
Formalising Solutions to REST API Practices as
Design (Anti)patterns

(Resubmission of paper #55)

Hidden names

Hidden institute
hidden email

Abstract. REST APIs are nowadays the de-facto standard for Web
applications. However, as more systems and services adopt the REST
architectural style, many problems arise regularly. To avoid these repet-
itive problems, developers should follow good practices and avoid bad
practices. Thus, research on good and bad practices and how to design
a simple but effective REST API are essential. Yet, to the best of our
knowledge, there are only a few concrete solutions to recurring REST
API practices, like “API Versioning”. There are works on defining or de-
tecting some practices, but not on solutions to the practices. We present
the most up-to-date list of REST API practices and formalize them in the
form of REST API (anti)patterns. We validate our design (anti)patterns
with a survey and interviews of 55 developers.

1 Introduction

In the last decade, the information presented on the Internet moved from simple
static Web pages to sophisticated interactive Web applications that can be cus-
tomized by and react to user actions. Users expect to find in their Web browsers
the same applications that they run on their local computers, making these Web
applications more complicated than ever.

More and more Web applications use the REpresentational State Transfer
(REST) architectural style, which separates the concerns of the server (store,
process, and serve resources) with the client application (present information).
Simple Object Access Protocol (SOAP) used to be the main protocol to expose
services to clients. However, starting from the 2000s, many organizations mi-
grated their services from SOAP to REST to widen developers’ accessibility to
their data. For example, in 2006, Google deprecated SOAP for its Search API
and moved to REST1. The number of REST API published increased every year,
from 445 APIs in 2007 to over 24k APIs in 20212.

The word “practice”, as defined by Oxford Dictionary, is a way of doing
something. In REST API, a good practice is a good way to implement the REST
API for simplicity, mutual understanding, and reusable code. On the other hand,
while resolving a problem, a bad practice is not “good” in other aspects.

As with any other architectural style, REST APIs can be more or less “well”
used and, therefore, the subjects of good and bad practices. To evaluate how

1 https://groups.google.com/g/google.public.web-apis/c/YOHPWSqcFBA
2 https://www.programmableweb.com/apis/directory

https://groups.google.com/g/google.public.web-apis/c/YOHPWSqcFBA
https://www.programmableweb.com/apis/directory


2 Hidden names

good a REST system is, Richardson proposed a maturity model for REST APIs3.
Other researchers also proposed good practices to make REST APIs more un-
derstandable and reusable [10, 14]. The academic and gray literature report 19
problems related to REST APIs and their uses. For example, Rodŕıguez et al.
[15] found out that only a few Web services reach maturity Level 3, which is
defined as “Hypermedia as the engine of state”.

The literature has so far not systematically described these problems and
practices in the form of design (anti)patterns, which are, in general, a problem,
a recurring design with bad consequences, and an alternative solution with more
positive results [1].

Therefore, we follow the “Design Science Research Methodology”[13]
to propose three contributions: (1) we review the academic and gray literature
related to REST APIs and identify 19 common good and bad practices, (2) we
propose practical solutions to these problems and formalize them in the form of
REST API design anti-patterns, and (3) we validate our solutions via surveys
and interviews of 55 participants.

The rest of the paper is as follows. Section 2 summarises the related work.
Section 3 describes the approaches. Section 4 discusses each practices with con-
crete implementations of the solutions. Section 5 explains how we evaluated our
solutions with developers. Section 6 discusses threats to validity as well as our
observations. Section 7 conclude the paper with future work.

2 Related Work

Masse, in the book “REST API Design Rulebook” [10], defined 84 rules to
design a consistent REST API, some of which became de facto standard, e.g.,
“Amorphous URIs” or “CRUD function name should not be used in URIs” (aka
“CRUDy URIs”). Rodriguez et al. [16] proposed the “Content negotiation” good
practice: servers should serve different formats of the same resources on request.
Fredrich [2] defined three bad practices, including “Context-less resource name”,
“Non-hierarchical nodes”, “Singularized and Pluralized Nodes”. He also gave two
good practices, which are “List pagination” and “API Versioning”.

Evdemon gave examples of bad URIs and proposed the “CRUDy URIs” bad
practice, where CRUD verbs are included in the URI4. Palma et al. [12] defined
the “Non-pertinent documentation” bad practice, where the documentation is
not matching the actual REST APIs. Tilkov defined seven REST API bad prac-
tices5, including “Breaking self-descriptiveness”, “Forgetting Hypermedia” (bad
practice of “Entity Linking”), “Ignoring MIME type” (bad practice of “Content
negotiation”), “Ignoring status code”, and “Misusing cookies”.

