
Specification and Detection of SOA Antipatterns

Naouel Moha1, Francis Palma1,2, Mathieu Nayrolles1,3,
Benjamin Joyen Conseil1,3, Yann-Gaël Guéhéneuc2,

Benoit Baudry4, and Jean-Marc Jézéquel4

1 Département d’informatique, Université du Québec à Montréal, Canada
moha.naouel@uqam.ca

2 Ptidej Team, DGIGL, École Polytechnique de Montréal, Canada
{francis.palma, yann-gael.gueheneuc}@polymtl.ca
3 CESI.eXia, Ecole Supérieur d’Informatique, France

{mathieu.nayrolles, benjamin.joyen-conseil}@viacesi.fr
4 INRIA Rennes, Université Rennes 1, France

{bbaudry, jezequel}@irisa.fr

Abstract. Like any other complex software system, Service Based Sys-
tems (SBSs) must evolve to fit new user requirements and execution
contexts. The changes resulting from the evolution of SBSs may degrade
their design and quality of service (QoS) and may often cause the ap-
pearance of common poor solutions, called Antipatterns. Antipatterns
resulting from these changes also hinder the future maintenance and
evolution of SBSs. The automatic detection of antipatterns is thus im-
portant to assess the design and QoS of SBSs and ease their maintenance
and evolution. However, methods and techniques for the detection of an-
tipatterns in SBSs are still in their infancy despite their importance. In
this paper, we introduce a novel and innovative approach supported by a
framework for specifying and detecting antipatterns in SBSs. Using our
approach, we specify 10 well-known and common antipatterns, includ-
ing Multi Service and Tiny Service, and we automatically generate their
detection algorithms. We apply and validate the detection algorithms in
terms of precision and recall on Home-Automation, an SBS developed
independently. This validation demonstrates that our approach enables
the specification and detection of SOA antipatterns with the precision of
more than 90% and the recall of 100%.

Keywords: Antipatterns, Service based systems, Specification, Detection, Qual-
ity of service, Design, Software evolution and maintenance.

1 Introduction

Service Oriented Architecture (SOA) [8] is an emerging architectural style that
is becoming broadly adopted in industry because it allows the development of
low-cost, flexible, and scalable distributed systems by composing ready-made
services, i.e., autonomous, reusable, and platform-independent software units
that can be accessed through a network, such as the Internet. This architectural
style can be implemented using a wide range of SOA technologies, such as OSGi,
SCA, and Web Services. SOA allows building different types of Service Based

2 Moha et al.

Systems (SBSs) from business systems to cloud-based systems. Google Maps,
Amazon, eBay, PayPal, and FedEx are examples of large scale SBSs.

However, the emergence of such systems raises several challenges. Indeed, like
any other complex software system, SBSs must evolve to fit new user require-
ments in terms of functionalities and Quality of Service (QoS). SBSs must also
evolve to accommodate new execution contexts, such as addition of new devices,
technologies, or protocols. All of these changes may degrade the design and QoS
of SBSs, and may often result in the appearance of common poor solutions to
recurring problems, called Antipatterns—by opposition to design patterns, which
are good solutions to such problems that software engineers face when designing
and developing systems. In addition to the degradation of the design and QoS,
antipatterns resulting from these changes make it hard for software engineers to
maintain and evolve systems.

Multi Service and Tiny Service are two common antipatterns in SBSs and
it has been shown, in particular, that Tiny Service is the root cause of many
SOA failures [15]. Multi Service is an SOA antipattern that corresponds to a
service that implements a multitude of methods related to different business
and technical abstractions. Such a service is not easily reusable because of the
low cohesion of its methods and is often unavailable to end-users because of its
overload. Conversely, Tiny Service is a small service with just a few methods,
which only implements part of an abstraction. Such service often requires several
coupled services to be used together, resulting in higher development complexity
and reduced flexibility.

The automatic detection of such antipatterns is an important activity to as-
sess the design and QoS of SBSs and ease the maintenance and evolution tasks of
software engineers. However, few works have been devoted to SOA antipatterns,
and methods and techniques for the detection of antipatterns in SBSs are still
in their infancy.

Our goal is to assess the design and QoS of SBSs. To achieve this goal, we
propose a novel and innovative approach (named SODA for Service Oriented De-
tection for Antipatterns) supported by a framework (named SOFA for Service
Oriented Framework for Antipatterns) to specify SOA antipatterns and detect
them automatically in SBSs. This framework supports the static and dynamic
analysis of SBSs, along with their combination. Static analysis involves mea-
surement of structural properties related to the design of SBSs, while dynamic
analysis requires the runtime execution of SBSs for the measurement of runtime
properties, mainly related to the QoS of SBSs. The SODA approach relies on the
first language to specify SOA antipatterns in terms of metrics. This language is
defined from a thorough domain analysis of SOA antipatterns in the literature.
It allows the specifications of SOA antipatterns using high-level domain-related
abstractions. It also allows the adaptation of the specifications of antipatterns to
the context of the analyzed SBSs. Using this language and the SOFA framework
dedicated to the static and dynamic analysis of SBSs, we generate detection
algorithms automatically from the specifications of SOA antipatterns and apply
them on any SBSs under analysis. The originality of our approach stems from

Specification and Detection of SOA Antipatterns 3

the ability for software engineers to specify SOA antipatterns at a high-level of
abstraction using a consistent vocabulary and from the use of a domain-specific
language for automatically generating the detection algorithms.

