
A Seismology-inspired Approach
to Study Change Propagation

Salima Hassaine∗, Ferdaous Boughanmi§, Yann-Gaël Guéhéneuc§, Sylvie Hamel∗, and Giuliano Antoniol§
∗DIRO, Université de Montréal, Québec, Canada

Email: {hassaisa,hamelsyl}@iro.umontreal.ca
§DGIGL, École Polytechnique de Montréal, Québec, Canada

Email: {ferdaous.boughanmi,yann-gael.gueheneuc}@polymtl.ca, antoniol@ieee.org

Abstract—Change impact analysis aims at identifying software
artefacts that are being affected by a change. It helps developers
to assess their change efforts and perform more adequate
changes. Several approaches have been proposed to aid in impact
analysis. However, to the best of our knowledge, none of these
approaches have been used to study the scope of changes in a
program. We present a metaphor inspired by seismology and
propose a mapping between the concepts of seismology and
change propagation, to study the scope of change propagation.
We perform three case studies on Pooka, Rhino, and Xerces-J
to observe change propagation. We use ANOVA and Duncan
statistical tests to assess the statistically significance of our
observations, which show that changes propagate to a limited
scope.

Keywords-Software evolution; Change Impact Analysis;
Change Propagation; Earthquake Forecasting;

I. INTRODUCTION

Although object-oriented programming has met great suc-
cesses in modeling and implementing complex programs,
developers face problems with maintenance [1]. In particular,
making changes without understanding their effects can lead to
poor effort estimation and delays in release schedules because
of their dire consequences, e.g., the introduction of bugs [2],
[3]. Therefore, both managers and programmers must be aware
of the ripple effects caused by a change. Thus, they need
help to identify the classes that must be changed to perform
maintenance changes more accurately. Change impact analysis
aims at identifying software artefacts being affected by a
change; it provides the potential consequences of a change
and estimates the set of artefacts that must be modified to
accomplish a change [4].

Existing approaches for change impact analysis are based
on class dependencies and use static, dynamic, and–or textual
analysis [4]–[7]. However, in object-oriented programs, the
relationships between classes make change impact difficult
to anticipate because of possible hidden propagation [8]. In
this case, historical analysis [9]–[12] of data from software
repositories provides useful information that complement static
and dynamic analyses. Such techniques learn change impact
relations based on the co-changes of software artefacts within
a change-set. However, they may fail to capture how changes
are spread over “space” (e.g., in class diagram) and through
class levels (i.e., the distance between co-changed classes).
Consequently, they could not help developers prioritise their

changes according to the forecast scope of changes, which can
lead to poor effort and cost estimations.

To the best of our knowledge, none of these approaches
have been used to study how far changes propagate from a
given class to the others, i.e., whether two co-changing classes
are in direct relation or are separated through a long chain
of relationships. In particular, if we analyse the relationships
chain of a changed class, we may have the intuition that the
classes impacted by a change are near the changed class.
However, in some cases, the actual classes that must be
modified are far away from the changed class. If these classes
are not considered before implementing a change, bugs will
occur.

The following motivating example, illustrates the diffi-
culty that developers face in identifying change propaga-
tion: the bug ID2005511 reports a bug in Rhino2, that
was introduced by a developer when he implemented a
change to class Kit and missed a required change to class
DefiningClassLoader. In this case, information passes
from class Kit to class DefiningClassLoader through an
intermediary class ContextFactory. Thus, a change in Kit

should trigger a change in DefiningClassLoader, while the
class ContextFactory remains unchanged.

This motivating example presents a situation where a bug
was introduced by a developer who missed changing a class,
that must be considered before implementing the change task.
This example confirms that change propagation is difficult to
anticipate between two classes separated by an intermediary
class. This problem would be more difficult if the two classes
(Kit and DefiningClassLoader) were separated by a long
chain of relationships.

Studying the scope of change propagation could help devel-
opers prioritise their changes according to the forecast scope
of changes. Understanding change propagation requires source
code analysis, which is a difficult, error-prone, and expensive
activity [13]. We propose an approach to change propagation
analysis specifically designed to study the scope of change
propagation, based on a metaphor between seismology and
change impact analysis. Our approach considers changes to a
class as an earthquake that propagates through a long chain of

1https://bugzilla.mozilla.org/show bug.cgi?id=200551
2http://www.mozilla.org/rhino/

1



intermediary classes. It combines static dependencies between
classes and historical co-change relations to study the scope
of change propagation in a program i.e., how far a change
propagation will proceed from an “epicenter class” to other
impacted classes.

In this paper, we perform a qualitative and two quantitative
studies, to show the applicability and usefulness of our ap-
proach. We apply our approach on three open-source systems:
Pooka, Rhino, and Xerces-J, and answer the following research
questions:

• RQ1: Does our metaphor allow us to observe the scope
of change impact?

• RQ2: What is the level most impacted by a change?
• RQ3: What is the most reachable level by a change?
We answer these research questions as follows:
• RQ1: Like earthquakes the change impact seems to

be more severe near the epicenter class and decreases
through class levels.

• RQ2: We applied ANOVA and Duncan − Multiple −
Range tests, and we can conclude that: a) level 1 is the
most impacted, b) level 2 is the second most impacted,
but significantly less than level 1, c) levels 3, 4, 5, and
6, are significantly less impacted than level 1 and 2.

• RQ3: We conclude that almost change propagation stops
at the level 1 and 2. But, there are some earthquakes that
propagate until 3, 4, 5 or 6 level.

This paper is organised as follows: Section II summarises
work related to change impact. Section III describes our
metaphor and mapping. Section IV presents our approach
and its implementation. Section V presents the three research
questions derived from our metaphor while Section VI presents
our study results and answers to the questions. Finally, Section
VIII concludes and presents future work.

II. RELATED WORK

In this section, we review and discuss related work.

A. Structure-based Change Impact Analyses

Arnold and Bohner proposed several models of change
propagation [4], [5]. These models are based on code depen-
dencies and algorithms, including slicing and transitive clo-
sure, to assist in assessing the impact of changes. Dependency
analysis of source code is performed using static analyses or
dynamic program analyses. When performing change impact
analysis with call graphs, the impact of a change in a method
is the transitive closure of all callers and callees. Therefore,
it can be inaccurate, by reporting false candidates that do not
change and failing to estimate some classes that actually do
change because the analysis is restricted to method calls.

