
Using explanations for design patterns identification

Yann-Gaël Guéhéneuc and Narendra Jussien
École des Mines de Nantes

4, rue Alfred Kastler – BP 20722
F-44307 Nantes Cedex 3

{Yann-Gael.Gueheneuc|Narendra.Jussien }@emn.fr

Abstract

Design patterns describe micro-architectures that
solve recurrent architectural problems in object-
oriented programming languages. It is impor-
tant to identify these micro-architectures during
the maintenance of object-oriented programs. But
these micro-architectures often appear distorted
in the source code. We present an application
of explanation-based constraint programming for
identifying these distorted micro-architectures.

1 Introduction
The production of quality source code is an important matter
for the software industry. A quality source code facilitates
evolutions and maintenance: Addition of new functionalities,
bug corrections, adaptation to new platforms, integration with
new class libraries.

In object-oriented programming, a quality source code has
two aspects: Efficient and clearly-written algorithms, respect-
ing conventions and idioms, and anelegantclass architec-
ture. If many works studied the former aspect ([Demeyeret
al., 2000] gives a synthesis), the latter aspect is more diffi-
cult to define and has not been often studied (we can mention
[Jahnke and Z̈undorf, 1997]).

A micro-architecture describes the structure of a subset of
the classes1 of an object-oriented program. The solutions pro-
posed by thedesign patterns[Gammaet al., 1994] are exam-
ples ofgood micro-architectures. However, it is not easy to
write directly source code that carefully respects design pat-
terns. Thus, most of the time, onlydistorteddesign patterns
are present in the source code (i.e., micro-architectures sim-
ilar to – not identical to – those proposed by the design pat-
terns). There is a lack of tools helping to identify distorted
versions of design patterns in existing source code and in-
dicating possible improvements by pointing out differences
with theexactdesign pattern.

In this article, we propose the use of explanation-based
constraint programming[Jussien and Barichard, 2000] to

1For the sake of clarity, in the remainder of this article, we use
the object-oriented programming languageJAVA: The termclass,
in particular, indifferently represents a class, an abstract class or an
interface.

identify and to correct micro-architectures similar to design
patterns. Section 2 introduces the notion of design pattern
more precisely. Section 3 recalls the solutions proposed in
the literature for the identification and correction of program
source code. Section 4 discusses notions on explanations for
constraint programming. Section 5 presents our solution to
identify architectures similar to design patterns and Section 6
gives some results obtained on industrial libraries.

2 Design patterns
The architecture of a software system is unique. It depends
on the context in which it is developed and on various as-
pects: Expected lifetime, cost of development, foreseen evo-
lutions, experience of architects and developers, ... For a par-
ticular problem, there does not existoneoptimal architecture
but rather an architecture adapted to a given context. There-
fore, we focus on general and context-independent architec-
tural problems.

2.1 Definition
For recurring architectural problems,design patterns
[Gammaet al., 1994] represent solutions that are indepen-
dent of the context and of the object-oriented language. They
capture the experience of skillful developers. A definition of
a design pattern contains four essential parts:

1. A unique name identifying the pattern

2. A description of the addressed architectural problem

3. A solution to the problem, with class diagrams rep-
resenting the involved classes and their roles (using
an OMT-like notation – Object Modelling Technique
[Rumbaughet al., 1991])

4. The consequences and possible trade-offs of the solution

For example, TheComposite design pattern builds com-
plex structures of objects by composing recursively objects
of same nature in a tree-like manner. It lets treat uniformly
objects and compositions of objects. The general structure
of the Composite design pattern is shown Example 1. The
Composite design pattern definition presented in[Gammaet
al., 1994], pp. 163–173, embodies eleven sections over ten
pages (ten pages is the average length of a design pattern def-
inition in this book). The first three sections,Intent, Motiva-
tion andApplicability, introduce the problem (part 2): How to

This paper has been accepted at the IJCAI 2001 workshop on Modelling and Solving Problems with Constraints.

compose objects into tree structures representing part–whole
hierarchies, and how to treat uniformly individual objects and
compositions of objects. The three next sections,Structure,
ParticipantsandCollaborations, propose a solution (part 3)
to the problem with class diagrams, instance diagrams, a list
of participants (i.e., a list presenting the class roles), and a
list of collaborations (i.e., a list presenting the class interac-
tions). TheConsequencessection (part 4) states the effects
of applying this design pattern : Simplification of the clients
and of the implementation. Finally, the last four sections,
Implementation, Sample Code, Known UsesandRelated Pat-
terns, provide specific information about the implementation
and the use of the solution.

