
Are REST APIs for Cloud Computing

Well-Designed? An Exploratory Study

Fabio Petrillo1,3,4, Philippe Merle2, Naouel Moha1, and Yann-Gaël Guéhéneuc3

1 Département d'informatique, Université du Québec à Montréal, Canada
2 Equipe Spirals, Inria Lille - Nord Europe, Villeneuve d'Ascq, France

3 DGIGL, École Polytechnique, Montréal, Canada
4 PPGC, Federal University of Rio Grande do Sul
fabio@petrillo.com, philippe.merle@inria.fr,

moha.naouel@uqam.ca, yann-gael.gueheneuc@polymtl.ca

Abstract. Cloud computing is currently the most popular model to of-
fer and access computational resources and services. Many cloud providers
use the REST architectural style (Representational State Transfer) for
o�ering such computational resources. However, these cloud providers
face challenges when designing and exposing REST APIs that are easy
to handle by end-users and/or developers. Yet, they bene�t from best
practices to help them design understandable and reusable REST APIs.
However, these best practices are scattered in the literature and they
have not be studied systematically on real-world APIs. Consequently,
we propose two contributions. In our �rst contribution, we survey the
literature and compile a catalog of 73 best practices in the design of
REST APIs making APIs more understandable and reusable. In our sec-
ond contribution, we perform a study of three di�erent and well-known
REST APIs from three cloud providers to investigate how their APIs are
o�ered and accessed. These cloud providers are Google Cloud Platform,
OpenStack, and Open Cloud Computing Interface (OCCI). In particu-
lar, we evaluate the coverage of the features provided by the REST APIs
of these cloud providers and their conformance with the best practices
for REST APIs design.
Our results show that Google Cloud follows 66% (48/73), OpenStack
follows 62% (45/73), and OCCI 1.2 follows 56% (41/73) of the best prac-
tices. Second, although these numbers are not necessarily high, partly be-
cause of the strict and precise speci�cation of best practices, we showed
that cloud APIs reach an acceptable level of maturity.

1 Introduction

Cloud computing has transformed the Information Technology (IT) industry [1]
by hosting applications and providing resources (e.g., CPU and storage) as ser-
vices on-demand over the Internet [15]. Cloud providers, such as Google Cloud
Platform and OpenStack, usually o�er these services in the form of REST (REp-
resentational State Transfer) [4] APIs, the de facto standard adopted by many
software organisations for publishing their services.

However, although cloud computing o�ers huge opportunities for the IT in-
dustry and has gained maturity, there are still many issues that must be ad-
dressed [15]. In particular, we observe that cloud providers, such as Google Cloud
Platform, present their own proprietary APIs. Other cloud APIs, although pro-
prietary such as OpenStack, provide open implementations of cloud services.
Conversely, open and standard cloud APIs have been proposed, such as the
Open Cloud Computing Interface (OCCI) [7], which is a neutral-vendor cloud
standard.

Consequently, there exists a wide variety of cloud APIs that might be di�cult
to understand and use by developers, especially within a complex and technical
context as cloud computing. Moreover, well-designed REST APIs may attract
client developers to use them more than poorly designed ones, particularly in the
current open market, where Web services are competing against one another [6].
Indeed, client developers must understand the providers' APIs while designing
and developing their systems that use these APIs. Therefore, in the design and
development of REST APIs, their understandability and reusability are two
major quality characteristics, which are reachable when best practices for REST
APIs design [6] are followed.

Several practices were proposed or identi�ed in the literature [2,6,8,9,12] as
CRUD function names should not be used in URIs or Lowercase letters should
be preferred in URI paths. In particular, a valuable contribution is the one of
Massé [6], who compiles several design practices about REST APIs. Yet, despite
proposing a large list of 65 practices, Massé [6] did not propose a complete list.

Consequently, we propose two contributions. For our �rst contribution, we
review the literature extensively and compile a catalog of 73 best practices in
the design of REST APIs making APIs more understandable and reusable.