We apply SODA by specifying 10 well-known and common antipatterns and
generating their detection algorithms. Then, we validate the detection results
in terms of precision and recall on Home-Automation, an SBS developed in-
dependently by two Masters students. We consider two different versions of
Home-Automation: (a) an original version, which includes 13 services, and (b) a
version modified by adding and modifying services to inject intentionally some
antipatterns. We show that SODA allows the specification and detection of a
representative set of SOA antipatterns with a precision of 92.5% and a recall of
100%.

The remainder of this paper is organized as follows. Section 2 surveys related
work on the detection of antipatterns in general, and in SBSs in particular.
Section 3 presents our specification and detection approach, SODA, along with
the specification language and the underlying detection framework, SOFA. Sec-
tion 4 presents experiments performed on Home-Automation for validating our
approach. Finally, Section 5 concludes and sketches future work.

2 Related Work

Architectural (or design) quality is essential for building well-designed, main-
tainable, and evolvable SBSs. Patterns and antipatterns have been recognized
as one of the best ways to express architectural concerns and solutions. How-
ever, unlike Object Oriented (OO) antipatterns, methods and techniques for the
detection and correction of SOA antipatterns are still in their infancy.

Unlike OO antipatterns, fewer books and papers deal with SOA antipatterns:
most references are Web sites where SOA practitioners share their experiences in
SOA design and development [4 ; 13 ; 17]. In 2003, Dudney et al. [7] published
the first book on SOA antipatterns. This book provides a catalog of approxi-
mately 50 antipatterns related to the architecture, design and implementation
of systems based on J2EE technologies, such as EJB, JSP, Servlet, and Web
services. Most antipatterns described in this book cannot be detected automati-
cally and are specific to a technology and correspond to variants of the Tiny and
Multi Service. Another book by Rotem-Gal-Oz et al. [22] on SOA patterns and
antipatterns will soon be published in Summer 2012. In a recent paper, Král et
al. [15] described seven SOA antipatterns, which are caused by an improper use
of SOA standards and improper practices borrowed from the OO design style.
Other books exist on SOA patterns and principles [6 ; 9] that provide guidelines
and principles characterizing “good” service oriented designs. Such books enable
software engineers to manually assess the quality of their systems and provide a
basis for improving design and implementation.

Several methods and tools exist for the detection [14 ; 16 ; 19 ; 24] and cor-
rection [1 ; 25 ; 26] of antipatterns in OO systems and various books have been
published on that topic. For example, Brown et al. [2] introduced a collection
of 40 antipatterns, Beck, in Fowler’s highly-acclaimed book on refactoring [10],

4 Moha et al.

compiled 22 code smells that are low-level antipatterns in source code, suggest-
ing where engineers should apply refactorings. One of the root causes of OO
antipatterns is the adoption of a procedural design style in OO system whereas
for SOA antipatterns, it stems from the adoption of an OO style design in SOA
system [15]. However, these OO detection methods and tools cannot be directly
applied to SOA. Indeed, SOA focuses on services as first-class entities whereas
OO focuses on classes, which are at the lower level of granularity. Moreover, the
highly dynamic nature of an SOA environment raises several challenges that are
not faced in OO development and requires dynamic analysis.

Other related works have focused on the detection of specific antipatterns
related to system’s performance and resource usage and–or given technologies.
For example, Wong et al. [27] used a genetic algorithm for detecting software
faults and anomalous behavior related to the resource usage of a system (e.g.,
memory usage, processor usage, thread count). Their approach is based on util-
ity functions, which correspond to predicates that identify suspicious behavior
based on resource usage metrics. For example, a utility function may report an
anomalous behavior corresponding to spam sending if it detects a large number
of threads. In another relevant work, Parsons et al. [21] introduced an approach
for the detection of performance antipatterns specifically in component-based
enterprise systems (in particular, JEE applications) using a rule-based approach
relying on static and dynamic analysis.

Although different, all these previous works on OO systems and performance
antipattern detection form a sound basis of expertise and technical knowledge
for building methods for the detection of SOA antipatterns.

3 The SODA Approach

We propose a three-step approach, named SODA, for the specification and de-
tection of SOA antipatterns:
Step 1. Specify SOA antipatterns: This step consists of identifying properties in
SBSs relevant to SOA antipatterns. Using these properties, we define a Domain-
Specific Language (DSL) for specifying antipatterns at a high level of abstraction.
Step 2. Generate detection algorithms: In this step, detection algorithms are gen-
erated automatically from the specifications defined in the previous step.
Step 3. Detect automatically SOA antipatterns: The third step consists of ap-
plying, on the SBSs analyzed, the detection algorithms generated in Step 2 to
detect SOA antipatterns.

The following sections describe the first two steps. The third step is described
in Section 4, where we detail experiments performed for validating SODA.

