
A Mapping Study of Language Features Improving Object-Oriented
Design Patterns
William Flageola, Eloi Menaudb, Yann-Gaël Guéhéneuca, Mourad Badric and Stefan Monnierd

aConcordia University, 1455 boulevard de Maisonneuve Ouest, Montreal, Québec, Canada, H3G 1M8
bIMT Atlantique, 4 Rue Alfred Kastler, Nantes, France, 44300
cUniversité du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, Québec, Canada, G9A 5H7
dUniversité de Montréal, 2900 boulevard Édouard-Montpetit, Montréal, Québec, Canada, H3C 3J7.

ART ICLE INFO

Keywords:
systematic mapping study
design patterns
object-oriented programming
language features
software measures
programming paradigms

ABSTRACT

Context: Object-Oriented Programming design patterns are well-known in the industry and taught
in universities as part of software engineering curricula. Many primary studies exist on the impact of
design patterns on software, in addition to secondary studies summarizing these publications. Some
primary studies have proposed new language features and used them to re-implement design patterns
as a way to show improvements. While secondary studies exist, they mainly focus on measuring the
impact of design patterns on software.

Objectives: We performed a systematic mapping study to catalogue language features in the
literature claiming to improve object-oriented design patterns implementations, as well as how primary
studies measure these improvements.

Methods: We performed a search in three databases, yielding a total of 874 papers, from which
we obtained 34 relevant papers. We extracted and studied data about the language features claiming to
improve design patterns implementations, the most often cited design patterns, the measures used to
assess the improvements, and the case studies and experiments with which these improvements were
studied.

Results: Using the results, we catalogue 18 language features claimed in the literature to improve
design patterns and categorize them into paradigms. We find that some design patterns are more
prevalent than others, such as Observer and Visitor. Measures related to code size, code scattering and
understandability are preferred. Case studies are done in-vitro, and experiments are rare.

Conclusion: This catalogue is useful to identify trends and create a road map for research on
language features to improve object-oriented design patterns. Considering the prevalence of design
patterns, improving their implementation and adding language features to better solve their underlying
concerns is an efficient way to improve object-oriented programming. We intend in the future to
use this as a basis to research specific language features that may help in improving object-oriented
programming.

1. Introduction
Object-Oriented Programming (OOP) is the de-facto gen-

eral programming paradigm. In many universities, software
engineering is taught almost exclusively using OOP concepts.

Much of the concepts of OOP are inherited from lan-
guages from the 60s and 70s, such as Simula and Smalltalk.
There have been many popular object-oriented languages,
such as Java, C# and Python, and languages that adopted
object-oriented concepts, such as C++, Common Lisp, and
JavaScript. Some of the concepts are present in some form
or another in most modern languages.

Object-Oriented Programming matured over the last few
decades and is at a stage where it has well-defined practices.
Some of these practices are catalogued as design patterns. A
design pattern is a generic way to solve a recurring problem
in software programming. Design patterns are distilled from
coding experience from professionals and recurring structures
in real-world software [1].

Arguably the most popular design patterns relate to OOP
and come from the 1994 book by Gamma et al. [1] and de-
scribe 23 design patterns implemented in real-world software
in C++ (with some other examples in Smalltalk). We refer to

ORCID(s):

these 23 design patterns as the Gang of Four (GoF) patterns
and the implementation examples in the book as the classical
implementations of design patterns.

The GoF patterns and other such OOP design patterns
help solving problems that would otherwise prove difficult
in OOP programming languages. They are also solutions to
problems within the paradigm itself: problems that cannot be
solved simply using OOP concepts, such as creating callbacks
on particular events (Observer pattern) or encapsulating code
inside data (Command pattern).

Design patterns are presented as “templates” that can be
adapted to specific problems for which using “naive” OOP
solutions would not be optimal. However, they can introduce
new problems, such as raising complexity, requiring that
programmers be familiar with these design patterns to get the
most out of their advantages. Overuse of design patterns, as
well as “over-engineering” [2], should be avoided.