For our second contribution, we evaluate and compare the design of the
cloud computing REST APIs using best practices of this catalog. Compared to
previous works, including some of ours [2,8,9], we study the conformance with
best practices of REST APIs from the perspective of cloud providers.

After identifying and analysing 73 best practices, our results show that
Google Cloud Platform follows 66% (48/73), OpenStack follows 62% (45/73),
and OCCI 1.2 follows 56% (41/73) of the best practices. Second, although these
numbers are not necessarily high, partly because of the strict and precise speci-
�cation of best practices, we showed that cloud APIs reach an acceptable level
of maturity.

The reminder of the paper is organised as follows. Section 2 presents a sur-
vey about best practices on REST APIs to support our evaluation. Section 3
describes the study performed on the three cloud computing REST APIs. Sec-
tion 4 presents and discusses our results and the threats to their validity. Section
5 presents some related work. Finally, Section 6 concludes the paper with future
work.

2

2 Best Practices on REST API Design

REST APIs are hard to design [6] because they are not often based on precise
and documented speci�cations but only on an architectural style [4]. Thus, we
now present a catalog of REST API best practices, pertaining to understand-
ability and reusability, extracted from the literature and organised to support
our analysis on cloud REST APIs.

To build our catalog, we surveyed several studies of REST APIs elaborated
by Massé [6], Rodrigues et al.[2], Palma et al.[8,9], Vinoski [13], Stowe [12], and
Richardson and Ruby [11]. In particular, Massé [6] provides a concise catalog of
practices organised by categories. We analysed all the cited studies to identify
good practices and organise them by categories inspired from Massé's work.

Category Number of practices
URI 20
Request Methods 8
Error Handling 16
HTTP Headers 10
Others 19
Total 73

Table 1. Numbers of practices by category

Our literature review produced a catalog of 73 best practices to design un-
derstandable and reusable REST APIs, grouped into �ve categories. Table 1 lists
the categories and the numbers of practices per category. Tables 2-6 describe the
identi�ed practices in each category with a short description, relevant references,
and the results of our analysis on the three Cloud REST APIs. The analysis of
each API is further discussed in Section 4.

The �rst category, URI practices, describes how URIs are exposed by services
(Table 2). The second category, Request Methods, describes how HTTP methods
must be used by REST APIs (Table 3). Error Handling practices specify how
HTTP messages must be used as a response of a HTTP request method (Table
4). HTTP Header practices describe how must be used HTTP headers to com-
plete requests with metadata or complementary data (Table 5). Finally, Others
is the category for grouping di�erent and various practices as Media Types, Mes-
sage Body Format, Versioning, Security, Response Representation Composition,
Documentation and Hypermedia Representation (Table 6).

3

Practices R
ef
er
en
ce
s

G
oo
gl
e

O
p
en
S
ta
ck

O
C
C
I

1 Forward slash separator (/) must be used to indicate a hierar-
chical relationship

[6,11,9] X X X

2 A trailing forward slash (/) should not be included in URIs [6,2,9] X X X
3 Hyphens (-) should be used to improve the readability of URIs [6,9] - - -
4 Underscores (_) should not be used in URIs [6,2,9] X X -
5 Lowercase letters should be preferred in URI paths [6,2,9] X X -
6 File extensions should not be included in URIs [6] X X -
7 Consistent subdomain names should be used for your APIs [6,11,9] X X X
8 A singular noun should be used for document names [6,9] X X -
9 A plural noun should be used for collection names [6,9] X X -
10 A plural noun should be used for store names [6,9] X X -
11 A verb or verb phrase should be used for controller names [6,9] X X -
12 CRUD function names should not be used in URIs [6,2,9] X X -
13 Use path variables to separate elements of a hierarchy, or a path

through a directed graph
[11] X X -

14 Avoiding version number in the path [2] - - -
15 API as part of the subdomain [2] X - -
16 The query component of a URI may be used to �lter collections