Weiser et al. [14] proposed also slicing techniques to to
determine all the code locations which may affect a reported
location of a failure. Static slicing is typically based on data-
and control-flow graphs that are computationally expensive
to process and analyse and can report large slices [15].
Thus, dynamic slicing [16], [17] and probabilistic slicing [18],

have been proposed in literature to reduce the size of slices.
However, their analysis is expensive.

Law et al. [6] argued that static slicing is much more
precise than transitive closure on call graphs, but it may return
large sets of classes that are impacted by a change. Dynamic
slicing can improve the conservative behavior of static slicing.
However, it is subject to the risk of lower precision and
recall as it depends on the chosen scenarios and–or executed
test cases. Consequently, Law et al. [6] introduced a new
approach to method-level change impact analysis. They used
path profiling technique [7] to compress dynamic traces, then
they applied PathImpact algorithm to predict dynamic change
impact. Their approach can provide potentially more useful
predictions of change impact than method-level static slicing
in situations where specific program behaviors are the focus.

Zaidman et al. [19] proposed a technique for uncovering
important classes in a program’s architecture. They used a
technique that was originally developed to identify important
hubs on the Internet i.e., pages with many links to “author-
ative” pages [20]. They verified that important classes in the
program correspond to the hubs in the dynamic call-graph of
a program trace.

B. History-based Change Impact Analyses

Ying et al. [9] and Zimmermann et al. [10] proposed to
mine version-control systems. They applied association rules
that identify logical couplings [11] between classes. A change
occurring in class A may have an impact on another class B if
in the past they changed together. Such historical analysis is
often able to capture change couplings that cannot be captured
by static and dynamic analyses.

Bouktif et al. [12] used a technique from speech recognition
to infer cause–effect relationships from the revision histories.
Their approach relies on the technique of dynamic time
warping to group files with histories of changes of different
lengths. The values of their approach precision and recall are
higher than previous approaches [9], [10].

Girba et al. [21] proposed an approach, named Yesterday’s
Weather, to identify classes that are likely to change in the next
version. This approach is based on the retrospective empirical
observation that classes which changed the most in the recent
history also suffer important changes in the near future.

Canfora et al. [22] proposed an approach based on
information-retrieval techniques to derive the set of classes
impacted by a proposed change request. They argued that the
histories of change requests is a useful descriptor of classes
when it is used for change impact analysis.

German et al. [23], proposed a method which determines the
impact of previous code changes on a particular code segment
based on a change impact graph. Given a location of failure,
their method annotates the neighbours of this failure in the
graph by marking the recent changes. Thus, it determines all
the changed areas of the software system which affect the
reported location of a failure.

2



C. Probabilistic Approaches

Zhou et al. [24] and Mirarab et al. [25] presented a change
propagation analysis based on Bayesian networks that incorpo-
rates static source code dependencies as well as different fea-
tures extracted from the history of programs and uses a sliding
window algorithm to group them. Their change propagation
model is able to predict future change couplings. Mirarab et
al. [25] used Bayesian belief networks as a probabilistic tool to
make such predictions systematically. Their approach mainly
relies on dependency metrics calculated using static analysis
and change history extracted from a version-control system.

Antoniol et al. [26] incorporated static source code depen-
dencies and other features extracted from the release history of
a program, such as author information. Then, they applied the
LPC/Cepstrum technique to mine a version-control system for
classes having evolved in the same or very similar ways. Their
approach can find classes having very similar maintenance
evolution histories.

Ceccarelli et al. [27] proposed the use of a generalisation
of univariate autoregression model to capture the evolution
and inter-dependencies between multiple time series. They
applied the bivariate Granger causality test [28] to infer
the mutual dependencies between classes, analysing the time
series representing the change histories of a class A to predict
the changes of another class B. Their preliminary results
showed that change impact relationships inferred with the
Granger causality test are complementary to those inferred
with association rules.

D. Hybrid Approaches

Malik and Hassan [29] proposed the use of adaptive change
propagation heuristics. These heuristics combine the use of a
set of change propagation heuristics (history heuristic, con-
tainment heuristic, call use depends heuristic, code ownership
heuristic). The proposed adaptive heuristics can be adapted to
the current state of a programand to the varying characteristics
of the different entities in the program. This adaptive heuristic
uses a best heuristic table to track for each change entity the
best heuristic. It uses the development replay framework [30]
that uses change sets to measure the performance of change
propagation heuristics.

III. THE EARTHQUAKE METAPHOR

We now present a mapping between the concepts of seis-
mology and change impact analysis. We use this mapping to
observe and identify the scope of change propagation, i.e., how
a change to a program will impact the rest of the program,
using seismology techniques.

A. Seismology

Seismology is the study of earthquakes and of the propa-
gation of seismic waves. A seismic wave, or shaking, is the
vibration that occurs from the epicenter of an earthquake until
a damaged site. Seismic waves propagate along the surface
and through the Earth at varying speeds, depending on the
types of soil through which they move. In general, shaking is

Fig. 1. Epicenters distribution in space and time. The map shows the expected
number of earthquakes of a given magnitude occurring within a given radius
from each point. (From [35].)

most severe near the epicenter and decreases away from the
epicenter, i.e., more a site is near to the epicenter, more the
debris are important [31].

Seismology includes three main research directions:

1) Earthquake predictions: Creating effective approaches
for precise earthquake predictions, i.e., forecasting the
probable timings, locations, and magnitudes of earth-
quakes [32], [33].

2) Debris forecasting: Predicting and estimating debris, or
structural damage, after an earthquake, to assist debris
managers in planning large scale debris removals3.

3) Earthquake behaviour analysis: Studying short- or
medium-term interactions among earthquakes (fore
shock, main shock, after shock), and long-term be-
haviour of earthquakes [34].

Our approach is inspired from debris forecasting to identify
where the impact is located (i.e., the most risky classes). Figure
1 illustrates how the magnitude of an earthquake varies in
space and time. We see that the magnitude is maximum in the
epicenter and it decreases in function of the distance from the
epicenter to the considered site.

