
An Approach to Apply Automated Acceptance
Testing for Industrial Robotic Systems

1st Marcela G. Dos Santos
Université du Québec à Chicoutimi

Chicoutimi, Canada
marcela.santos1@uqac.ca

2nd Fabio Petrillo
École de Technologie Supérieure (ÉTS)

Montreal, QC, Canada
fabio.petrillo@etsmtl.ca

3rd Sylvain Hallé
Université du Québec à Chicoutimi

Chicoutimi, Canada
shalle@acm.org

4th Yann-Gaël Guéhéneuc
Concordia University

Montreal, QC, Canada
yann-gael.gueheneuc@concordia.ca

Abstract—Industrial robotic systems (IRS) are systems com-
posed of industrial robots that automate industrial processes.
They execute repetitive tasks with high accuracy, replacing or
supporting dangerous jobs. Consequently, a low failure rate is
crucial in IRS. However, to the best of our knowledge, there is a
lack of automated software testing for industrial robots. In this
paper, we describe a test strategy implementation to apply BDD
to automate acceptance testing for IRS.

Index Terms—robotics, industrial robots, software testing,
automated testing, acceptance testing

I. INTRODUCTION

To raise the software quality, we can apply software test-
ing. Software testing is a process to test software to find
and remove as many software failures as possible [1]. One
definition of software failure for conventional systems is when
the customers’ expectations have not been met and–or when
the software does not help the customer [2]. Developers and
stakeholders can collaborate in conventional software systems
to improve software quality using automated acceptance test-
ing (AAT) [3].

We performed an experiment in the Gazebo simulator
running in the Robot Operating System (ROS) environment to
apply a test strategy implementation to apply BDD to automate
acceptance testing for IRS. The robot model used was the
Gen3 from Kinova [4] and the end-effector is a gripper, the
Robotiq-2f-85 from Robotiq [5].

II. BACKGROUND

The prerequisite to applying our strategy is the business
requirements (BR) and the acceptance criteria (AC). Thus,
the business analyst and the technical team (developer and
tester) need to rewrite the BR using the BDD template. The
outputs of this step are features and scenarios. After that, the
technical team writes and executes the automated tests, named
step definitions in our approach. The step definitions interact
with the code that defines the robot behaviour, named mission
in our approach. At first, scenarios will fail because we did
not write any mission. So, the technical team must write the
mission until the scenario passes.

ROS is a standard framework for developing robotic soft-
ware. It is a collection of libraries, tools, and conventions. It
simplifies the task of creating robot software. A system created
with ROS is a system with many different programs running
simultaneously and communicating with one another, passing
messages.

Gazebo is a popular robotic simulator that can simulate
different types of robots with many commonly used sensors,
such as cameras, GPS, and IMU. Although Gazebo is an
independent project, it is possible to integrate it with ROS
through the gazebo ros package and establish bidirectional
communication between them (Gazebo and ROS).

To communicate with the Kinova Gen3 robot, we use
the API Kinova Kortex integrated with ROS through the
package ROS Kortex. ROS Kortex allows us to use the ROS
mechanisms (communication and file system) and Gazebo as
a simulator to perform the experiments using Kinova Gen3.

To automate the tests, we use the library pytest-bdd [6],
the most popular framework in Python that implements a
subset of the Gherkin language to enable automating project
requirements testing.

To aid other researchers in the reproduction of our
results, we share the code, replication instructions and
a video to illustrate both case studies performed at
https://github.com/mgdossantos/irc2022-aat4irs.

III. APPROACH

Our approach is a test strategy implementation to apply
BDD to automate acceptance testing for IRS. The prerequisite
to applying our approach is the business requirements (BR)
and the acceptance criteria (AC). Thus, the business analyst
and the technical team (developer and tester) need to rewrite
the BR using the BDD template. The outputs of this step are
features and scenarios. After that, the technical team writes
and executes the automated tests, named step definitions in
our approach. The step definitions interact with the code that
defines the robot behavior, named mission in our approach. At
first, scenarios will fail because we did not write any mission.

https://github.com/mgdossantos/irc2022-aat4irs


So, the technical team must write the mission until the scenario
passes.

The implementation of the approach is organized in three
packages: mission, tests, and robot. Mission as the package
that contained all the files to support the implementation of
the code with the robot’s behavior as well the mission code.
The robot package represents the robot in general that can
be simulated or physical robot. Finally, we have the package
tests. Inside the tests, we have the feature and the scenario.