or stores
[6] X X X

17 The query component of a URI should be used to paginate col-
lection or store results

[6] X X X

18 Keeping as much information as possible in the URI, and as
little as possible in request metadata

[11] X X -

19 Avoiding version number in the query params [2] X X X
20 Avoiding CRUD actions in query params [2] X X X

Table 2. URI design best practices

Practices R
ef
er
en
ce
s

G
oo
gl
e

O
p
en
S
ta
ck

O
C
C
I

1 GET and POST must not be used to tunnel other request meth-
ods

[2,6,8,12] X X X

2 GET must be used to retrieve a representation of a resource [6,11,12,13] X X X
3 HEAD should be used to retrieve response headers [6,11,12,13] X X -
4 PUT must be used to both insert and update a stored resource [6,11,12,13] - - X
5 PUT must be used to update mutable resources [6,11,12,13] X X X
6 POST must be used to create a new resource in a collection [6,11,12,13] X X X
7 POST must be used to execute controllers [6,12] X X X
8 DELETE must be used to remove a resource from its parent [6,11,12,13] X X X

Table 3. Request methods best practices

4

Practices R
ef
er
en
ce
s

G
oo
gl
e

O
p
en
S
ta
ck

O
C
C
I

1 200 (�OK�) should be used to indicate nonspeci�c success [6,12] X X X
2 200 (�OK�) must not be used to communicate errors in the re-

sponse body
[6,12] X X X

3 201 (�Created�) must be used to indicate successful resource cre-
ation

[6,12] - - X

4 202 (�Accepted�) must be used to indicate successful start of an
asynchronous action

[6,12] - - -

5 204 (�No Content�) should be used when the response body is
intentionally empty

[6,12] - - X

6 302 (�Found�) should not be used [6,12] - - X
7 304 (�Not Modi�ed�) should be used to preserve bandwidth [6,12,13] - - -
8 400 (�Bad Request�) may be used to indicate nonspeci�c failure [6,12] X X X
9 401 (�Unauthorized�) must be used when there is a problem with

the client's credentials
[6,12] - X X

10 403 (�Forbidden�) should be used to forbid access regardless of
authorization state

[6,12] - - X

11 404 (�Not Found�) must be used when a client's URI cannot be
mapped to a resource

[6,12] X - X

12 405 (�Method Not Allowed�) must be used when the HTTP
method is not supported

[6,12] - - X

13 406 (�Not Acceptable�) must be used when the requested media
type cannot be served

[6,12] - - X

14 409 (�Con�ict�) should be used to indicate a violation of resource
state

[6,12] - X X

15 500 (�Internal Server Error�) should be used to indicate API
malfunction

[6,12] X - X

16 Use JSON as error message response [6,12] X X -
Table 4. Error handling best practices

5

Practices R
ef
.

G
oo
gl
e

O
S

O
C
C
I

1 Content-Type must be used [6,12,13] X X -
2 Content-Length should be used [6] X X -
3 Last-Modi�ed should be used in responses [6] - X -
4 ETag should be used in responses [6,13] X X -
5 Stores must support conditional PUT requests [6] - - -
6 Location must be used to specify the URI of a newly created

resource
[6] - - -

7 Cache-Control, Expires, and Date response headers should be
used to encourage caching

[6] X X -

8 Cache-Control, Expires, and Pragma response headers may be
used to discourage caching

[6] - - -

9 Caching should be encouraged [6] X X -
10 Custom HTTP headers must not be used to change the behavior

of HTTP methods
[6] X X X

Table 5. HTTP header best practices

Practices R
ef
.