The description of the problem solved by a design pattern
is always informal. It represents more a set of motivations
for which to apply this design pattern than a precise descrip-
tion of the addressed problem. We cannot directly use this
description to detect architectural problems. On the other
hand, we can consider the architectural solution, described
with class diagrams and source code examples, as an exam-
ple of agoodmicro-architecture.

Example 1 (An overview of the Composite design pattern) :
The general structure of theComposite design pattern is
shown Figure 1. The abstract class (or interface)Component
defines anoperation() that is indifferently applied on an
object of typeLeaf or on a composition of objects of type
Component , Composite . The instances of theCompos-
ite class are in charge of applyingoperation() on their
children.

Figure 1: TheComposite design pattern

2.2 Towards a higher quality code
A software architecture is subject to evolutions and transfor-
mations during its life cycle. These evolutions and transfor-
mations slow the use of design patterns or impede their qual-
ity. It is difficult to apply a priori design pattern solutions –
good micro-architectures – when the software is not finished
yet. Applying design patterns requires a thorough knowledge
of all the existing design patterns – knowledge that only a few
developers possess –, and insight on the overall architecture.
Thus, we propose to use design patterns to improve source
code quality rather than to producedirectly design pattern
compliant source code.

We want to identify places in the architecture where qual-
ity would be improved by the introduction of design patterns.
Our approach consists in detecting groups of classes, whose
structures are close to a micro-architecture solution suggested
by a design pattern (see Example 2). The class structure of
such a group could be improved by applying the solution of
the design pattern. Our approach consists:(a) in a description
of the relationships among classes introduced by a design pat-
tern; (b) in using an explanation-based constraint solver for
detecting, in the source code, classes whose structure is close
to a (already referenced) design pattern; and(c) in transform-
ing the source code accordingly to the design pattern specifi-
cations.

In this article, we describe the(b) phase, the identification
phase.

Example 2 (Identification of the Composite design pat-
tern) :
Let us consider the development of an application to produce
representations of documents. In Figure 2 on the left, the ker-
nel of the application consists of a classElement that defines
a common interface for all the elements of a document: Ti-
tles (classTitle), paragraphs (classParagraph), and in-
dented paragraphs (classParaIndent), ... A Document
class composes those elements to describe a document.
This architecture is similar to theComposite design pattern.
But the specifications of the design pattern require that the
Document class be a subclass of theElement class, to unify
their interfaces and to allow the composition of documents
(Figure 2, on the right).

3 State of the Art
In software engineering and re-engineering, only few studies
exist on automating the identification and the correction of
design defects. There are two reasons for this lack of mate-
rial. On one hand, the automation of processes and techniques
related to anintellectualactivity, such as software develop-
ment, is not welcomed. This automation is not welcomed
because of the seeming loss of control resulting from the au-
tomation of a process acting on software – software which
is already difficult to maintain. This loss of control from
the automatic detection and correction of design defects is
perceived as too important compared to the benefits brought
by the automation. On the other hand, when solutions have
been proposed, these solutions were reduced to the problems
of (semi-) automatically detecting or correcting design de-
fects of the classes themselves[Jahnke and Z̈undorf, 1997;
Fowler, 1999; Demeyeret al., 2000] (for example, problem
of long methods or lack of cohesion among the methods of
a class); or to the problems of detecting design patterns in
existing source code to help documenting or understanding
legacy systems[Brown, 1996; Kr̈amer and Prechelt, 1996;
Wuyts, 1998; Mancoridiset al., 1998; Richner and Ducasse,
1999]. Those works clearly show that a fully automatic ap-
proach is too ambitious because of the software complexity:
The user input is really important.