For the bad practice “Tunnel everything through GET” and “Tunnel ev-
erything through POST”, we combine them with other misuses of HTTP Verbs
into “Use the wrong HTTP Verbs” for simplicity. “Breaking self-descriptiveness”

3 http://martinfowler.com/articles/richardsonMaturityModel.html
4 https://bit.ly/3i5CIsc
5 https://www.infoq.com/articles/rest-anti-patterns/

http://martinfowler.com/articles/richardsonMaturityModel.html
https://bit.ly/3i5CIsc
https://www.infoq.com/articles/rest-anti-patterns/


Formalising Solutions to REST API Practices as Design (Anti)patterns 3

means developers ignore standardized headers, formats, protocols, and use non-
standard ones. “Ignoring status code” happens when a server does not use status
codes or use the wrong ones; “Misusing cookies” when a server store the session’s
state or cookies, breaking the statelessness of REST APIs.

In addition to these practices, we propose two new good practices: “Server
Timeout” and “POST-PUT-PATCH Return”, which we discuss in Section 4.

Researchers proposed solutions for some bad practices. Frameworks also pro-
vide some support to avoid some bad practices. We examine here ASP.NET
Core6 and Java Spring7 because of their popularity and community support.

For “Content negotiation”, Lemlouma et al. [7] designed “Negotiation and
adaptation core (NAC)” that works as a proxy between the media servers and
the consuming clients. Based on the client profile, the the NAC converts the
response to an appropriate format. This is a general architecture and its authors
do not discuss any implementation.

For “Endpoint Redirection (URL Redirection)”, we could not find any aca-
demic solution. The gray literature only explains the concept of URL redirection
and how to set it up in some servers. Popular servers, like Microsoft IIS or Apache
Tomcat, implement URL redirection with some configuration8.

For “Entity Linking”, we could not find any academic work, blog, or technical
tutorials with concrete implementations. However, Liskin et al. [8] described a
wrapper module to convert a normal response to a response that conforms to
“Entity Linking”, which allows improving old REST systems not supporting
Entity Linking and reaching Level 3 in Richardson’s Maturity Model.

For “Server Timeout”, Eastbury et al. proposed a design9, which we extend
to maximize its benefit for REST API developers in Section 4.5.

“Response caching” is a common good practice. Both of the examined Web
frameworks offer multiple built-in caching techniques.

For “List Pagination”, both Google and Microsoft10 suggested that REST
APIs returning lists should use pagination. Masse [10] also stated that collections
should be returned in chunks. Murphy et al. [11] showed that pagination was
proposed in 24 over 32 REST API company guidelines. Both of the examined
Web frameworks support this good practice.

In general, previous work mostly identified and defined good and bad REST
API practices. A few authors proposed solutions to the bad practices, often
with limitations. For each practice, we discuss and compare its solutions with
our own. We also provide concrete implementations in two popular frameworks
(ASP.NET and Java Spring). We also provide sample implementations for “Re-
sponse Caching” and “List Pagination”, supported by the frameworks.

6 https://dotnet.microsoft.com/apps/aspnet
7 https://spring.io/projects
8 https://bit.ly/34AUbRu and https://bit.ly/3i6X8Ry
9 https://bit.ly/2R9clXf

10 https://bit.ly/2RY62pW and https://git.io/JGRwC

https://dotnet.microsoft.com/apps/aspnet
https://spring.io/projects
https://bit.ly/34AUbRu
https://bit.ly/3i6X8Ry
https://bit.ly/2R9clXf
https://bit.ly/2RY62pW
https://git.io/JGRwC


4 Hidden names

3 Categories of Good and Bad Practices of REST APIs

To categorize the REST API practices, we extensively reviewed both academic
papers and gray literature (i.e., blog posts, technical tutorials, StackOverflow,
etc.) and studied the existing open-source REST API systems. In total, we re-
viewed seven papers and four gray documents (see https://git.io/JRsHD).

We identified 19 REST API practices and divided them into two categories:
technical and non-technical. The technical category includes practices that can
be solved or made conformed by an architectural solution or some Web frame-
work’s features. The non-technical category includes practices that require de-
velopers’ efforts to conform, which are usually domain- or business-specific.

For example, the URI structures should represent the relationships between
the nodes to avoid the “Non-hierarchical Nodes” bad practice. Yet, companies
disagree on using URI to show this relationship and even discourage nesting
structures. Another example, for the “Using the wrong HTTP Verbs” bad prac-
tice, IBM only mentions GET and POST while Google use GET, POST, PUT, DELETE
and invents some new verbs like LIST and MOVE [11].

For each practice in the technical category, we propose an architectural so-
lution or good practice in Section 4, which should be simple but guarantee the
conformance to the good practice with minimal effort. Practices in the non-
technical category require developers’ inputs and are not directly solvable.

Table 1 summarises the practices. The practices with (+) have built-in or
partial solutions in the examined frameworks, which we discuss and compare to
our solutions in Section 4. The good practices are green; the bad ones red.