G
oo
gl
e

O
S

O
C
C
I

1 Application-speci�c media types should be used [6] - - X
2 Media type negotiation should be supported when multiple rep-

resentations are available
[6] - - X

3 Media type selection using a query parameter may be supported [6] - - -
4 JSON should be supported for resource representation [6] X X X
5 XML and other formats may optionally be used for resource

representation
[6] - - X

6 Additional envelopes must not be created [6] X X X
7 New URIs should be used to introduce new concepts [6] X X X
8 Schemas should be used to manage representational form ver-

sions
[6] X - X

9 Entity tags should be used to manage representational state
versions

[6] - - X

10 OAuth may be used to protect resources [6,12] X X -
11 The query component of a URI should be used to support partial

responses
[6] - - X

12 The query component of a URI should be used to embed linked
resources

[6,11] - - -

13 Consistent subdomain names should be used for your client de-
veloper portal

[6] - - -

14 Accompanying human-readable documentation [6,12] X X X
15 Interactive experiences to try/test API calls [12] X - -
16 Code examples for multiple languages [12] X - -
17 A consistent form should be used to represent links [6,8] X X X
18 A consistent form should be used to advertise links [6,8] X X X
19 A self link should be included in response message body repre-

sentations
[6,8] X X X

Table 6. Other best practices

6

3 Study design

This section presents the design of our study, which aims to address the following
four research questions:

RQ1 What are the main services provided by cloud REST APIs?
RQ2 How many best practices are followed by cloud REST APIs?
RQ3 What best practices are adopted by all APIs?
RQ4 What best practices are adopted by none of the APIs?

3.1 Objects

The objects of our study are three di�erent cloud REST APIs including the
proprietary cloud API of Google Cloud Platform, the open source API of Open-
Stack, and the standard OCCI. We speci�cally target these APIs because they
represent the range of the di�erent types of cloud APIs available: commercial
o�er, open source implementation, and open standard.

Here is a short description of each of the three studied APIs:

Google Cloud Platform is a proprietary cloud platform that consists of a set of
physical assets (e.g., computers and hard disk drives) and virtual resources (e.g.,
virtual machines, a.k.a. VMs) hosted in Google's data centers around the globe.
Google Cloud documentation is available at https://cloud.google.com/docs.

OpenStack is an open source cloud platform that controls large pools of com-
pute, storage, and networking resources throughout a datacenter. OpenStack
documentation is available at http://docs.openstack.org.

Open Cloud Computing Interface (OCCI) is a cloud computing standard that
comprises a set of open community-lead speci�cations delivered through the
Open Grid Forum. OCCI is a protocol and API for all kinds of management
tasks. OCCI 1.2 documentation is available at http://occi-wg.org/about/

specification.

3.2 Procedure

We investigated and analysed manually in details the documentation of each
of the three APIs studied. More precisely, we identi�ed the services provided
by each API and extracted the list of URIs. Then, we compared them with
each best practice as de�ned in our compiled catalog of best practices. The
analysis of OCCI has been cross-validated by two contributors of the standard.
We performed an analysis of the three APIs and reported the results of this
analysis in several tables given in the next section dedicated to the results.

7

4 Results

We now report the results of our analysis to answer our four research questions.

4.1 RQ1 What are the main services provided by cloud REST
APIs?

We performed a manual analysis on each REST API documentation to identify
the services provided. This �rst analysis allows us to identify 11 services as
listed in Table 7. Our results show that Google Cloud Platform and OpenStack
provide all identi�ed services (11/11) while OCCI describes only four services
in its speci�cations (4/11). We conclude that Google and OpenStack API
have a good support for several services while OCCI has yet some
lacks.

Main Services Google OpenStack OCCI
VM Managing X X X
Container Managing X X 7

Image Managing X X 7

Storage X X X
Networking X X X
Scaling X X 7

Access Control X X 7

Monitoring X X 7

Tagging X X X
Data Processing X X 7

Machine Learning X X 7

Table 7. Service analysis comparing Google Cloud, OpenStack, and OCCI

Indeed, current OCCI 1.2 o�cial speci�cations only cover 4 of the 11 services
listed in Table 7: VM Managing, Storage, Networking, and Tagging. However,
OCCI-based services were proposed for Container Managing [10] and Monitoring
[3]. Image Managing, Scaling, Access Control, Data Processing and Machine
Learning would be addressed in future as there are key services for building
open standard cloud platforms.