B. Change Impact Analysis

Change impact analysis has two main goals: supporting
the processing of changes and enabling the traceability of
changes. It is important during development and maintenance
to help developers in assessing their effort to implement
change requests (typically, the more impacted classes by a
change, the greater the effort) and in performing the most
adequate changes. Thus, it limits the risk of introducing bugs

3http://www.calema.ca.gov/WebPage/OESWebsite.nsf/Content/
88892A0B623B1F77882574270081DD56?OpenDocument

3



Change Impact Analysis Seismology
“Important” classes Active seismic areas
Software change Earthquake
“Important” changed class Epicenter
Change propagation Seismic wave propagation
“Other” changed classes Damaged sites
Class level Distance from an epicenter to a damaged site

TABLE I
MAPPING BETWEEN CHANGE IMPACT ANALYSIS AND SEISMOLOGY

by clearly identifying classes that could be impacted as shown
by the motivating example in Section I.

Change propagation is due to changes “moving” from one
class to another through program classes. For example, if a
method is renamed because of some change request, then all
the classes that call this method must be modified to use its
new name; in turn, other classes may change because of the
changes in these methods.

C. Change Impact Analysis and Seismology

We now define a mapping between impact analysis and
seismology, summarised in Table I.

In seismology, the epicenter of an earthquake is located in
a most active seismic areas. To determine the epicenter (lo-
cation) of an earthquake, seismologists analyse seismograms,
which record the seismic activities for a given areas.

In change impact analysis, any class is potentially subject
to changes. Yet, changes to “important” classes will impact
more a program than “peripheral” classes. A class can be
characterised as important according to different measures.
If an “important” class changes, then it is analogous to an
epicenter in seismology. In the following Section IV, we
identify important classes and also apply our approach to all
the classes in three programs.

In seismology, seismic waves propagate from the epicenter
of an earthquake until a damaged site, depending on the
types of soil through which they move. Shaking is usually
most severe near the epicenter and drops off away from the
epicenter, i.e., more the infrastructures are near the epicenter
more the debris is important.

In change impact analysis, changes propagate from the
epicenter class to the impacted class, depending upon the class
relationships, other logical couplings among these classes, and
their distance (called class level) to the epicenter class. We
define the distance between classes using the concept of class
level: with respect to a class A, a class B is in the level 1, if it
is in direct relation with A (inheritance, call, etc), and in the
level 2, if it is related to A through an intermediary class C.

Change propagation is analogous to seismic waves propaga-
tion in seismology. As in seismology, we assume that change
impact is most severe near the epicenter class, i.e., more the
classes are near to the epicenter class more the impact is
important. Yet, to the best of our knowledge, no previous
work reported observations on the propagation of changes
through the programs, which is the aim of our metaphor and
the subject of our empirical study. Using this mapping between
impact analysis and seismology, we now present an approach
to identify the classes impacted by a change to a given class.

This approach is complementary to previous work. It uses
structural and historical analysis with the specific aim to study
the scope of change propagation.

IV. APPROACH

This section presents our approach, each step will be
described in detail below. We can apply our approach on any
class. Specifically, as a developer starts changing a class, it
could analyse the change and recommend additional classes
for consideration. Also, before performing any change in a
program, it could help a developer to identify critical classes
that are regularly changed and could have an impact on the
program.

Our approach consists of three steps. Given an object-
oriented program, first, we compute metric values to rank
classes according to their importance and identify “epicenter
classes ”. Second, given an epicenter class, we compute
the “distance” from the epicenter class to each class of the
program, using a bit-vector algorithm: all classes that are
directly connected to the epicenter class are assigned to the
level 1, the classes that have a direct relationship with one of
these classes are put in level 2, and so on. Third, we use a
time window of duration T and collect the set of classes that
are modified after any change of the epicenter class and within
T . Finally, we report the set of classes that are involved in any
change and their number of changes.

A. Step 1: Measuring Class Importance

In this Section, we identify the most “important” classes in a
program using a combination of history-based and PageRank-
based metrics.

1) History-based Metric: We define a history-based metric
as the number of all commits related to a given class in
the entire history of a program, extracted from the program
version-control system. This measure represents the quantity
of changes to a class. It does not consider the size and the
type of a change, which are future work.

We use Ibdoos, our framework for the analysis of control-
version systems, to compute the numbers of changes to every
classes in a program. Ibdoos provides parsers for various
format of change logs, including CVS, Git, and SVN, and
stores all commits in a database, then we query this database
to obtain the numbers of changes per classes. We define the
number of changes to a class as h(c) for any class c.

2) PageRank-based Metric: PageRank [36] is one of the
main algorithms used by the Google search engine to mea-
sure the relative importance of Web pages. PageRank takes
backlinks into account and propagates the PageRank value
of a page through links: a page becomes important if the
sum of the values of its backlinks is high. Using PageRank,
we can measure the relative importance of each class in a
program. A class is important if it has incoming calls from
other (preferably important) classes. If a class is the only
reference of a very important class, it might be ranked higher
than another class in relationship with low-ranked classes. We
use the algorithm previously developed by Kpodjedo [37] to

4



C

B

A

D

F

E

G

cr cr cr

co

in

ag as

in

in

in

(a) UML-like model

C D

A

B

E

F G

dm dm

cr

dmdm

cr cr

co

dm

in

ag as

in

in

in

(b) Eulerian model

(c) String representation of the Eulerian model

Fig. 2. Representations of a simple example program (from [38]).

compute for each class c, the PageRank value pr(c). Then,
we rank all classes in descending order of their pr(c) and we
compute their class rank value r(c): the most important class
c has the highest pr(c) value.

