
Playing with Refactoring: Identifying Extract Class
Opportunities through Game Theory

Gabriele Bavota, Rocco Oliveto, Andrea De Lucia
DMI, University of Salerno, Fisciano (SA), Italy

Emails: {gbavota, roliveto, adelucia}@unisa.it

Giuliano Antoniol, Yann-Gaël Guéhéneuc
DGIGL, École Polytechnique de Montréal, Québec, Canada
Emails: antoniol@ieee.org, yann-gael.gueheneuc@polymtl.ca

Abstract—In software engineering, developers must often find
solutions to problems balancing competing goals, e.g., quality
versus cost, time to market versus resources, or cohesion versus
coupling. Finding a suitable balance between contrasting goals
is often complex and recommendation systems are useful to
support developers and managers in performing such a complex
task. We believe that contrasting goals can be often dealt with
game theory techniques. Indeed, game theory is successfully
used in other fields, especially in economics, to mathematically
propose solutions to strategic situation, in which an individual’s
success in making choices depends on the choices of others.
To demonstrate the applicability of game theory to software
engineering and to understand its pros and cons, we propose an
approach based on game theory that recommend extract-class
refactoring opportunities. A preliminary evaluation inspired by
mutation testing demonstrates the applicability and the benefits
of the proposed approach.

Index Terms—Game Theory; Quality metrics; Refactoring.

I. INTRODUCTION

Game theory is a branch of mathematics widely applied
in the social sciences, especially in economics. It attempts to
mathematically capture the behavior of individuals in strategic
situations in which an individual’s success in making choices
depends on the choices of others [1]. The games studied in
game theory are well-defined mathematical objects involving
two or more, usually non-cooperating, players; each of which
plays a set of strategies. More precisely, a game consists
of a set of players, a set of moves (or strategies) available
to those players, and a specification of payoffs for each
combination of moves. For a given game, it is of particular
interest to determine the game solutions in which no player
gains anything by changing only her own strategy unilaterally
(situation of equilibrium).

Game theory still represents an unexplored territory in
software engineering, even if some preliminary studies [2], [3]
have highlighted the applicability of game theory techniques
to software development. Yet, game theory has natural appli-
cations in software engineering where an optimal solution to
many problems involves finding a balance between contrasting
goals. For example, during the development of an object-
oriented software system, developers and their managers must
address design trade-offs associated with the balancing of
competing constraints, such as cohesion and coupling. Indeed,
developers strive to define classes having (i) strongly related
and focused responsibilities, i.e., high cohesion and (ii) limited

numbers of dependencies with other classes, i.e., low coupling.
However, increasing cohesion might also result in increasing
coupling and vice-versa. Thus, a trade-off between cohesion
and coupling must be ideally attained. Similar situations arise
during software maintenance. Classes structures undergo con-
tinuous modifications often drifting away from their original
design and intent. In the long run, a system may become
too complex, difficult to understand, modify, and evolve [4].
Thus, refactoring operations are often advocated to improve
classes with deteriorated quality and, among other goals, re-
establishing a balance between cohesion and coupling.

An optimal balance between contrasting goals, such as
cohesion and coupling, is not easy to find. Closed analytical
forms of an optimal (or near optimal) solution may be difficult
to define and recently, search-based approaches have been
advocated to find optimal or sub-optimal solutions [5]. In pre-
vious work, search-based approaches tried to find refactoring
opportunities that optimize the overall quality of a system
measured by a linear combination of cohesion and coupling
that captures implicitly the trade-off between cohesion and
coupling [5]. Alternatively, search-based approaches can pro-
vides the developers and managers with a Pareto front [7]
of solutions optimizing cohesion and coupling [6]. However,
there may be more than one optimal solution, each optimum
can be achieved with different refactoring operations and it
may be far from obvious to define the best sequence of
refactoring operations. For example, the manager may need to
iteratively inspect several Pareto fronts and decide which com-
promise she prefers. Refactoring operations are then applied
to the system automatically or semi-automatically. Moreover,
the reason why a particular refactoring operation must be
performed at a certain stage is difficult to know as search-
based approaches only report the solution, the operation to be
performed, and not the reason why that particular refactoring
operation must be preferred.