A few techniques exist to identify design patterns. Among
those techniques, the use of logic programming is of great in-
terest[Wuyts, 1998]: A design pattern is described as a set of

Figure 2: Kernel of the application to describe documents: On theleft the original architecture and on theright the corrected
architecture. A class is depicted as a box – with one ore more division – containing the class name – and possibly the class
associations, methods, and fields. An association is represented as a plain arrow from the aggregate class to its component.
Dotted arrows are instance creation and knowledge links. A square line with an empty triangle corresponds to inheritance.

logical rules. The logical rules unify with the facts represent-
ing the source code to identify design patterns. But this tech-
nique is limited. It only detects classes whose relationships
are described by the logical rules. It does not directly allow
to detect similar rather than identical micro-architectures of
a design pattern. The rules must be extended to introduce
the missing distorted cases to obtain more solutions. Conse-
quently, the rules become quickly impossible to manage. The
addition of new design patterns requires thinking about all the
possible distortions when conceiving the system of rules.

Outside theobject-oriented languagescommunity, the
search for sub-graphs in a graph[Régin, 1995] presents sim-
ilarities with our work. But, to our knowledge, the search of
sub-graphssimilar toand not merely identical to a given sub-
graph has not been studied yet. Another related work is the
phase ofadaptationin case-based reasoning.[Fuchset al.,
2000] has recently presented a technique adapted to contin-
uous domains (with an order relation on the values) but this
technique is unadapted to our discrete problem.

To conclude, an acceptable solution to our problem must
favor a dialog with the developer:

• To explain concretely why the architecture of a group of
classes is a distorted version of an existing design pattern

• To direct dynamically the search of such architectures
by proposinginteractively the exclusion of such or such
characteristic of the design pattern (to avoid determining
a priori the possible evolutions)

These are the reasons why we propose the use of
explanations-based constraint programming.

4 Explanation-based constraint programming
Explaining and suggesting possible architectural modifi-
cations is an interesting way to improve object-oriented
source code. Explanation-based constraint programming al-
ready proved its interest in many applications[Jussien and
Barichard, 2000]. We recall in this section what it is and how
it can be used.

4.1 Explanations
In the following, we consider a constraint satisfaction prob-
lem (CSP) (V,D, C). Decisions made during the enumeration
phase (variable assignments) correspond to adding or remov-
ing constraints from the current constraint system (eg., upon
backtracking).

A contradiction explanation (a.k.a. nogood[Schiex and
Verfaillie, 1994]) is a subset of the current constraint system
of the problem that, left alone, leads to a contradiction (no
feasible solution contains a nogood). A contradiction expla-
nation divides into two parts: A subset of the original set of
constraints (C ′ ⊂ C in equation 1) and a subset of decision
constraints introduced so far in the search.

C ` ¬ (C ′ ∧ v1 = a1 ∧ ... ∧ vk = ak) (1)

In a contradiction explanation composed of at least one de-
cision constraint, a variablevj is selected and the previous
formula is rewritten as2:

C ` C ′ ∧
∧

i∈[1..k]\j
(vi = ai) → vj 6= aj

The left hand side of the implication constitutes anelimi-
nating explanation for the removal of valueaj from the do-
main of variablevj and is notedexpl(vj 6= aj).

ClassicalCSPsolvers use domain-reduction techniques (re-
moval of values). Recording eliminating explanations is suf-
ficient to compute contradiction explanations. Indeed, a con-
tradiction is identified when the domain of a variablevj is
emptied. A contradiction explanation can easily be computed
with the eliminating explanations associated with each re-
moved value:

C ` ¬

 ∧

a∈d(vj)

expl(vj 6= a)

2A contradiction explanation that does not contain such a con-
straint denotes an over-constrained problem.

There exist generally several eliminating explanations for
the removal of a given value. Recording all of them leads
to an exponential space complexity. Another technique relies
on forgetting (erasing) eliminating explanations that are no
longer relevant3 to the current variable assignment. By doing
so, the space complexity remains polynomial. We keep only
oneexplanation at a time for a value removal.

