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Abstract. A common strategy for modernizing legacy systems is to mi-
grate them to service-oriented architecture (SOA). A key step in the
migration process is the identification of reusable functionalities in the
system that qualify as candidate services in the target architecture. We
propose ServiceMiner, a bottom-up service identification approach that
relies on source code analysis, because other sources of information may
be unavailable or out of sync with the actual code. Our bottom-up, code-
based approach uses service-type specific functional-clustering criteria.
We use a categorization of service types that builds on published service
taxonomies and describes the code-level patterns characterizing types of
services. We evaluate ServiceMiner on an open-source, enterprise-scale
legacy ERP system and compare our results to those of two state-of-the-
art approaches. We show that ServiceMiner automates one of the main
labor-intensive steps for migrating legacy systems to SOA. It identifies
architecturally-significant services with 77.9% of precision, 66.4% of re-
call, and 71.7% of F-measure. Also, we show that it could be used to
assist practitioners in the identification of candidate services in existing
systems and thus to support the migration process of legacy systems to
SOA.

Keywords: Service Identification, Service types, Legacy Migration, Software
Reuse

1 Introduction

The maintenance and migration of legacy software systems are central IT ac-
tivities in many organizations in which these systems are mission-critical. These
systems embed hidden knowledge that is of significant values. They cannot be
simply removed or replaced because they execute effectively and accurately crit-
ical and complex business logic. However, legacy software systems are difficult
to maintain and scale because their software and hardware become obsolete [1].
They must be modernized to ease their maintenance and evolution.



A common strategy for modernizing such systems is their migration to service-
oriented architecture (SOA), which defines a style where systems are made of
services that are reusable, distributed, relatively independent, and often hetero-
geneous [2]. Service Identification (SI) is considered one of the most challenging
steps of the migration process [3]. It consists in identifying reusable groupings—
clusters of functionalities in the legacy system that qualify as candidate services
in the target architecture. Several SI approaches have been proposed in the liter-
ature [4,5,6,7,8,9,10]. However most of them have limited identification accuracy
and usually require several types of inputs (e.g., business process models, use
cases, activity diagrams, etc.) that may not be always available especially in the
context of legacy systems. We argue that service identification should depend
on service types to improve the identification accuracy by narrowing the search
space through the types and their associated code-patterns. Service types can
be used to classify service candidates according to a hierarchical-layered schema
and offers the possibility to prioritize the identification of specific types of ser-
vices according to the business requirements of the migration process. Also, in
our prior work [11], we reported that several practitioners highlighted the im-
portance of identifying service types when migrating legacy systems to SOA.
They claimed that type-aware SI provides important information on the nature
and business capabilities of the identified services. Besides, existing source-code
SI approaches use similar functional-clustering criteria—typically cohesion and
coupling, which lead to candidate services that are often architecturally irrelevant
for the new SOA-based system.

Consequently, we propose ServiceMiner, a type-aware SI approach to support
the migration of legacy systems to SOA. We consider a bottom-up approach
relying on source code analysis, as other sources of information (e.g., business
process models, use cases, activity diagrams, etc.) may be unavailable or out of
sync with the actual code. We use a categorization of service types based on
previous service taxonomies and describe the code-level patterns characterizing
each type of service. We evaluate ServiceMiner on an open-source, enterprise-
scale legacy ERP system and compare its results to those of two state-of-the-art
SI approaches [7,5]. We show that our approach automates the identification of
specific types of candidate services, which are architecturally significant for the
new SOA-based system.

This paper is structured as follows. Section 2 presents the related work and
describes the taxonomy of service types. Section 3 details the service identifica-
tion approach. Section 4 presents the experimental validation of our approach
and details the obtained results. We discuss in Section 5 our threats to validity
and provide our recommendations. Finally, we conclude in Section 6 with future
work.

2 Background and Related Work

We describe in this section related work considering service types, their limita-
tions, and the taxonomies on which we build our approach.
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2.1 Related Work

Several approaches were presented to identify services from legacy software. How-
ever, only five approaches [12,13,14,15,16] considered the types of services.