The above observations motivate our work. In particular,
we believe that the perfect balance between different design
goals is not always achieved by finding the optimal value of a
function describing the overall quality of a system [1]. Instead,
we advocate an approach that is able to capture the behavior of
players in strategic situations (e.g., design trade-offs), in which
the optimization of a goal depends on the choices performed
to optimize other competing goals. Furthermore, we believe
that it is important to know the reasons for a sequence of

TABLE I
PAYOFF MATRIX FOR THE PRISONER’S DILEMMA.

Tom
confess not confess

Sally confess (6, 6) (0, 7)
not confess (7, 0) (4, 4)
In bold the Nash equilibrium

refactoring operations to be preferred over others.
Consequently, we present a recommendation system that

exploits game theory techniques. In particular, we use game
theory to recommend Extract Class refactoring opportunities,
finding a balance between class cohesion and coupling when
splitting a class with different responsibilities into several
classes. The sequence of refactoring operations is computed
using a refactoring game, in which the Nash equilibrium (see
Section II) defines the compromise between coupling and
cohesion. A preliminary evaluation of the proposed approach
on JHotDraw and ArgoUML classes was performed in a
mutation-test like environment. In essence, we merged pairs
or classes randomly-extracted from JHotDraw and ArgoUML.
Merged classes plays the role of mutated programs; non-
merged classes correspond to original, non-mutated programs,
they are the oracle against which refactoring strategies can
be compared. Reported results support the applicability and
superiority of game theory over previous approaches.

The rest of the paper is organized as follows. Section II
introduces the reader to game theory. Sections III and IV
present the proposed approach and its preliminary evaluation,
respectively. Finally, Section V gives concluding remarks.

II. BACKGROUND: THE PRISONER’S DILEMMA

The purpose of this section is to give a general introduc-
tion to game theory focusing on non-cooperative games. In
particular, we report the prisoner’s dilemma [8], a famous
example of game theory. Suppose that there are two brokers
accused of fraudulent trading activities: Sally and Tom. Both
Sally and Tom are being interrogated separately and do not
know what the other is saying. Both brokers want to minimize
the amount of time spent in jail and here lies their dilemma:
Table I represents the payoff matrix for their different possible
choices, reporting the sentences for each player in consequence
of their selected strategy. In particular,
• If Sally (Tom) confesses and Tom (Sally) does not confess:

Sally (Tom) will not receive any sentence, while Tom
(Sally) will have to stay in jail for the maximum sentence
(seven years).

• If both decide to confess: both Sally and Tom will receive
a sentence of six years.

• If both decide not to confess: both Sally and Tom will
receive a sentence of four years.

Traditional applications of game theory attempt to find
equilibria in such games. The most famous equilibrium is the
Nash equilibrium [9]. Nash equilibrium is a solution to any
game involving two or more players, in which each player
is assumed to know the equilibrium strategies of the other

players, and no player has anything to gain by changing only
her own strategy unilaterally. Each finite game, i.e., a game
with a finite number of players and actions, have at least one
Nash equilibrium in mixed strategies [9].

In the example shown in Table I, there is only one Nash
equilibrium, i.e., (confess, confess). Indeed, if one of the
players decides not to confess the other player can confess to
minimize her own sentence. However, she would also sentence
the other to the maximum punishment. Therefore, given the
non-cooperative nature of the game, the minimum sentence for
both players can be obtained only if both the players confess.

It is important to understand that the best solution for the
two players is (non confess, non confess), i.e., the Pareto
optimum. The exemplified game presents two other Pareto
optima, i.e., (non confess, confess), and (confess, non confess)
but these optima give the maximum payoff to only one of the
two players i.e., minimize only one of the goal while the other
is actually maximize.

Establishing a criterion to choose the best solution for such
a non-cooperative game is usually hard. In fact, if we choose
the solution with the minimum total sentence, i.e., maximum
total payoff, we should choose between (non confess, confess)
and (confess, non confess), which heavily penalizes one of the
two players. In this situation, the Nash equilibrium gives us
a solution that not necessarily is the Pareto optimal solution
but may represent a fair compromise between two competing
goals while also providing an explanation of the equilibrium
found.

III. GAME-BASED EXTRACT CLASS REFACTORING

The extract-class refactoring problem can be modelled as a
non-cooperative game involving two players. Given a class to
be refactored, the two players contend for the methods of the
original class to build two new classes with higher cohesion
and lower coupling than the original class. Our approach
assumes that the original class must be split only in two
classes, while a class with low cohesion could be split in
more than two classes. Nevertheless, the proposed approach
can be easily extended to extract more than two classes. In
particular, once obtained the two classes, the developers and
managers could analyze their cohesion and coupling and, if not
satisfactory, apply again the approach on the newly extracted
classes.