Table 1. Categorizing REST API practices

Technical Non-technical
Content negotiation (+) Entity Endpoint
Endpoint redirection Contextless Resource name
Entity Linking Non-hierarchical Nodes
Response caching (+) Amorphous URIs
API Versioning CRUDy URIs
Server Timeout Singularized Pluralized Nodes
POST-PUT-PATCH Return (+) Non-pertinent Documentation
List Pagination (+) Breaking Self-descriptiveness

Ignoring status code
Using the wrong HTTP Verbs
Misusing Cookies

Besides existing solutions, we examined 23 software design patterns for object-
oriented programming [3] to design concrete implementations for each of the
eight good practices in the technical category. For some practice, we adapted
these concrete implementations to fit with the REST API frameworks. If no de-
sign pattern could solve a problem, we extended our search to the gray literature.

The Web frameworks already have built-in features for “Response Caching”
and “List Pagination”. Therefore, we only present these solutions and provide

https://git.io/JRsHD


Formalising Solutions to REST API Practices as Design (Anti)patterns 5

sample usages for the sake of completeness. For “Content negotiation”, we com-
pare our solutions with the built-in features. Developers can use the solutions
that fit with their projects based on their advantages and disadvantages.

4 REST API Anti-patterns

We now present each practice using the following structure: (1) Practice name,
(2) Problem statement, (3) Expected result/output, (4) Solution, and (5)
Sample implementation/source code. For the sake of space, we put out im-
plementations in a GitHub repository: https://github.com/ano-research/

pattern-abiding-api-anonymous.

We exclude the “Response Caching” and “List Pagination” good practices
out of this research because they are already well supported by Web frameworks.

4.1 Content Negotiation

Problem: The client can only process and manipulate the resources in some
formats. For example, JSON is faster to parse and smaller to transport over the
Internet while XML supports namespaces, comments, and metadata. A client
may favor one over another.

Expected result: We expect: (1) Resources of a same type should be
served in various formats (JSON and XML, image file formats, Base64 encoded,
etc.); (2) The server should set a default format if the client does not specify a
requested format; (3) The implementation of each data format should be easily
modifiable and expandable for new data formats.

Solution: Based on the request header, the server prepares the data in
the requested format, then returns the data in the response body. We could use
the Factory design pattern [3]. For each format, there could be a corresponding
concrete Factory. In the ObjectFactory class11, developers could set the default
format by using the default: clause of the switch statement. (See https:

//git.io/JRBCt)

Both Java Spring and ASP.NET core support content negotiation with the
default set to JSON format. Below is the feature comparison table.

Java Spring ASP.NET core Our
Common media types Yes Yes Yes
Customizable serializer No Yes Yes
Require data annotation on model Yes No No
Built-in support ignorable Yes Yes N/A

ASP.NET Core has the most flexible support for Content Negotiation. In
Java Spring, developers cannot override the serializer, but can combine multiple
approaches to achieve the desired effect. The XML format in Java requires data
annotation to be added to the model classes, which sometimes require changes
to the design of the data model.

11 https://git.io/JGRWC

https://github.com/ano-research/pattern-abiding-api-anonymous
https://github.com/ano-research/pattern-abiding-api-anonymous
https://git.io/JRBCt
https://git.io/JRBCt
https://git.io/JGRWC


6 Hidden names

4.2 Endpoint Redirection

Problem: Resources can be moved to new locations when the data structure
changes or developers refactor the URI structure. However, a client could request
resources using the old URIs; the server should answer these requests with HTTP
Code 3xx and the new locations.

Expected result: Most of the REST APIs frameworks use the Model-View-
Controller pattern (MVC). The solution should be built on or integrated with
the MVC pattern. It should satisfy the following: (1) There should be a class
that handles redirection logic, separated from other classes; (2) The redirection
logic should have the same interface as the old controller class; (3) The new
controller class should extend or include the redirection logic, but still conform
to the Single Responsibility Principle [9].

Solution: There are two possible solutions for this practice. Each solution
will have advantages and disadvantages.

Solution 1: Extend a Redirector class: In this solution, the old controller
and the redirector implement the same interface. The new controller extends
the redirector class. The methods in the new controller and the redirector are
exposed as API endpoints to the clients. (See https://git.io/JG0fv)

Solution 2: Nested class inside the new controller: The redirection
logic is separated into a stand-alone class, implementing the interface of the old
controller class. The difference with the previous solution is that the redirection
logic class is a nested class inside the new controller. Thus, the redirector can
access methods and variables in the controller. (See https://git.io/JRg0E).

The new controller implements the interface of the old controller and contains
a private instance of the redirector class. The interface implementation makes
sure all the old methods were properly handled. The private instance works as
a proxy to the actual logic of the redirector class.