3.1 Specification of SOA Antipatterns

We perform a domain analysis of SOA antipatterns by studying their definition
and specification in the literature [7 ; 15 ; 22] and in online resources and articles
[4 ; 13 ; 17]. This domain analysis allows us to identify properties relevant to
SOA antipatterns, including static properties related to their design (e.g., co-
hesion and coupling) and also dynamic properties, such as QoS criteria (e.g.,

Specification and Detection of SOA Antipatterns 5

response time and availability). Static properties are properties that apply to
the static descriptions of SBSs, such as WSDL (Web Services Description Lan-
guage) files, whereas dynamic properties are related to the dynamic behavior of
SBSs as observed during their execution. We use these properties as the base
vocabulary to define a DSL, in the form of a rule-based language for specifying
SOA antipatterns. The DSL offers software engineers high-level domain-related
abstractions and variability points to express different properties of antipatterns
depending on their own judgment and context.

1 rule card ::= RULE CARD:rule cardName { (rule)+ };
2 rule ::= RULE:ruleName { content rule };

3 content rule ::= metric | relationship | operator ruleType (ruleType)+

4 | RULE CARD: rule cardName

5 ruleType ::= ruleName | rule cardName

6 operator ::= INTER | UNION | DIFF | INCL | NEG

7 metric ::= id metric ordi value
8 | id metric comparator num value
9 id metric ::= NMD | NIR | NOR | CPL | COH | ANP | ANPT | ANAM | ANIM
10 | NMI | NTMI | RT | A
11 ordi value ::= VERY HIGH | HIGH | MEDIUM | LOW | VERY LOW
12 comparator ::= EQUAL | LESS | LESS EQUAL | GREATER | GREATER EQUAL

13 relationship ::= relationType FROM ruleName cardinality TO ruleName cardinality
14 relationType ::= ASSOC | COMPOS
15 cardinality ::= ONE | MANY | ONE OR MANY | num value NUMBER OR MANY

16 rule cardName, ruleName, ruleClass ∈ string
17 num value ∈ double

Fig. 1. BNF Grammar of Rule Cards.

We specify antipatterns using rule cards, i.e., sets of rules. We formalize rule
cards with a Backus-Naur Form (BNF) grammar, which determines the syntax
of our DSL. Figure 1 shows the grammar used to express rule cards. A rule
card is identified by the keyword RULE CARD, followed by a name and a set of
rules specifying this specific antipattern (Figure 1, line 1). A rule (line 3 and
4) describes a metric, an association or composition relationship among rules
(lines 13-15) or a combination with other rules, based on set operators including
intersection, union, difference, inclusion, and negation (line 6). A rule can refer
also to another rule card previously specified (line 4). A metric associates to
an identifier a numerical or an ordinal value (lines 7 and 8). Ordinal values are
defined with a five-point Likert scale: very high, high, medium, low, and very low
(line 11). Numerical values are used to define thresholds with comparators (line
12), whereas ordinal values are used to define values relative to all the services
of a SBS under analysis (line 11). We define ordinal values with the box-plot
statistical technique [3] to relate ordinal values with concrete metric values while
avoiding setting artificial thresholds. The metric suite (lines 9-10) encompasses
both static and dynamic metrics. The static metric suite includes (but is not
limited to) the following metrics: number of methods declared (NMD), number of
incoming references (NIR), number of outgoing references (NOR), coupling (CPL),

6 Moha et al.

1 RULE CARD: MultiService {
2 RULE: MultiService {INTER MultiMethod
3 HighResponse LowAvailability LowCohesion};
4 RULE: MultiMethod {NMD VERY HIGH};
5 RULE: HighResponse {RT VERY HIGH};
6 RULE: LowAvailability {A LOW};
7 RULE: LowCohesion {COH LOW};
8 };

(a) Multi Service

1 RULE CARD: TinyService {
2 RULE: TinyService {INTER FewMethod
3 HighCoupling};
4 RULE: FewMethod {NMD VERY LOW};
5 RULE: HighCoupling {CPL HIGH};
6 };

(b) Tiny Service

Fig. 2. Rule Cards for Multi Service and Tiny Service

cohesion (COH), average number of parameters in methods (ANP), average number
of primitive type parameters (ANPT), average number of accessor methods (ANAM),
and average number of identical methods (ANIM). The dynamic metric suite
contains: number of method invocations (NMI), number of transitive methods
invoked (NTMI), response time (RT), and availability (A). Other metrics can be
included by adding them to the SOFA framework.

Figure 2 illustrates the grammar with the rule cards of the Multi Service and
Tiny Service antipatterns. The Multi Service antipattern is characterized by very
high response time and number of methods and low availability and cohesion. A
Tiny Service corresponds to a service that declares a very low number of methods
and has a high coupling with other services. For the sake of clarity, we illustrate
the DSL with two intra-service antipatterns, i.e., antipatterns within a service.
However, the DSL allows also the specification of inter-service antipatterns, i.e.,
services spreading over more than one service. We provide the rule cards of such
other more complex antipatterns later in the experiments (see Section 4).

Using a DSL offers greater flexibility than implementing ad hoc detection
algorithms, because it allows describing antipatterns using high-level domain-
related abstractions and focusing on what to detect instead of how to detect
it [5]. Indeed, the DSL is independent of any implementation concern, such
as the computation of static and dynamic metrics and the multitude of SOA
technologies underlying SBSs. Moreover, the DSL allows the adaptation of the
antipattern specifications to the context and characteristics of the analyzed SBSs
by adjusting the metrics and associated values.

3.2 Generation of Detection Algorithms

From the specifications of SOA antipatterns described with the DSL, we auto-
matically generate detection algorithms.