3) Combination of the History- and PageRank-based Met-
rics: We combine the history- and PageRank-based metrics by
dividing the rank of each class by the number of changes to
the class. Thus, given two classes with equal ranks, the most
important class of the two is the one with the greater number
of changes, which lead to its rank to become higher than that
of the other class. We thus define rh(c) = r(c)

h(c) .
The metric rh provides an assessment of the class impor-

tance in a program, taking into account both the program struc-
ture (through the PageRank-based metric) and the program
history (through the history-based metric). The combination
rh ranks the most important classes first. A lower value of
rh(c) indicates a lower value r(c) and a higher value h(c),
i.e., rh ranks the most important classes that are often changed.
Identifying these important classes helps reveal what classes
of the program are regularly evolved and should be analysed
to identify their change propagation.

B. Step 2: Identifying Class Levels

We assume that change propagation depends on the “dis-
tance” between classes (called level). We represent a level
as the number of the intermediary relationships between a
given class and the epicenter class, i.e., this distance indicates
whether the two classes are in direct relation (level 1) or are
separated by a long chain of relationships of length n.

We use an existing tool, PADL [39], to automatically
reverse-engineer class diagram from the source code of object-
oriented programs. A model of a program is a graph with
nodes being the classes and edges representing the relation-
ships between classes, see Figure 2(a). To identify direct and
indirect relationships with the epicenter class, we first convert
the program model into its string representation, as illustrated
in Figure 2(c), using the algorithm previously developed by
Kaczor [38]. Then, we apply a bit-vector algorithm [40]: we
build the characteristic vectors of each token in the string
representation. The characteristic vector of a token t associated
with the string s = s1...sm, is t = (t1...tm):

ti =
{

1 if si = t
0 otherwise.

For the example shown in Figure 2, the characteristic vectors
of tokens A, in, and B are defined as:

A = 10000000000000000︸ ︷︷ ︸
30

1

in = 0101000100010000000︸ ︷︷ ︸
19

B = 0010001000100000000︸ ︷︷ ︸
20

Lets assume a class A as an epicenter class, to identify
all classes that are directly connected to this epicenter class:
for each class X—using conjunctions and shifts—between the
characteristic vectors of A, X , and all relationships: if X is
directly related to A through a relationship, then we put X in
level 1. For example, to identify whether class B is directly
related to class A through the inheritance relationship in, we
compute:

(→→ A) = 0110000000000000000000︸ ︷︷ ︸
29

(→ in) = 0010100010001000000︸ ︷︷ ︸
18

B = 0010001000100000000︸ ︷︷ ︸
20

R = (→→ A)∧ (→ in)∧B

= 00100000000000000000000︸ ︷︷ ︸
29

and assess whether the bit vector R is null (contains only
zeros). If R is not null, then class B is in level 1 with respect
to A. Once all classes of level 1 are defined, we repeat this
process, considering each class of level 1 as epicenter class
to identify all classes at level 2, i.e., classes that have a
direct relationship with a class of level 1. The same process
is repeated to identify level 3, and so on.

C. Step 3: Identifying Impacted Classes

We mine the version-control system of a program to identify
epicenter classes: we first define a time window T of observa-
tion as the median of time between two subsequent changes to
the important epicenter class. We choose the median because
it is robust to outliers. Then, we extract all the commits that
happened after any change to an epicenter class and within the
chosen time window T . Finally, we collect: (1) the names of
all classes that are involved in any change and (2) the number
of changes to each class.

We use Ibdoos to implement queries to collect the set of
classes changed after any change to the epicenter class and
during T . The names of all subsequently changed classes and
the number of changes that these classes underwent.

V. EMPIRICAL STUDY DESIGN

Following the Goal Question Metric (GQM) [41], the goal
of this study is to show the applicability and usefulness of our

5



Programs Nbr. Classes Start Dates End Dates Last Version
Pooka 298 2000-01-02 2010-08-30 2.0
Rhino 132 1999-12-18 2009-01-17 1R6.0
Xerces 685 2005-10-12 2010-11-26 11.0

TABLE II
STATISTICS FOR THE PROGRAMS.

approach, with the purpose of gathering interesting observa-
tions on the scope of change propagation and confirming these
observations statistically. The quality focus is the accuracy of
the identified scope of change propagation (i.e., how far the
propagation proceed from a given class to the others), and also
the variation of changes depending on the level of classes.
The perspective is of both researchers and practitioners who
should be aware of the scope of a change to estimate the
effort required for future maintenance tasks. The observed
phenomena can help for making decisions concerning the
process of future software projects. The context consists of
Pooka, Rhino, and Xerces-J. Pooka4 is an email client written
in Java, using the Javamail API. Rhino5 is an open-source
implementation of a JavaScript interpreter written entirely in
Java and developed for the Mozilla/Firefox browser. Xerces6

is an open-source family of software packages for parsing
and manipulating XML. Characteristics of these programs are
reported in Table II. We choose these programs because they
have been studied in previous work, they are open-sources,
thus we can find external information, such as bug reports.

A. Research Questions

This study aims at answering the research questions:
• RQ1: Does our metaphor allow us to observe the scope

of change impact?
We investigate whether it is possible to apply our ap-
proach to observe change propagation through class lev-
els. We perform a qualitative study to confirm our obser-
vations of change propagation, using external informa-
tion. Thus, we can show that, indeed, like in seismology,
certain levels are more impacted by a change than others.

• RQ2: What is the level most impacted by a change?
We perform a quantitative study to confirm our obser-
vations of change propagation, using statistical tests to
investigate which level may be the most impacted by a
change, and classifying the levels having similar impact.
Thus, we can deduce all classes with a higher risk to be
impacted by any change to epicenter class.

• RQ3: What is the most reachable level by a change?
As in RQ2, we perform a quantitative study to confirm
our observations of change propagation, using statistical
tests to investigate, for each level, the number of earth-
quakes that propagate until a given level. Thus, we can
deduce the most reachable level.

B. Analysis Methods

To answer RQ1, RQ2, and RQ3, we apply our approach on
Pooka, Rhino, and Xerces-J.