4.2 Computing explanations
Minimal (w.r.t. inclusion) explanations are the most interest-
ing. They allow very precise information on emerging depen-
dencies among variables and constraints, dependencies iden-
tified during the search. Unfortunately, computing such ex-
planations is time-consuming[Junker, 2001]. A good com-
promise between size and computability is the use of the
knowledge that isinsidethe solver. Indeed, constraint solvers
always know (although not often explicitly) why they remove
values from the domains of variables. Precise and interesting
eliminating explanations can be computed by explicitly stat-
ing such information. To achieve this behavior, it is necessary
to alter the solver code itself.[Jussien and Barichard, 2000]
is an introduction to modifying the solver.

4.3 Using explanations
Explanations can be used in several ways[Jussienet al.,
2000; Jussien and Barichard, 2000; Jussien and Lhomme,
2000]. Debugging purposes pop to the mind: To explain
clearly failures, to explain differences between intended and
observed behavior for a given problem (why is value4 not
assigned to variablex ?).

Explanations can be used also to determine direct or indi-
rect effects of a given constraint on the domains of the vari-
ables of the problem, and for dynamic constraint removal.
This is the case with the justification system used in[Bessìere,
1991] for solving dynamicCSP. This justification system is
actually a partial explanation system. Moreover, being able
to explain failure and to dynamically remove a constraint fa-
cilitates the building of dynamic over-constrained problem
solver[Jussien and Boizumault, 1997].

Less direct applications are possible as well, in particu-
lar using explanation to guide the search. Indeed, classical
backtracking-based searches only proceed when encounter-
ing failures (by backtracking to the last choice point). Con-
tradiction explanation can be used to improve standard back-
tracking and to exploit information gathered to improve the
search: To provide intelligent backtracking[Guéret et al.,
2000], to replace standard backtracking with a jump-based
approachà la Dynamic Backtracking [Ginsberg, 1993;
Jussienet al., 2000], or even to develop new local searches
on partial instantiations[Jussien and Lhomme, 2000].

But, what is interesting in the design pattern identification
context is the ability of explanation systems:

• To explain why no solution is found to a given prob-
lem. As stated before, a contradiction explanation that
does not contain any decision constraints denotes an

3A nogood is said to be relevant if all the decision constraints in
it are still valid in the current search state[Bayardo Jr. and Miranker,
1996].

over-constrained system (i.e., a system with no possible
solutions). Such explanations are recursively obtained
after having tested all possible values for a given vari-
able. The interested reader should refer to[Jussien and
Barichard, 2000] for more information.

• To provide a data-driven search (i.e., through the user
input): A contradiction explanation justifies the lack of
more solutions for the current problem. Selecting and
relaxing a constraint given by the explanation allows the
discovery ofnew solutions (distorted solutions of the
original problem). The selection is left to the user who
knows which constraint to relax to keep theprinciple of
the design pattern being searched. Data-driven search of
design patterns is detailed in Section 5.2.

5 Application to the problem
The detection of micro-architectures similar to a design pat-
tern using explanation-based constraint programming con-
sists:

1. In modelling a set of design patterns asCSP: The micro-
architecture solution proposed by a design pattern is
modelled as a set of constraints. A variable is associ-
ated with each class defined by the design pattern. The
variables of our model are integer-valued. The domain
of a variable is the set of all the existing classes in the
source code. Each class is identified by a unique inte-
ger. The relationships among classes (inheritance, as-
sociation,etc.) are represented by constraints over the
variables. See Example 4.

2. In modelling the user’s source code to keep only the
information needed to apply the constraints: The class
names – forming the domain of the variables –, and the
relationships among classes – abstracted in tables at-
tached to the library of constraints. See Example 5.

3. In resolving theCSPto search distorted solutions – solu-
tions that violates one or several constraints specified by
the design pattern: When all the real solutions of theCSP
are found, the search is guided dynamically by the user
to find interesting distorted solutions. Information (ex-
planations of contradiction) provided by the constraint
solver help the user.