We implement the generation of the detection algorithms as a set of visitors
on models of antipattern rule cards. The generation is based on templates and
targets the services of the underlying framework described in the following sub-
section. Templates are excerpts of Java source code with well-defined tags. We
use templates because the detection algorithms have common structures.

Figure 3 sketches the different steps and artifacts of this generation process.
First, rule cards of antipatterns are parsed and reified as models. Then, during
the visit of the rule card models, the tags of templates are replaced with the
data and values appropriate to the rules. The final source code generated for a

Specification and Detection of SOA Antipatterns 7

Rule Cards

of Antipatterns
Parsing Models of

Rule Cards

Visiting & Replacing
Generated

Code

Templates

1 2

Fig. 3. Generation of Detection Algorithms.

rule card is the detection algorithm of the corresponding antipattern and this
code is directly compilable and executable without any manual intervention.

This generative process is fully automated to avoid any manual tasks, which
are usually repetitive and error-prone. This process also ensures the traceability
between the specifications of antipatterns with the DSL and their concrete detec-
tion in SBSs using our underlying framework. Consequently, software engineers
can focus on the specification of antipatterns, without considering any technical
aspects of the underlying framework.

3.3 SOFA: Underlying Framework

We developed a framework, called SOFA (Service Oriented Framework for An-
tipatterns), that supports the detection of SOA antipatterns in SBSs. This frame-
work, designed itself as an SBS and illustrated in Figure 4, provides different
services corresponding to the main steps for the detection of SOA antipatterns
(1) the automated generation of detection algorithms; (2) the computation of
static and dynamic metrics; and (3) the specification of rules including different
sub-services for the rule language, the box-plot statistical technique, and the set
operators. The rule specification and algorithm generation services provide all

Detection

Algorithm

Generation

SOFA Framework

Rule

Specification Rule

Operator

Boxplot

Metric

Fig. 4. The SOFA Framework.

constituents to describe models of rule cards as well as the algorithms to visit
rule card models and to generate detection algorithms from these models. These
different constituents rely on Model Driven Engineering techniques, which pro-
vide the means to define a DSL, parse it, and check its conformance with the
grammar. We also use Kermeta [18], an executable metamodeling language, for
generating the detection algorithms based on models of rule cards.

8 Moha et al.

With respect to the computation of metrics, the generated detection algo-
rithms call sensors and triggers implemented using the modules of the Galaxy
framework [12]. These sensors and triggers, implemented as join points in an
aspect-oriented programming style, allow, at runtime, the introspection of the
interface of services and the triggering of events to add non-functional concerns,
such as transactions, debugging, and, in our case, the computation of metrics
such as response time.

We chose Kermeta and Galaxy for the sake of convenience because they are
developed and maintained within our research team. Galaxy [12] is an open agile
SOA framework supporting the SCA (Service Component Architecture) stan-
dard [20]. SCA is a relatively new standard, advocated by researchers and major
software vendors, like IBM and Oracle, for developing technology agnostic and
extensible SBSs. Galaxy encompasses different modules for building, deploying,
running, and monitoring SBSs. Such a framework is essential for allowing the
detection of SOA antipatterns at execution time through FraSCAti [23], which
provides runtime support for the SCA standard. Furthermore, the SOFA frame-
work is implemented itself as an SCA component to ease its use and evolution
and to offer it as a service to end-users concerned by the design and QoS of their
SBSs.

4 Experiments

To show the completeness and extensibility of our DSL, the accuracy of the gen-
erated algorithms, and the usefulness of the detection results with their related
performance, we performed experiments with 10 antipatterns on a service-based
SCA system, Home-Automation. This SBS has been developed independently
for controlling remotely many basic household functions for elderly home care
support. It includes 13 services with a set of 7 predefined scenarios for executing
it at runtime.

4.1 Assumptions

The experiments aim at validating the following four assumptions:

A1. Generality: The DSL allows the specification of many different SOA an-
tipatterns, from simple to more complex ones. This assumption supports the
applicability of SODA using the rule cards on 10 SOA antipatterns, composed
of 14 static and dynamic metrics.

A2. Accuracy: The generated detection algorithms have a recall of 100%, i.e., all
existing antipatterns are detected, and a precision greater than 75%, i.e., more
than three-quarters of detected antipatterns are true positive. Given the trade-off
between precision and recall, we assume that 75% precision is significant enough
with respect to 100% recall. This assumption supports the precision of the rule
cards and the accuracy of the algorithm generation and of the SOFA framework.

A3. Extensibility: The DSL and the SOFA framework are extensible for adding
new SOA antipatterns. Through this assumption, we show how well the DSL,

Specification and Detection of SOA Antipatterns 9

Table 1. List of Antipatterns. (The first seven antipatterns are extracted from the
literature and three others are newly defined.)

Multi Service also known as God Object corresponds to a service that implements a multitude of
methods related to different business and technical abstractions. This aggregates too much into a
single service, such a service is not easily reusable because of the low cohesion of its methods and is
often unavailable to end-users because of its overload , which may induce a high response time [7].

Tiny Service is a small service with few methods, which only implements part of an abstraction. Such
service often requires several coupled services to be used together, resulting in higher development
complexity and reduced usability . In the extreme case, a Tiny Service will be limited to one method ,
resulting in many services that implement an overall set of requirements [7].

