy is derived from entropy in information
theory and measures the “physical” dispersion of a term in
a program, i.e., the higher the entropy, the more scattered
the term is across entities. Term context coverage exploits
Information Retrieval (IR) [11] techniques to measures the
“conceptual” dispersion of the entities in which the term
appears. The higher the context coverage of a term, the more
unrelated are the linguistic information and, possibly, the
concepts of the corresponding entities.

To support our conjecture that terms with high entropy and
high context coverage may help to locate fault-prone methods
and attributes we report a preliminary case study on two open-
source programs: ArgoUML and Rhino. We show that there is
a statistically significant relation between term entropy, context
coverage, and odds ratio that an entity is fault prone. Thus,
the contributions of this paper can be summarized as follows:

• a novel measure characterizing the “physical” (entropy)
and “conceptual” (context) dispersions of terms;

• a preliminary empirical study showing the relation be-
tween entropy and context coverage with fault proneness.

Structure of the paper. The rest of the paper is organized as
follows. Section II presents related work. Section III introduces
background definitions and defines the novel measure. Section
IV describes our empirical study, reports, and discusses its
results. Section V concludes and suggests future work.

II. RELATED WORK

Our study relates to IR methods, fault proneness, and the
quality of source code identifiers. In the following sections,
we discuss the related literature.



A. Entropy and IR-based Metrics

Several metrics based on entropy exist. Olague et al. [12]
used entropy-based metrics to explain the changes that a class
undergoes between versions of an object-oriented program.
They showed that classes with high entropy tend to change
more than classes with lower entropy. Yu et al. [13] combined
entropy with component-dependency graphs to measure com-
ponent cohesion. Entropy was also used by Snider [14] in an
empirical study to measure the structural quality of C code.

IR methods have also been used to define new mea-
sures of source code quality. Etzkorn et al. [15] presented
a new measure for object-oriented programs that examines
the implementation domain content of a class to measure its
complexity. The content of methods in a class has also been
exploited to measure the conceptual cohesion of a class [2],
[3], [16]. In particular, IR methods were used to compute
the overlap of semantic information in implementations of
methods, calculating the similarities among the methods of a
class. Applying a similar LSI-based approach, Poshyvanyk and
Marcus [9] defined new coupling metrics based on semantic
similarity. Binkley et al. [17] also used VSM to analyze the
quality of programs. Split identifiers extracted from entities
were compared against the split identifiers extracted from the
comments of the entities: the higher the similarity, the higher
the quality of the entities. A case study also showed that the
metric is suitable for fault prediction in programs obeying
code conventions.

B. Metrics and Fault Proneness

Several researchers studied the correlations between static
object-oriented metrics, such as the CK metrics suite [18], and
fault proneness. For example, Gyimóthy et al. [1] compared
the accuracy of different metrics from CK suite to predict
fault-prone classes in Mozilla. They concluded that CBO is
the most relevant predictor and that LOC is also a good
predictor. Zimmermann et al. [4] conducted a case study on
Eclipse showing that a combination of complexity metrics
can predict faults, suggesting that the more complex the code
is, the more faults in it. El Emam et al. [19] showed that
the previous correlations between object-oriented metrics and
fault-proneness are mostly due to the correlations between the
metrics and size. Hassan [20] observed that a complex code-
change process negatively affects programs. He measured
the complexity of code change through entropy and showed
that the proposed change complexity metric is a better fault
predictor than other previous predictors.

C. Identifiers and Program Comprehension

The problem of word choice variability in human system
communication was studied in [21]; in collaborative envi-
ronments, the probability of having two developers use the
same identifiers for different entities is between 7% and 18%
[21]. Thus, naming conventions are crucial for improving the
source code understandability. Butler et al. [10] analyzed the
impact of naming conventions on maintenance effort, i.e., on
code quality. They evaluated the quality of identifiers in eight

open-source Java libraries using 12 naming conventions. They
showed that there exists a statistically significant relation be-
tween flawed identifiers (i.e., violating at least one convention)
and code quality.

The role played by identifiers and comments on source code
understandability has been empirically analyzed by Takang
et al. [5], who compared abbreviated identifiers with full-
word identifiers and uncommented code with commented
code. They showed that (1) commented programs are more
understandable than non-commented programs and (2) pro-
grams containing full-word identifiers are more understandable
than those with abbreviated identifiers. Similar results have
also been achieved by Lawrie et al. [22]. Recently, Binkley
et al. [8] performed an empirical study of the impact of
identifier style on code readability and showed that Camel-
case identifiers allow more accurate answers.