Comparison between both solutions
Extend Nested

P
ro

s Redirection logic separated in classes Allows the outer class (the main class)
be inherited from another class

Easier implementation. Can be imple-
mented in multiple languages

The Redirector has access to meth-
ods/variables in the controller

C
o
n
s The Redirector cannot access re-

sources in the controller
Redirection logic coded inside the
controller

The controller cannot inherit other
classes (w/o multiple inheritance)

Not all languages support nested
classes

4.3 Entity Linking

Problem: Developers must find programmatically links to resources related to a
current, requested resource. For example, when designing a service for a content
management system (CMS), after sending a GET request to retrieve a post, if
conforming to the Entity Linking good practice, the server should return the
post details, including links to comments and likes. The response below helps
developers to post new comments or get the likes on the post.

https://git.io/JG0fv
https://git.io/JRg0E


Formalising Solutions to REST API Practices as Design (Anti)patterns 7

1 {"post": {"title": "Lorem ipsum","content": "Lorem ipsum",
2 "links":[{"rel":"comment","method":"post","uri":"/post/123/comment"},
3 {"rel":"like","method": "get","uri":"/post/123/like"}]}}

With the “Forgetting Hypermedia” bad practice, the links in the response
are not available. Therefore, developers do not know if they can post a new
comment or get the likes on a post. They must make requests to the server to
find out, possibly by trial-and-error. If they cannot, for some reason, the server
refuses their requests with HTTP Code 4xx.

Expected result: (1) The current controller should have access to other
controllers to check the availability of related resources; (2) The current con-
troller should have access to class and method information (names, annotations,
public and private variables, etc.) because Web frameworks use naming conven-
tions/annotation to construct URIs.

Solution: The method that handles the current request has a list of related
classes containing the related resources. To loop through the list, all these classes
should implement a same interface. To access the methods provided by this
interface in different classes, we could use the Visitor design pattern [9] with
language reflection features to access data annotations.

All the controllers intended to be used for populating links for related re-
sources must implement a LinkedResource interface. This interface has a method
accept() that accept a Visitor instance of type ResourceVisitor. For each
logic to select the resource to be included, a separate, concrete Visitor is
created. These visitors could share some common logic in an abstract class
CommonResourceVisitor, also a good place for the reflection logic. A sample
implementation with reflection is available for ASP.NET Core and Java Spring.
(See https://git.io/JGRWW and https://git.io/JGRW8).

4.4 API Versioning

Problem:

REST API system evolves. In traditional software systems, developers can
release new versions while old ones continue working. With Web applications, a
new version may break the client applications. The client-application developers
may not be aware of breaking changes and may not have enough time to adapt
to the changes before changes break their application.

In addition to communicating and advertising new versions of some REST
APIs, REST API developers must support the old APIs in parallel with the new
ones for a time. This parallelisation allows the coexistence of multiple versions of
the API. To separate the old APIs from the new ones, developers can choose one
of two approaches: (1) Include the version of the API in the URI: Version the
API globally for all resources or separately for each type of the resources; (2)
Include the version in the header(s), in the accept header or a custom header
chosen by the REST API developers.

Expected result: (1) The URIs of a version should not change over time.
The client application always receive the expected results when requesting a
resource during the lifetime of that version; (2) Client applications can access

https://git.io/JGRWW
https://git.io/JGRW8


8 Hidden names

multiple versions of the APIs simultaneously. The Web application supports mul-
tiple versions at a same time; (3) The Web application can use a single database.
If breaking changes occur in the database, a mechanism should translate the old
and new data for any object.

Solution: Section 2 show existing solutions, which we compare to ours below.

We propose using the Proxy design pattern to redirect/convert requests to old
versions of the API. For each version of the API, there should be a corresponding
interface. The interface does not serve a purpose in the current version but is the
contract with the next version. A class contains a private instance of each old
API classes that support this next version. The versions of the API may also have
common logic that did not change over time and can be factored into an abstract
class; then, the API controllers inherit from it. (See https://git.io/JGR67)

One advantage of this solution is that a new version of an API only imple-
ments the interfaces of old versions if they must be supported. For example, if
there is a Version 3, which should support both Versions 1 and 2, then a con-
troller for Version 3 implements the interfaces of Versions 1 and 2 only, which
does not require a “chain of adapters” and allows developers to support versions
not ordered in time, e.g., Version 4 could support Version 1 and 3, when com-
pared to the solution proposed in [4]. In addition, this solution is implemented
in the server itself, differently from the solution proposed in [6].

4.5 Server Timeout

Problem: When there is a long-running operation on a REST API server, the
client must wait to receive a response. In traditional software systems, the com-
munication between the running operation and the consumer of its results is
permanent. However, in a Web application, clients and servers communicate
over the Internet, which introduces some potential problems: if the client and
the server are disconnected, the operation continues to run on the server, but the
result is no longer needed/accessible. Similarly, if the client cancels or abandons
its request, wasting the server’s resources.

Expected result: The long-running operation should have a mechanism to
cancel itself when needed, releasing resources held by its process.

Solution: Two solutions could solve the problems. The combined implemen-
tation of both solutions produces the best results but with increased complexity.

