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∗Polytechnique Montreal, Canada; antoine.barbez@polymtl.ca, foutse.khomh@polymtl.ca

†Concordia University, Canada; yann-gael.gueheneuc@concordia.ca

Abstract—Anti-patterns are poor solutions to recurring design
problems. Number of empirical studies have highlighted the
negative impact of anti-patterns on software maintenance which
motivated the development of various detection techniques. Most
of these approaches rely on structural metrics of software systems
to identify affected components while others exploit historical
information by analyzing co-changes occurring between code
components. By relying solely on one aspect of software systems
(i.e., structural or historical), existing approaches miss some
precious information which limits their performances.

In this paper, we propose CAME (Convolutional Analysis
of code Metrics Evolution), a deep-learning based approach
that relies on both structural and historical information to
detect anti-patterns. Our approach exploits historical values of
structural code metrics mined from version control systems
and uses a Convolutional Neural Network classifier to infer the
presence of anti-patterns from this information. We experiment
our approach for the widely know God Class anti-pattern and
evaluate its performances on three software systems. With the
results of our study, we show that: (1) using historical values of
source code metrics allows to increase the precision; (2) CAME
outperforms existing static machine-learning classifiers; and (3)
CAME outperforms existing detection tools.

Index Terms—Anti-patterns, Deep Learning, Mining Software
Repositories

I. INTRODUCTION

During its development and maintenance, a software system
may experience what Cunningham [6] called the technical
debt, i.e., immature code and design choices implemented
with the aim of meeting a deadline. The technical debt often
takes the form of anti-patterns, i.e., poor solutions to recurring
design problems, originally proposed by Fowler [13] and
Brown et al. [4] along with refactoring operations aimed at
removing them. There exists a variety of anti-patterns, which
have been shown to negatively impact the maintainability [39]
and comprehensibility [1] of the code. For example, the God
Class anti-pattern, which happens when a class grows rapidly
with the addition of new functionalities, violates the principle
of single responsibility, which results in a class with low
cohesion and high coupling.

A variety of approaches have been proposed to detect
the occurrences of anti-patterns in source code [27], [34],
[25]. Most of them rely on the formal definitions of anti-
patterns and attempt to identify their occurrences in source
code using structural metrics (e.g., Lines Of Code) along with
empirically defined thresholds. However, anti-patterns can also
be detected by an analysis of change history information [31],
[29]. Indeed, the presence of anti-patterns in a system influence

how source code entities evolve with one another over time.
For example, the Feature Envy anti-pattern, which happens
when a method is implemented in the wrong class, can be
detected by identifying methods that change more often with
methods of another class than those of their own class.

Although structural and historical anti-patterns detection
techniques have shown acceptable performances, they are still
far from perfect; they often report large numbers of false posi-
tives and false negatives. Also, we observe a complementarity
in their detection results, meaning that some occurrences can
not be detected by approaches based solely on structural or
historical information [31]. Thus, existing approaches miss
some precious complementary information which limits their
performances. On the one hand, structural detection techniques
rely on one single version of software systems. On the other
hand, the historical detection technique does not consider the
structural properties of the changed entities, nor the nature of
the changes they have undergone.

Based on such considerations, we propose CAME
(Convolutional Analysis of code Metrics Evolution), a deep-
learning based approach to detect anti-patterns by analyzing
how source code metrics evolve over time when changes
are applied to the system. Hence, the main idea behind our
approach is to exploit the ability of deep-neural networks to
identify key features in raw data with the aim of detecting
anti-patterns from both structural and historical information.
Concretely, structural metrics values related to the code com-
ponents to be classified are computed at each revision of
the system under investigation by mining its version control
system (e.g., Git, SVN). This information is then organized
into a two dimensional vector and fed through a Convolutional
Neural Network (CNN) architecture to perform classification.

To the best of our knowledge, we are the first to exploit
structural and historical information simultaneously for detect-
ing anti-patterns.

This paper experiments the proposed approach for the
detection of God Class. To train and assess the performances
of our model, as well as to compare it with competing
approaches, we used a manually-produced oracle containing
occurrences of the studied anti-pattern in eight open-source
java projects. To verify that our approach leverages historical
information about code metrics to increase its performances,
we firstly carried out an experiment in which we compare the
performances of our model with different lengths of history
(i.e., number of revisions). This, study answers the following



research question:

(RQ1) To what extent historical values of source code
metrics can improve detection performances?
Our results indicate that for God Class detection, the
performances of our model significantly increase with
the length of the input metrics history. With a metrics
history of 500 revisions, the F-measure achieved by
our model on the three test systems increases by
33%± 6% with respect to the performances achieved
using one single revision.

Afterward, we compare the performances of CAME with
those achieved by several static Machine Learning (ML)
classifiers. Here and in the remainder of this paper, the
term static refers to approaches that do not exploit historical
information and therefore rely only on the current revision of
the considered system, i.e., the revision in which we want to
detect anti-patterns. Thus, we answer the following research
question:

(RQ2) How does CAME compare to other static ML
algorithms?
For God Class detection, our results show an overall
improvement of 38% in term of F-measure, with
respect to the classifier that achieved the best perfor-
mances.