Marchetto et al. [13] proposed a stepwise type-sensitive service identification
approach that extracts reusable services from legacy systems based on dynamic
analysis of java-based systems. They proposed guidelines to identify Utility, En-
tity and Task services from legacy systems. They executed several test scenarios
and extracted reusable functional groupings that they qualified as candidate ser-
vices. They identified Utility services by manually mining non-business-centric
functionalities and looking at cross-cutting functionalities that can be grouped
and exposed as candidate Utility services. They extracted candidate Entity ser-
vices by analyzing the persistent objects and the classes using them. Finally,
they considered each main functionality of the target application as a possible
candidate Task service. Although the proposed SI approach is type-sensitive, the
identification is still manual and based on executing several test scenarios that
may not cover all the functionalities of the system. The approach was validated
on small Java systems, limiting its application on real enterprise systems.

Huergo et al. [15] proposed a method to identify services based on their
types. They rely on UML class diagrams of object-oriented based systems from
which they derive state machine diagrams to identify the states of the objects in
the system. They start by manually identifying Master data that they define as
entity classes considered to play a key role in the operation of a business. Each
Master data is considered as a candidate Entity service. Next, they derive state
machine diagrams that are related to the identified Master data. They analyze
the transitions on the state machine diagrams and identify Task and Process
services. The identification process is also not fully automated and relies on the
manual identification of master data in the system that qualify as Entity services.

Alahmari et al. [12] identified services based on analyzing business process
models. These business process models are derived from questionnaires, inter-
views and available documentations that provide atomic business processes and
entities on the one hand, and activity diagrams that provide primitive func-
tionalities, on the other hand. Different service granularity are distinguished in
relation to atomic business processes and entities. Dependent atomic processes as
well as the related entities are grouped together at the same service to maximize
the cohesion and minimize the coupling. However the implementation details of
the approach is not fully described.

Fuhr et al. [14] considered three types of services: Business, Entity, and Utility
services, which are identified from legacy code based on a dynamic analysis
technique. The authors relied on a business process model to identify related
classes. Each activity in the business process model is executed and classes called
during the execution of an activity are considered related. The identification of
services is based on a clustering technique where the similarity measurement is
the number of classes used together in one activity. The identified clusters are
then manually mapped into the different service types. A strong assumption of
this approach is that business process models are available to execute activities.
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Grieger et al. [16] presented an approach identifying three service types when
analyzing legacy code. The first type refers to initial Design services that im-
plement business values. These occurrences are identified based on refining the
existing legacy code related to business values. The second type corresponds
to coarse-grained services, e.g., business processes. These are identified based
on orchestrating other services related to the same underlying business process
(i.e., structural dependent services). The last service type is related to services
that implement crosscutting concerns and technical functionalities used across
different services (i.e., Utility services). The identification of these services is
based on partitioning the functionalities of multiple services to recover indi-
vidual and common parts. The authors relied on a clone detection algorithm
to extract cloned functionalities shared among different services. The identified
cloned functionalities are given to software architects to decide if they should
to be moved into an existing service or merged into a new one. The proposed
approach highly depend on the manual and iterative refinement of the identified
candidate services with software architects. The approach also lacks of empirical
evidence on its reliability to support software architects during the migration
process as there is no information about the quality of the identified services.

We notice that there is a lack of SI approaches that are type-sensitive. These
approaches focus on identifying Business, Entity, and Utility services. Most of
these approaches are not fully-automated and need other inputs than the source
code (e.g., business processes, execution traces, state machine diagrams, etc.) to
identify services in legacy systems.

Also, a number of primary studies have been proposed in the literature about
SI without taking into account service types. Many of the proposed techniques
rely on Business Process Models (BPMs), to identify services within the context
of legacy migration [17,18,19]. These techniques decompose processes into tasks
and then map these tasks to legacy source code elements to identify candidate
services. Other SI techniques use heuristics based on the technical properties of
services, as reflected in various metrics [5,8,7,20,21]. Such techniques often use
these metrics to drive clustering and machine learning algorithms that identify
software artifact clusters as candidate services. Other AI-based techniques use
ontologies and Formal Concept Analysis to identify services in legacy systems
[22,9,10]. However these techniques are too complex and not ready for industrial
applications. There are also wrapping-based SI techniques that put service in-
terfaces around existing functional components and subsystems [4,6,23], which
solve integration problems but do not solve maintenance issues.