Sand Pile is also known as ‘Fine-Grained Services’. It appears when a service is composed by
multiple smaller services sharing common data. It thus has a high data cohesion. The common data
shared may be located in a Data Service antipattern (see below) [15].

Chatty Service corresponds to a set of services that exchange a lot of small data of primitive types,
usually with a Data Service antipattern. The Chatty Service is also characterized by a high number
of method invocations. Chatty Service chats a lot with each other [7].

The Knot is a set of very low cohesive services, which are tightly coupled . These services are thus
less reusable. Due to this complex architecture, the availability of these services can be low , and
their response time high [22].

Nobody Home corresponds to a service, defined but actually never used by clients. Thus, the methods
from this service are never invoked , even though it may be coupled to other services. But still they
require deployment and management, despite of their no usage [13].

Duplicated Service a.k.a. The Silo Approach introduced by IBM corresponds to a set of highly
similar services. Since services are implemented multiple times as a result of the silo approach,
there may have common or identical methods with the same names and/or parameters [4].

Bottleneck Service is a service that is highly used by other services or clients. It has a high incoming
and outgoing coupling . Its response time can be high because it may be used by too many external
clients, for which clients may need to wait to get access to the service. Moreover, its availability may
also be low due to the traffic.

Service Chain a.k.a. Message Chain [10] in OO systems corresponds to a chain of services. The
Service Chain appears when clients request consecutive service invocations to fulfill their goals. This
kind of dependency chain reflects the action of invocation in a transitive manner.

Data Service a.k.a. Data Class [10] in OO systems corresponds to a service that contains mainly
accessor methods, i.e., getters and setters. In the distributed applications, there can be some services
that may only perform some simple information retrieval or data access to such services. Data
Services contain usually accessor methods with small parameters of primitive types. Such service
has a high data cohesion.

and in particular the metrics, with the supporting SOFA framework, can be
combined to specify and detect new antipatterns.

A4. Performance: The computation time required for the detection of antipat-
terns using the generated algorithms is reasonably very low, i.e., in the order of
few seconds. This assumption supports the performance of the services provided
by the SOFA framework for the detection of antipatterns.

4.2 Subjects

We apply our SODA approach using the SOFA framework to specify 10 different
SOA antipatterns. Table 1 summarizes these antipatterns, of which the first seven
are from the literature and three others have been newly defined, namely, the
Bottleneck Service, Service Chain, and Data Service. These new antipatterns are
inspired from OO code smells [10]. In these summaries, we highlight in bold the

10 Moha et al.

key concepts relevant for the specification of their rule cards given in Figure 5.

1 RULE CARD: DataService {
2 RULE: DataService {INTER HighDataAccessor
3 SmallParameter PrimitiveParameter HighCohesion};
4 RULE: SmallParameter {ANP LOW};
5 RULE: PrimitiveParameter {ANPT HIGH};
6 RULE: HighDataAccessor {ANAM VERY HIGH};
7 RULE: HighCohesion {COH HIGH};
8 };

(a) Data Service

1 RULE CARD: TheKnot {
2 RULE: TheKnot {INTER HighCoupling
3 LowCohesion LowAvailability HighResponse};
4 RULE: HighCoupling {CPL VERY HIGH};
5 RULE: LowCohesion {COH VERY LOW};
6 RULE: LowAvailability {A LOW};
7 RULE: HighResponse {RT HIGH};
8 };

(b) The Knot

1 RULE CARD: ChattyService {
2 RULE: ChattyService {
3 INTER TotalInvocation DSRuleCard};
4 RULE: DSRuleCard {RULE CARD: DataService};
5 RULE: TotalInvocation {NMI VERY HIGH};
6 };

(c) Chatty Service

1 RULE CARD: NobodyHome {
2 RULE: NobodyHome {
3 INTER IncomingReference MethodInvocation};
4 RULE: IncomingReference {NIR GREATER 0};
5 RULE: MethodInvocation {NMI EQUAL 0};
6 };

(d) Nobody Home

1 RULE CARD: BottleneckService {
2 RULE: BottleneckService {
3 INTER LowPerformance HighCoupling};
4 RULE: LowPerformance {
5 INTER LowAvailability HighResponse};
6 RULE: HighResponse {RT HIGH};
7 RULE: LowAvailability {A LOW};
8 RULE: HighCoupling {CPL VERY HIGH};
9 };

(e) Bottleneck Service

1 RULE CARD: SandPile {
2 RULE: SandPile {COMPOS FROM
3 ParentService ONE TO ChildService MANY};
4 RULE: ChildService {ASSOC FROM
5 ContainedService MANY TO DataSource ONE};
6 RULE: ParentService {COH HIGH};
7 RULE: DataSource {RULE CARD: DataService};
8 RULE: ContainedService {NRO > 1};
9 };

(f) Sand Pile

1 RULE CARD: ServiceChain {
2 RULE: ServiceChain {INTER TransitiveInvocation
3 LowAvailability};
4 RULE: TransitiveInvocation {NTMI VERY HIGH};
5 RULE: LowAvailability {A LOW};
6 };

(g) Service Chain

1 RULE CARD: DuplicatedService {
2 RULE: DuplicatedService {ANIM HIGH};
3 };

(h) Duplicated Service

Fig. 5. Rule Cards for Different Antipatterns

4.3 Objects

We perform the experiments on two different versions of the Home-Automation
system: the original version of the system, which includes 13 services, and a
version modified by adding and modifying services to inject intentionally some
antipatterns. The modifications have been performed by an independent engineer
to avoid biasing the results. Details on the two versions of the system including all
the scenarios and involved services are available online at http://sofa.uqam.ca.