Solution 1: Timeout: The developers define a timeout for the operation.
When the time is up, the server cancels the process. However, in some cases,
when there are unpredictable factors, this solution is not practical. For example,
if the operation depends on data retrieved through the Internet, then its speed
is not stable and it is challenging to find an appropriate timeout value.

Since Java 1.5, developers can use ExecutorService to start a new single
thread in Java. Then, they can submit a long running operation wrapped in a
Callable object. Similarly, in ASP.NET Core, developers can use TimeOutAfter
or CancellationTokenSource.CancelAfter12 in .NET 5.0 or later

12 https://git.io/JGRWB and https://bit.ly/3vDwdB1

https://git.io/JGR67
https://git.io/JGRWB
https://bit.ly/3vDwdB1


Formalising Solutions to REST API Practices as Design (Anti)patterns 9

Solution 2: Asynchronous Request-Reply pattern (HTTP polling):
This solution requires some extra work from both server and client developers.
First, server developers must implement an operation status checker and a cache
system to store the operation result on the server. Then, client developers must
implement a polling mechanism that periodically polls the operation status and,
finally, gets the response from the Resource Endpoint. (See https://git.io/

JRrHw).

Comparisons between the two solutions
Timeout Async request-reply

P
ro

s No requirement on client side Client and server can re-establish con-
nection after disconnection

Easier to implement Serves the same results instantly
Single system involved

C
o
n
s Risk of incorrect predefined timeout

value
Requires changes in both client and
server
Requires a mechanism to store results

If the client disconnects early, the server still wastes resources until timeout
Combination of both solutions

Developers can combine both solutions to maximize their benefits, especially
when following the Asynchronous Request-Reply pattern, because they only need
a little extra work to combine both solutions. There are three stages: (1) initial-
isation, (2) polling, and (3) termination. During initialisation, the client sends a
request to the server that starts the long-running operation. The server registers
the operation status. During polling, the client periodically polls for the result.
With each polling request, the server resets the timeout. In case of a disconnec-
tion between the client and server, the server timeouts and aborts the process
and releases any resources. (See https://git.io/JGR6w).

4.6 POST-PUT-PATCH Return

Problem: When a client application sends a request to modify a database (cre-
ate, update, or delete), the server usually only returns a simple result indicating
success/failure, like HTTP Code 200. The client does not know immediately the
added/modified object and whether it was correctly committed to the database
until the client makes a new request for that particular object.

When there is a mismatched datatype between the model classes and the
data posted by the client, the server may still work by simply ignoring any
mismatched data, writing everything else to the database. The server would still
signal that the writing process was successful. The client could wrongly believe
that the operation was entirely successful although its data and the data written
to the database are different.

However, sending the created/modified object in the response body could
cost transmission time and network bandwidth, i.e., some clients may not need
to know/confirm that the committed data in the database is correct.

Expected result: The name “POST-PUT-PATCH return” of this practice
is based on the HTTP verbs POST, PUT, and PATCH. We expect: (1) A mechanism

https://git.io/JRrHw
https://git.io/JRrHw
https://git.io/JGR6w


10 Hidden names

for the client to control the response, if it only needs a HTTP Code 200; (2)
Separation of database and business logic; (3) Minimal requests to the database.

Solution: To separate the database manipulation logic from the business
logic, we use the Repository pattern. To make sure a database transaction was
successfully executed before returning its result to the client, we could use the
Unit of Work pattern13. In general, there should be a repository that handles
CRUD operations for each resource or groups of related resources. This class is
injected into controllers using Dependency Injection. In addition, each repository
implements the Unit of Work pattern. (See https://git.io/JRXxC).

Java Spring has a Repository pattern built-in with basic CRUD operations,
see details in https://bit.ly/3c6GFcs. ASP.NET Core does not have this
pattern built-in. Still, there is an instruction on how to implement them, see
details in https://bit.ly/3uCO9du. Both frameworks support Dependency In-
jection and Unit of Work. Sample implementations exist for Java Spring at
https://git.io/JGRWE and ASP.NET Core at https://git.io/JGRWg.

5 Evaluations

Although good/bad practices come from a consensus in the academic/professional
communities, our solutions must be validated by experienced developers, who
only can confirm that our solutions (1) solve bad practices, (2) conform to good
practices, and (3) are acceptable in industrial environments.

Consequently, we designed a validation survey and administrated it to 55
professional REST API developers. We now describe our methodology and the
obtained results, which show that our solutions indeed remove bad practices and
are acceptable by professional developers.

5.1 Overview

We obtained an ethics certificate from the Office of Research of our university;
university and number hidden for double-blind review. We follow the “Ques-
tionnaire Survey” empirical standard by ACM14. We divided the survey into
sections. Each section contained one practice, problem identification, a short ex-
planation for the good practice, and the concrete implementation in ASP.NET
core and Java Spring. To increase the response rates, we split the survey into
two Parts A and B.