5.1 A library of specialized constraints
¿From the relationships among classes defined in[Gammaet
al., 1994], we built a first library of constraints. Specialized
constraints express the inheritance, association, knowledge,
etc. relationships. These constraints involve variables repre-
senting one and only one class because the tools we use do
not manage (yet) constraints on sets. We use a simple trick
to handle constraints on sets: Variables representing sets of
classes are not enumerated during the problem solving. The
propagation mechanism ensures the consistency of the vari-
able domains because of the specific nature of our constraints.

Our library offers constraints covering a broad range of de-
sign patterns. However, some design patterns are difficult to
express and need additional relationships or the decomposi-
tion of some relationships into sub-relationships.

We provide the following symbolic constraints in our li-
brary (these constraints can be combined to form more com-
plex constraints):

• Strict inheritance: Establishes an inheritance relation-
ship between two classes – between two variables – such
as defined in Example 3. This relationship is enforced
by the StrictInheritanceConstraint . From
this notion of strict inheritance, we derive the notion
of inheritance (InheritanceConstraint) such as
A < B or A = B (the two variables may represent the
same class).

Example 3 (Strict-inheritance constraint) :
An inheritance relationship links two classes in a parent–child-
like relationship –i.e., superclass–subclass. When considering
single inheritance, the inheritance relationship is a partial or-
der, denoted<, on the set of classesE. For any pair of distinct
classesA andB in E, if B inherits fromA then:A < B.
The constraint associated with the inheritance relationship is a
binary constraint between two variables (classes)A andB. The
operational semantics of this constraint is: (dX represents the
domains of variableX)

∀classA ∈ dA, ∃classB ∈ dB , classA < classB

∀classB ∈ dB , ∃classA ∈ dA, classA < classB

• Knowledge: Establishes a knowledge relationships be-
tween two classes. The classAknows about the classB if
methods defined inA invoke methods ofB. This relation-
ship is binary, oriented, and not transitive. We denote
this relationship byA¤B and the constraintRelated-
ClassesConstraint enforces it.

• Non-knowledge: Ensures areciprocalrelationship. The
class A must not know about the classB. The con-
straintUnRelatedClassesConstraint expresses
this relationship.

• Composition: Ensures that two classes are composed.
A classA is composed with instances of a classB if the
classA defines one or more fields of typeB. We write
A ⊃ B. This relationship is binary, oriented, and not
transitive. It is enforced by the constraintComposi-
tionConstraint .

• Field type: Ensures that the fieldf of classA is of type
B: A.f = B. The constraintPropertyTypeCon-
straint establishes this link. We use this generic con-
straint to define easily new constraints.

5.2 Behavior of the solver
Our dedicated constraint library is not sufficient to solve our
problem. Indeed, solutions that fit exactly in the definition of
a design pattern (thereal solution of theCSP) are of no use to
improve the quality of the user’s source code. We need to find
distortedsolutions – assignments that do not verify all the
features of the intended pattern–i.e., that violates at last one
of the constraints defining the design pattern. Explanation-
based constraint programming is a key tool for solving that
problem.

First, real solutions are computed. This computation ends
by a contradiction (there is no more solution). Explanation-
based constraint programming provides a contradiction ex-
planation for this failure: The set of constraints justifying that
any other combination of classes do not verify the constraints
describing the design pattern. We do not need to relax other
constraints than the constraints provided by the contradiction
explanation: We would find no other real solutions. A contra-
diction explanation provides insights on which distorted so-
lutions are available – more precisely, on which distortions
(constraint violations) would lead to more results, if the as-
sociated constraints were relaxed. The user’s input is needed
to select the constraints to be relaxed. Removing a constraint
suggested by the contradiction explanation does not necessar-
ily lead to a new solvableCSPbut the constraints are relaxed
recursively until a solvableCSP is obtained or no constraints
remain. The solutions of a new solvableCSP aredistorted
solutions to the original problem.

To facilitate user input, preferences are assigned to the con-
straints of the problem reflectinga priori a hierarchy among
the constraints, but these preferences are not mandatory in
our system. A metric is derived from the preferences and
measures the quality. This metric allows an automation of
our solver to find all the distorted solutions sorted by quality.

The user-driven version is of great interest whena priori
preferences are hard to determine (this is often the case!).
The user can restrict interactively the search to a subset of
distorted solutions. Explanation-based constraint program-
ming gives a complete control to the user: This is important
in such anintellectualactivity.