One secondary study by Zhang and Budgen [3] consid-
ered empirical studies on the effects of applying design pat-
terns in software design. They showed that there was a lack of
empirical studies on most design patterns and that empirically
founded advantages and disadvantages are difficult to find
in the literature. It also discussed design patterns implemen-
tations sometimes being harmful to program understanding,

W. Flageol et al.: Preprint submitted to Elsevier Page 1 of 20

while they do help with maintenance and evolution.
Primary studies tried to find other object-oriented pat-

terns for situations not covered by the initial 23 design pat-
terns. Others tried to use object-oriented approaches to im-
prove the implementations of existing patterns [4]. Yet others
tried to leverage language features from other programming
paradigms to improve specific measures of design patterns [5,
6, 7, 8, 9]. Yet, there has not been much focus on the rela-
tionship between programming language features and design
patterns implementations.

To gain a better understanding of this relationship be-
tween design patterns implementations and language features,
we propose to study the literature on design pattern improve-
ments. We specifically look for language features which helps
the implementation of design patterns by simplifying them
(we give an example of this in Section 2) or by improving
specific measures (e.g., coupling between objects, cohesion,
etc.).

We perform a systematic mapping study to identify lan-
guage features claimed to improve design patterns imple-
mentations. The goal is to identify which language features
have been suggested to improve OOP design patterns im-
plementations, which design patterns implementations are
being improved upon, which measures are used to evaluate
these improvements, and what empirical data was collected
to assess these improvements.

We perform a search query in three databases (Ei Com-
pendex, Inspec, GEOBASE) using the Elsevier search engine
Engineering Village. Our initial query yields 874 papers,
which we assess for quality and use for snowballing, result-
ing in a total of 34 primary studies. We then extract relevant
data from these 34 studies and discuss and catalogue our
observations and their meaning.

We catalogue 18 language features claimed in the pri-
mary studies to improve design patterns implementations
and categorize them into paradigms. This catalogue is use-
ful to identify trends and create a road map for research on
language features to improve object-oriented design patterns.
Considering the popularity of design patterns, improving
their implementation and adding language features to better
solve their underlying concerns is an efficient way to improve
Object-Oriented Programming. We intend to use this in the
future as a basis to research specific language features that
may help in improving Object-Oriented Programming.

The rest of this paper is organized as follows: in Section
2, we further explain how design patterns can be improved by
language features and give a running example. In Section 3,
we present an overview of other related secondary studies on
the topic. In Section 4, we shortly present the concept of the
systematic mapping study, we pose our research questions
and present the methodology to perform our mapping study.
In Section 5, we lay out the results related to our different
research questions. In Section 6, we discuss these results and
their implications. In Section 7, we list notable or interesting
findings and our recommendations for future work. Section
8 lists threats to the validity of this study. In Section 9, we
conclude with the main findings of this paper and further

possible research.

2. Background
We illustrate how a design pattern can be improved by

specific language features using the Factory Method design
pattern, as discussed in the GoF book [1]. Figure 1 shows the
first example of an implementation of Factory Method in the
book. We present this example because of how directly the
Factory Method design pattern maps to object instantiation
language features. The example was designed with the C++
language in mind, but would be applicable to most other
modern OOP languages, such as C# and Java.

The goal of this pattern is to decouple an application from
concrete implementations of abstract classes or interfaces.
To achieve this goal, we must encapsulate object instanti-
ation. Factory Method suggests creating an abstraction of
this creation process and using this abstraction throughout
the software instead of the normal object creation feature of
the language (e.g., the new keyword). In Figure 1, the class
Application represents the abstraction of the creation process
of documents. If we wanted the application to instantiate
documents of type MyDocument, we would use an application
of type MyApplication.

This pattern encapsulates the normal object instantiation
mechanism provided by the language. The solution of the
design pattern is to encapsulate this mechanism because the
instantiation mechanism in C++ (and similar languages) does
not allow for decoupling an abstraction from its concrete
implementations (i.e., the new keyword only allows for the
instantiation of concrete objects).

A variant to this solution is given a few pages later [1]
with Smalltalk. In Smalltalk, there is no keyword for object
creation. Object creation is accomplished using a method
declared in the meta-class of the class (also called new). Be-
cause classes are also objects in Smalltalk, it is possible to
call this method on a variable, effectively the Factory Method
pattern. Thus, the document example could be implemented
in Smalltalk with a method in Application that returns the
class to use to create document objects. The MyApplication

class could implement this method as returning MyDocument,
as such:

"In class MyApplication"

documentClass

^ MyDocument

createDocument

^ documentClass new

In this implementation, there is no need to supersede the
normal object creation mechanism of the language. We in-
stead use it normally on the class returned by documentClass1.
By using Smalltalk’s meta-class and object instantiation lan-
guage features, the pattern becomes part of the language and
is more easily combined with other language features.