A. Playing with Methods

We now detail the modelling of the extract-class refactoring
problem using game theory as a game involving two players
S (Sally) and T (Tom). Each player is in charge to build
a new class selecting methods from the original class to be
refactored. The construction of the two classes is iterative. At
each iteration of the process, a player (S or T) can select at
most one method of the class to be refactored. Thus, at each
iteration a player can add at most one method to her class
under construction. A player selects the method to extract by
considering the impact of adding the method on the cohesion
and coupling of her class.

Specifically, the game starts by assigning to S and T
the two methods having the lowest (structural and semantic)
similarity. Thus, the refactoring process is guided by the two
less cohesive methods. The two players will then iteratively
contend for the remaining n − 2 methods of the class to be
refactored. In particular, during an iteration of the process, a
player can perform one of the following moves:
• Selects the method mi and yield the method mj to her

opponent (i, j move);
• Selects the method mi while her opponent does not select

any method (i, null move);
• Does not select any method while her opponent selects

the method mj (null, j move).
The purpose of null move is to increase the rationality of

a player, i.e., a player selects a method only if there is a clear
advantage in selecting it. Indeed, without the null move, a
player must select a method at each iteration of the refactoring
process. Also, without the null move, a trivial splitting of the
class to be refactored could happen: the original class is split
in two new classes having the same number of methods.

The move to be performed during an iteration of the process
is chosen by finding the Nash equilibrium in the payoff matrix.
The Nash equilibria are obtained using the algorithm defined
in [10], which enumerates all the equilibria in a two-player
finite game. If there are more than one Nash equilibrium, then
we select the one having the highest sum of the payoffs of
both players.

Once identified the move to be performed, each player
adds to its class the method (if any) obtained performing the
selected move, i.e., the player incrementally builds its class.
The process stops when each method of the original class is
assigned to one of the two players.

B. Computing the Payoff Matrix

The payoff matrix is at the core of the approach. The generic
entry of such matrix, pi,j , is a couple of payoffs (pT , pS),
representing the payoffs of each player corresponding to a
generic move (i, j). These payoffs depend on the impact of the
methods obtained by the two players, S and T , on the cohesion
and coupling of their classes. In particular, pk measures the
impact on cohesion obtained by player k selecting the method
mi balanced with the impact on coupling caused by yielding
the method mj to the other player.

To quantify the gain obtained by a player k selecting a
method mi in terms of cohesion and coupling, we define a
function fcc computed as follows:

fcc(Ck,mj) =
1
N

∑
mi∈Ck

sim(mi,mj)

where Ck represents the set of method assigned at a certain it-
eration to the player k, N is the number of methods in Ck, and
sim(mi,mj) captures the relationships among methods that
affect cohesion and coupling. In particular, sim(mi,mj) is
obtained by combining three different (structural and semantic)
measures, i.e., Structural Similarity between Methods (SSM)
[11], Call-based Interaction between Methods (CIM) [12], and

Conceptual Similarity between Methods (CSM) [13]. These
measures capture three distinct ways in which methods relate
to one another, each reflecting a different type of relationships
among methods that impact class cohesion and coupling.

Structural Similarity between Methods (SSM) captures the
attribute references in methods, i.e., the higher the number
of instance variables that two methods share, the higher the
similarity between the two methods. Call-based Interaction
between Methods (CIM) [12] takes into account the calls
performed by the methods; the higher the interactions be-
tween methods, e.g., a method mi is only called by mj ,
the higher the similarity between the two methods. Clearly,
methods with high interactions should be in the same class
to reduce coupling between classes. Finally, we also capture
semantic information between methods trough the Conceptual
Similarity between Methods (CSM) metric [14]: two methods
are conceptually related if their (domain) semantics are similar,
i.e. they perform conceptually similar actions.

All these similarity measures have values in [0, 1]. We
compute the overall structural and semantic similarity between
a couple of methods mi and mj as:

sim(mi,mj) = wSSM · SSM(mi,mj) +

wCIM · CIM(mi,mj) + wCSM · CSM(mi,mj)

where wSSM , wCIM , wCSM ∈ [0, 1] and wSSM + wCIM +
wCSM = 1. Their values express the confidence (i.e., weight)
in each measure.