Finally, we evaluate our approach as a potential alternative
to existing tools for helping practitioners to identify affected
components to be refactored. To do so, we compare the
performances of CAME with those of three state-of-the-art
detection techniques: two static code analysis techniques and
one approach that exploits change history information. With
the results of this experiment, we aim to answer our last
research question:

(RQ3) How does CAME compare to existing detection
techniques?
CAME significantly outperforms existing approaches
in detecting the God Class anti-pattern with an F-
measure of 0.77. We show that it improves the pre-
cision by 196% and the recall by 51% with respect
to the best competing technique. This suggests that
our approach should be considered by practitioners for
their software maintenance tasks.

The remainder of this paper is organized as follows. Sec-
tion II provides background and discusses the related work.
Section III describes our approach CAME. Section IV de-
scribes our case study design aiming to evaluate our approach
for God Class detection. Section V reports the results of
our first study aiming to assess the impact of the history
length on CAME’s performances, thus answering our first
research question. Section VI reports the results obtained while
comparing our approach with other techniques and answers
the last two research questions. Section VII discusses the
threats that could affect the validity of our results. Finally,
Section VIII concludes with future work.

II. BACKGROUND AND RELATED WORK

A. Definition of God Class

The God Class anti-pattern refers to the situation in which
a class grows rapidly with the addition of new functionalities.
A God Class implements a high number of responsibilities,
delegating only trivial operations and accessing the data of
many other classes. Consequently, this anti-pattern violates
the design principle of uniform distribution of the system’s
intelligence among top-level classes [32] and has been shown
to decrease program comprehension [1] and reusability.

B. Anti-patterns detection

The negative impact of anti-patterns on software quality
highlighted by number of empirical studies [7], [38], [39], [1]
has motivated the development of various automatic detection
approaches. Most of these approaches attempt to identify
bad motifs in models of source code using manually-defined
metric-based heuristics.

First, Marinescu [24] proposed a mechanism for analyz-
ing source code models with the aim of detecting design
defects. This mechanism relies on a set of metrics (along
with empirically defined thresholds) logically combined using
AND/OR operators. Originally implemented for God Class,
this approach called detection strategy has later been ex-
tended to 11 anti-patterns by Lanza and Marinescu [20] and
implemented inside Eclipse plug-ins such as InCode [25].
Similarly, Moha et al. [27] proposed DECOR (DEtection and
CORrection of Design Flaws). DECOR provides detection
algorithms for four design anti-patterns (God Class, Functional
Decomposition, Spaghetti Code, and Swiss Army Knife) and
their 15 underlying code smells. This approach relies on so-
called “Rule Cards” that encode the formal definitions of anti-
patterns and code smells.

Anti-patterns are often defined along with refactoring op-
erations designed to remove them, e.g., a God Class can be
removed using the Extract Class Refactoring which consists
in splitting the considered class into several more cohesive
smaller classes. Consequently, occurrences of an anti-pattern
can be detected by identifying opportunities to apply its
corresponding refactoring operation. Based on such consid-
eration, Fokaefs et al. [11] proposed an approach to detect
God Classes in a system by suggesting a set of Extract Class
Refactoring operations. Similarly, Tsantalis and Chatzigeor-
giou [34] proposed an approach for automatic suggestions of
Move Method Refactoring, i.e., methods that can potentially
be moved to another class are considered as potential Feature
Envy methods. These heuristics are implemented in the Eclipse
plug-in JDeodorant [9], [10].

Anti-patterns also impact how code components evolve with
one another over time, when changes are applied to the system.
Consequently, Palomba et al. [29], [31] proposed HIST (His-
torical Information for Smell deTection), an approach to detect
anti-patterns by analyzing co-changes occurring between code
components. They experimented HIST on eight software sys-
tems, for the detection of five anti-patterns: Divergent Change,



Shotgun Surgery, Parallel Inheritance, God Class and Feature
Envy. They show that HIST is able to identify code smells that
cannot be identified through approaches solely based on code
analysis and suggest that better performances can be achieved
by combining historical and structural information.

C. ML-based Anti-patterns detection

A number of approaches have used ML algorithms to detect
anti-patterns. These models also rely on software metrics com-
puted for each component to be classified. First, Kreimer [19]
relied on decision trees to detect God Class and Long Method.
This approach has later been extended to 12 anti-patterns by
Amorim et al. [2]. Khomh et al. [17], [18] presented BDTEX
(Bayesian Detection Expert), a metric based approach to build
Bayesian Belief Networks from the definitions of anti-patterns.
This approach has been experimented for the detection of God
Class, Functional Decomposition, and Spaghetti Code. Maiga
et al. [22], [23] proposed the use of Support Vector Machines
to detect four well known anti-patterns: God Class, Functional
Decomposition, Spaghetti code, and Swiss Army Knife.

Fontana et al. [12] conducted a large-scale study on the
effectiveness of machine learning algorithms for anti-patterns
detection. They experimented 16 different machine learning
algorithms along with boosting techniques for the detection
of four anti-patterns (Data Class, God Class, Feature Envy,
and Long Method) on 74 software systems belonging to
the Qualitas Corpus dataset [33]. They conclude that
the application of machine learning to the detection of anti-
patterns can provide high accuracy, even with a limited number
of training examples.

More recently, Liu et al. [21] proposed a deep learning based
approach to detect Feature Envy. Their model is a CNN fed
with structural metrics as well as lexical information. They
evaluated their approach on seven open-source applications.
To train their model, they also propose an automatic approach
for generating Feature Envy examples.