4.4 Process

Using the SOFA framework, we generated the detection algorithms correspond-
ing to the rule cards of the 10 antipatterns. Then, we applied these algorithms at
runtime on the Home-Automation system using its set of 7 predefined scenarios.
Finally, we validated the detection results by analyzing the suspicious services

Specification and Detection of SOA Antipatterns 11

manually to (1) validate that these suspicious services are true positives and (2)
identify false negatives (if any), i.e., missing antipatterns. For this last validation
step, we use the measures of precision and recall [11]. Precision estimates the
ratio of true antipatterns identified among the detected antipatterns, while re-
call estimates the ratio of detected antipatterns among the existing antipatterns.
This validation has been performed manually by two independent software en-
gineers, whom we provided the descriptions of antipatterns and the two versions
of the analyzed system Home-Automation.

4.5 Results

Table 2 presents the results for the detection of the 10 SOA antipatterns on
the original and evolved version of Home-Automation. For each antipattern, the
table reports the involved services in the second column, the version analyzed of
Home-Automation in the third column, the analysis method: static (S) and–or
dynamic (D) in the fourth, then the metrics values of rule cards in the fifth,
and finally the computation times in the sixth. The two last columns report the
precision and recall.

4.6 Details of the Results

We briefly present the detection results of the Tiny Service and Multi Service.
The service IMediator has been identified as a Multi Service because of its
very high number of methods (i.e., NMD equal 13) and its low cohesion (i.e.,
COH equal 0.027). These metric values have been evaluated by the Box-Plot
service respectively as high and low in comparison with the metric values of
other services of Home-Automation. For example, for the metric NMD, the Box-
Plot estimates the median value of NMD in Home-Automation as equal to 2.
In the same way, the detected Tiny Service has a very low number of methods
(i.e., NMD equal 1) and a high coupling (i.e., CPL equal 0.44) with respect to
other values. The values of the cohesion COH and coupling CPL metrics range
from 0 to 1. In the original version of Home-Automation, we did not detect any
Tiny Service. We then extracted one method from IMediator and moved it in a
new service named MediatorDelegate, and then this service has been detected
as a Tiny Service.

We also detected 7 other antipatterns within the original version of Home-
Automation, namely, Duplicated Service, Chatty Service, Sand Pile, The Knot,
Bottleneck Service, Data Service, and Service Chain. All these antipatterns in-
volve more than one service, except Data Service and Duplicated Service. The
service PatientDAO has been detected as a Data Service because it performs
simple data accesses. Moreover, in the evolved version, we detected the Nobody
Home antipattern, after an independent developer introduced the service Use-

lessService, which is defined but never used in any scenarios. We detected a
consecutive chain of invocations of IMediator → SunSpotService → Patient-

DAO → PatientDAO2, which forms a Service Chain, whereas engineers validated
IMediator → PatientDAO → PatientDAO2. Therefore, we had the precision of
75% and recall of 100% for the Service Chain antipattern. Moreover, we detected
the HomeAutomation itself as Sand Pile. Finally, an important point is that we

12 Moha et al.

Table 2. Results for the Detection of 10 SOA Antipatterns in the Original and Evolved
Version of Home-Automation System (S: Static, D: Dynamic)

AntipatternName ServicesInvolved Version Analysis Metrics DetectTime Precision Recall

Tiny Service [MediatorDelegate] evolved S
NOR: 4

0.194s [1/1] [1/1]CPL: 0.440

NMD: 1 100% 100%

Multi Service [IMediator] original S, D
COH: 0.027

0.462s [1/1] [1/1]NMD: 13

RT: 132ms 100% 100%

Duplicated Service
[Communication-

original S ANIM: 25% 0.215s [2/2] [2/2]Service]
[IMediator] 100% 100%

Chatty Service
[PatientDAO]

original S, D

ANP: 1.0

0.383s [2/2] [2/2]
ANPT: 1.0

NMI: 3

[IMediator] ANAM: 100% 100% 100%
COH: 0.167

Nobody Home [UselessService] evolved S, D
NIR: >0

1.154s [1/1] [1/1]
NMI: 0 100% 100%

Sand Pile [HomeAutomation] original S

NCS: 13

0.310s [1/1] [1/1]
ANP: 1.0

ANPT: 1.0

ANAM: 100% 100% 100%
COH: 0.167

The Knot

[IMediator]

original S, D

COH: 0.027

0.412s
[1/2] [1/1]NIR: 7

[PatientDAO] NOR: 7

CPL: 1.0 50% 100%
RT: 57ms

Bottleneck Service
[IMediator]

original S, D

NIR: 7

0.246s [2/2] [2/2]NOR: 7

[PatientDAO] CPL: 1.0 100% 100%
RT: 40ms

Data Service [PatientDAO] original S

ANAM: 100%

0.268s [1/1] [1/1]COH: 0.167

ANPT: 1.0 100% 100%
ANP: 1.0

Service Chain

[IMediator]

original D NTMI: 4.0 0.229s [3/4] [3/3][SunSpotService]
[PatientDAO] 75% 100%
[PatientDAO2]

Average 0.387s [15/17] [15/15]

92.5% 100%

use in some rule cards the dynamic property Availability (A). However, we did
not report this value because it corresponds to 100% since the services of the
system were deployed locally.