5.3 Application to the Composite design pattern
We model theComposite design pattern by mean of aCSP
(see Example 4). The input source code, presented in Ex-
ample 2, is then modelled: The classes and the relationships
among classes are encoded into tables (see Example 5).

Example 4 (Modelling the Composite design pattern) :
The Composite design pattern, as presented in Example 1,
is modelled by associating a variable with each class defined
(Component , Composite and Leaf) and by constrain-
ing the values of these variables according to the relation-
ships among classes:composite < component , leaf <
component , andcomposite ⊃ component .

Our explanation-based constraint solver,PALM [Jussien
and Barichard, 2000], solves thisCSP to identify subsets of
classes whose structures are similar to the micro-architecture
of the design pattern by giving a set of distorted solutions (see
Example 6).

The source code is then modified accordingly, leading to
the corrected kernel of our application presented in Exam-
ple 2, on the right.

6 First results
We developed a tool,PATTERNS TRACE IDENTIFICATION,
DETECTION AND ENHANCEMENT FOR JAVA 4 (PTIDEJ see

4A demonstration is available at:
www.yann-gael.gueheneuc.net/Work/PtidejDemo.html

Example 5 (Modelling the source code) :
The source code of the application, Example 2, involves seven
classes:AbstractDocument , Element , Title , Para-
graph , ParaIndent , Document , andMain . The domain
of each variable of theCSP presented Example 4,compo-
nent , composite , and leaf , is of size 7 (one slot for
each possible class from the source code). We define a generic
model to encode classes from the source code in our system.
This generic model is a table:

PClass
name: string,
superclasses: list[PClass],
components: list[PClass],
componentsType: PClass,
relatesTo: list[PClass],
doNotRelateTo: list[PClass]

The relationships among classes are encoded in this model and
are used to check the relationships required by the design pat-
tern:

• name represents the name of the class.

• superclasses is the list of the direct superclasses of
the class represented by this ephemeral object.

• components is the list of all the components aggre-
gated by the class represented by this ephemeral object.
componentsType is the common super-class of all the
components.

• relatesTo is the list of all the classes that are known
by the class represented by this ephemeral object.

• doNotRelateTo is the list of all the classes that are
unknown to the class represented by this ephemeral ob-
ject.

We can deduce automatically all the needed information from
the source code of the application.

Example 6 (Solutions) :
The resolution of theCSP modelling theComposite design
pattern on the application to produce representations of docu-
ments (see Figure 2, on the left) produces results of the form:

• < dist.sol.#>.<Quality>.component =<a class>

• < dist.sol.#>.<Quality>.composite =<a class>

• < dist.sol.#>.<Quality>.leaf =<a class>

A solution, without constraintComponent < Composite ,
of weight 50, is:

• 1.50.component = Element

• 1.50.composite = Document

• 1.50.leaf = Paragraph

There are five other solutions. The solutions are automatically
provided by our tool.

its interface on Figure 3). This tool performs the different
steps presented in Section 2.2 to improve the quality of a
source code from an architectural point of view. This tool,
written in JAVA, acceptsJAVA source code. The solver is writ-
ten inCLAIRE [Caseau and Laburthe, 1996] using thePALM
explanation-based constraint solver[Jussien and Barichard,
2000] developed on top of theCHOCO constraints system
[Laburthe, 2000].

It allows:

• To load and to visualize (using an OMT-like notation) an
application written inJAVA

• To generate a model of the application for the constraint
system

• To call the explanation-based constraint systemPALM
on this model to detect the referenced design patterns

• To visualize the (real and distorted) solutions found

• To perform the needed transformations on the source
code to make it similar to a design pattern and thus to
improve its quality

• And to load and to visualize the modified application

Three design patterns are referenced by the tool: The
Composite design pattern presented in Section 2.1; theFa-
cade design pattern, that models relationships between a set
of client classes and a set of classes forming asub-system
through a uniqueFacade class with no mutual knowledge
(see Example 7); and theMediator design pattern, a design
pattern similar toFacade in which the clients classes and the
classes of the sub-system may know about one another.