4.2 RQ2 How many best practices are followed by cloud REST
APIs?

For each practice, we analysed the documentation of the corresponding API
to assess whether this provider follows or not the practice. Tables 2-6 present
the detailed results of this assessment for each API and the 73 best practices by
category. Table 8 presents a summary of this assessment by category of practices
and shows that on average 61% (44/73) of the practices are followed

8

by the three APIs. Google Cloud Platform follows 66% (48/73), OpenStack
follows 62% (45/73), and OCCI follows 56% (41/73) of the best practices.

Moreover, OCCI follows only 35% (7/20) of URI practices, while Google
Cloud Platform and OpenStack follow URI practices in 90% (18/20) and 85%
(17/20), respectively. OCCI 1.2 fails to support URI design best practices, but
future OCCI releases could improve this as the OCCI REST API is automatically
synthetised from a metamodel instead of designed by hand as in Google Cloud
Platform and OpenStack.

All APIs strongly apply Request Methods best practices listed in Table 3
with 87% on average. Each API requires just one improvement on PUT method
for Google Cloud Platform and OpenStack, and on HEAD method for OCCI. For
the latter, OCCI implementations such as erocci5 and rOCCI6 already support
HEAD method best practice, so a consensus in the OCCI community should be
easily attainable to include this best practice into OCCI speci�cations.

Finally, Error Handling, HTTP Headers, and the other categories are the less
followed with only 52%, 46%, and 56%.

Error handling in Google Cloud Platform and OpenStack (6/16 or 37,5% in
Table 8) requires to be strongly improved with a better documentation in the
error messages.

Regarding HTTP header best practices, all the three cloud REST APIs can
be improved but especially OCCI 1.2, which only supports 1 practice, i.e., 10%
in Table 5. Here the OCCI 1.2 HTTP Protocol speci�cation must be extended to
support more HTTP header best practices. For instance, this speci�cation must
explicitly state that Content-Type must be used, Content-Length should be used,
Last-Modi�ed should be used in responses, ETag should be used in responses,
Cache-Control, Expires, and Date response headers should be used to encourage
caching, Cache-Control, Expires, and Pragma response headers may be used to
discourage caching, and Caching should be encouraged. Let's note that OCCI
implementations such as erocci and rOCCI already implement most of these
best practices, so the consensus into the OCCI community should be reasonably
attainable. In contrast, both stores must support conditional PUT requests and
location must be used to specify the URI of a newly created resource are best
practices that no API seems to want to support.

Category Total Google OpenStack OCCI Average Avg/Total
URI 20 18 17 7 14 70%
Request Methods 8 7 7 7 7 87%
Error Handling 16 6 6 13 8 52%
HTTP Headers 10 6 7 1 4 46%
Others 19 11 8 13 10 56%
Total 73 48 45 41 44 61%

Table 8. Followed practices by category and API

5 http://erocci.ow2.org
6 http://gwdg.github.io/rOCCI/

9

4.3 RQ3 What best practices are adopted by all APIs?

In Table 9, we identi�ed from our results the set of practices that all APIs
follow, forming a �consensus�. We found that only 32% (24/73) of practices
were followed by all APIs. This means that the cloud API providers are not
yet in agreement on the main good practices to prioritise and might be guided
by technical decisions. However, it should be pointed out that the practices are
strict and detailed. This explains why this number is very low. Moreover, we
could identify that the majority of practices are adopted at least by one API.
Overall, the APIs, even if do not follow strictly all best practices, implement
relatively well all practices and are thus well-designed.