4http://www.suberic.net/pooka/
5http://www.mozilla.org/rhino/
6http://xerces.apache.org/

Epicenter Classes pr(c) r(c) h(c) rh(c)
Context 0.043243 2 135 67.5
IdScriptableObject 0.057838 1 9 9
Kit 0.038378 3 14 4.66
BaseFunction 0.027838 7 37 5.28

TABLE III
EPICENTER CLASSES IN RHINO

Epicenter Classes pr(c) r(c) h(c) rh(c)
TypeValidator 0.020261 3 25 0.12
XMLEventImpl 0.017062 6 21 0.28
DeferredDocumentTypeImpl 0.006441 25 68 0.36
XMLEntityScanner 0.002602 76 194 0.39

TABLE IV
EPICENTER CLASSES IN XERCES-J

a) RQ1: As in seismology, we are interested in the most
important seismic sources. Thus, we use metrics combination
rh(c) to rank classes according to their importance. We
observed the two most important epicenter classes in Rhino,
and Xerces-J. To illustrate our observations, we selected four
representative epicenter classs, in Rhino, and Xerces-J, as
shown in Table III and Table IV. For each epicenter class,
we report information from the programs bug trackers and
mailing lists confirming the propagation of a change to other
classes in different levels.

Using the R statistical system7, we build the 3D graph
visualising the change propagation from the epicenter class
to other classes, through their levels. The axes of the graphic
are the time, levels, and numbers of changes. Thus, we study
the graph of a representative epicenter class in each program to
assess whether, as in seismology, change impact is most severe
near the epicenter and decrease far away from the epicenter.

b) RQ2: We perform an exhaustive study to confirm our
observations, using a statistical test, for all classes in Pooka,
Rhino, and Xerces-J. We consider each class as an epicenter
class. We compute, for each level, the number of classes that
changed after any change to the considered epicenter class and
within the chosen time window.

For each level, we create a subset that contains the number
of changes per class. We then apply ANOVA on these subsets
to determine whether there are significant difference between
subset means. When differences between subsets exist, the null
hypothesis “H0: the number of changes is similar for each
level” is rejected. Then, we conduct Duncan’s multiple range
test to classify the subsets with respect to the differences be-
tween them. We choose Duncan’s multiple range test because
it can maintain a low overall type I error [42] and it uses a
studentized range statistics within a multiple range test. We
interpret the range-value as follow:

• Range 1, if subsets mean value is the minimum.
• Range 2, if subsets mean is adjacent to Range 1 mean.
• Range 3, if subsets mean is adjacent to Range 2 mean.

c) RQ3: This research question aims to verify whether
most earthquakes would propagate through all class levels or
just the first level. For each level, we create a subset that
contains the number of earthquakes that stop at this level.

7http://www.r-project.org

6



Fig. 3. Change propagation from XMLEventImpl

Fig. 4. Change propagation from TypeValidator

We then apply again ANOVA on these subsets to determine
whether there are significant differences between their means.
When differences between subsets exist, the null hypothesis
“H0: the number of earthquakes is similar for each level” is
rejected. If the ANOVA results yield significant differences, we
again apply Duncan’s multiple range test to classify the subsets
with respect to their differences. For example, in Xerces-J, the
most reachable level by the epicenter class XMLEventImpl is
level 3, while the epicenter class TypeValidator reaches at
maximum level 6.

VI. EMPIRICAL STUDY RESULTS

We now present the results of our empirical study.

A. RQ1: Does our metaphor allow us to observe the scope of
change impact?

We answer positively to this question using the epicenter
classes selected in Rhino, and Xerces-J.

In one hand, we build the 3D graphs visualising the change
propagation from the selected epicenter classes in Pooka,
Rhino, Xerces-J. Due to the lack of space in this paper, we
present just two graphs in Xerces-J. Figure 4 and Figure 3
illustrate the change propagation phenomena, in Xerces-J, for

the epicenter classes XMLEventImpl and TypeValidator.
In XMLEventImpl, number of changes is very important for
the first level, after that it decreases through the 2nd and 3rd
levels. In TypeValidator, we observe that changes propagate
until the 4th level and then it decreases significantly. However,
in some cases, they may propagate to 6th level. Thus, we
conclude that change propagation is different

In the other hand, we found external information in the
program bug trackers and mailing lists. Thus, we report four
examples (in Rhino and Xerces-J) of external information
illustrating the propagation of a change from the chosen
epicenter class to another class (in different level).

1) In Rhino:

• Epicenter class IdScriptableObject: we found the
bug ID2563218 that confirms that a change to the epi-
center class propagated to ScriptableObject (level 1)
to make Rhino objects serialisable.

• Epicenter class BaseFunction: we found the bug
ID2361179 that reports that a change to the epicenter class
propagated to classes Context and ScriptRuntime

(level 1), and ContextFactory and WrapFactory

(level2).
• Epicenter class Context: we found the bug ID25589110

that relates the epicenter class to three classes of
level 1 (CompilerEnvirons, ContextFactory, and
ScriptRuntime).

• Epicenter class Kit: we found the bug ID20055111 that
reports that a change to the epicenter class propagates to
the class DefiningClassLoader (level 2).

2) In Xerces-J:

• Epicenter class TypeValidator: we found a mes-
sage12 in the mailing list stating that changes to
TypeValidator propagate to PrecisionDecimalDV.

• Epicenter class XMLEventImpl: we found a SVN log
commented in mailing list131415 that confirms the change
propagation from the epicenter class to the classes:
EndDocumentImpl, EntityReferenceImpl (level 1),
and StartElementImpl (level 2).

• Epicenter class DeferredDocumentTypeImpl: we
found the on-line discussion16 showing that changes to
the epicenter class must propagate to four classes in level
2: DeferredElementImpl, DeferredEntityImpl,
DeferredNotationImpl, and DeferredTextImpl.