III. ENTROPY AND CONTEXTS

To calculate term entropy and context coverage, we ex-
tract identifiers found in class attributes and methods (e.g.,
names of variables and methods, method parameters). We
split identifiers using a Camel-case splitter to build the term
dictionary (e.g., getText is split into get and text). We filter
terms whose length is less than two characters and summarize
the linguistic information in a term-by-entity matrix. The
generic entry ai,j of the term-by-entity matrix denotes the
number of occurrences of the ith term in the jth entity.

A. Term Entropy

Entropy of a discrete random variable measures the amount
of uncertainty [23]. To compute the term entropy, we consider
terms as random variables with some associated probability
distributions. Given a term, its entries in the term-by-entity
matrix are the counts of term occurrences and thus by normal-
izing over the sum of its row entries a probability distribution
for each term is obtained. A normalized entry âi,j is then the
probability of the presence of the term ti in the jth entity. We
then compute term entropy as:

H(ti) = −
n∑
j=1

(âi,j) · log(âi,j) i = 1, 2, . . . ,m

With term entropy, the more scattered among entities a term
is, the closer to the uniform distribution is its mass probability
and, thus, the higher is its entropy. On the contrary, if a term
has a high probability to appear in few entities, then its entropy
value will be low.

B. Term Context Coverage

The context coverage of term tk (where k = 1, 2, . . . ,m)
is computed as the average textual similarity of the contexts
(here entities) containing tk:

CC(tk) = 1− 1
N

∑
ei,ej∈C

sim(ei, ej)

where C = {el|ak,p 6= 0} is the set of all entities in which
term tk occurs, N is the number of compared entities, and



Table I
PROGRAMS USED IN THE EXPERIMENTATION.

Program Version LOC # Files # Entities # Terms
ArgoUML 0.16 97,946 1,124 12,423 2,517
Rhino 1.4R3 18,163 75 1,624 949

We consider as entities both methods and attributes.

sim(ei, ej) represents the textual similarity between entities
ei and ej computed using Latent Semantic Indexing [24], an
advanced IR method, with a subspace dimension fixed to 100.
A low value of the context coverage of a term means a high
similarity between the entities in which the term appears, i.e.,
the term is used in consistent contexts.

C. Aggregate Metric

In this preliminary investigation, we use the variable
numHEHCC, number of high entropy and high context cover-
age, associated with all entities and defined as:

numHEHCC(Ej) =

mX
i=1

aij · ψ(H(ti) ≥ thH ∧ CC(ti) ≥ thCC)

where aij is the frequency in the term-by-entity matrix of term
ti in entity Ej (j = 1, 2, . . . , n) and ψ() is a function returning
one if the passed Boolean value is true; zero otherwise. Thus,
numHEHCC represents the overall number of times any
term with high entropy (value above thH ) and high context
coverage (value above thCC) is found inside an entity. This
aggregate metric is used throughout the following case study
to compute correlation, build linear, logistic models, and
contingency tables.

IV. CASE STUDY

The context of the study are two open-source programs:
Rhino, a JavaScript/ECMAScript interpreter and compiler, and
ArgoUML, a UML modeling CASE tool. Table I reports
some statistics on the two programs, e.g., number of entities
and identifier components (terms). We selected the version
of ArgoUML that has the maximum number of faulty enti-
ties (v0.16) and one of the versions of Rhino with low number
of bugs (v1.4R3). The choice of this two programs is twofold:
they were previously used in other case studies (e.g., [25]); and
a mapping between faults and entities (attributes and methods)
is available [25], [26].

A. Research Questions

It is well known that size is one of the best fault predic-
tors [1]. Thus, we first verify that numHEHCC is somehow
at least partially complementary to size. Second, we believe
that it is important to understand if entropy and context
coverage help to locate entities likely to be fault prone when
changed. Therefore, the case study is designed to answer the
following research questions:
• RQ1 – Metric Relevance: Does term entropy and context

coverage capture characteristics different from size?

• RQ2 – Relation to Faults: Do term entropy and context
coverage help to explain the presence of faults in an
entity?