2.2 Taxonomy of Service Types

A number of service type taxonomies exists [2,12,13,14,15,16,24,25] that consider
different aspects (e.g., domain specificity, granularity, governance) to distinguish
service types. We study and combine these taxonomies and limit ourselves to
those services types that are distinguishable at the code level. We distinguish
between domain-specific services, and domain-neutral services. Domain-specific
Services fall into four major types:
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1. Business services: They correspond to business processes or use cases.
These are services used by users. These services generally compose/use the
Enterprise-task, Application-task, and Entity services described in the fol-
lowing.

2. Enterprise services: (Also called capabilities [24]) they are of finer granu-
larity than business process services. They implement generic business func-
tionalities reused across different applications.

3. Application services: These services provide functionalities specific to one
application. They exist to support reuse within one application or to enable
business process services [24].

4. Entity services: (Also called information or data services) they provide
access to and management of the persistent data of legacy software systems.
They support actions on data (CRUD) and may have side-effects (i.e., they
modify shared data).

Domain-neutral Services are services that provide functionalities to develop,
use, and compose domain-specific services:

1. Utility services: They provide some cross-cutting functionalities required
by domain-specific services. Logging and authentication services are exam-
ples of Utility services.

2. Infrastructure services: They allow users deploying and running SOA
systems. They include services for communication routing, protocol conver-
sion, message processing and transformation. They are sometimes provided
by an Enterprise Service Bus (ESB).

Utility
Services

Application Services  Enterprise Services

Infrastructure Services

Business Services

Entity Services

Fig. 1. Taxonomy of service types

In our prior work [11], we validated this taxonomy through an industrial
survey with practitioners who participated in real migration projects to SOA.
None of them mentioned the identification of other types of services during
the migration process. In the following, we will consider the identification of
only Utility, Entity and Application services and detail how we can identify
such types of services through the analysis of the source code of legacy software
systems. In fact, non service-oriented legacy systems are likely not to contain
infrastructure services and, thus, we do not consider this type of services in
our analysis. Second, we do not distinguish between Application services and
Enterprise services because they only differ in terms of scope of reuse: within
a single system vs. across systems. Also, we do not consider Business services
because (1) they orchestrate other services, such as Enterprise and Application
services, and (2) other sources of information, e.g., business process models, are
required to detect them.
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3 Service Identification by Type: Our Approach

Figure 2 summarizes our SI approach, ServiceMiner, which consists of two phases:
(1) a pre-processing phase in which we build the call graph of the system based on
source code analyses, perform an initial clustering of highly connected classes,
and compute the code metrics used in the services detection rules and (2) a
processing phase in which we apply rules on the generated clusters to filtrate,
reorganize, and classify them to identify candidate services and their types.

Source
code KDM Call Graph Generation Call Graph

Metrics Calculation Metrics

Initial Clustering Initial clusters

Detection Rule of Utility Services

Detection Rule of Entity Services

Detection Rule of Application Services

Utility
Services

Entity
Services

Application
Services

Phase 1: Pre-processing Phase 2: Processing (identification of reusable services)

5

7

MoDISCO
1

6
2

3

4

Fig. 2. Overview of ServiceMiner

3.1 Pre-processing Phase

Call Graph Generation. Our SI rules in Table 1 use code metrics, such as
fanin and fanout, computed on the call graph of the legacy system. Thus, in
a first step, we parse the source code of the legacy system and build its call
graph. Legacy systems come in different languages and may combine several
technologies. The OMG Knowledge Discovery Metamodel (KDM) [26] was de-
fined to represent (legacy) systems at different levels of abstraction, regardless
of languages and technologies. Thus, we use MoDISCO [27], an Eclipse-based
open-source implementation of the KDM that provides (1) an extensible pars-
ing framework to obtain KDM models from files in different languages and (2)
a framework to navigate the KDM models, which we extend to generate call
graphs of legacy systems.