8https://bugzilla.mozilla.org/show bug.cgi?id=256321
9https://bugzilla.mozilla.org/show bug.cgi?id=236117
10https://bugzilla.mozilla.org/show bug.cgi?id=255891
11https://bugzilla.mozilla.org/show bug.cgi?id=200551
12http://comments.gmane.org/gmane.text.xml.Xerces.devel/5855
13http://xerces.markmail.org/message/eskpra4vcmaugtx6?q=

XMLEventImpl+StartElementImpl
14http://xerces.markmail.org/message/33uxkvhfomocrngj?q=

XMLEventImpl+StartElementImpl
15http://xerces.markmail.org/message/3hkhyuwj6v5oa7hw?q=

XMLEventImpl+StartElementImpl+&page=2
16http://xerces.markmail.org/search/?q=DeferredDocumentTypeImpl#

query:DeferredDocumentTypeImpl+page:2+mid:iyb37kwel5rdmaod+state:
results

7



Homogenous subsets for alpha = 0.1
Levels Range 1 Range 2 Range 3
5 107.5410
4 147.7778
3 150.0000
2 202.0408
1 354.4828

TABLE V
DUNCAN’S TEST APPLIED ON “NUMBER OF CHANGE IMPACTS” IN RHINO

Homogenous subsets for alpha = 0.1
Levels Range 1 Range 2 Range 3
6 6.4015
5 10.8485
4 24.8333
3 50.2789
2 83.7273
1 895.2652

TABLE VI
DUNCAN’S TEST APPLIED ON “NUMBER OF CHANGE IMPACTS” IN

XERCES-J

• Epicenter class XMLEntityScanner: we found the bug
ID109917 that relate the changes to the epicenter class
with changes to XMLParser (level 3).

B. RQ2: What is the level most impacted by a change?

We apply our approach on Pooka, Rhino, and Xerces-J.
Then, we create subsets that contains numbers of changes per
class that propagates from each class, then we apply ANOVA
on these subsets. The ANOVA results yield significant differ-
ence between subset means. We therefore conduct Duncan’s
multiple range to classify these subsets in each three programs.
TableV summarises the results of Duncan’s test applied on
Rhino. We observe that change propagation, in some cases,
reach level 5. This table shows that all the sample means
are significantly different for levels 1 and 2 (because they are
classified in different ranges), except the means of levels 3 and
4, for which there is no evidence of a difference, and thus they
are grouped together in the same range. The non significant
difference between levels 3 and 4 suggests that the number of
changes are similar. The number of changes is much higher
in level 1 (corresponding to the mean value 354.4828, and
range 3) and this high difference (with respect to other means)
results in a separate range. The same goes for the second level
(corresponding to the mean value 202.0408, and range 2).

TableVI summarises the results of Duncan’s test applied on
Xerces-J. We observed that change propagation, in some cases,
reach level 6. This table shows that level 1 differs significantly
from the others, by being the most impacted. The levels 4, 5
and 6 are classified in range 1, thus the number of changes is
almost similar at these levels. But, they are less impacted than
levels 2 and 3 that are classified in range 2 (corresponding
to the means values 50.2789 and 83.7273). The number of
changes is much higher in level 1 (corresponding to the mean
value 895.2652).

17https://issues.apache.org/jira/browse/XERCESJ-1099

Homogenous subsets for alpha = 0.1
Max Level Range 1 Range 2 Range 3
5 .5833
4 1.3712
3 1.7500
2 4.6136
1 11.7121

TABLE VII
DUNCAN’S TEST APPLIED ON “NUMBER OF EARTHQUAKES” IN RHINO

Homogenous subsets for alpha = 0.1
Max Level Range 1 Range 2 Range 3
6 10.5333
5 16.3333
4 21.6667
3 30.0033
2 43.2000
1 54.8667

TABLE VIII
DUNCAN’S TEST APPLIED ON “NUMBER OF EARTHQUAKES” IN XERCES-J

We can observe the same trend for Pooka. Due to the lack
of space in this paper we provide our result in this link18.

From the results of the three programs, we can conclude
that: a) level 1 is the most impacted, b) level 2 is the second
most impacted, but significantly less than level 1, c) levels 3,
4, 5, ... are significantly less impacted than level 1 and 2, and
d) levels 3, 4, 5, ... are classified in the same range, because
the number of changes seems similar in these levels.

C. RQ3: What is the most reachable level by a change?

In this research question, we apply the same approach
as for RQ2. Here, for each level, the subset is the number
of earthquakes that stop at this level. The ANOVA results
yield significant differences. Thus, we apply Duncan’s multiple
range test.

Table VII summarises the results of Duncan’s test applied
on Rhino. We observe that the number of earthquakes that
reach at maximum level 1 is greater (corresponding to the
highest mean 11.7121) than those that reach the other levels.
But, some changes propagate through levels 3, 4, and 5. The
means of the number of earthquakes that reach levels 3, 4, 5
are too similar (corresponding means are: .5833, 1.3712, and
1.7500), consequently, they are grouped in the same range 1.
The earthquakes that reach level 2 are less than those that
reach level 1, but significantly greater than the others (levels
3, 4 and 5). As a result, earthquakes that reach levels 1 and 2
cannot be classified with earthquakes that reach other levels.

TableVIII summarises the results of Duncan’s test applied
on Xerces-J. We observed that the number of earthquakes that
reach at maximum level 1 are the most frequent (corresponding
to the mean 54.8667). But, the number of earthquakes that
reach at maximum the levels 4, 5, and 6, are almost similar,
and the least (corresponding means are 21.6667, 16.3333,and
10.5333). The number of earthquakes that reach at maximum
levels 2 and 3, are significantly similar, and thus are regrouped
in the same range.

18http://www.ptidej.net/Members/hassaisa/docs/ICSM11-pooka.pdf

8



Thus, we conclude that almost change propagation stops
at the level 1 and 2. But, there are some earthquakes that
propagate until 3, 4, 5 or 6 level.

VII. DISCUSSIONS

We now discuss our approach and its empirical study.
With our approach, we analysed change propagation in three
different programs belonging to different domains and with
different sizes, and histories. We observed that changes did
not propagate through different class levels with the same
proportion in each program. We observe that the numbers
of earthquake propagations that stops at the level 1 and 2
is the greatest. However, the number of earthquakes that stop
at higher levels (3, 4, and 5) are the least. By determining
what levels might have been affected by certain changes, we
can help maintainers to rapidly pinpoint the source of a bug.
Consequently, maintainer needs to only examine the indicated
levels in priority instead of inspecting all the source code: our
method is time saving.

We observed that some classes changes frequently and are
changed periodically by developers. This observation could
help developers be aware of classes that they should consider
changing even if their changes is not directly linked to these
classes (see scenario in Section I).