D. Anti-patterns Through Systems’ History

Olbrich et al. [28] studied the impact of anti-patterns on
the change behavior of code components. Specifically, they
analyzed the historical data of two large scale software systems
and compared the change frequency and size of components
affected by God Class and Shotgun Surgery with those of
healthy components. Vaucher et al. [36] studied the “life cycle”
of God Class occurrences in two open-source systems with
the aim of understanding when they are created and how they
evolve. They used a Bayesian Belief Network to track the
evolution of the“godliness” of these classes through different
versions of the studied systems. Similarly, Chatzigeorgiou and
Manakos [5] tracked the evolution of three anti-patterns: Long
Method, Feature Envy and State Checking in the history of two
open-source systems. Finally, Tufano et al. [35] performed the
largest experiment on the presence of anti-patterns through
the history of software systems. Specifically, they mined the
history of 200 software projects to understand under what
circumstances anti-patterns appear. First, their results confirm

the observation made by Chatzigeorgiou and Manakos [5] that
most of instances are introduced when the file is added to the
system. Second, they show that anti-patterns are also often
introduced the last month before deadlines by experienced
developers.

III. CAME: CONVOLUTIONAL ANALYSIS OF CODE
METRICS EVOLUTION

This section presents CAME, our deep-learning based
approach to detect anti-patterns from source code metrics
historical information. We first describe the input of our
model before describing its architecture. Finally, we discuss
the procedure we followed to train this architecture for anti-
patterns detection.

A. Input

To detect instances of a given anti-pattern in a system,
our approach uses a deep-learning based classifier to perform
a boolean prediction on each code component (i.e., class
or method) of the system. To perform this prediction, we
exploit both structural and historical information. To define
the input of our model, we first select a set of Nm structural
metrics which can be computed for any code component of
the system under investigation. Then, we walk through the
history of revisions of the system in reverse order by mining
its repository. At each revision, we recalculate the values of
the selected metrics for each component. We refer to the value
of the jth metric computed for a component c at the ith

revision of the system, as mi,j(c) ∈ R. Thus, for a given
code component c to be classified, the input of our model is
a real valued matrix Xc such as:

Xc(i, j) = mi,j(c) (1)

Different software systems experience a different number of
revisions (i.e., commits). Also, a code component may have
been introduced in a system during its creation or on the
contrary during a recent revision. As a consequence, different
code components may be characterized by a different number
of revisions. To allow our model to receive a fixed size input,
we limit the length of the metrics history (i.e., number of
revisions considered for a given component) to a constant Lh,
which is an hyper-parameter to be adjusted. Hence, each input
matrix of our model is of shape: Lh × Nm. If a component
has an history shorter than Lh, meaning that the component
did not exist in the early revisions of the system, we pad the
rest of its input matrix with zeros.

B. Architecture

Figure 1 overviews the architecture of the convolutional
neural network used by our approach to perform classification.
The model contains several convolution + pooling layers fully-
connected to a Multi Layer Perceptron (MLP) model, i.e.,
several dense layers connected to an output layer. The convo-
lution layers perform 1D convolutions with a stride of 1 and a
tanh activation function. The output of each convolution layers
is fed to max-pooling layers that reduce the dimentionality



Fig. 1. Architecture of the CNN model used by CAME. In this example, the
network contains two convolution + polling layers with filters of size 2 and
two dense hidden layers.

of their input by taking the maximum value across a small
spatial region. Then, after being flattened, the output of the last
pooling layer is fed to tanh dense layers. Finally, the output
layer is made of one single sigmoid neuron which outputs the
predicted probability that a component is affected given its
input matrix.

The choice of such architecture has been motivated by
the ability of CNNs to extract high level features from high
dimensional data, e.g., deep CNNs used in image processing
recognize complex shapes in raw pixels. Indeed, our conjecture
is that the first convolution layer can detect that some metrics
have changed between two consecutive commits. Then, the
next layers build a representation of the changes that charac-
terize an anti-pattern. Therefore, our model identify recurrent
patterns in the local variations of software metrics, which
we believe constitute a useful complementary information for
detecting anti-patterns.

C. Training

This subsection presents the consideration we adopted to
train our model but we assume that the following applies to
anyone willing to train neural-networks on the task of anti-
patterns detection. First, let D = {(Xi, yi)}ni=1 be our training
set. With Xi ∈ RLh×Nm , the input matrix (cf. equation 1) of
the ith component to classify, yi ∈ {0, 1} the true label for
this component and n the number of instances in the training
set.

Also, we refer to the set of weights of our model as θ =
{wl}Ll=1, with wl being the weight matrix of the lth layer
and L the number of layers in the network. Finally, we note
Pθ(1|Xi) = g(Xi.θ) the predicted probability outputed by our
model for the ith component, with g(x) = 1

1+e−x the sigmoid
function.

1) Loss Function: In a software system, components af-
fected by an anti-pattern are usually a minority (≈ 1%) [30].
Classifiers optimized using conventional loss functions, e.g.,
cross entropy, on such data tend to favor the majority category,
thus maximizing the overall accuracy [14]. This characteristic

known as the “imbalanced data problem” prevents us from
using such loss function to guide the optimization of our
model. Hence, we must define a loss function that maximizes
our evaluation metric: the F-measure expressed in equation 9.