Metrics Calculation. Our rules use class-level and method-level metrics. We
use the call graphs obtained in the previous step to compute class-level met-
rics. For the sake of simplifying the implementation of our SI approach, we use
Understand5 to compute method-level metrics. We also analyze the static re-
lationships between the modules of the systems and assign a weight to each of
them according to their relative importance. A module may be a procedure, an
object, or any other piece of software depending on the programming language.
A relationship may be generalization, aggregation, or association, between classes
in object-oriented systems for example. The total relationship strength between
a pair of related modules is:
5 http://www.scitools.com
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Weight(Ci, Cj) =

T∑
t=1

Wt ×NRt

where Ci and Cj are modules, T is the number of relationships, Wt the weight
assigned to a relationship type t, and NRt the number of type t relationships be-
tween Ci and Cj . We study the relationships to ensure that only related modules
are grouped together in the following steps.

Initial Clustering : Identification of Functional Groupings. The SI rules
in Table 1 apply to candidate clusters that group functionalities in a legacy
system. Finding such groupings within a call graph is akin to a call-graph clus-
tering problem. We rely on Kruskal’s maximum spanning-tree algorithm [28] to
generate our initial set of clusters because (1) it is an efficient polynomial-time
algorithm for generating clusters based on a graph structure, (2) it was used by
several state-of-the-art SI approaches [7,29], and (3) a free implementation of
the algorithm is provided in the open-source Java library Jgrapht, which can be
easily integrated into our implementation. To enhance the clustering results of
the spanning-tree algorithm, we put the modules that are reachable only from
certain other modules in the same cluster. For example in case of object-oriented
systems, if a class A is only accessible from a class B and the two classes are not
in the same cluster then they must be grouped in same one.

3.2 Processing Phase: Identification of Reusable Services

Not all the clusters qualify as candidate services. In this step, we select the
functional groupings/clusters to migrate while considering the different types of
services. We first discuss service types and their code patterns qualitatively and
then express them as rules (see Table 1).

Each type of service is mutually exclusive and their detection is hierarchical:
first we detect candidate Utility services. Within the remaining groupings, we
detect Entity and Application services as follows:

1. Utility services: They provide highly generic functionalities that are sepa-
rate from domain-specific business processes and reusable across a range of
business functionalities [2]. We detect Utility services by identifying group-
ings that satisfy the rule described in Table 1: high fanin (groupings that
are highly solicited/called) and low fanout (groupings that do not call many
other clusters). Utility services are domain-neutral so the identified group-
ings should not be persistent or contain database queries.

2. Entity services: They represent and manage domain-specific business enti-
ties, such as products, invoices. They are data-centric and reusable by other
domain-specific services, such as Application services. We classify a grouping
as an Entity service with (1) high fanin, (2) low fanout, (3) persistent mod-
ules, (4) access to the infrastructure (e.g., database), and (5) fine grained.
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3. Application services: They are domain-specific and provide business func-
tionalities specific to one system. They have low fanin compared to Entity
and Utility services. They can also compose functionalities provided by En-
tity services. They generally perform complex computation. We use McCabe
complexity metric as well as error handling capabilities to measure complex-
ity computation. We classify a grouping as an Application service if it has (1)
a call to at least one Entity service, (2) a high McCabe complexity, and–or
(3) an error handling.

Service Type Detection rules
Utility Services Very High Fanin AND Very Low Fanout AND Not persistent
Entity Services Not Utility service AND High Fanin AND Low Fanout AND

Persistent AND Access to infrastructure AND Fine grained
Application
Services

Not Utility AND Not Entity AND Low Fanin
AND ( Call to Entity ≥1 OR High McCabe Complexity OR
Error Handling)

Table 1. Detection rules of services according to their types

4 Experimental Validation

Our validation divides into (1) a quantitative validation of ServiceMiner on a
case study in comparison to a ground-truth, (2) a qualitative validation of the
identified services that are related to a particular feature of our case study, and
(3) a comparison of our identification results with those of two other state-of-
the-art approaches [5,7].