In RQ1, our goal is only to validate that the newly proposed
metric brings information complementary to the one captured
by LOC. However, the real focus of the paper is to answer
RQ2: evaluating whether the proposed metric, alone, can be
used to explain fault proneness. To answer RQ2, we assess
a risk in terms of odds ratio, and thus, do not claim any
causation.

B. Analysis Method

To statistically analyze RQ1, we compute the correlation
between the size measured in LOC and numHEHCC. Then,
we estimate the linear regression models between LOC (in-
dependent variable) and numHEHCC (dependent variable).
Finally, as an alternative to the Analysis Of Variance (ANOVA)
[27] for dichotomous variables, we build logistic regression
models between fault proneness (explained variable) and LOC
and the proposed new metric (explanatory variables). Thus, we
formulate the null hypothesis:

H01 : numHEHCC does not capture a dimension
different from LOC.

We expect that some correlation with size does exist: longer
entities may contain more terms with more chance to have high
entropy and high context coverage.

For RQ2, we formulate the following null hypothesis:
H02 : There is no relation between numHEHCC
and fault proneness.

We use a prop-test (Pearson’s chi-squared test) [27] to
test the null hypothesis. If numHEHCC is important to
explain fault proneness, then the prop-test should reject the
null hypothesis with a statistically significant p-value (95%
significance level).

To quantify the effect size of the difference between entities
with and without high values of term entropy and context
coverage, we also compute the odds ratio (OR) [27] indicating
the likelihood of faulty entities to contain terms with high
entropy and context coverage.

The term context coverage distribution is skewed toward
high values. For this reason, we use the 10% highest values
of term context coverage to define a threshold identifying the
high context coverage property. We do not observe a similar
skew for the values of term entropy and, thus, the threshold for
high entropy values is based on the standard outlier definition
(1.5 times the inter-quartile range above the 75% percentile).
The thresholds values chosen for entropy and context coverage
in our study are 4.17 and 0.79 for Rhino, and 4.9, and 0.83
for ArgoUML respectively.

C. Results

We now discuss the results achieved aiming at providing
answers to our research questions.

RQ1 – Metric Relevance. Table II reports the results
of Pearson’s product-moment correlation for both Rhino and



Table II
CORRELATION TESTS.

System Correlation p-values
ArgoUML 0.4080593 ≺ 2.2e− 16
Rhino 0.4348286 ≺ 2.2e− 16

Table III
LINEAR REGRESSION MODELS.

Variables Coefficients p-values

Rhino (R2 = 0.1891) Intercept 0.038647 0.439
LOC 0.022976 ≺ 2e− 16

Argo (R2=0.1665) Intercept -0.0432638 0.0153
LOC 0.0452895 ≺ 2e− 16

ArgoUML. As expected, some correlation exists between LOC
and numHEHCC. Despite a 40% correlation a linear regres-
sion model built between numHEHCC (dependent variable)
and LOC (independent variable) attains an R2 lower than 19%
(see Table III). The R2 coefficient can be interpreted as the
percentage of variance of the data explained by the model and
thus 1−R2 is an approximation of the unexplained variance
of the model. Thus, Table III supports the conjecture that LOC
does not substantially explain numHEHCC. Correlation
and linear regression models can be considered as further
verification that LOC and numHEHCC help to explain
different dimensions of fault proneness.

The relevance of numHEHCC in explaining faults is
further supported by logistic regression models. Table IV
reports the interaction model built between fault proneness
(explained variable) and the explanatory variables LOC and
numHEHCC. In both models, MArgoUML and MRhino,
the intercept is relevant as well as numHEHCC. Most
noticeably in Rhino the LOC coefficient is not statistically sig-
nificant as well as the interaction term, LOC : numHEHCC.
This lack of significance is limited to Rhino: for ArgoUML,
both LOC and the interaction term are statistically significant.
In both models, MArgoUML and MRhino, the LOC coeffi-
cient is, at least, one order of magnitude smaller than the
numHEHCC coefficient. This difference can partially be ex-
plained by the different range of LOC versus numHEHCC.
On average, in both programs, method size is below 100 LOC
and most often a method contains one or two terms with
high entropy and context coverage. Thus, conservatively, we
can say that both LOC and numHEHCC have the same
impact in terms of probability. In other words, the models in
Table IV support the conjecture that numHEHCC helps to
explain fault proneness. Based on the reported results, we can
conclude that although some correlation exists between LOC
and numHEHCC, statistical evidence allows us to reject, on
ArgoUML and Rhino, the null hypothesis H01 .