Optimizing a model through gradient decent requires com-
puting the gradient of the loss with respect to the model
weights. However, computing the number of true positives TP
and positives mpos (cf. Table II) requires counting elements
from the probability outputed by the model, which necessarily
involves discontinuous operators:

TP (θ,D) =
n∑
i=1
yi=+1

δ(Pθ(1|Xi) > 0.5) (2)

mpos(θ,D) =
n∑
i=1

δ(Pθ(1|Xi) > 0.5) (3)

With:

δ(x) =

{
1 if x=True
0 if x=False

This characteristic prevents us from using the F-measure
directly to define our loss function. Consequently, we use the
continuous and differentiable approximation of the F-measure
provided by Jansche [16] which consists in considering the
limit:

δ(Pθ(1|xi) > 0.5) = lim
γ→+∞

g(γXi.θ) (4)

Hence, we define our loss function as loss = −F̃m(θ,D)
with:

F̃m(θ,D) = 2×

∑n
i=1
yi=+1

g(γXi.θ)

npos +
∑n
i=1 g(γXi.θ)

(5)

Note that the value of the hyper-parameter γ will be adjusted
along with other hyper-parameters during the tuning of our
model.

2) Regularization: Overfitting occurs when a statistical
model fails to generalize to new examples by learning irrel-
evant characteristics of its training data. Hence, an overfitted
model performs well on the training set but achieves poor
performances on unseen test data. To prevent our model from
overfitting, we used the widely adopted L2 regularization
technique, which consists in adding a term to the loss function
to encourage the weights to be small [37]. This term rely on the
Euclidean norm of the weight matrices, i.e., ‖w‖2 =

√
w>w,

also called L2-norm. Thus, the L2 regularization term added
to the loss function can be expressed as:

L2 = λ

L+1∑
l=1

‖wl‖2 (6)

With λ ∈ R an hyper-parameter adjusted during cross-
validation.



IV. STUDY DESIGN FOR GOD CLASS

In this section, we lay the foundations of our study aiming to
evaluate the effectiveness of our approach CAME for detecting
the God Class anti-pattern. After describing the software sys-
tems investigated in this work, we present the metrics selected
for God Class and overview the process followed to extract
historical information about these metrics. We finally describe
our evaluation approach and replication package. Our study
aims at addressing the following three research questions:

(RQ1) To what extent historical values of source code
metrics can improve detection performances?
This research question assesses the impact of the
length of the input metrics history (i.e., Lh) on our
models’ performances. Hence, before comparing our
approach with other detection techniques, we can con-
firm that metrics history provides relevant information
to our model and establish which value of Lh leads to
optimal performances.

(RQ2) How does CAME compare to other static ML
algorithms?
This research question aims at comparing the perfor-
mances of our approach with other static ML algo-
rithms, i.e., which rely on one single revision of the
systems.

(RQ3) How does CAME compare to existing detection
techniques?
This research question aims at comparing our approach
with existing detection techniques. The results of this
comparison will provide insights on the advantages of
using CAME instead of other detection tools to help
developers in their daily maintenance tasks.

A. Studied Systems

To answer our research questions, we base our study on
eight open-source Java projects belonging to various ecosys-
tems. Android Opt Telephony and Android Support belong
to the Android APIs1. Apache Ant, Apache Tomcat, Apache
Lucene, and Apache Xerces belong to the Apache Founda-
tion2. ArgoUML3 is a software design tool and Jedit4 a text
editor. For the sake of simplicity, we chose to analyze only
the directories that implement the core features of the systems
and to ignore test directories.

The choice of these systems has been motivated by the fact
that they have been used for a similar purpose in prior studies.
Indeed, to train our model and compare its performances with
those of other approaches, we needed an oracle reporting the
occurrences of God Classes in a set of software systems.
Unfortunately, we found no such large dataset in the literature.
Consequently, we reused the occurrences of God Class used
to evaluate the approaches HIST [31] and DECOR [27], made

1https://android.googlesource.com/
2https://www.apache.org/
3http://argouml.tigris.org/
4http://www.jedit.org/

TABLE I
CHARACTERISTICS OF THE STUDIED SYSTEMS

System name Snapshot Directory #Files #GCs
Android Opt Telephony c241cad src/java/ 190 10
Android Support 38fc0cf v4/ 104 4
Apache Ant e7734de src/main/ 755 7
Apache Lucene 39f6dc1 src/java/ 160 3
Apache Tomcat 398ca7ee java/org/ 1005 5
Apache Xerces c986230 src/ 658 15
ArgoUML 6edc166 src new/ 1246 22
Jedit e343491 ./ 437 5

publicly available56 by their respective authors. Among the
systems available, we kept only those for which the full history
was available through Git or SVN. Also, for some systems,
we found occurrences that do not belong to it or that do
not exist in the current revision. In such cases, we did not
incorporate the systems in our oracle. Table I overviews the
main characteristics of the subject systems.

B. Source Code Metrics

For God Class detection, the components to classify cor-
respond to the classes of the system. However, we chose
to consider only top-level-classes as potential God Classes,
as we found no inner-classes positively labeled in our data.
To decide whether or not a given class is affected by the
God Class anti-pattern, we retrieve the history of seven
structural metrics. Note that to compute these metrics, we
do not consider attributes and methods of inner- (or nested-)
classes as components of the class under investigation. Indeed,
the refactoring operation commonly applied to remove God
Classes (Extract Class Refactoring) consists in identifying
one or several group of attributes and methods of the class
dedicated to one functionality and then extract them as a
separate class. Thus, we assume that inner-classes may be the
result of such refactoring. In the following, we define each
selected metric and provide a brief rational for their use.

• ATFD (Access To Foreign Data): Number of distinct
attributes of unrelated classes (i.e., not inner- or super-
classes) accessed (directly or via accessor methods) in the
body of a class. A God Class accesses a lot of data from
other classes as suggested by Lanza and Marinescu [20].