Practices Categories
Forward slash separator (/) must be used to indicate a hierar-
chical relationship

URI Format

A trailing forward slash (/) should not be included in URIs URI Format
Consistent subdomain names should be used for your APIs URI Authority
The query component of a URI may be used to �lter collections
or stores

URI Query

The query component of a URI should be used to paginate col-
lection or store results

URI Query

Avoiding version number in the query params URI Query
Avoiding CRUD actions in query params URI Query
GET and POST must not be used to tunnel other request meth-
ods

Request Methods

GET must be used to retrieve a representation of a resource Request Methods
PUT must be used to update mutable resources Request Methods
POST must be used to create a new resource in a collection Request Methods
POST must be used to execute controllers Request Methods
DELETE must be used to remove a resource from its parent Request Methods
200 (�OK�) should be used to indicate nonspeci�c success Error Handling
200 (�OK�) must not be used to communicate errors in the re-
sponse body

Error Handling

400 (�Bad Request�) may be used to indicate nonspeci�c failure Error Handling
Custom HTTP headers must not be used to change the behavior
of HTTP methods

HTTP Headers

JSON should be supported for resource representation Message Body
Additional envelopes must not be created Message Body
New URIs should be used to introduce new concepts URI
Accompanying human-readable documentation Documentation
A consistent form should be used to represent links Hypermedia
A consistent form should be used to advertise links Hypermedia
A self link should be included in response message body repre-
sentations

Hypermedia

Table 9. Practices followed by All APIs

10

4.4 RQ4 What best practices are adopted by none of the APIs?

An opposite analysis allows us to identify the set of practices that none API
follows, forming a negative �consensus�. We found that only ten best practices
(14%) are applied by none of the three APIs analysed. Table 10 lists the practices
followed by no API. This list could be analysed to understand why these practices
are not followed by more APIs. For example, as any cloud API provider performs
long running actions, e.g. starting a virtual machine takes some minutes, then
all cloud APIs must return 202 (�Accepted�) HTTP status to indicate successful
start of an asynchronous action. Another example is that 304 (�Not Modi�ed�)
should be used by all cloud APIs to preserve network bandwidth.

Practices Categories
Hyphens (-) should be used to improve the readability of URIs URI Format
Avoiding version number in the path URI Path
202 (�Accepted�) must be used to indicate successful start of an
asynchronous action

Error Handling

304 (�Not Modi�ed�) should be used to preserve bandwidth Error Handling
Stores must support conditional PUT requests HTTP Request
Location must be used to specify the URI of a newly created
resource

HTTP Request

Cache-Control, Expires, and Pragma response headers may be
used to discourage caching

HTTP Request

Media type selection using a query parameter may be supported URI Format
The query component of a URI should be used to embed linked
resources

URI Format

Consistent subdomain names should be used for your client de-
veloper portal

URI Authority

Table 10. Practices followed by No API

4.5 Threats to Validity

As with any such empirical study, threats exist that reduce its validity, which
we attempted to mitigate or had to accept. We now discuss these threats and
the measures that we took with respect to them.

Threats to the construct validity of our study concern the relationship between
theory and observations. We assumed (1) that good practices can be codi�ed and
shared among developers and (2) that these good practices improve the quality
of the REST APIs of the cloud providers that follow them [15]. Although these
assumptions are legitimate and have been withheld by many researchers and
works before for example that of Zhang and Budgen [14], future work should
study whether these good practices apply universally to all cloud services.

11

Threats to internal validity concern confounding factors that can a�ect our de-
pendent variables. Although we did not carry any statistical analysis on the
characteristics of the studied REST APIs, we assumed that the good practices
were representative characteristics of the REST APIs. However, there may be
other characteristics that describe more accurately these REST APIs, in par-
ticular their understandability and reusability. Future work include analysing
and contrasting more APIs with more practices to uncover possible other char-
acteristics. We also related the APIs and the practices manually thanks to the
information provided in the literature and by the APIs documentations. Yet,
other researchers should perform similar analysis to con�rm/in�rm ours.

Threats to conclusion validity deal with the relation between the treatment and
the outcome. Again, we did not carry any statistical analysis between the REST
APIs and the identi�ed good practices and the characteristics of understandabil-
ity and reusability. Yet, we argued that comparing these REST APIs according
to their use of the practices is sensible because they belong to the same design
space. We also accepted that external characteristics could in�uence their design
and, hence, their quality. We accepted this threat and future work could uncover
more novel characteristics and measures of REST APIs.