1Using this, we could restructure the model in different ways. For
example, we could remove the MyApplication class and replace it with a
collection holding the different concrete classes used to create objects for
the application.

W. Flageol et al.: Preprint submitted to Elsevier Page 2 of 20

There are other examples in the GoF book [1] where
design patterns have implementations that are simpler in
Smalltalk than C++. This discrepancy between implementa-
tions suggests that design patterns implementations depend
on what features are supported by the programming language.

In some languages, design patterns can even become
obsolete and disappear entirely when the concept is fully
supported by the language [10].

In this work, we are interested in cataloguing language
features that impact the 23 GoF design patterns, and see what
this impact is and how it was measured.

3. Related Studies
Multiple secondary studies exist about object-oriented

design patterns.
In 2012, Zhang et al. [3] published a systematic literature

review about the effectiveness of software design patterns.
They targeted empirical studies made on the GoF design
patterns. They concluded that there is a lack of empirical
studies about design patterns and concrete advantages and
disadvantages are difficult to find in the literature. They also
concluded that design patterns may not help with understand-
ability, sometimes decreasing it dramatically.

In 2013, Ampatzoglou et al. [11] performed a mapping
study on the impact of design patterns on software quality.
They focused on the GoF design patterns and categorized
research into different categories (formalization, detection,
and application). They found that research on the detection
of design patterns and their impact was the most active. In
another paper, the same authors proposed a catalogue [12] of
alternative designs for the GoF patterns. These alternative
designs usually add new functionality to existing patterns,
either to make them more flexible [13] or to adapt them to
specific situations [14].

In 2016, Mayvan et al. [15] published a state of the art
on research on design patterns with the goal of presenting
an entry-level summary to those who would seek to enter
the research field. They perform a systematic mapping study
to identify popular research trends, such as commonly used
keywords, most active researchers and venues, and the dis-
tribution of publications by topics. They identify Pattern
Development as the most popular topic, which groups the
introduction of new patterns or pattern variants and catego-
rization of design patterns by field (e.g., mobile applications,
security, etc.).

These studies, and the studies they review, focus mainly
on evaluating the impact of design patterns on object-oriented
software. Many of them compare code that was developed
without the usage of design patterns against code that was
developed with. Others explore alternative design patterns to
respond to specific problems. Our study catalogues language
features used in the literature claiming to improve object-
oriented design patterns implementations, without modifying
their functionality, as well as how these improvements are
measured and the empirical data available.

Figure 1: Implementation example of Factory Method [1]

4. Methodology
To reach our goal and answer our research questions,

we perform a systematic mapping study following similar
practices as introduced by Peterson et al. [16] in their sys-
tematic mapping studies guidelines for software engineering
and executed by Ampatzoglou et al. [11]. Our methodology
also draws from general guidelines on systematic literature
reviews [17, 18].

Our objective is to find language features in research
done to improve OOP design patterns. In particular, we
want to survey the techniques and tools developed to make
these improvements, as well as the measures used to assess
them. We are also interested in understanding the kind of
experiments done to evaluate these tools and techniques. We
want to answer the following research questions:

1. RQ1: What language features have been suggested to
improve design patterns implementations?

2. RQ2: Which design patterns have the most associated
language features suggestions?

3. RQ3: What measures have been used to evaluate the
impact of these language features on design patterns
implementations?

4. RQ4: What experiments have been done on these lan-
guage features?

To answer these questions, we perform a search to find
and select the papers that will be studied in this study. Then,
we ensure that the identified papers are related and offer
answers to the research questions by performing a quality
assessment. Finally, we extract data from the papers and
synthesize it to reach our goal.

To reduce bias as much as possible, we perform the litera-
ture search in multiple databases and gather a large number of
papers, which we then systematically study. We also perform
a snowballing step to include all papers citing or cited by any
paper which is not rejected in the manual sorting, followed by
other snowballing iterations on the resulting set until reaching
a fixed point.

Consequently, we follow these nine steps (as shown in
Figure 2):

W. Flageol et al.: Preprint submitted to Elsevier Page 3 of 20

Figure 2: Flowchart of the steps in our approach

1. Identify keywords for searching for papers.
2. Identify databases for searching for papers.
3. Build a search query and execute it based on the key-

words on each database.
4. Filter the results manually based on the abstract and

keywords.
5. Perform a forward and backward snowballing step

where each paper’s references and papers that refer-
ence it are also considered (manually).