• LCOM5 (Lack of COhesion in Methods): Measures
cohesion among methods of a class based on the attributes
accessed by each method [15]. A God Class handles
many unrelated functionalities, thus methods related to
different functionalities access different sets of attributes.
This metrics is also part of the detection process of
DECOR [27].

• LOC (Lines Of Code): Sum of the number of lines of
code of all methods of a class. A God Class implements
a high number of functionalities, thus it is mainly char-
acterized by its size.

5http://www.rcost.unisannio.it/mdipenta/papers/ase2013/
6http://www.ptidej.net/tools/designsmells/materials/



• NAD (Number of Attributes Declared): Number of at-
tributes declared in the body of a class. This metrics is
part of the detection process of DECOR [27].

• NADC (Number of Associated Data Classes): Number of
dependencies with data-classes (i.e., data holders without
complex functionality other that providing access to their
data). This metrics is part of the detection process of
DECOR [27].

• NMD (Number of Methods Declared): Number of non-
constructor and non-accessor methods declared in the
body of a class. This metrics is part of the detection
process of DECOR [27].

• WMC (Weighted Method Count): Sum of the McCabe’s
cyclomatic complexity [26] of all methods of a class. A
God Class has a high functional complexity, as suggested
by Lanza and Marinescu [20].

C. Data Extraction

As previously evoked, we construct the input matrices of
our model by mining software repositories and navigating
through the different revisions of a system using its version
control API (e.g., Git). To automate this process and allow
replication, extension and reuse of our work, we designed a
component called RepositoryMiner7 which automatically
extracts the source code metrics history of any java software
system. The RepositoryMiner currently implements 12
class- and method-related structural metrics and allows to
easily define new ones. We briefly describe each step of the
process followed to extract our data below.
Input: The RepositoryMiner takes as input three ar-
guments: (1) the URL of the system’s repository; (2) the
SHA, i.e., the identification number, of the system’s snapshot
(i.e., commit) we want to analyze and; (3) the sub-directories
of interest, i.e., those in which we want to detect affected
components.
Initialization After downloading the system repository, we
checkout to the current snapshot and parse the Abstract Syntax
Tree (AST) of all the .java files contained in the sub-directories
of interest. This step creates a SystemObject that holds a
representation of the system’s classes which will be used later
to compute our metrics.
Data Extraction We walk through all the commits of the
system in reverse order starting from the current snapshot. At
each commit, we perform the following steps:

1) Retrieve the names of all the files that have been changed
between the current and the previous revision.

2) If the changed files belong to the SystemObject,
checkout and update the corresponding classes.

3) Check if any component (i.e., file, class, or method) have
been renamed between the current and the next revision.

4) Compute the code metrics values for each class of the
SystemObject by taking into account renamed com-
ponents.

7https://github.com/antoineBarbez/RepositoryMiner/

Output The RepositoryMiner outputs a collection of
.csv metric files. Each file contains the code metrics values
computed for each class of the system at a given revision.
Note that before creating a new metric file, we check if at
least one value has been modified with respect to the previous
one.

D. Evaluation
To evaluate the performances of CAME as well as those

of the competing classifiers, we selected three systems, i.e.,
Android Support, Apache Tomcat, and Jedit, among the eight
software systems presented in Table I. These systems have
been selected for the sake of generalizability. Indeed, they
belong to different domains: telephony framework, service
container, and text editor and have different sizes (i.e., number
of classes). The remaining five systems are used for training
and tuning the hyper-parameters of the different ML-based
approaches investigated in this work.

We compute the overall performances of each approach
by running it on all instances (i.e., the java classes) of the
three test systems. Indeed, each classifier is able to perform a
boolean prediction on each single instance. Then, we evaluate
a classifier using the so-produced confusion matrix presented
in Table II.

TABLE II
CONFUSION MATRIX FOR BINARY CLASSIFICATION

predicted label

to
ta

l

1 0

tr
ue

la
be

l

1 TP FN npos

0 FP TN nneg

total mpos mneg n

With TP the number of true positives; FN the number of
false negatives (i.e., misses); FP the number of false positives
and TN the number of true negatives. We use this matrix to
compute our evaluation metrics:

precision =
TP

TP + FP
(7) recall =

TP

TP + FN
(8)

In order to evaluate each approach with a single aggregated
metric, we also compute the F-measure (i.e., the harmonic
mean of precision and recall):

Fm = 2× precision× recall
precision+ recall

= 2× TP

npos +mpos
(9)

E. Replication Package
To facilitate further evaluation and reuse of our work, all

the data used in the context of this study, as well as our
implementation of CAME for God Class is publicly available
in our online appendix8.

8https://github.com/antoineBarbez/CAME/



TABLE III
CAME HYPER-PARAMETERS TUNING

Hyper-parameter Range
Learning Rate (η) 10−[0.0;2.5]

L2-norm (λ) 10−[0.0;2.5]

Gamma (γ) [1; 10]
# Conv Layers [0, 1] if Lh ≤ 10 else [1; 2] if Lh ≤ 100 else 2
# Filters [10; 60]
Filter size [2; 4]
Pool size {2, 5, 10} if Lh ≤ 100 else {5, 10, 15, 20}
# Dense Layers [1; 3]
Dense Layer size [4; 100] then [4; s]

With s the size of the previous dense layer.