The generic entry pi,j of P is a couple of payoffs that
depends on the fcc function and is computed as follows:

pi,j =

(fcc(CS ,mi)− fcc(CS ,mj),
fcc(CT ,mj)− fcc(CT ,mi)) if i, j 6= null;

(fcc(CS ,mi), µ− fcc(CT ,mi)) if i 6= null, j = null;

(µ− fcc(CS ,mj), fcc(CT ,mj)) if j 6= null, i = null;

(−1,−1) if i = j.

where µ > 0 is a configuration parameter used to balance the
payoff of the null move with respect to the other payoffs. This
parameter gives a chance to the player to play the null move.
In fact, without µ, the payoff of the null move will always
be negative and the player would hardly select such a move.
The value of this parameter has been empirically defined; the
best refactoring opportunities are achieved setting µ = 0.5.
The two indexes i and j are in [1 . . . p + 1] where p is the
number of remaining methods to be assigned. Other than the
possible methods to be assigned (p), a null move must also
be considered (p+ 1).

The value of the payoff for each player is in [−1, 1]. Thus,
the diagonal of the payoff matrix is set to (−1,−1), the lowest
payoff for both the players, to avoid that the two players play
the same move, seek the same method, or play both the null
move.

This definition of the payoff matrix allows us to consider
at the same time both the cohesion and coupling of the new

fcc values - Iteration I
m1 m2 m3 m4 m5 m6

m1
m2
m3
m4
m5
m6

1.00 0.70 0.21 0.02 0.10 0.00
0.70 1.00 0.30 0.06 0.01 0.03
0.21 0.30 1.00 0.50 0.40 0.22
0.02 0.06 0.50 1.00 0.60 0.30
0.10 0.01 0.40 0.60 1.00 0.80

1.000.800.300.220.030.00

Payoff Matrix For Class c - Iteration I
CT

m2 m3 m4 m5

CS

m2
m3
m4
m5
null

null
(-1.00, -1.00)

CS = { m1 } CT ={ m6 }

(-0.49, -0.22)
(-0.70, -0.30)
(-0.70, -0.80)
(-0.20, 0.00)

(0.49, 0.22)
(-1.00, -1.00)
(-0.21, -0.08)
(-0.21, -0.58)
(0.29, 0.22)

(0.70, 0.30)
(0.21, 0.08)

(-1.00, -1.00)
(0.00, -0.50)
(0.50, 0.30)

(0.70, 0.80)
(0.21, 0.58)
(0.00, 0.50)

(-1.00, -1.00)
(0.50, 0.80)

(0.70, 0.50)
(0.21, 0.28)
(0.00, 0.20)
(0.00, -0.30)
(-1.00, -1.00)

fcc values - Iteration II
m3 m4

0.26 0.00
0.31 0.45

CS
CT

Payoff Matrix For Class c - Iteration II
CT

m3 m4 null

CS
m3
m4
null

(-1.00, -1.00)
(-0.26, -0.14)
(0.25, 0.31)

(0.26, 0.14)
(-1.00, -1.00)
(0.50, 0.45)

(0.26, 0.19)
(0.00, 0.05)

(-1.00, -1.00)

fcc values - Iteration III
m3

0.26
0.37

CS
CT

Payoff Matrix For Class c - Iteration III
CT

m3 null

CS
m3

null
(-1.00, -1.00)
(0.25, 0.37)

(0.26, 0.13)
(-1.00, -1.00)

CS = { m1, m2 } CT ={ m6, m5 }

CS = { m1, m2 } CT ={ m6, m5, m4 }

Fig. 1. An example application of our approach (µ = 0.5).

classes. If the player S chooses the move i, j selecting the
method mi and yielding the method mj to T , the payoff for
S considers the effect on the cohesion of the new class CS

as the similarity between the methods in CS and mi as it
considers the coupling increasing with the other new class,
i.e., CT , as the similarity between the methods in CS and mj .