Threats to external validity concern the generalisability of our results. Although
we presented, to the best of our knowledge, the largest study on the design
of REST APIs based on an catalog of good practices from the literature, we
cannot generalise our results to all REST APIs. Future work is necessary to
analyse more REST APIs, from other cloud providers, to con�rm and�or in�rm
our observations on their design quality characteristics.

5 Related Work

To the best of our knowledge, few work studied the evaluation of REST APIs.
Rodríguez et al.[2] evaluated the conformance of good and bad practices

in REST APIs from the perspective of mobile applications. They analysed large
data logs of HTTP calls collected from the Internet tra�c of mobile applications,
identi�ed usage patterns from logs, and compared these patterns with design
best practices. Zhou et al.[16] showed how to �x design problems related to the
use of REST services in existing Northbound networking APIs in a Software
De�ned Network and how to design a REST Northbound API in the context of
OpenStack. Both of these two previous work made contributions to the design
evaluation of REST APIs for two speci�c domains, mobile and networking, while
we consider the domain of cloud services.

Maleshkova et al.[5] analysed a set of 220 publicly-available Web APIs, includ-
ing RPC, REST, and hybrid (a mix of RPC and REST) styles. They investigated
six characteristics of the APIs: general information, types of Web APIs, input
parameters, output formats, invocation details, and complementary documenta-
tion. This work provides a view on how Web APIs are developed and exposed.

12

In particular, it shows that Web APIs are not necessarily REST and that they
su�er from under-speci�cation because important information such as data-type
and HTTP methods are missing. This work supports our paper on the need to
study the design of REST APIs.

In our previous works [8,9], we evaluated the design of several REST APIs
based on REST patterns and antipatterns, which correspond to good and bad
practices in the design of REST services. However, the APIs evaluated were
selected from di�erent and general domains. They included Facebook, Twitter,
Dropbox, and Bestbuy. So, it was not possible to compare and discuss the re-
sults among the APIs. Moreover, the list of patterns and antipatterns was really
limited compared to the catalog of best practices presented in this paper.

6 Conclusion and Future Work

In this paper, we claimed that well designing REST APIs is di�cult for cloud
providers although there exist best practices pertaining to understandability and
reusability. We supported our claim by performing, to the best of our knowledge,
the �rst study evaluating and comparing the designs of the REST APIS of several
cloud providers. We included in our study the REST APIs provided by Google
Cloud Platform, OpenStack, and OCCI. We presented thus two contributions,
a catalog of best practices from the literature and an evaluation of the use of
these practices in three sets of APIs.

For our �rst contribution, we reviewed the literature extensively and compiled
a catalog of 73 best practices in the design of REST APIs making APIs more
understandable and reusable. We believe that our catalog is exhaustive at the
time of writing. We hope that this catalog can be used by other researchers to
study some quality characteristics of REST APIs as well as practitioners when
designing, implementing, and assessing their own REST APIs.

For our second contribution, we evaluated and compared the design of the
REST APIs using best practices from the literature and showed that Google
Cloud follows 66% (48/73), OpenStack follows 62% (45/73), and OCCI 1.2 fol-
lows 56% (41/73) of the best practices.

Thus, we showed that best practices can help evaluate REST APIs and design
better REST APIs in terms of understandability and reusability. Moreover, in
opposition of a recent assessment [2], we also showed that cloud APIs reach
an acceptable level of maturity when considering good practices pertaining to
understandability and reusability.

Future work includes studying whether these good practices apply universally
to all cloud APIs. In particular, we planned to analyse and contrast more APIs,
especially other commercial o�ers like Amazon Web Services and other open
source cloud stacks like Apache's CloudStack, with more practices to uncover
possible other characteristics. Finally according to the results of this study, we
will contribute to the improvement of OCCI speci�cations in order to make them
more visible as OCCI is the only open standard addressing the management of
any cloud computing resource.

13

Acknowledgment

Thank to Boris Parak from CESNET and Jean Parpaillon from Inria for their
helps in evaluating the support by OCCI of our catalog of best practices. This
work is partially supported by the OCCIware research and development project
(http://www.occiware.org) funded by French Programme d'Investissements
d'Avenir (PIA).