6. Create a form for compiling the data provided by the
papers.

7. Read and compile each paper, removing any paper that
does not provide data for at least one of our research
questions.

8. Interpret the compiled data and answer the research
questions.

4.1. Keywords for the Search Query
Based on our goal, we identify keywords to find papers

potentially providing data to answer our research questions.
These keywords do not encompass all possible synonyms
and are general. For example, we include “object-oriented
programming” as a keyword, but do not add “OOP”, “object-
oriented”, or other synonyms. We add synonyms in Step 4
when we build the database query. We are investigating im-
provements in design patterns, thus we added some keywords
related to weaknesses and anti-patterns. While these could
be seen as unrelated, there is no disadvantage in having a
broader query and unrelated papers will be removed in later
steps of the study.

We identify the following keywords to use for building
the search query: object-oriented programming, design pat-
terns, anti-patterns, weakness, disadvantage, improvement,
enhancement, refinement, better, expand.

4.2. Databases for the Search Query
To perform as large a search as possible, we use multiple

online databases for scientific papers. These databases are
part of an online tool called Engineering Village, hosted by
Elsevier. They contain data from a large number of scientific
journal databases, such as ACM and IEEE. Given the focus

of this study on the GoF design patterns, we consider papers
published between 1995 and 2022.

4.3. Query Building and Execution
We are using only one search engine, thus only one query

is needed. All three of the databases are accessed from El-
sevier Engineering Village Web site [19]. We restrict the
scope of the query to the title, abstract, and keywords of the
papers. We opt to use the more general term “object” (and
then filter manually) instead of the various ways of writing
”object-oriented programming” to avoid accidentally exclud-
ing relevant studies that used a slightly different expression
(e.g., object oriented software).

Through several iterations, we add a large number of key-
word exclusions (“NOT” keywords) to increase the relevance
of the studies and reduce the number of unrelated studies.
We exclude these keywords specifically from the “keywords”
field in the database (meaning the paper should be about these
topics), and not from the abstract (e.g., we are not excluding a
paper because “test” is found in its abstract). The final query
is shown in Table 1. This query yields 874 studies.

The final query results are shown in Table 2. Removing
duplicates is done via a script, as we found the Engineering
Village search engine functionality to remove duplicates was
not accurate. After removing duplicates, we retain 625 studies
for manual filtering.

4.4. Filtering
We manually read the title and abstract of each of these

studies and determine whether the study has potential to
provide data to answer one of our four research questions.
We choose to be conservative in this step and include any
study that could provide data for a research question, even
if remotely. Following quality assessment guidelines [16],
inclusion criteria were applied to the titles and abstracts:

1. Study is in the field of software engineering.
2. Study is related to the improvement of design patterns

and must propose a language feature to do so. (Studies
relating exclusively to measuring the impact of existing
design patterns against non-pattern code are not kept.)

3. Study was published between 1995 and 2022.

W. Flageol et al.: Preprint submitted to Elsevier Page 4 of 20

Query Comments

((oop OR object)
AND (design pattern OR design patterns Must be linked to design patterns
OR anti-pattern OR anti-patterns OR paradigm) Initially, we intended the scope to be broader, but this

shouldn’t impact the final results
AND (weakness* OR disadvantage* OR improve* OR enhance* OR
refine* OR help OR better OR expand*)

Must be about improving or finding weaknesses

WN AB) These keywords are located in abstract text
NOT ((teach* OR learn* OR test* OR modeling OR automated
OR automation OR tool* OR mobile OR optimiz* OR simulation
OR mining OR medical OR bio* OR hardware OR hdl OR parallel*
OR api OR find* OR sql)

These keywords are excluded to avoid papers about learning,
automating, optimizing tools, or other non-related subjects
encountered during the first passes of the query.