IV. EXPERIMENT

In our experiment, the system must pick one-by-one objects
placed on a conveyor, transport them, and place them on
a delivery table. We move the IRS from Point A (on the
conveyor) to Point B (on the delivery table). The video
illustrating this case study can be accessed at the following
URL: https://youtu.be/9S0R0mGKA-I.

Pick-and-place is a typical use case for industrial robots.
We break down the pick and place process into four phases:
pre-grasping, grasping, transport, and placement [7].

To run our simulation, the first step is to launch the
world in Gazebo using all the models (IRS, conveyor,
and table). The command is roslaunch caseStudy
spawn_kortex_robot.launch. Then, we create the ob-
ject that will be picked and placed by the IRS. Our choice
was to create the object in other Python scripts to allow us
to create objects with different positions in each simulation.
To create the object using our Python script we need to use
another ROS command: rosrun caseStudy box.py. In
each new simulation, we have the box position generated
randomly on the X-axis.

We then write the tests. The code for each function is
the way that the test framework interacts with the mission.
As we are using a simulator, we must define automatic
communication between the test and the mission. We used
pytest-gui library that provides a GUI test runner for Python
tests.

In our study, when we run the test for the first time, there
is no code to automate the pick-and-place process. Thus, we
implement the mission until all the tests pass.

To test a software, it needs to establish an outcome. For
CS2, we establish the outcome as the IRS and box coordinates
(X-axis) with an acceptable error of 0.02. For example, the
function box position is responsible for interacting with the
application to read the box position and make the assertion.
The test will pass if the difference between the experiment
read-box position (X-axis) and the ideal value (0.55) is less
or equal to 0.02.

The next stage was to inject a fault to simulate a noise that
can happen in the reading of the box position. We added a
randomly generated value between -0.025 and +0.025 in the
box position (X-axis). We have access to the test report, in
which we have the information related to the tests that pass
and not, and the reason why some of the tests did not pass.
Figure 1 presents the report overview for this case study, we
ran the experiment 5 times.

Fig. 1: Report Overview

The report shows that three tests failed, and two passed. The
figure shows the reason why simulation three did not pass,
the box’s final position was not as expected. We define the
expected outcome using a business requirement, the box had
to be in a specific position (A) with an acceptable difference
of less than 0.02.

V. CONCLUSION

This study presented a test strategy to apply automated
acceptance testing for industrial robotic systems. We presented
this experiment that relies on Behavior-Driven Development
and implemented it using ROS, Gazebo, and a Python library
for BDD (pytest-bdd).

In future work, we intend to apply our approach to physical
robots. We also want to apply a quantitative measure to
evaluate the effort to discover faults. Finally, we want to
evaluate our approach by performing controlled experiments
with practitioners that perform different roles in robotic system
development teams (business analyst, tester, developer).

ACKNOWLEDGEMENTS

The NSERC Discovery Grant and Canada Research Chairs
programs partially supported the authors.

REFERENCES

[1] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing,
3rd ed. Wiley Publishing, 2011.

[2] R. Chillarege, “What is software failure?” IEEE Transactions on Relia-
bility, vol. 45, no. 3, pp. 354–, 1996.

[3] M. Wynne and A. Hellesoy, The Cucumber Book: Behaviour-Driven
Development for Testers and Developers. Pragmatic Bookshelf, 2012.

[4] K. Robots, “Discover our gen3 robots — kinova,” https://www.
kinovarobotics.com/product/gen3-robots, 2022, accessed: 2022-08-19.

[5] Robotiq, “Start production faster — robotiq,” https://robotiq.com/
products/2f85-140-adaptive-robot-gripper, 2022, accessed: 2022-08-19.

[6] O. Pidsadnyi and A. Bubenkov, “Welcome to pytest-bdd’s documen-
tation!” https://robotiq.com/products/2f85-140-adaptive-robot-gripper,
2022, accessed: 2022-09-03.

[7] H. Mnyusiwalla, P. Triantafyllou, P. Sotiropoulos, M. A. Roa, W. Friedl,
A. M. Sundaram, D. Russell, and G. Deacon, “A bin-picking bench-
mark for systematic evaluation of robotic pick-and-place systems,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 1389–1396, 2020.

https://youtu.be/9S0R0mGKA-I
https://www.kinovarobotics.com/product/gen3-robots
https://www.kinovarobotics.com/product/gen3-robots
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://robotiq.com/products/2f85-140-adaptive-robot-gripper

	Introduction
	Background
	Approach
	Experiment
	Conclusion
	References