V. ASSESSING THE IMPACT OF THE METRICS HISTORY
LENGTH ON CAME’S PERFORMANCES

In this section, we report the results of our experiments
conducted with the aim of assessing the impact of the metrics
history length (Lh) on the performances of our approach.
Hence, this section answers the first research question.

A. Approach

To answer RQ1, we monitor the performances
achieved by CAME, in terms of precision, recall and
F-measure, with different lengths of metrics history:
Lh ∈ {1, 10, 50, 100, 250, 500, 1000}. For each value of Lh
experimented, we build and train 10 distinct CNNs in order
to retrieve the mean and standard deviation of the three
performance metrics achieved for each length. To avoid any
bias in our conclusions, we must consider that the length of
the metrics history may affect the optimal values of the other
hyper-parameters of our model. Consequently, before training
our model for a new value of Lh, we perform a new tuning
of its hyper-parameters. As explained in Section IV-D the
performances metrics are computed by considering instances
of the three test systems together: Apache Tomcat, Jedit and
Android Support. The remaining five systems are kept for
training and hyper-parameters tuning.

B. Hyper-parameters Tuning

We select the optimal set of hyper-parameters of our model
for each history length investigated using a random search over
100 generations of nine hyper-parameters [3]. Table III reports
for each hyper-parameter, the range of values experimented.
We monitor the performances achieved by our model with
different sets of hyper-parameters by carrying out a 5-fold
cross-validation. Thus, we first split the training set into 5
equal size partitions, i.e., folds. Then, at each iteration, we
generate a new random set of hyper-parameters and compute
our model’s prediction on each fold by leaving it out while
keeping the others for training (100 epochs). Finally, we
concatenate the obtained predictions and compute the overall
F-measure. The optimal values retained after tuning for each
history length can be found in our online appendix9.

9https://github.com/antoineBarbez/CAME/tree/master/experiments/tuning/

Fig. 2. Comparison of CAME’s performances for different sizes of metrics
history. The lines show mean values while areas show standard deviations
over 10 trainings.

For each history length investigated, we train our model us-
ing the previously found hyper-parameter values. We perform
a mini-batch based stochastic gradient descent optimization
during 300 epochs, with 5 mini-batches and an exponential
learning rate decay of .5 every 100 epochs. It is important
to remember that we train 10 randomly initialized CNNs per
history length investigated in order to compute the mean and
standard deviation of their performance metrics.

C. Results

Figure 2 presents the results of our comparison for God
Class, i.e., mean values and standard deviations of CAME’s
performance metrics over the three test systems, obtained
using different sizes of metrics history (1, 10, 50, 100, 250,
500, 1000).

RQ1: To what extent historical values of source code metrics
can improve detection performances?

For God Class detection, our results show that in term of
F-measure, the overall performances achieved by CAME on
the three test systems significantly increase with the size of
the metrics history. Specifically, after training our model ten
times per history length, we observe that the overall F-measure
improves from 0.51±0.06 for Lh = 1 to 0.68±0.08 for Lh =
500 (improvement of 33% ± 6%). Regarding the other two
performance metrics, we see that although CAME achieves a
better recall on average for Lh > 1, there does not seem to
be any real correlation between recall and history length. As
shown in Figure 2 the recall strongly increases in the range
[1; 100] but then drops to recover its initial value at Lh = 1000.
Finally, we can see that the precision clearly improves with
the history length similarly to the F-measure. By comparing
the precision for Lh = 1 with respect to the history length
that led to the best results (Lh = 500), we observe an overall
improvement of 61%± 11%.



Also, we can see that the performances of CAME (espe-
cially precision) decrease for Lh > 500. This observation is
surprising considering that a longer metrics history includes
the shorter ones and thus should lead to a greater or equal
F-measure. We believe this could be due to a sub-optimal
choice of the hyper-parameters. Indeed, the randomness of the
process and the finite number of combinations experimented
make it hard to conclude that the hyper-parameters selected are
optimal. Furthermore, while tuning our model, we limited the
number of convolution layers to 2. Hence, it is possible that
more convolution layers may be needed to process a history
of size Lh = 1000 and achieve optimal performances.�

�

�

�

Our results confirm that our model properly leverages his-
torical information about source code metrics by decreas-
ing the number of false positives. Specifically, for Lh > 1
we observe a recall greater or equal to that obtained with
a single revision of the input metrics and more importantly,
we see that the precision clearly increases with the length
of the input metrics history.

VI. COMPARING CAME WITH OTHER APPROACHES

This section reports the results of our experiments aiming
to compare CAME with other approaches. To avoid redundan-
cies, we report the results for our last two research questions
together.

A. Approach

Similarly to the previous study, we evaluate the perfor-
mances of the different approaches on our three test systems
(i.e., Apache Tomcat, Jedit, and Android Support) while keep-
ing the other five for training and hyper-parameters calibration.
To compute the performances of CAME on these systems,
we reuse the ten CNNs trained during our previous study
(cf. Sections V-A) with Lh = 500. As shown in Figure 2,
after being trained, each CNN achieves different performances
due to the randomness of its initialization. Hence, the final
performances of CAME are computed from the outputs of the
ten CNNs using an ensemble method, also known as boosting
technique. Such method have been shown to lead to better
performances than those of each independent classifier [8]. In
the context of this study, we use the widely-adopted Bayesian
averaging heuristic to compute the ensemble prediction. Thus,
the final predicted probability that a class c is a God Class
can be expressed as:

Pensemble(1|Xc) =
∑10
i=1 Pi(1|Xc)

10
(10)

with Pi(1|Xc), the predicted conditional probability given by
the ith CNN and Xc the input matrix of the class c.