Example 7 (An overview of the Facade design pattern) :
The general structure of theFacade design pattern is shown
Figure 4. TheFacade design pattern is composed of three
classes: Clients , Facade , and SubsystemClasses ,
such as: clients ¤ facade ¤ subsystemClasses ,
subsystemClasses 7 facade 7 clients , and
subsystemClasses 7 clients . The clients and
subsystemClasses variables, encoding sets, are not enu-
merated, letting the propagation system to remove unfeasible
solutions.

Figure 4: TheFacade design pattern

Any design pattern may be modelled and referenced by our
tool. However, the structural design patterns (likeCompos-

Figure 3: Interface ofPTIDEJ.

ite or Facade) are easier to model than the behavioral or cre-
ational design patterns because these latter need statically un-
decidable information (such as the type of a particular object
in a generic collection). The modelling of theAbstract Fac-
tory, Observer andSingleton design patterns is in progress.
An Abstract Factory provides an interface to build families
of related objects without specifying their concrete classes.
The behavioralObserver design pattern defines dependen-
cies among objects such that all dependent objects are no-
tified and updated when one of the related objects changes.
The creationalSingleton design pattern ensures that a class
has a unique instance in a system, and provides a global entry
point for it.

We applied our tool on different systems. In particular,
we applied our approach on two packages of theJAVA class
libraries: Thejava.awt and java.net packages. All
well-known occurrences of theComposite andFacade de-
sign patterns have been identified, as well as other less-known
distorted occurrences. These results are promising but we
need to analyze manually the packages to check that all possi-
ble distorted solutions have been identified using our models:
We need to check themodellingof the design patterns not the
method, which has been proven to be complete.

7 Conclusion
In this article, we presented an original use of explanation-
based constraint programming to propose a solution to a dif-
ficult problem: The identification of design patterns in object-
oriented source code. Explanations are used to provide a user-

friendly system: Distorted design patterns are identified and
explained, the search can be completely driven by the user,
etc.

We developed a library of dedicated constraints to solve
this problem. These constraints are used in our tool,PTIDEJ.
The first results of our approach are satisfying because they
allow to propose, for the first time, a tool to solve this prob-
lem.

Our current work concerns the definition of more rela-
tionships among classes, the extension of the library of con-
straints and the application of the constraints to other systems,
such asJHOTDRAW [Gamma, 1998], and of coursePTIDEJ
itself!

Acknowledgements

This work is partly funded by par Object Technology Interna-
tional Inc. – 2670 Queensview Drive – Ottawa, Ontario, K2B
8K1 – Canada

References
[Bayardo Jr. and Miranker, 1996] Roberto J. Bayardo Jr. and

Daniel P. Miranker. A complexity analysis of space-
bounded learning algorithms for the constraint satisfaction
problem. InAAAI’96, 1996.

[Bessìere, 1991] Christian Bessìere. Arc consistency in dy-
namic constraint satisfaction problems. InProceedings
AAAI’91, 1991.

[Brown, 1996] Kyle Brown. Design reverse-engineering and
automated design pattern detection in smalltalk. Tech-
nical Report TR-96-07, University of Illinois at Urbana-
Champaign, 1996.

[Caseau and Laburthe, 1996] Yves Caseau and François
Laburthe. CLAIRE: Combining objects and rules for prob-
lem solving. Proceedings of JICSLP, workshop on multi-
paradigm logic programming, 1996.

[Demeyeret al., 2000] Serge Demeyer, Stéphane Ducasse,
and Oscar Nierstrasz. Object-oriented reengineering OOP-
SLA’00 tutorial. OOPSLA Tutorial Notes, 2000.

[Fowler, 1999] Martin Fowler. Refactoring - Improving the
Design of Existing Code. Addison-Wesley, 1999.

[Fuchset al., 2000] B. Fuchs, J. Lieber, A. Mille, and
A. Napoli. An Algorithm for Adaptation in Case-Based
Reasoning. InProceedings of the 14th European Confer-
ence on Artificial Intelligence (ECAI-2000), Berlin, Ger-
many, pages 45–49, 2000.