C. An Example Application of our Approach
To better understand our approach, let us assume that a class

C contains six methods, C = {m1,m2,m3,m4,m5,m6}
and further suppose that the fcc function and payoff matrices
at each iteration of the approach are those reported in Figure 1.
In the first iteration, we consider equal to zero all the values
≤ 0.2 of fcc to remove spurious relationships between the
methods of the original class. Such values are indicated in
italic in Figure 1. In Figure 1, the payoff matrix entries in
bold correspond to the Nash equilibrium. The value 0.2 has
no particular reason to be chosen and was selected just for
illustrating the complete process.

The two players, S and T , are in charge of defining two
new classes (CS and CT) extracting methods from C. At
initialization, the two methods having the lowest similarities
are m1 and m6, so we assign m1 to CS and m6 to CT . We then
build the payoff matrix for the first iteration (see Figure 1) and
find the Nash equilibrium m2,m5, which means that player S
takes method m2 while player T takes method m5. After the
first iteration, we calculate the new fcc values and recompute
the payoff matrix using the new configuration of CS and CT

(see Figure 1).
The process continues in a second iteration and we find

two Nash equilibria. We select the Nash equilibrium with
the higher total payoff: null,m4. This equilibrium means that
player S takes no method while player T takes method m4.

The process goes into a third iteration. We compute the
new fcc values and recompute the payoff matrix. The equi-

librium is now null,m3. At the end of the process, we
have two new classes, namely CS = {m1,m2} and
CT = {m3,m4,m5,m6}.

IV. PRELIMINARY EVALUATION

A preliminary evaluation of our approach was performed
on two well-designed open-source systems, namely ArgoUML
version 0.16 and JHotDraw version 6.0b1. The evaluation was
carried out to answer the following research questions:
• RQ1: Are the refactoring opportunities identified through

the Nash equilibrium better than those identified through
the Pareto optimum?

• RQ2: Is the proposed approach better than other ap-
proaches that support Extract Class refactoring?

Regarding the first research question, we adapt our approach
to find a Pareto optimum instead of a Nash equilibrium and
then compare the solutions of the two approaches. For the
second research question, we compare our approach with De
Lucia et al.’s approach [15] because their goals are identical.
In particular, both approaches take as input a class with a
low cohesion and split it in two classes having a higher
cohesion. In [15], a class to be refactored is represented
as a weighted graph, where each edge is weighted by a
measure that captures the structural and semantic relationships
between methods, i.e., the same measures used in the proposed
approach. Then, a MaxFlow-MinCut algorithm is applied to
split the graph representing the class to be refactored in two
sub-graphs representing two classes having higher cohesion
than the original class.

The evaluation planning is inspired by mutation testing.
In particular, we randomly select two classes of one of the
object systems, merge them in a single class Ĉm and then use
the experimented approaches to split the merged class in two
classes. Given a merged class Ĉm, an approach is expected to

TABLE II
F-MEASURE OF THE EXPERIMENTED APPROACHES. THE NUMBER OF

MERGING OPERATIONS IS REPORTED BETWEEN BRACKETS.

ArgoUML (150) JHotDraw (50)
Mean Median Std.dev. Mean Median Std.dev.

Game Theory 0.897 0.966 0.201 0.846 1.000 0.227
Pareto Optimum 0.876 0.918 0.149 0.822 0.907 0.211
De Lucia et al. [15] 0.769 0.693 0.241 0.761 0.735 0.214

generate two classes similar to the original ones. In general,
we cannot be sure that generated classes will be exactly as
the original for a variety of reasons, including the fact the
coupling and cohesion of original classes may well point out
the need of refactoring.

However, to simplify our evaluation in this preliminary case
study, we conservatively quantify accuracy as a function of the
total number of methods correctly and incorrectly moved in
the split classes when compared with the original ones. Since
the merged classes have a good quality in terms of cohesion
and coupling, the ideal behavior (i.e., correct) is that the split
classes are identical to (i.e., contain the same methods as) the
original classes. This behavior means that the approach is able
to identify meaningful sequences of refactoring operations,
because starting from a class with low cohesion, the approach
is able to split the class in two classes with a higher cohesion
that that of the original classes.

The accuracy of the identified refactoring opportunities
can be evaluated using two well-known Information Retrieval
(IR) metrics, recall and precision [16]. Since the two metrics
measure two different concepts, a balance between them can
be obtained using an aggregate metric, the F-measure [16].