5.2 Survey Design

In each section, we asked two questions: (1) Did you face this/these problem(s)
in some of your projects? (2) Is it a good design?. Each question has an “Other”
option with a text-box if the participant has comments.

Using these two questions, we can know: (1) The prevalence of the problem
in industrial environments; (2) How well received are the solutions to the bad
practices; (3) Do alternative implementations exist?

At the end of the survey, we asked for age group, education, current profes-
sion, and employment status.

13 https://bit.ly/3uCO9du
14 https://acmsigsoft.github.io/EmpiricalStandards/docs/

https://git.io/JRXxC
https://bit.ly/3c6GFcs
https://bit.ly/3uCO9du
https://git.io/JGRWE
https://git.io/JGRWg
https://bit.ly/3uCO9du
https://acmsigsoft.github.io/EmpiricalStandards/docs/


Formalising Solutions to REST API Practices as Design (Anti)patterns 11

5.3 Participants Selection

We selected participants who are: (1) Adult; (2) Professional developers; (3)
Use OOP languages. We recruited participants through a convenient sampling of
software developers and engineers through e-mail lists, social medias (LinkedIn,
GitHub), etc.

5.4 Participants’ Demographics

Figures 1 to 5 summarise participants’ demographic information.

Fig. 1. Participants’ age groups Fig. 2. Participants’ education

Fig. 3. Participants’ profession Fig. 4. Participants’ country of origin

5.5 Qualitative Analyses

We sent our survey to 55 professional developers. Out of 55, 51 developers com-
pleted at least one of the surveys. We received 68 complete surveys (Parts A and
B). The number of completed surveys is greater than the number of participants
because some participants completed both Parts A and B. We received 17 in-
complete responses. Because of the randomized orders of the question, we could
still extract valuable data from these responses. Thus, the average completion
rate of both surveys is 76%.

We extracted and analyzed the completed parts of the incomplete survey,
whose questions were all answered by the participants. Table 2 shows the per-
centage of positive responses.

Some participants do not use the frameworks considered in this study but
different ones, like nodejs with JavaScript or Flask with Python. Some good
practices proposed in this study did not apply to these frameworks. Therefore,
participants answered the survey questions using the “Other” option.



12 Hidden names

0 2 4 6 8 10 12 14
0

2

4

6

Years of experience

C
o
u

n
t

Fig. 5. Participant’s years of experience

Table 2. The positive results statistics of the survey

Face this problem Std. dev. Good solution Std. dev.
Content Negotiation 52.4% 2.289 76.2% 1.952
Endpoint Redirection 45% 2.225 75% 1.936
Entity Linking 47.4% 2.177 57.9% 2.152
API Versioning 72.2% 1.901 72.2% 1.901
Server Timeout 77.8% 1.763 66.7% 1.999
POST-PUT-PATCH return 58.8% 2.029 82.4% 1.570

5.6 Quantitative Analyses

Landis et al. [5] proposed a scale for the strength of agreement, with 61% - 80%
labeled as “Substantial”. We decided to use the threshold, average value of 70%
to determine which good practices are acceptable or require further analysis.

For the Content Negotiation, Endpoint Redirection, API Versioning,
and POST-PUT-PATCH Return good practices, more than 70% developers
agreed that the proposed solutions are good. Further interviews with some of
the developers also confirm that the solution for Content Negotiation is used
in industrial environments even if not publicly published as a good practice.

Two good practices have positive answers below 70%. We interviewed five
participants who answered “No” or “Other” for these practices to understand
the reasons behind their choices. In addition, we also asked their opinions on
other practices to which they give positive responses.

For Entity Linking, there is an alternative approach that avoids the actual
problem of entity linking. In the first login, the server sends a set of allowed
permission to the client, including the API endpoints related to these permis-
sions. Therefore, the client can use this set of permissions and endpoints to know
if it can request specific resources or not. This approach frees the server from
calculating the related resources (hence linked entities) and endpoints of these
resources. In addition, it is easier to implement. Companies that allow third-



Formalising Solutions to REST API Practices as Design (Anti)patterns 13

parties developers to register which permission they need, thus avoid providing
too much information that could raise privacy concerns.

For Server Timeout, the participants used the solution that we proposed
but, due to the specific business requirements, it was still not good enough. The
tasks running on their servers could take several hours to complete and return
results. Clients did not know about this processing time, resulting in them con-
tinuously polling for results, throttling the servers. Furthermore, the endpoints
for HTTP polling were implemented in the same servers as the endpoint for
registering the long-running tasks, which was not recommended in the original
solution. Consequently, developers used WebSocket to create tunnels between
the clients and servers. These tunnels allow the servers to “send” messages to
the clients when the task are completed. Yet, this solution cannot be used when
uploading large files. Usually, a dedicated server will be used for this specific
case, with HTTP polling or job queue.