[Gammaet al., 1994] Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides.Design Patterns - Elements
of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[Gamma, 1998] Erich Gamma. JHotDraw, 1998. Available
at http://members.pingnet.ch/gamma/JHD-5.1.zip.

[Ginsberg, 1993] Matthew L. Ginsberg. Dynamic backtrack-
ing. Journal of Artificial Intelligence Research, 1:25–46,
1993.

[Guéretet al., 2000] Christelle Gúeret, Narendra Jussien,
and Christian Prins. Using intelligent backtracking to im-
prove branch and bound methods: an application to open-
shop problems. European Journal of Operational Re-
search, 127(2):344–354, 2000.

[Jahnke and Z̈undorf, 1997] Jens Jahnke and Albert
Zündorf. Rewriting poor design patterns by good design
patterns. Proceedings the Workshop on Object-Oriented
Reengineering at ESEC/FSE, September 1997.

[Junker, 2001] Ulrich Junker. QUICKXPLAIN: Conflict de-
tection for arbitrary constraint propagation algorithms.
Technical report, Ilog SA, 2001.

[Jussien and Barichard, 2000] Narendra Jussien and Vincent
Barichard. The palm system: explanation-based constraint
programming. InProceedings of TRICS: Techniques foR
Implementing Constraint programming Systems, a post-
conference workshop of CP 2000, pages 118–133, Singa-
pore, September 2000.

[Jussien and Boizumault, 1997] Narendra Jussien and
Patrice Boizumault. Best-first search for property main-
tenance in reactive constraints systems. InInternational
Logic Programming Symposium, pages 339–353, Port
Jefferson, N.Y., USA, October 1997. MIT Press.

[Jussien and Lhomme, 2000] Narendra Jussien and Olivier
Lhomme. Local search with constraint propagation and
conflict-based heuristics. InSeventh National Conference
on Artificial Intelligence – AAAI’2000, pages 169–174,
Austin, TX, USA, August 2000.

[Jussienet al., 2000] Narendra Jussien, Romuald Debruyne,
and Patrice Boizumault. Maintaining arc-consistency
within dynamic backtracking. InPrinciples and Practice
of Constraint Programming (CP 2000), number 1894 in
Lecture Notes in Computer Science, pages 249–261, Sin-
gapore, September 2000. Springer-Verlag.

[Krämer and Prechelt, 1996] Christian Kr̈amer and Lutz
Prechelt. Design recovery by automated search for struc-
tural design patterns in object-oriented software.Proceed-
ings of the Working Conference on Reverse Engineering,
pages 208–215, 1996.

[Laburthe, 2000] François Laburthe. CHOCO’s API. Tech-
nical Report Version 0.13, OCRE Committee, 2000.

[Mancoridiset al., 1998] S. Mancoridis, B. S. Mitchell,
Y. Chen, and E. R. Gansner. Bunch: A clustering tool for
the recovery and maintenance of software system struc-
tures.Proceedings of ICSM, 1998.

[Régin, 1995] Jean-Charles Ŕegin. Développement d’outils
algorithmiques pour l’Intelligence Artificielle. Application
à la chimie organique. Thèse de doctorat, Université de
Montpellier II, 21 December 1995. In French.

[Richner and Ducasse, 1999] Tamar Richner and Stéphane
Ducasse. Recovering high-level views of object-oriented
applications from static and dynamic information.Pro-
ceedings of ICSM, 1999.

[Rumbaughet al., 1991] James Rumbaugh, Michael Blaha,
William Premerlani, Frederick Eddy, and William Loren-
son.Object-Oriented Modeling and Design. Prentice Hall,
1991.

[Schiex and Verfaillie, 1994] Thomas Schiex and Ǵerard
Verfaillie. Nogood Recording fot Static and Dynamic Con-
straint Satisfaction Problems.International Journal of Ar-
tificial Intelligence Tools, 3(2):187–207, 1994.

[Wuyts, 1998] Roel Wuyts. Declarative reasoning about
the structure of object-oriented systems.Proceedings of
TOOLS USA, pages 112–124, 1998.