References

1. Armbrust, M., Stoica, I., Zaharia, M., Fox, A., Gri�th, R., Joseph, A.D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.: A view of cloud comput-
ing. Communications of the ACM 53(4), 50 (apr 2010), http://portal.acm.org/
citation.cfm?doid=1721654.1721672

2. Carlos Rodríguez, C., Baez, M., Daniel, F., Casati, F., Carlos, J., Canali, L., Per-
cannella, G.: REST APIs : A Large-Scale Analysis of Compliance with Princi-
ples and Best Practices. In: 16th International Conference on Web Engineering
(ICWE2016). Lugano (2016)

3. Ciu�oletti, A.: Application level interface for a cloud monitoring service. Com-
puter Standards & Interfaces 46, 15 � 22 (2016), http://www.sciencedirect.
com/science/article/pii/S0920548916000027

4. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, University of California, Irvine (2000), http://www.
ics.uci.edu/~fielding/pubs/dissertation/top.htm

5. Maleshkova, M., Pedrinaci, C., Domingue, J.: Investigating Web APIs on the World
Wide Web. In: 2010 Eighth IEEE European Conference on Web Services. pp. 107�
114. IEEE (dec 2010), http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=5693251

6. Masse, M.: REST API Design Rulebook, vol. 53. O'Reilly Media (2011)
7. Merle, P., Barais, O., Parpaillon, J., Plouzeau, N., Tata, S.: A Precise Metamodel

for Open Cloud Computing Interface. In: 2015 IEEE 8th International Conference
on Cloud Computing. pp. 852�859 (June 2015)

8. Palma, F., Dubois, J., Moha, N.: Service-Oriented Computing, Lecture Notes in
Computer Science, vol. 8831. Springer Berlin Heidelberg, Berlin, Heidelberg (2014),
http://link.springer.com/10.1007/978-3-662-45391-9

9. Palma, F., Gonzalez-Huerta, J., Moha, N., Guéhéneuc, Y.G., Tremblay, G.:
Are RESTful APIs Well-Designed? Detection of their Linguistic (Anti)Patterns.
In: Toumani, F., Pernici, B., Grigori, D., Benslimane, D., Mendling, J.,
Ben Hadj-Alouane, N., Blake, B., Perrin, O., Saleh Moustafa, I., Bhiri,
S. (eds.) Service-Oriented Computing, Lecture Notes in Computer Sci-
ence, vol. 8954, pp. 171�187. Springer International Publishing, Cham
(2015), http://link.springer.com/10.1007/978-3-319-22885-3http://link.

springer.com/10.1007/978-3-662-48616-0{_}11

10. Paraiso, F., Challita, S., Al-Dhuraibi, Y., Merle, P.: Model-Driven Management
of Docker Containers. In: Proceedings of 9th IEEE International Conference on
Cloud Computing (CLOUD) (2016), to appear

11. Richardson, L., Ruby, S.: RESTful Web Services. O'Reilly Media, Inc. (nov 2007)
12. Stowe, M.: Undisturbed REST: A guide to designing the perfect API. MuleSoft

(2015)

14

13. Vinoski, S.: RESTful Web Services Development Checklist. IEEE Internet Com-
puting 12(6), 96�95 (nov 2008), http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=4670126

14. Zhang, C., Budgen, D.: What do we know about the e�ectiveness of software
design patterns? IEEE Transactions on Software Engineering 38(5), 1213�1231
(Sept 2012)

15. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research
challenges. Journal of Internet Services and Applications 1(1), 7�18 (may 2010),
http://www.springerlink.com/index/10.1007/s13174-010-0007-6

16. Zhou, W., Li, L., Luo, M., Chou, W.: REST API Design Patterns for SDN
Northbound API. In: 2014 28th International Conference on Advanced Informa-
tion Networking and Applications Workshops. pp. 358�365. IEEE (may 2014),
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6844664

15