Table II reports the descriptive statistics of F-measure for
both ArgoUML and JHotDraw obtained with the new ap-
proach, the one based on the identification of Pareto optima,
and the approach proposed by De Lucia et al. [15], respec-
tively. The reported results are obtained using two (similar)
configurations of weights for the similarity measures. We
obtained best results with the setting wCIM = 0.2, wSSM =
0.1, wCSM = 0.7 on ArgoUML and with wCIM = 0.1,
wSSM = 0.2, wCSM = 0.7 on JHotDraw.

The results reported in Table II seem to support the superi-
ority of the new approach. In particular, we can positively
respond to both RQ1 and RQ2. These results suggest the
applicability of game theory to software engineering with
encouraging results, as (i) the results achieved prove that, in
some situations, the perfect balance between different design
goals is not achieved by finding the optimal value of a function
describing the overall quality of the system (Pareto optimum)
but exploiting the Nash equilibrium and (ii) the game theory-
inspired approach outperfoms a previous approach.

V. CONCLUSION AND FUTURE WORK

This paper proposed a novel approach based on game
theory to support Extract Class refactoring. Given a class to
be refactored, the approach models a non-cooperative game
where two players contend for the methods of the original
class to build two new classes with higher cohesion than the

original class. The results achieved in a preliminary evaluation
supported the applicability and superiority of game theory.

Other than refactoring, other software engineering problems
characterized by competing goals are likely to be representable
as games and resolved in a similar way. For example, software
re-modularization, project scheduling, or regression test selec-
tion. Thus, this paper sheds light on a branch of mathematics
that has received little attention from software engineers
but that can be effectively applied to tackle multi-objective
optimizations. We believe that the investigation of game theory
in software engineering can contribute to the development of
novel solutions in software engineering research and practice.

Several items are on our work agenda to pursue our re-
search work. We plan to investigate additional game theory
techniques, such as cooperative games, and determine whether
the choices we made here are the best or can be improved.
We also plan to (i) better understand the impact of different
parameter settings and (ii) carry out more empirical studies,
using other systems and different experimental settings. A
natural extension of this work will be to adapt our technique
to split a given class in more than two classes. Last but not
least, we also plan to apply game theory techniques to other
problems, such as software re-modularization and scheduling.

ACKNOWLEDGEMENTS

Giuliano Antoniol and Yann-Gaël Guéhéneuc are supported
by the NSERC Research Chairs in Software Change and
Evolution and in Software Patterns and Patterns of Software.

REFERENCES

[1] M. Dresher, The Mathematics of Games of Strategy: Theory and
Applications. Prentice-Hall, 1961.

[2] M. Grechanik and D. E. Perry, “Analyzing software development as a
noncooperative game,” EDSER, 2004.

[3] V. Sazawal and N. Sudan, “Modeling software evolution with game
theory,” in ICSP, 2009, pp. 354–365.

[4] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley, 1999.

[5] O. Seng, J. Stammel, and D. Burkhart, “Search-based determination
of refactorings for improving the class structure of object-oriented
systems,” GECCO, 2006, pp. 1909–1916.

[6] M. Harman and B. F. Jones, “Search based software engineering,” IST,
vol. 43, no. 14, pp. 833–839, 2001.

[7] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms.
JW, 2001.

[8] A. Rapoport and A. M. Chammah, Prisoner’s Dilemma. University of
Michigan Press, 1965.

[9] J. Nash, “Non-cooperative games,” Annals of Mathematics, vol. 54,
no. 2, pp. 286–295, 1951.

[10] O. Mangasarian, “Equilibrium points in bimatrix games,” Journal of
the Society for Industrial and Applied Mathematics, vol. 12, no. 4, pp.
778–780, 1964.

[11] G. Gui and P. D. Scott, “Coupling and cohesion measures for evaluation
of component reusability,” MSR, 2006, pp. 18–21.

[12] G. Bavota, A. D. Lucia, A. Marcus, and R. Oliveto, “A two-step
technique for extract class refactoring,” ASE, 2010.

[13] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy, “Using infor-
mation retrieval based coupling measures for impact analysis,” EMSE
Journal, vol. 14, no. 1, pp. 5–32, 2009.

[14] A. Marcus and D. Poshyvanyk, “The conceptual cohesion of classes,”
in ICSM, 2005, pp. 133–142.

[15] A. De Lucia, R. Oliveto, and L. Vorraro, “Using structural and semantic
metrics to improve class cohesion,” ICSM, 2008, pp. 27–36.

[16] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison-Wesley, 1999.