4.7 Discussion on the Assumptions

We now verify each of the four assumptions stated previously using the detection
results.

A1. Generality: The DSL allows the specification of many different SOA an-
tipatterns, from simple to more complex ones. Using our DSL, we specified 10
SOA antipatterns described in Table 1, as shown in rule cards given in Figure
2 and 5. These antipatterns range from simple ones, such as the Tiny Service
and Multi Service, to more complex ones such as the Bottleneck and Sand Pile,
which involve several services and complex relationships. In particular, Sand Pile
has both the ASSOC and COMPOS relation type. Also, both Sand Pile and Chatty
Service refer in their specifications to another antipattern, namely DataService.

Specification and Detection of SOA Antipatterns 13

Thus, we show that we can specify from simple to complex antipatterns, which
support the generality of our DSL.

A2. Accuracy: The generated detection algorithms have a recall of 100%, i.e.,
all existing antipatterns are detected, and a precision greater than 75%, i.e.,
more than three-quarters of detected antipatterns are true positive. As indicated
in Table 2, we obtain a recall of 100%, which means all existing antipatterns
are detected, whereas the precision is 92.5%. We have high precision and re-
call because the analyzed system, Home-Automation is a small SBS with 13
services. Also, the evolved version includes two new services. Therefore, con-
sidering the small but significant number of services and the well defined rule
cards using DSL, we obtain such a high precision and recall. For the original
Home-Automation version, out of 13 services, we detected 6 services that are
responsible for 8 antipatterns. Besides, we detected 2 services (out of 15) that
are responsible for 2 other antipatterns in the evolved system.

A3. Extensibility: The DSL and the SOFA framework are extensible for adding
new SOA antipatterns. The DSL has been initially designed for specifying the
seven antipatterns described in the literature (see Table 1). Then, through in-
spection of the SBS and inspiration from OO code smells, we added three new
antipatterns, namely the Bottleneck Service, Service Chain and Data Service.
When specifying these new antipatterns, we reused four already-defined metrics
and we added in the DSL and SOFA four more metrics (ANAM, NTMI, ANP and
ANPT). The language is flexible in the integration of new metrics. However, the
underlying SOFA framework should also be extended to provide the operational
implementations of the new metrics. Such an addition can only be realized by
skilled developers with our framework, that may require from 1 hour to 2 days
according to the complexity of the metrics. Thus, by extending the DSL with
these three new antipatterns and integrating them within the SOFA framework,
we support A3.

A4. Performance: The computation time required for the detection of antipat-
terns using the generated algorithms is reasonably very low, i.e., in the order
of few seconds. We perform all experiments on an Intel Dual Core at 3.30GHz
with 3GB of RAM. Computation times include computing metric values, in-
trospection delay during static and dynamic analysis, and applying detection
algorithms. The computation times for the detection of antipatterns is reason-
ably low, i.e., ranging from 0.194s to 1.154s with an average of 0.387s. Such low
computation times suggest that SODA could be applied on SBSs with larger
number of services. Thus, we showed that we can support the fourth assumption
positively.

4.8 Threats to Validity

The main threat to the validity of our results concerns their external validity,
i.e., the possibility to generalize our approach to other SBSs. As future work,
we plan to run these experiments on other SBSs. However, we considered two
versions of Home-Automation. For internal validity, the detection results depend

14 Moha et al.

on the services provided by the SOFA framework but also on the antipattern
specifications using rule cards. We performed experiments on a representative
set of antipatterns to lessen this threat to the internal validity. The subjective
nature of specifying and validating antipatterns is a threat to construct validity.
We try to lessen this threat by defining rule cards based on a literature review and
domain analysis and by involving two independent engineers in the validation.
We minimize reliability validity by automating the generation of the detection
algorithm. Each subsequent detection produce consistent sets of results with
high precision and recall.

5 Conclusion and Future Work

The specification and detection of SOA antipatterns are important to assess the
design and QoS of SBSs and thus, ease the maintenance and evolution of SBSs. In
this paper, we presented a novel approach, named SODA, for the specification
and detection of SOA antipatterns, and SOFA, its underlying framework. We
proposed a DSL for specifying SOA antipatterns and a process for automatically
generating detection algorithms from the antipattern specifications. We applied
and validated SODA with 10 different SOA antipatterns on an original and
a evolved version of Home-Automation, a SBS developed independently. We
demonstrated the usefulness of our approach and discussed its precision and
recall.

As future work, we intend to enhance the detection approach with a cor-
rection approach to suggest refactorings and automatically, at runtime, correct
detected SOA antipatterns, enabling software engineers to improve the design
and QoS of their SBSs. Furthermore, we intend to perform other experiments on
different SBSs from different SOA technologies, including SCA, Web Services,
REST and EJB. The approach may require some adaptations from one technol-
ogy to another because although SOA technologies share some common concepts
and principles, they also have their own specific characteristics. Another targeted
SBS is the SOFA framework itself since because this SBS will certainly evolve
to handle various antipatterns and SBSs. We will thus ensure that the evolution
of the SOFA framework does not introduce itself antipatterns.