6 Discussions

6.1 Threats to Validity

While most developers agreed/somewhat agreed on our solutions, there are some
threats to validity that we would like to discuss.

Internal validity: Our solutions assume that the developers are using object-
oriented programming languages, like C# or Java. There are other languages for
back-end programming trending in recent years. For example, JavaScript with
nodejs, Go with Gin, etc. In addition, there are other Web frameworks from
the community for C# like OpenRasta and NancyFx, although they are not as
popular as ASP.NET. For Java, besides Spring, there are multiple Web frame-
works, like Struts and Grails. These frameworks could have different approaches
to good and bad practices. We could minimize this threat by expanding the
survey and ask other framework experts.

We looked for existing solutions in both academic and gray literature, con-
forming to good practices in reviewing previous work. However, we may have
missed some solutions due to inconsistencies in vocabulary, titles and contents,
etc. We minimized this threat by using multiple related keywords to search the
academic and gray literature.

External validity: We proposed six solutions to practically implement REST
API good practices. To evaluate these solutions, we surveyed back-end develop-
ers. Due to the number of proposed solutions, the survey was quite long. The
participants could become tired by the end of the survey and answer the ques-
tions with lower attention than those near the start. These responses could bias
our analysis. To minimize this threat, we divided the survey in two parts and
tried to be as concise as possible. We also put the questions of the “Response
Caching” and “List Pagination” good practices at the end of the survey, because
they are supported or partially supported by the web frameworks.

Developers depend on their experiences and domain knowledge to concretely
implement good practices and avoid bad practices. Therefore, their levels of
expertise may affect the survey result. More experienced developers could see



14 Hidden names

potential problems in our solutions or evaluate these solutions more thoroughly.
Less experienced developers may favor our solutions or not have experienced the
practice problems. We tried to minimize this threat by asking and controlling
for age groups, education level, and current profession.

In general, we could minimize threats to internal validity in future work
by examining more Web frameworks and programming languages. For external
threats, we could conduct more one-on-one interviews with developers to find
out their experience and ask for their feedback and concrete solutions.

6.2 Developers’ Feedback on Solutions

As presented in Section 5, for “Content Negotiation”, “Endpoint Redirection”,
“API Versioning”, and “POST-PUT-PATCH return”, we received more than
70% positive responses. However, some developers commented our solutions and
proposed other solutions. We summarise and analyse each participants’ comment
in the following.
Endpoint Redirection Good Practice

Comment 1: It is better to use a proxy or a service broker
Using a proxy server or service could solve the problem but the proxy/service

would have to implement the exact resource mapping mechanism proposed by
the good practice solution. In addition, it would have to implement mechanisms
to “catch” the request that needs redirecting, making it more complex than ours.
API Versioning Good Practice

Comment 1: At least with the version in URI, I don’t have to modify my
code as long as that version is available. For the suggested design, I’ll have to
modify my code and still have to rely on the availability of the old version.

The suggested solution does not force developers to choose a specific version-
ing type, see Section 4.4. It provides a solution that helps developers to reuse
business logic. Besides, developers should apply good practices when designing
their applications, not when refactoring or introducing a new feature.
Server Timeout

Comment 1: Use http2, Web socket for request from frontend, use grpc or
a pub/sub if request from back-end

An interview with the participant helped us understand this comment: the
participant’s company uses the proposed good practice. Yet, the specific busi-
ness of the company makes the system perform poorly. Indeed, a single task
could run for hours. To address this issue, developers use multiple approaches,
including: http2: The major next revision of the HTTP network protocol that
supports a single connection from the browser to the back-end; WebSocket: A
communication protocol supporting two-way communication over a single TCP
connection; gRPC: Google Remote Procedure Calls, an open-source remote
procedure call framework that uses http2; publisher/subscriber pattern:
A messaging pattern allowing a publisher to emit multiple events to multiple
subscribers interested in these events.

The participant’s company has the advantage of controlling both back-end
and front-end applications. Therefore, they can use new technologies that are
still in beta development or require major changes/complex implementations.



Formalising Solutions to REST API Practices as Design (Anti)patterns 15

POST-PUT-PATCH Return Good Practice
Comment 1: If DB doesn’t return data for create and update operation, we

need to make an additional get operation to DB.
The focus of the good practice is on the back-end. We explained in Section

4.6 that there should be a mechanism to control the response if it only needs a
HTTP Code 200. Both considered Web frameworks optimise database requests
using “Lazy Loading”. Application only query databases when data is needed.

Comment 2: Depends on the type of requirement. Clean Architecture and
applying CQRS is better with a solution that is complex and needs scaling.

Clean Architecture is an architectural style that splits the concerns of the
application into a central domain logic and multiple cross-cutting concerns, like
caching, authentication, authorization, rendering, etc. The concerns work with
each other via interfaces. This architectural style is not related to the issues
tackled by the good practice. CQRS stands for Command Query Responsibility
Segregation, which is a pattern stating that developers should use a different
model to update information than the model to read information. Again, this
pattern is not directly related to the issue and the good practice.