WN KY) Excluded keywords must not appear in the keyword field.
NOT ((pattern recognition OR pattern identification OR pattern
detection OR object recognition OR object detection OR feature
extraction OR computer vision OR pattern clustering OR learn-
ing (artificial intelligence) OR image segmentation OR pattern
classification OR data mining OR computer aided design OR for-
mal specification OR image classification OR user interfaces OR
computer simulation OR internet OR image processing OR codes
(symbols) OR image enhancement OR embedded systems OR image
reconstruction OR cameras OR distributed computer systems OR
product design OR artificial intelligence OR iterative methods OR
neural nets OR neural networks OR object tracking OR genetic
algorithms OR classification (of information) OR learning systems
OR mathematical models OR middleware OR internet of things
OR cloud computing OR decision making OR electroencephalog-
raphy OR virtual reality OR risk management OR health care OR
distributed object management OR query processing OR knowledge
based systems) WN KY)

Finally, a large list of expressions was excluded from the
keywords because they tended to be attached to papers
about concepts unrelated to this research.

Table 1
Database Query

Database Results

Compendex 316
Inspec 371
Geobase 13

All databases 700
After de-duplication 625

Table 2
Query Results by Database

Similarly, criteria were used to exclude papers:
1. Study is not related to one or more specific design

patterns.
2. Study is not peer-reviewed.
3. Study is not written in English.
4. Study has no accessible full-text online.
5. Documents that are books or gray literature.
6. Study is a duplicate. (We kept the longer version.)

After this filtering step, 144 papers remain.

4.5. Snowballing
We consider both the references of each study and any

study referencing the said study for each of the 144 studies
yielded by the previous step.

To search for forward references, we use the Scopus
search engine. We apply the same year restriction (1995–
2022) and the same criteria for filtering. After the third
iteration of snowballing, we notice that all of the results are
duplicates of already included studies, so we stop the snow-
balling process. Both the first and second authors of this
study independently perform this step. The second author
was not privy to the research questions being assessed until
the process was done. We consolidate the results afterwards
and address any discrepancies. After eliminating all dupli-
cates, we obtain a total of 157 studies that could provide data
to answer our research questions.

4.6. Compilation Form
To compile the information from the obtained studies

systematically and consistently, we build a form that we fill
out for each study. Our form has the following information:

1. The title of the study.
2. The type of the study (experiment, case study, concep-

tual analysis, literature review, or survey).
3. The study publication venue.
4. The study publisher (or digital source).
5. A list of all design patterns mentioned by the study.
6. A list of all language features proposed by the study to

improve the specified design patterns.

W. Flageol et al.: Preprint submitted to Elsevier Page 5 of 20

7. A list of all measures used by the study to evaluate the
suggested improvements.

8. In the case of experiments, information about the par-
ticipants (number and expertise).

9. In the case of case studies, information about the stud-
ied cases (number and whether or not they are in-vivo
or in-vitro).

After using the form to extract data from the 157 compiled
studies, we remove 123 as they did not provide an answer
to any of our research questions. Many of the studies were
evaluating the impact of existing design patterns, rather than
any improvements, and this does not fit the goal of this study.
(Thus, we remove 123 of the obtained studies, confirming
that we were conservative in our process and likely did not
miss any relevant paper.) We finally obtain 34 studies.

5. Results
We classify the 34 remaining studies in various ways to

answer our research questions. We first perform a general
analysis of the sources (publication venues and publishers)
the papers came from. Finally, we categorize each study into
a type and take a more detailed look at the experiments and
case studies.

Table 3 shows the number of papers for each publication
venue. As we can see, there are a large variety of venues
in our dataset. Some venues show up multiple times, such
as PLoP2, ECOOP, OOPSLA and SAC, but the rest of the
papers all come from different venues. The large variety of
publication venues could indicate that the subject of using
language features to improve object-oriented design patterns
is rather niche and that there is no specific venue for this.

Figure 3 shows the distribution of publication years of the
studies. Interest in the subject seems to have peaked between
2010 and 2016.

Out of the 34 papers, there are 18 conference papers,
11 journal papers, and 5 workshop papers. The full data
collected on each paper, including publishers, is available in
our replication package3.

We extract from each paper any language feature used
to improve object-oriented design patterns. We use a broad
definition of language features. The extracted data is, as
expected, very diverse. Some features are closely related
to specific programming paradigms (e.g., aspect-oriented
pointcuts). Other features are more general and could be
applied in many ways (e.g., mixins). To make sense of this
data and obtain a global view, we create a mind map of these
improvements that can be seen in Figure 4.