Acknowledgments. The authors thank Yousri Kouki and Mahmoud Ben Has-
sine for their help with the implementation of Home-Automation. This work is
partly supported by the NESSOS European Network of Excellence and a NSERC
Discovery Grant. And, this work is in memory of Anne-Françoise Le Meur, our
dearly departed colleague, who initiated the work.

References

1. Bart Du Bois, J.V., Demeyer, S.: Refactoring - Improving Coupling and Cohesion
of Existing Code. In: Proceedings of the 11th IEEE Working Conference on Reverse
Engineering. pp. 144–151 (2004)

2. Brown, W., Malveau, R., McCormick III, H., Mowbray, T.: Anti Patterns: Refac-
toring Software, Architectures, and Projects in Crisis. John Wiley and Sons (1998)

3. Chambers, J., Cleveland, W., Tukey, P., Kleiner, B.: Graphical methods for data
analysis. Wadsworth International (1983)

Specification and Detection of SOA Antipatterns 15

4. Cherbakov, L., Ibrahim, M., Ang, J.: SOA Antipatterns: The Obstacles to the
Adoption and Successful Realization of Service-Oriented Architecture, www.ibm.
com/developerworks/webservices/library/ws-antipatterns/

5. Consel, C., Marlet, R.: Architecturing Software Using A Methodology for Language
Development. Lecture Notes in Computer Science 1490, 170–194 (September 1998)

6. Daigneau, R.: Service Design Patterns: Fundamental Design Solutions for
SOAP/WSDL and RESTful Web Services. Addison-Wesley (November 2011)

7. Dudney, B., Asbury, S., Krozak, J., Wittkopf, K.: J2EE AntiPatterns. John Wiley
& Sons Inc (2003)

8. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR (2005)

9. Erl, T.: SOA Design Patterns. Prentice Hall PTR (2009)
10. Fowler, M.J., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving

the Design of Existing Code. Addison-Wesley (1999)
11. Frakes, W.B., Baeza-Yates, R.A. (eds.): Information Retrieval: Data Structures &

Algorithms. Prentice-Hall (1992)
12. Galaxy INRIA: The French National Institute for Research in Computer Science

and Control, galaxy.gforge.inria.fr
13. Jones, S.: SOA Anti-patterns, www.infoq.com/articles/SOA-anti-patterns
14. Kessentini, M., Vaucher, S., Sahraoui, H.: Deviance From Perfection is a Better

Criterion Than Closeness To Evil When Identifying Risky Code. In: Proceedings
of the IEEE/ACM International Conference on Automated Software Engineering.
pp. 113–122. ASE’10, ACM, New York, NY, USA (2010)

15. Král, J., Žemlička, M.: Crucial Service-Oriented Antipatterns. vol. 2, pp. 160–171.
International Academy, Research and Industry Association (IARIA) (2008)

16. Lanza, M., Marinescu, R.: Object-Oriented Metrics in Practice. Springer-Verlag
(2006)

17. Modi, T.: SOA Management: SOA Antipatterns, www.ebizq.net/topics/soa_
management/features/7238.html

18. Moha, N., Sen, S., Faucher, C., Barais, O., Jézéquel, J.M.: Evaluation of Ker-
meta for Solving Graph-based Problems. Journal on Software Tools for Technology
Transfer 12(3-4), 273–285 (July 2010)

19. Munro, M.J.: Product Metrics for Automatic Identification of “Bad Smell” Design
Problems in Java Source-Code. In: Proceedings of the 11th International Software
Metrics Symposium. IEEE Computer Society Press (September 2005)

20. Open SOA: SCA Service Component Architecture - Assembly Model Specification
(March 2007), www.osoa.org, version 1.00

21. Parsons, T., Murphy, J.: Detecting Performance Antipatterns in Component Based
Enterprise Systems. Journal of Object Technology 7(3), 55–90 (April 2008)

22. Rotem-Gal-Oz, A., Bruno, E., Dahan, U.: SOA Patterns. Manning Publications
Co. (2012), to be published in Summer 2012.

23. Seinturier, L., Merle, P., Fournier, D., Schiavoni, V., Demarey, C., Dolet, N., Pe-
titprez, N.: FraSCAti - Open SCA Middleware Platform v1.4, frascati.ow2.org

24. Settas, D.L., Meditskos, G., Stamelos, I.G., Bassiliades, N.: SPARSE: A symptom-
based antipattern retrieval knowledge-based system using Semantic Web technolo-
gies. Expert Systems with Applications 38(6), 7633–7646 (June 2011)

25. Simon, F., Steinbruckner, F., Lewerentz, C.: Metrics Based Refactoring. In: Pro-
ceedings of the 5th European Conference on Software Maintenance and Reengi-
neering. pp. 14–16 (March 2001)

26. Trifu, A., Dragos, I.: Strategy-Based Elimination of Design Flaws in Object-
Oriented Systems. In: Proceedings of the 4th International Workshop on Object-
Oriented Reengineering. Universiteit Antwerpen (July 2003)

27. Wong, S., Aaron, M., Segall, J., Lynch, K., Mancoridis, S.: Reverse Engineering
Utility Functions Using Genetic Programming to Detect Anomalous Behavior in
Software. In: Proceedings of the 2010 17th Working Conference on Reverse Engi-
neering. pp. 141–149. WCRE ’10, IEEE Computer Society, Washington, DC, USA
(2010)