To answer RQ2, we compare CAME with three ML
classifiers: Decision Tree, Multi Layers Perceptron (MLP),
and Support Vector Machine (SVM). The input of these
classifiers consists in the same seven metrics used by CAME
(cf. Section IV-B) computed on the current revision of each
studied system. Similarly to CAME, we first calibrate the

TABLE IV
HYPER-PARAMETERS TUNING OF THE COMPETING ML CLASSIFIERS

Model Hyper-parameter Range

Decision Tree

Max Features {sqrt, log2, None}
Max Depth 10× [1; 10]
Min Sample Leaf {1, 2, 4, 6}
Min Sample Split {2, 5, 10, 15}

MLP

Learning Rate (η) 10−[0.0;2.5]

L2-norm (λ) 10−[0.0;2.5]

Gamma (γ) [1; 10]
# Dense Layers [1; 3]
Dense Layer size [4; 100] then [4; s]

SVM
Penalty {0.001, 0.01, 0.1, 1, 10, 100}
Gamma {0.001, 0.01, 0.1, 1, 10, 100}
Kernel {linear, rbf, sigmoid}

With s the size of the previous dense layer.

hyper-parameters of each classifier and compute the final
performances using the Bayesian averaging ensemble method
on ten pre-trained models.

To answer RQ3, we compare CAME with three state-of-the-
art detection approaches. Two static code analysis techniques:
DECOR [27] and JDeodorant [10] and one approach that
exploits change history information to detect anti-patterns:
HIST [31]. We chose to compare CAME with these ap-
proaches to increase the scope of our study. Indeed, they rely
on radically different strategies to detect anti-patterns and are
thus likely to be complementary. DECOR rely on the use of
Rule Cards that encode the formal definitions of anti-patterns
using structural and lexical information. JDeodorant detects
affected components by identifying refactoring opportunities.
Finally, HIST exploits change history information derived
from version control systems. To compute the performances of
each approach, we used the implementations made publicly-
available by their respective authors whenever possible and
replicated the approaches for which no implementation was
available. Thus, we ran DECOR using the Ptidej API10 and
JDeodorant using its Eclipse plug-in11. For HIST, we imple-
mented the detection rules as described in its original paper
[31]. Also, we implemented our own component12 to extract
code changes at a class level granularity because the original
component was not available due to its license.

B. Hyper-parameters Tuning

We calibrate the hyper-parameters of each ML algorithm
using the same procedure adopted for CAME in the previous
study (see Section V-B). Hence, we use a random search of
100 iterations over a variety of hyper-parameters related to
each classifier. Also, to monitor the performances induced by
each set of hyper-parameters, we use a 5-fold cross-validation
with instances of the five training systems. Table IV reports
for each classifier, the set of hyper-parameters tuned, as well
as the ranges of values experimented. To train the MLP model,
we used rigorously the same procedure followed for training
CAME.

10https://github.com/ptidejteam/v5.2/
11https://marketplace.eclipse.org/content/jdeodorant/
12https://github.com/antoineBarbez/HistoryExtractor



TABLE V
PERFORMANCES FOR GOD CLASS DETECTION

Approaches
Apache Tomcat JEdit Android Platform Support Overall

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

DECOR 68% 40% 50% 17% 60% 26% – 0% – 24% 36% 29%

HIST – 0% – 25% 40% 31% 18% 100% 31% 20% 43% 27%

JDeodorant 2% 60% 5% 5% 60% 9% 50% 50% 50% 4% 57% 8%

Decision Tree 33% 20% 25% 100% 40% 57% 100% 25% 40% 68% 29% 40%

MLP 25% 100% 40% 68% 80% 73% 100% 75% 86% 41% 86% 56%

SVM 50% 20% 29% 100% 20% 33% – 0% – 68% 14% 24%

CAME 50% 100% 68% 100% 80% 89% 100% 75% 86% 71% 86% 77%

C. Results

Table V reports the performances for God Class detection,
in terms of precision, recall and F-measure, achieved by
CAME along with those of the competing techniques. The
performances are reported for each subject system and on
overall, i.e., considering the three test systems as a single one.
When an approach did not detect any occurrence of God Class
in a system, it was possible to compute neither the precision,
nor the F-measure. In these cases a “–” is indicated in the
corresponding cell.

RQ2: How does CAME compare to other static ML algo-
rithms?

For God Class detection, our results show that on overall,
our approach significantly outperforms the three classifiers.
In term of F-measure the performances improve from 56%
to 77% (improvement of 38%) with respect to the classifier
with the best performances (the MLP). Unsurprisingly, CAME
achieves the same recall than the MLP. Indeed, it is interesting
to remark that a MLP model is equivalent to the CNN used by
CAME with no convolution layers and considering Lh = 1.
Hence, we make the same observation than in the previous
study regarding recall. Considering the other two classifiers
we clearly see that they can not compete with CAME in term
of recall with 29% for the Decision Tree algorithm and 14%
for the SVM against 86% for our approach. Finally, CAME
ensured on overall a better precision than any other classifier
(+ 18% on average). Regarding the performances achieved on
each system, we see that CAME achieves the highest precision
(100%) on two of the three test systems but only 50% on
Apache Tomcat. This may be due to the fact that this system is
the largest of our training set but contains only five occurrences
of God Class. Hence, any model is more likely to have a low
precision on it. Finally, our approach seem to have a more
stable recall with values ranging between 75% and 100%.�

�

�

�
CAME significantly outperforms other static ML classi-
fiers. Indeed, none of the competing algorithms performs
better than our approach on any system and considering
any performance metric.