4.1 Case Study

As case study, we choose Compiere because it is one of the few available, large,
and open-source legacy system available on the Internet. Compiere is a legacy
system because it is a large ERP system with a long history, first introduced by
Aptean in 20036. It provides businesses, government agencies, and non-profit or-
ganizations with flexible and low-cost ERP features7, such as business partners
management, monitoring and analysis of business performance, control of manu-
facturing operations, warehouse management (automating logistics), purchasing
(automating procurement to payment), materials management (inventory re-
ceipts, shipments, etc.), and sales order management (quotes, book orders, etc.).
It supports different databases, such as Oracle and PostgreSQL. We use Com-
piere v3.3 because (1) it is the first stable release of the system, (2) it was released
more than 15 years ago, (3) it includes 2,716 classes for more than 530 KLOC,
and (4) it is not service-oriented.

6 http://www.aptean.com
7 http://www.compiere.com/products/capabilities/
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4.2 Ground-Truth Architecture

We need a ground-truth service-oriented architecture of Compiere to assess our
approach. We asked two independent Ph.D. and Master’s students to identify
services in Compiere. They relied on several artifacts to build manually the
ground-truth architecture by (1) analyzing the system, (2) understanding it,
and (3) extracting its reusable parts that could become services. They used
Understand to recover its design and to visualize class dependencies. They also
generated views of its call graph that we make available online8. They also
reviewed extensively the system documentation as well as its source code to
have the best possible understanding and accurately identify services that can
be integrated in the targeted SOA-based system. They found 473 services, which
they annotated manually according to their type.

4.3 Quantitative Validation
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We applied ServiceMiner on Compiere to show its practical accuracy in iden-
tifying services in an existing system by considering, for each service type, several
combinations of the criteria related to each rule. We measured precision, recall,
and F-measure for each rule and report the results in Figures 3, 4, and 5.
8 http://si-serviceminer.com
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For example, for Utility services, we considered several possible combinations
of the criteria, such as “very high fanin”, “very low fanout”, and “Not persistent”.
We tested all possible combinations of these criteria and measured precision,
recall, and F-measure for each rule. As shown by Figure 4, the best F-measure
is obtained when considering the three criteria to identify such type of services:
considering clusters with only very high fanin or very low fanout or clusters that
are only not persistent leads to poor precision values.

We did the same evaluation process to study the effectiveness of the detection
rules for Entity and Application services. As shown by Figures 3, 4, and 5,
the best F-measure values were obtained when applying all the detection rules
detailed in Section 3.2, which we used in ServiceMiner to identify in Compiere
403 services: 24 Application services, 278 Entity services, and 101 Utility services.
We report in Table 2 the accuracy of ServiceMiner : a precision of 77.9%, a recall
of 66.4%, and a F-measure of 71.7%.

Table 2 shows that the best accuracy of ServiceMiner pertained to Utility
services with a precision of 77.9% and a recall of 86%. The identified Utility
services relate to logging, Web uploading, printing, etc. For Entity services, we
obtained a precision of 80.2%, a recall of 62.3%, and a F-measure of 70.1% with
services for products, orders, invoices, etc. We missed some Entity services that
have a low fanin/a high fanout because of our choice of metrics and thresholds,
which could be refined by the developers when applied to their own systems.
We observed a precision of 75%, a recall of 60%, and a F-measure of 66.7% for
Application services, which relate to payment processing, tax calculation, and
inventory management. The identification of Application services depends on
the previous identifications of Entity and Utility services and, thus, false-positive
Application services were mainly due to some Entity and Utility services being
incorrectly labeled as Application services, such as caching-related services and
Web-project deployment services.

Although we missed the identification of some services, we reduced the de-
velopers’ effort needed to identify services by avoiding the manual identification
of at least 66% of the candidate reusable services. Our recall could be improved
by setting different thresholds and iterating through the identification process.

Service Type # Services Precision Recall F-measure
Application 24 (18/24) 75.0% (18/30) 60.0% 66.7%
Entity 278 (223/278) 80.2% (223/358) 62.3% 70.1%
Utility 101 (73/101) 72.3% (73/85) 86.0% 78.6%
Total 403 (314/403) 77.9% (314/473) 66.4% 71.7%
Table 2. Overview of Service Identification Accuracy with ServiceMiner

4.4 Qualitative Validation

We apply ServiceMiner on Compiere to identify relevant services in the system.
We take the example of the sales orders management in Compiere and detail
how ServiceMiner helps practitioners identify services related to this feature.
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Sales orders management entails quotations, sales orders, and invoicing, linked
to the shipment of goods to customers. The initial clustering step of our approach
builds a set of candidate clusters that we then filtrate with our detection rules to
identify candidate services. First, we identify Utility services by applying the first
rule in Table 1, which yields Utility services about logging and printing. These
services provide cross-cutting functionalities called by multiple other services
(e.g., sales) with very low fanout and no persistence.