6.3 Developers and Bad Practices

All the bad practices in the non-technical category require constant review by
experienced developers. For example, the “CRUDy URIs” bad practice is not
solvable with an architectural design but by continuously watching the API
endpoints in development. Therefore, there is a need to develop tools to support
developers during development. Such tools are out of the scope of this study.

7 Conclusion

In this paper, we presented an up-to-date list of good and bad practices to de-
sign REST API systems, divided into 8 technical and 11 non-technical practices.
For each technical practice, we proposed and discussed practical solutions and
concrete implementations. For three of the four most common practices, Con-
tent Negotiation, API Versioning, and Endpoint Redirection, we com-
pared/supplemented the existing solutions with new solutions and implemen-
tations that increase their benefits. To determine how acceptable our solutions
were and how well they could be applied in industrial environments, we surveyed
and interviewed 55 developers. Results of our survey and one-on-one interviews
showed that most of the developers agreed with our solutions. Developers also
confirmed that their companies use some good practices and other approaches
that fit their specific business. Hence, we contributed by:

1. Reviewing REST API practices usage in the academic and gray literature.
2. Providing solutions and concrete implementations to these practices.
3. Validating our solutions with professional developers.

We conclude that our solutions are relevant to developers and researchers as
a basis for implementation and future, quantitative studies (e.g., detection).

In future work, we could extend our approach to provide concrete implemen-
tation for Service Oriented Architecture (SOA). Our approach could be gener-
alized by applying it to other good/bad practices. For the practices to which



16 Hidden names

we cannot apply our approach, we could do further research to categorise them
based on other criteria, like the numbers of parties involved or the server ar-
chitectural style. We could also expand the survey and have more one-on-one
interviews to qualify more precisely our solutions.

Bibliography

[1] Brown, W.H., Malveau, R.C., McCormick, H.W.S., Mowbray, T.J.: An-
tiPatterns: refactoring software, architectures, and projects in crisis. John
Wiley & Sons, Inc. (1998)

[2] Fredrich, T.: Restful service best practices. Recommendations for Creating
Web Services pp. 1–34 (2012)

[3] GAMMA, E.: Design patterns: Abstraction and reuse of object-oriented
design. In: Proc. ECOOP’93. pp. 406–431 (1993)

[4] Kaminski, P., Litoiu, M., Müller, H.: A design technique for evolving web
services. In: Proceedings of the 2006 CASCON. pp. 23–es (2006)

[5] Landis, J.R., Koch, G.G.: The measurement of observer agreement for cat-
egorical data. biometrics pp. 159–174 (1977)

[6] Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.: End-to-end version-
ing support for web services. In: 2008 IEEE SCC. vol. 1, pp. 59–66 (2008)

[7] Lemlouma, T., Layäıda, N.: Nac: A basic core for the adaptation and nego-
tiation of multimedia services. Opera Project, INRIA (2001)

[8] Liskin, O., Singer, L., Schneider, K.: Teaching old services new tricks: adding
hateoas support as an afterthought. In: Proceedings of the 2nd WS-REST
2011. pp. 3–10 (2011)

[9] Martin, R.C.: Agile software development: principles, patterns, and prac-
tices. Prentice Hall (2002)

[10] Masse, M.: REST API Design Rulebook: Designing Consistent RESTful
Web Service Interfaces. ” O’Reilly Media, Inc.” (2011)

[11] Murphy, L., Alliyu, T., Macvean, A., Kery, M.B., Myers, B.A.: Preliminary
analysis of rest api style guidelines. Ann Arbor 1001, 48109 (2017)

[12] Palma, F., Gonzalez-Huerta, J., Founi, M., Moha, N., Tremblay, G.,
Guéhéneuc, Y.G.: Semantic analysis of restful apis for the detection of lin-
guistic patterns and antipatterns. IJCIS 26(02), 1742001 (2017)

[13] Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design
science research methodology for information systems research. Journal of
management information systems 24(3), 45–77 (2007)

[14] Petrillo, F., Merle, P., Moha, N., Guéhéneuc, Y.G.: Are rest apis for cloud
computing well-designed? an exploratory study. In: International Confer-
ence on Service-Oriented Computing. pp. 157–170. Springer (2016)

[15] Rodŕıguez, C., Baez, M., Daniel, F., Casati, F., Trabucco, J.C., Canali,
L., Percannella, G.: Rest apis: a large-scale analysis of compliance with
principles and best practices. In: ICWE. pp. 21–39. Springer (2016)

[16] Rodriguez, J.M., Crasso, M., Zunino, A., Campo, M.: Automatically de-
tecting opportunities for web service descriptions improvement. In: I3E.
pp. 139–150. Springer (2010)


	Formalising Solutions to REST API Practices as Design (Anti)patterns (Resubmission of paper #55)