RQ3: How does CAME compare to existing detection tech-
niques?

Our results show that CAME clearly outperforms existing
detection methods in detecting the God Class anti-pattern.
Indeed, CAME shows on overall, a precision of 71% and
a recall of 86% (F-measure of 77%) over the test systems.
With respect to the tool that performs the best for each
performance metric, we see that CAME improves the precision
by 196%, the recall by 51% and the F-measure by 166%.
Also, as we can see, each tool achieves poor performances on
at least one system, which is not the case for our approach.
This confirms that CAME performs well independently of the
systems characteristics.

However, some factors can explain the poor performances
reported for some of the approaches experimented. First, as
the original implementation of HIST is not publicly available,
we had to replicate this approach from the directives given
by the authors in the paper [31]. We are aware that some
differences in our respective implementations may have im-
pacted the performances reported. Second, it is important to
note that JDeodorant is not, strictly speaking, an anti-pattern
detection tool. Instead, JDeodorant suggests opportunities to
apply refactoring operations in the system. Hence, it is not
surprising that it achieves a high recall at the expense of its
precision, because it may exists a high number of classes in
the subject systems that could benefit from an Extract Class
Refactoring operation without necessarily being God Classes.�

�

�

�

CAME significantly outperforms all the existing techniques
investigated in this work for God Class detection. This
suggests that our approach should be considered by prac-
titioners for identifying affected code components to be
refactored.

VII. THREATS TO VALIDITY

In this section, we discuss the threats that could affect the
validity of our results.

a) Construct Validity: Threats to construct validity con-
cern the relation between theory and observation. This could
be due to how our oracle was build (cf. Section IV-A). To
combat this limitation, we examined the occurrences reported



in respectively HIST and DECOR’s replication packages
before incorporating them in our oracle. Also, both papers
have been awarded by the community which convince us of
the reliability of their data. Also, the metrics we selected
for God Class detection have been chosen on the basis of
their use in literature. However, other metrics that we have
overlooked may have led to better performances. Yet, our
approach does not focus on any specific metric but on the
potential improvements induced by the use of metrics history
in general. Another threat is related to the implementations
used to evaluate existing approaches. To replicate HIST, we
followed rigorously the guidelines provided by the authors.
However, some differences may remain between our respective
implementations.

b) External Validity: Threats to external validity concern
the generalizability of our findings. In the context of our study,
this could refer to the number of software systems on which
we experimented our approach. Manually-build datasets are
time consuming to produce for anti-patterns which explains
their rareness in literature. Hence, our sample size may limit
the generalizability of our results and we agree that further
evaluation of our approach on a larger set of systems would
be desirable. To reduce this threat, the software systems used
for evaluation have been selected for their different sizes and
domains. This threat could also refer to the fact that we
experimented our approach for the detection of one single anti-
pattern: God Class. Yet, we assume that our approach could
be applied to any anti-pattern and we plan to extend it in a
future work.

c) Internal Validity: Threats to internal validity concern
all the factors that could have impacted our results. This
could refer to the fact that the ML classifiers investigated in
this work, i.e., CAME, Decision Tree, MLP, SVM, are not
deterministic approaches. As a consequence, the predictions
made by these classifiers may vary depending on their initial-
ization which makes them difficult to compare. To reduce this
threat, we base our evaluation on ten independent models per
classifier. Hence we consider their individual performances as
a Gaussian distribution in our first study (cf. Section V) and
use an ensemble method in our second study (cf. Section VI).
Also, we calibrated the hyper-parameters of all the approaches
investigated in this work whenever necessary. Finally, Another
threat is related to the choice of the ML model used by our
approach to process the input metrics history. As explained
in Section III-B, we chose a CNN model because we believe
that applying successive convolutions to the input allows our
model to learn a representation of the changes that characterize
an anti-pattern. However, this decision was only based on
intuition and we cannot exclude that other deep-learning
models (e.g., RNNs) would lead to better performances.

VIII. CONCLUSION AND FUTURE WORK

The impact of anti-patterns on software quality highlighted
by number of empirical studies has motivated the develop-
ment of various detection techniques. Although the proposed
approaches have helped developers in identifying affected code

components to be refactored, we identified a major limitation
common to these works. Different detection techniques rely
on different sources of information and thus, identify different
sets of occurrences of anti-patterns. Hence, by ignoring either
structural or historical aspects of software systems, existing
approaches miss some precious information which limits their
performances. Consequently, we proposed CAME a deep-
learning based approach that relies on both structural and
historical information to detect anti-patterns. Our approach
exploits historical values of structural code metrics and uses a
CNN classifier to infer the presence of anti-patterns from this
information. We implemented our approach for the detection
of God Class and evaluated it on three software systems. With
the results of our study, we showed that:
• The performances of CAME increase with the length of

the metrics history fed through our model. This shows
that our model properly leverages historical information
to improve its performances.

• CAME significantly outperforms other ML-based classi-
fiers that do not rely on historical data.

• CAME significantly outperforms existing detection tools.
Our short term research agenda includes extending our ap-
proach to other anti-patterns as well as further evaluation of
CAME on a greater number of systems. We also plan to in-
vestigate the use of deep-learning visualization techniques [40]
on the architecture of CAME. We believe that such approach
could help us identifying the root causes and characteristics
of anti-patterns.
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