RQ2 – Relation to Faults. To answer RQ2, we perform
prop-tests and test the null hypothesis H02 . Indeed, (i) if prop-
tests reveal that numHEHCC divides the population into two
sub-populations and (ii) if the sub-population with positive
values for numHEHCC has an odds ratio bigger than one,
then numHEHCC may act as a risk indicator. For entities

Table IV
LOGISTIC REGRESSION MODELS.

Variables Coefficients p-values

MArgoUML

Intercept -1.688e+00 ≺ 2e− 16
LOC 7.703e-03 8.34e− 10
numHEHCC 7.490e-02 1.42e− 05
LOC:numHEHCC -2.819e-04 0.000211

MRhino

Intercept -4.9625130 ≺ 2e− 16
LOC 0.0041486 0.17100
numHEHCC 0.2446853 0.00310
LOC:numHEHCC -0.0004976 0.29788

Table V
ARGOUML V0.16 CONFUSION MATRIX.

ArgoUML numHEHCC ≥ 1 numHEHCC = 0 Total
Fault prone 381 1706 2087
Fault free 977 9359 10336
Total 1358 11065 12423
p-value ≺ 2.2e− 16; Odds ratio = 2.139345

with positive numHEHCC, it will be possible to identify
those terms leading to high entropy and high context coverage,
identifying also their contexts and performing refactoring
actions to reduce entropy and high context coverage.

Tables V and VI show the confusion matrices for ArgoUML
v0.16 and Rhino v1.4R3, together with the corresponding p-
value and odds ratios. As the tables show, the null hypothesis
H02 can be rejected.

We further investigate the odds ratio of entities containing
two or more terms with high entropy and high context cov-
erage with those entities which only contain one such term.
The results are not statistically significant (with an OR close
to one). These results suggest that the difference between
fault-prone entities and others is between not containing high
entropy and high context coverage terms and containing one
or more such terms.

We also analyzed the odds change for LOC and
numHEHCC. For example, in the case of ArgoUML for
a fixed LOC, one unit increase of numHEHCC has almost
the same odds effect than an increase of 10 LOCs. In the
case of Rhino, for a fixed size of entities, one unit increase of
numHEHCC has more effect than an increase of 50 LOCs.

D. Validity evaluation

Threats to validity of the results can be summarized as
follows: we use manually-validated faults that have been used
in previous studies but we cannot claim that all fault prone
entities have been correctly tagged or that no fault prone
entity has been missed. We used a threshold to identify
terms with high entropy and context coverage and compute
numHEHCC, which could influence the results. As fu-
ture work, we plan to compute numHEHCC using different
thresholds to corroborate our findings. The study is limited
to two programs, ArgoUML 0.16 and Rhino 1.4R3. Results
are encouraging but replications are needed to increase the
generalizability of the results achieved.



Table VI
RHINO V1.4R3 CONFUSION MATRIX.

Rhino numHEHCC ≥ 1 numHEHCC = 0 Total
Fault prone 6 8 14
Fault free 172 1438 1610
Total 178 1446 1624
p-value = 0.0006561; Odds ratio = 6.270349

V. CONCLUSION

In this paper we introduced term entropy and context
coverage to measure, respectively, how scattered terms are
across program entities and how unrelated are the methods and
attributes containing these terms. We provided mathematical
definitions of term entropy and context coverage and reported a
preliminary case study on the effect of terms with high entropy
and high context coverage on fault proneness of methods and
attributes in ArgoUML and Rhino.

The results achieved support the conjecture that term en-
tropy and context coverage only partially correlate with size.
We also showed that the number of high entropy and high
context coverage terms contained in a method or attribute helps
to explain the probability of it being faulty. Furthermore, the
odds ratio of being faulty for a method (or attribute) containing
one or more terms with high entropy and high context coverage
is six and two for Rhino and ArgoUML, respectively: if a
Rhino (ArgoUML) method contains an identifier with a term
having high entropy and high context its probability of being
faulty is six (two) times higher.

Future work includes replicating the same study at class-
level to relate numHEHCC with a larger suite of object-
oriented metrics (such as CK metric suite) and studying terms
that should be considered for refactoring. We also plan to
analyze how the evolution of source code lexicon [28] impacts
the term entropy and context coverage.
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