A. Threats to Validity

Several threats potentially impact the validity of our empir-
ical study.

a) Construct validity: Construct validity concerns the
relation between theory and observations. In this study, they
could be due to the chosen time windows which may affect our
observations. A too long time window would be misleading
while a very narrow time window would not allow to observe
interesting facts. Conservatively, we chose a class-dependent
time window: the median of time between two subsequent
changes, because the median is robust to extreme outliers and
thus minimises spurious changes induced by too large time
windows on classes connected to epicenter classes. However,
we may not have used the most revealing time windows. More
investigation is needed to better understand the role of time
windows. Finally, it is possible, despite the confirmation using
external sources of information, that some classes reported
as impacted by a change did actually change for reason
independent of the changes to the epicenter class classes.

b) Internal Validity: The internal validity of a study is
the extent to which a treatment impacts the dependent variable.
The internal validity of our study is not threatened because we
have not manipulated the independent variable, extent of the
change propagation.

c) External Validity: The external validity of a study
relates to the extent to which we can generalise its results.
The main threat to the external validity of our study that could
affect the generalisation of the presented results relates to the
analysed programs. We performed our study on four different
Java programs belonging to different domains and with dif-
ferent sizes. However, we cannot assert that our results can

be generalised to other larger programs and programs in other
programming languages. Future work includes replicating this
study on other programs to confirm our results.

d) Conclusion validity: Conclusion validity threats deals
with the relation between the treatment and the outcome. We
paid attention not to violate assumptions of the performed sta-
tistical tests. We applied ANOVA and Duncan’s multiple range
tests. ANOVA assumes that the data are normally distributed.
We may have a problem of assuring this assumption. Thus,
we improved our conclusion validity by increasing the risk
of making a Type I error (increase the chance that we will
find a relationship when in fact there is not), we can do that
statistically by raising the alpha level. For instance, instead
of using a 0.05 significance level, we use 0.10 as our cutoff
point.

VIII. CONCLUSION AND FUTURE WORK

Change propagation analysis in object-oriented programs is
important to estimate the effort required for future mainte-
nance tasks. The observed phenomena can help for making
decisions concerning the process of future software projects,
and reducing the overall cost of source code inspection [13].

Existing approaches for change impact analysis are based
on the software structure and use static, dynamic, textual, and–
or historical analyses [4]–[7], [9], [10], [12]. However, to the
best of our knowledge, none of these approaches have been
used to study the scope of change propagation.

In this paper, we proposed an approach to analyse change
propagation and to study how far a change propagation will
proceed from a given class to the others. Our approach
considers changes to a class as an earthquake that propagates
through the class levels, defined by the length of relationships
chain that relate the epicenter class to the other classes.

We performed a qualitative and two quantitative studies on
three open sources: Pooka, Rhino and Xerces-J, and thus, we
answered the following research questions: RQ1: Does our
metaphor allow us to observe the scope of change impact?
RQ2: What is the level most impacted by a change? RQ3:
What is the most reachable level by a change?

We showed that our intuition, about the impacted classes
by a change must be near to the changed class, is incorrect in
some cases. Therefore, Duncan’s multiple range test confirms
that level 1 has the highest number of changes. However, there
are some change propagations that reach the 5th level in Rhino
(and 6th in Xerces-J). Identifying the scope of change propa-
gation could help, both developers and managers. Developers
could locate easily the change impact, and thus they do not
have to analyse the whole source code to understand the ripple
effect of a change. They could include in their change set
the classes belonging to the identified levels. Managers could
estimate the efforts required to perform maintenance changes
more accurately.

Future work includes applying our metaphor and our ap-
proach to other programs to confirm our observations. We will
also adapt seismology models to predict changes to classes.
In the case of earthquakes, seismologists are interested in

9



debris forecasting, to predict the quantity of damage and seek
to minimise the earthquake impact through the improvement
of construction standards. Earthquake prediction technique
generally use probabilistic methods to predict earthquake risk
using past history. We will study the possibility of using the
data about previous changes to forecast “earthquakes” that
could occurs in a program, their potential damages, and the
factors influencing their propagations.

ACKNOWLEDGMENT

This research was partially supported by FQRNT, NSERC,
and Research Chairs in Software Patterns and Patterns of
Software and in Software Evolution.

REFERENCES

[1] T. M. Pigoski, Practical Software Maintenance: Best Practices for
Managing Your Software Investment. Wiley, 1996.

[2] D. Bell, Software Engineering, A Programming Approach. Addison-
Wesley, 2000.

[3] D. Hamlet and J. Maybee, The Engineering of Software. Addison-
Wesley, 2001.

[4] S. A. Bohner and R. S. Arnold, Software Change Impact Analysis. IEEE
Computer Society Press, 1996.

[5] R. S. Arnold and S. A. Bohner, “Impact analysis - towards a framework
for comparison,” in the Conference on Software Maintenance. IEEE
Computer Society, 1993, pp. 292–301.

[6] J. Law and G. Rothermel, “Whole program path-based dynamic impact
analysis,” in the 25th International Conference on Software Engineering.
IEEE Computer Society, 2003, pp. 308–318.

[7] J. R. Larus, “Whole program paths,” SIGPLAN Not., vol. 34, no. 5, pp.
259–269, 1999.

[8] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Lan-
guage User Guide. Addison-Wesley, 1998.

[9] A. T. T. Ying, J. L. Wright, and S. Abrams, “Source code that
talks: an exploration of eclipse task comments and their implication
to repository mining,” in the 2005 international workshop on Mining
software repositories. ACM, 2005, pp. 1–5.

[10] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes,” in the 26th International
Conference on Software Engineering. IEEE Computer Society, 2004,
pp. 563–572.

[11] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling
based on product release history,” in Proceedings of the International
Conference on Software Maintenance, ser. ICSM ’98. IEEE Computer
Society, 1998, pp. 190–.

[12] S. Bouktif, Y.-G. Gueheneuc, and G. Antoniol, “Extracting change-
patterns from cvs repositories,” in the 13th Working Conference on
Reverse Engineering, 2006, pp. 221–230.

[13] S. L. Pfleeger, Software Engineering: Theory and Practice. Prentice-
Hall, 1998.