Second, we identify Entity services, i.e., clusters representing business enti-
ties. They refer to the business entities of the system, such as products, invoices,
business partners, warehouses, and bank statements. These entities are persis-
tent, have access to the database, and are invoked by other domain-specific
services (e.g., Application and Business services).

Third, we apply our last detection rule in Table 1 to identify Application ser-
vices among the remaining clusters. An example of Application service related
to sales orders processing is the payment service responsible for generating pay-
ments of the orders based on the information provided by the invoice, business
partner, and bank statement Entity services. It is also responsible for handling
errors when the payment is unsuccessful.

We obtained architecturally significant candidate services thanks to the ap-
plication of our type-aware service identification approach on Compiere. We
believe that it can assist practitioners in the identification of candidate services
because it automates the SI process of Utility, Entity, and Application services
with acceptable precision and recall.

4.5 Comparison with State-of-the-art Approaches

We chose two existing approaches to compare their results against those of Ser-
viceMiner : MOGA-WSI [7] and Service Cutter [5]. These two were the only
available approaches. MOGA-WSI uses spanning trees and provides candidate
services with different levels of inter-service coupling. It relies on genetic and
multi-objective optimization algorithms to refine an initial set of services. It also
considers a set of managerial goals, such as cost effectiveness, ease of assembly,
customization, reusability, and maintainability. Service Cutter is a graph-based
approach considering 16 coupling criteria and two kinds of clustering algorithms,
Girvan-Newman (GN) [30] and Epidemic Label Propagation (ELP) [31], which
differ in terms of their (non-)deterministic behavior.

We assess our approach with respect to a ground-truth architecture and
in comparison to the two tools using measures of clustering and information
retrieval: MojoFM [32], Architecture2Architecture (A2A) [33], precision, and re-
call. We rely on these metrics to study the identification results of each approach
regardless of the types of services.

Table 3 lists the identification results and shows that our approach outper-
forms MOGA-WSI and Service Cutter for all the reported metrics. We tried
several configurations for both tools but all showed poor results in comparison
to our approach. We observed that these approaches generate very unbalanced
services. For example, MOGA-WSI identified a service of 253 classes and 143
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services of one to six classes. Similarly, Service Cutter (EPL) identified two
coarse-grain services and 393 fine-grained ones. Although service identification
using Service Cutter with Girvan-Newman is deterministic, we were limited to
a maximum number of 30 services, which lead to poor identification results.

We argue that our SI approach outperforms the two other approaches be-
cause: (1) ServiceMiner follows a stepwise process, which identifies Utility ser-
vices then Entity services and finally Application services, (2) it uses simple,
straightforward metrics instead of complex goals, like maintainability, which are
subjective and more difficult to define and measure, and (3) the studied state-
of-the-art tools are proof of concepts, which may limit their applicability on
enterprise-scale systems, such as Compiere.

Approach #Services MojoFM A2A Precision Recall F-measure
MOGA-WSI 396 11.0% 42.0% 14.0% 13.0% 13.5%
Service Cutter (EPL) 395 15.7% 51.0% 12.2% 10.3% 11.2%
Service Cutter (GN) 30 21.6% 41.0% 15.6% 9.7% 14.1%
ServiceMiner 403 65.0% 73.0% 77.9% 66.4% 71.7%

Table 3. Comparison results of service identification approaches

5 Discussion on the Approach

Threats to Validity. Construct validity concerns the accuracy of some obser-
vations with respect to a theory. In our validation process, we should have relied
on a real post-migration SOA-based system. However, we could not find any
open-source enterprise-scaled system that was migrated to SOA. Thus, we relied
on a ground-truth architecture to validate quantitatively the services identified
by our approach. We are aware that there is no single “correct” SOA for a given
legacy system. However, we relied on several artifacts (e.g., official documen-
tations, source code analysis, etc.) and studied in-depth the system to identify
reusable sets of classes that could be packaged into services. Also, we share our
ground-truth architecture to allow others to confirm/infirm our claims. We put
the original source code as well as the identified services online9, which also
reduces threats to reliability validity.