In this figure, nodes represent paradigms, paradigm ap-
plications and language features. Colours represent the type
of node. This mind map helps navigate and make sense of
the data. We classified language features into the paradigms
to which they relate the most. However, some features could
fit into multiple categories. When this happened, we clas-
sified the feature according to how it was presented in the

2PLoP entries include EuroPLoP (3 papers) and VikingPLoP (1 paper).
3https://www.ptidej.net/downloads/replications/ist22/

Figure 3: Papers distribution by year

study where it appeared. For example, we found different
studies pertaining to Mixins in the context of both Aspect-
Oriented Programming and Object-Oriented Programming,
thus we added the feature to both paradigms. We explain our
categorization in the following.

Purple nodes represent programming paradigms. We de-
fine a programming paradigm as a set of cohesive features for
linking domain concepts with programming concepts and for
organizing these programming concepts. We identified in our
dataset four main paradigms: Object-oriented Programming,
Functional Programming, Meta-programming and Reactive
Programming.

Green nodes in the mind map represent language features.
We define a language feature as an element of the syntax
or grammar of a programming language that can be used
to express a solution to a problem. For example, classes
are a language feature of object-oriented languages used to
represent real-life categorization of objects and create and
manipulate instances of those objects. In our mind map, we
assigned each language feature found in the studies to its
underlying paradigm.

Table 4 offers a detailed view of the information discussed
in this section. The table contains references to every paper
in the study and can be used to find papers on a particular
language feature or paradigm. We also specify the imple-
mentation languages presented in the papers for each of the
features where available.

5.1. Meta-Programming
Meta-programming is a paradigm allowing programs to

generate or modify their structure (either at compile, load-
time, or run-time). It is possible to effectively implement
new paradigms using Meta-programming, its classification
is slightly different from that of the other paradigms. Di-
rectly under Meta-programming, we classify applications
of Meta-Programming (as yellow nodes). These applica-
tions are specific usage of Meta-programming to create new
languages. For example, we classify Aspect-Oriented Pro-
gramming as an application of Meta-programming because
it modifies the structure of the target program at compile-
time. Meta-programming applications are paradigm exten-
sions to a target language, rather than stand-alone paradigms.
For example, Krishnamurthi et al. [S34] use the MzScheme
language’s meta-programming capabilities to implement Zo-

W. Flageol et al.: Preprint submitted to Elsevier Page 6 of 20

Publication Venue [# Papers]
Conference on Pattern Languages of Programs (PLoP) [4 papers]
European Conference on Object-Oriented Programming (ECOOP) [2 papers]
Special Interest Group on Programming Languages (SIGPLAN) [2 papers]
Symposium on Applied Computing (SAC) [2 papers]
Computer Languages, Systems & Structures [1 paper]
International Conference on Advanced Communication Control and Computing Technologies (ICACCCT) [1 paper]
International Conference on Computer Science and Information Technology (CSIT) [1 paper]
International Conference on Informatics and Systems (INFOS) [1 paper]
International Conference on Objects, Components, Models and Patterns [1 paper]
International Conference on Software Engineering Advances (ICSEA) [1 paper]
International Conference on Software Technology and Engineering (ICSE) [1 paper]
International Conference on Systems, Programming, Languages and Applications: Software for Humanity [1 paper]
International Journal of Software Engineering and Knowledge Engineering [1 paper]
International Journal of Software Innovation [1 paper]
International Symposium on Foundations of Software Engineering (FSE) [1 paper]
International Workshop on Context-Oriented Programming [1 paper]
Journal of Object Technology [1 paper]
Journal of Software [1 paper]
Journal of Systems and Software [1 paper]
Journal of the Brazilian Computer Society [1 paper]
Lecture Notes in Computer Science [1 paper]
Second Eastern European Regional Conference on the Engineering of Computer Based Systems [1 paper]
Software Engineering and Knowledge Engineering (SEKE) [1 paper]
Software Technology and Engineering Practice (STEP) [1 paper]
Software: Practice and Experience [1 paper]
Workshop on Aspects, components, and patterns for infrastructure software (ACP4IS) [1 paper]
Workshop on Generic Programming (WGP) [1 paper]
Workshop on Reuse in Object-Oriented Information Systems Design [1 paper]

Table 3
Publication Venues

Paradigm Language Feature Papers # papers Language

Functional Programming Case Classes [S1] 1 Scala
Functional Programming Closures [S2, S3] 2 Haskell
Functional Programming Immutability [S4] 1 Scala
Meta-Programming AOP Annotations [S5, S6] 2 Java
Meta-Programming AOP Mixins [S7, S8] 2 Java
Meta-Programming AOP Join-point [S9, S10, S11, S12, S13,