[14] M. Weiser, “Programmers use slices when debugging,” Commun. ACM,
vol. 25, pp. 446–452, 1982.

[15] D. Binkley and M. Harman, “A large-scale empirical study of forward
and backward static slice size and context sensitivity,” in the Interna-
tional Conference on Software Maintenance. IEEE Computer Society,
2003, pp. 44–54.

[16] H. Agrawal and J. R. Horgan, “Dynamic program slicing,” in Proceed-
ings of the ACM SIGPLAN 1990 conference on Programming language
design and implementation. ACM, 1990, pp. 246–256.

[17] X. Zhang, N. Gupta, and R. Gupta, “A study of effectiveness of dynamic
slicing in locating real faults,” Empirical Software Engineering, vol. 12,
pp. 143–160, 2007.

[18] R. Santelices and M. J. Harrold, “Probabilistic slicing for predictive im-
pact analysis,” Georgia Institute of Technology. Center for Experimental
Research in Computer Systems, Tech. Rep. GIT-CERCS-10-10, 2011.

[19] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens, “Applying
webmining techniques to execution traces to support the program com-
prehension process,” in In Proceedings of the Conference on Software
Maintenance and Reengineering, ser. CSMR ’05. IEEE Computer
Society, 2005, pp. 134–142.

[20] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
Journal of ACM, vol. 46, pp. 604–632, 1999.

[21] T. Girba, S. Ducasse, and M. Lanza, “Yesterday’s weather: guiding early
reverse engineering efforts by summarizing the evolution of changes,” in
In Proceedings of the 20th IEEE International Conference on Software
Maintenance, ser. ICSM ’04, 2004, pp. 40–49.

[22] G. Canfora and L. Cerulo, “Impact analysis by mining software and
change request repositories,” in Proceedings of the 11th IEEE Interna-
tional Software Metrics Symposium. IEEE Computer Society, 2005,
pp. 29–.

[23] D. M. German, A. E. Hassan, and G. Robles, “Change impact graphs:
Determining the impact of prior codechanges,” Information and Software
Technology., vol. 51, pp. 1394–1408, 2009.

[24] Y. Zhou, M. Würsch, E. Giger, H. C. Gall, and J. Lü, “A bayesian
network based approach for change coupling prediction,” in Proceedings
of the 15th Working Conference on Reverse Engineering, ser. WCRE ’08.
IEEE Computer Society, 2008, pp. 27–36.

[25] S. Mirarab, A. Hassouna, and L. Tahvildari, “Using bayesian belief
networks to predict change propagation in software systems,” in Program
Comprehension, 2007. ICPC ’07. 15th IEEE International Conference
on, 2007, pp. 177–188.

[26] G. Antoniol, V. F. Rollo, and G. Venturi, “Linear predictive coding and
cepstrum coefficients for mining time variant information from software
repositories,” in the 2005 international workshop on Mining software
repositories. ACM, 2005, pp. 1–5.

[27] M. Ceccarelli, L. Cerulo, G. Canfora, and M. Di Penta, “An eclectic
approach for change impact analysis,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering. ACM,
2010, pp. 163–166.

[28] C. Granger, “Investigating causal relations by econometric models and
cross-spectral methods,” Econometrica, vol. 37, no. 3, pp. 424–38, 1969.

[29] H. Malik and A. E. Hassan, “Supporting software evolution using
adaptive change propagation heuristics.” in ICSM’08, 2008, pp. 177–
186.

[30] A. E. Hassan and R. C. Holt, “Replaying development history to
assess the effectiveness of change propagation tools,” Empirical Software
Engineering, vol. 11, pp. 335–367, 2006.

[31] K. E. Bullen, An introduction to the theory of seismology, 3rd ed.
Cambridge University Press, Cambridge, 1963.

[32] Y. Y. KAGAN and L. KNOPOFF, “Statistical short-term earthquake
prediction,” Science, vol. 236, no. 4808, pp. 1563–1567, 1987.

[33] A. Morales-Esteban, F. Martı́nez-Álvarez, A. Troncoso, J. L. Justo, and
C. Rubio-Escudero, “Pattern recognition to forecast seismic time series,”
Expert System Application, vol. 37, pp. 8333–8342, 2010.

[34] A. Saichev and D. Sornette, “Theory of earthquake recurrence times,”
J.GEOPHYS.RES., vol. 112, p. B04313, 2007.

[35] S. C. Myers and W. R. Walter, “Using epicenter location to differen-
tiate events from natural background seismicity,” Lawrence Livermore
National Laboratory, Technical Report, it was prepared for submittal
to the 21 st Seismic Research Symposium: Technologies for Moni-
toring the Comprehensive Nuclear-Test-Ban Treaty UCRL-JC-134301;
GC0402000, 1999.

[36] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Technical Report
1999-66, 1999.

[37] S. Kpodjedo, F. Ricca, P. Galinier, and G. Antoniol, “Recovering the
evolution stable part using an ecgm algorithm: Is there a tunnel in
mozilla?” in the 2009 European Conference on Software Maintenance
and Reengineering. Washington, DC, USA: IEEE Computer Society,
2009, pp. 179–188.

[38] O. Kaczor, Y.-G. Guéhéneuc, and S. Hamel, “Efficient identification of
design patterns with bit-vector algorithm,” csmr, vol. 0, pp. 175–184,
2006.

[39] Y.-G. Guéhéneuc and G. Antoniol, “DeMIMA: A multi-layered frame-
work for design pattern identification,” Transactions on Software Engi-
neering (TSE), vol. 34, no. 5, pp. 667–684, 2008, 18 pages.

[40] A. Bergeron and S. Hamel, “Vector algorithms for approximate string
matching,” International Journal of Foundations of Computer Science,
vol. 13, no. 1, pp. 53–65, 2002.

[41] V. R. Basili and D. M. Weiss, “A methodology for collecting valid
software engineering data,” IEEE Trans. Software Eng., vol. 10, no. 6,
pp. 728–738, 1984.

[42] V. Bewick, L. Cheek, and J. Ball, “Statistics review 9: one-way analysis
of variance.” Critical care, vol. 8, no. 2, pp. 130–136, 2004.

10