Our SI approach as well as its validation depend on several algorithms and
thresholds that threaten the internal validity of our results. To mitigate these
threats, (1) we implemented MOGA-WSI based on their original papers to the
best of our understanding and shared it for investigation and replication10; (2)
we used the best identification results of these tools to compare our approach; (3)
we explored the use of different metrics and threshold values; and, (4) we chose
the spanning-tree algorithm for its ease of use and available, open-source imple-
mentation. Future work should consider comparing with other algorithms to vet
further the reliability of our approach in comparison to other SI approaches.

9 http://si-serviceminer.com/ICSOC-2020-Replication
10 https://github.com/MPoly2018/MOGA-WSI
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We know that service detection rules may slightly differ from one system to
another. However, our detection rules are easily customized, being flexible and
extensible. We recommend to consider the same processing steps in the same or-
der than in our approach to identify the services in existing systems according to
their types. Also, legacy systems most likely embed poor design and coding prac-
tices, e.g., code smells, that reduce the separation of concerns within/between
classes, which reduces the precision/recall of static-based SI approaches.

Our case study may not be representative of all legacy software systems,
which limits the generalizability of our results but Compiere is large and complex
enough to validate our approach while we continue our search for other large,
open-source systems. Finally, the identified services may not be representative
of all service types, which may also limit the generalizabiltiy of our results.
Our approach is extensible to new service types. It can also be extended to
identify microservices [34] by mapping each Utility and Entity service identified
by ServiceMiner to a microservice and decomposing each identified Application
service into smaller microservices that each have a single responsibility.
Discussions and recommendations. We believe that our approach is benefi-
cial for both researchers and practitioners interested in migrating legacy systems
to SOA because (1) we automate the SI process, which is one of the most labor-
intensive step for migrating such systems to SOA; (2) our SI approach yields
to architecturally significant candidate services that can be packaged and inte-
grated in the targeted SOA-based system while identifying their types; (3) our
approach offers the possibility to prioritize the identification of specific service
types based on their importance and the architectural/business needs of the
migration process; and, (4) our approach is extensible to new technologies/lan-
guages, thanks to its use of the KDM metamodel as intermediate representation
for C, C++, Python, etc.

Finally, we recommend to consider service types to identify services in exist-
ing systems to improve accuracy. We also recommend to order the services to be
migrated. We suggest to start first with Utility services because they are highly
reusable and invoked by other services in the system (e.g., Entity, Application,
Business process services, etc.); second, to continue with Entity services because
they manage and represent the business entities of the system and are used by
the other services; third, to identify Application services as they compose func-
tionalities provided by Entity services; finally, to identify Business services that
manage and compose/use the previous types of services.

6 Conclusion and Future Work

In this paper, we proposed ServiceMiner, a type-aware service identification
(SI) approach for the migration of legacy software systems to SOA. ServiceM-
iner helps during the key step of identifying reusable service candidates us-
ing a taxonomy of service types. We evaluated ServiceMiner on a real-world
legacy ERP system and compared its results with those of two state-of-the-art
SI approaches. We showed that, in general, ServiceMiner identified relevant,
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architecturally-significant services with 77.9% of precision, 66.4% of recall, and
71.7% of F-measure. Also, we showed that it outperformed the state-of-the-art
SI approaches by providing more architecturally-significant services. We believe
that ServiceMiner can thus be used to assist practitioners in the identification
of candidate services in their systems.

As future work, we will consider the identification of other types of services,
such as Enterprise and Business services. We will also perform a qualitative
validation of the significance and relevance of the identified services with devel-
opers. We will compare other algorithms to further study the reliability of our
approach. Finally, we will complete our SOA migration road-map by exploring
automatic service packaging techniques to efficiently package and integrate the
identified services into the targeted SOA platform.
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