S14, S15, S16, S17, S18,
S19, S20, S21, S22, S23,
S24, S25]

17 Java

Meta-Programming Layer Objects [S26] 1 Pseudo-Java
Meta-Programming Pattern Keywords [S27, S28] 2 Java
Meta-programming Reflection [S29, S30, S31] 3 Java
Object-Oriented Programming Chameleon Objects [S3] 1 N/A
Object-Oriented Programming Class Extension [S12] 1 Java
Object-Oriented Programming Default Implementation [S3] 1 N/A
Object-Oriented Programming Extended Initialization [S3] 1 N/A
Object-Oriented Programming Mixins [S3, S4, S32] 3 Java, Scala
Object-Oriented Programming Multiple Inheritance [S4] 1 C++
Object-Oriented Programming Object Interaction Styles [S3] 1 N/A
Object-Oriented Programming Subclassing members in a subclass [S3] 1 N/A
Reactive Programming Signals [S33] 1 Scala

Table 4
Summary of papers on language features for improving design patterns implementations

W. Flageol et al.: Preprint submitted to Elsevier Page 7 of 20

Figure 4: Mind map of paradigms, languages, and features for
improving design patterns

diac, an extension to the language combining features from
Object-Oriented Programming and Functional Programming
to implement the Visitor pattern.

5.1.1. Aspect-Oriented Programming
Aspect-Oriented Programming (AOP) is a paradigm ex-

tension to procedural programming that was introduced in
1997 by Kiczales et al. [6]. The goal of AOP is to increase
modularity by encapsulating cross-cutting concerns into code
units called Aspects. Aspects are a language construct simi-
lar to classes in OOP. OOP/AOP implementations, like As-
pectJ [20], are the most popular in the literature, even though
the original study did not associate AOP directly to OOP.

AOP works by making changes to the structure of the
program at specific points. For example, it is possible to
create an aspect which adds logging functionality to every
method of a given class. Thus, with AOP, it is possible to
extract recurring functionality to encapsulate them in aspects

and avoid cluttering classes with unrelated, or cross-cutting,
concerns.

Among the primary studies, we found three main imple-
mentations of AOP within OOP. The most common imple-
mentation [S9, S10, S11, S12, S13, S14, S15, S16, S17, S18,
S19, S20, S21, S22, S23, S24, S25] uses pointcuts and ad-
vices (also called the join-point model) to modify existing
classes. Consider the following pointcut4:

pointcut setter(): target(Point) &&

(call(void setX(int)) ||

call(void setY(int)));

This pointcut designates every location where a method
named setX or setY, with a single argument of type int and
a return value of void, is called on an instance of the class
Point.

The second part of this model is the advice, which des-
ignates the code inserted at every location referenced by the
pointcut. Advices typically take the form of a regular method
of the extended language, with the exception that it is usually
decorated with a keyword such as after, before, or around,
which dictates where the advice should be inserted relative
to the pointcut.

The example shown is unrelated to design patterns imple-
mentations, since using AOP to implement design patterns
typically involve multiple files and many lines of code, which
would make it more difficult to see the important features of
the paradigm.

Hannemann and Kiczales [S12] present a full implemen-
tation of every design patterns using AspectJ and compare
them to Java implementations. They reported that they could
remove many code duplications. For example, in the case
of Observer, they extract the record-keeping of the observer
list, as well as the add and detach methods, into an abstract
aspect named ObserverProtocol.

AOP can be implemented in a different way using code
annotations [S5, S6]. This approach is similar to the join-
point model, replacing the pointcuts with annotations. This
approach is used by the C# framework PostSharp [21]. Us-
ing this framework, one could implement Microsoft WPF
INotifyPropertyChanged interface, which is an implementa-
tion of the Observer pattern, with the following annotation5:

[NotifyPropertyChanged]

public class Person

{

public string FirstName { get; set; }

public string LastName { get; set; }

public Address Address { get; set; }

}

Using this approach, Giunta et al. [S5] and Jicheng et
al. [S6] create annotations to represent the Factory Method,
Observer, and Singleton design patterns.

4https://www.eclipse.org/aspectj/doc/released/progguide/language-
joinPoints.html

5https://www.postsharp.net/postsharp

W. Flageol et al.: Preprint submitted to Elsevier Page 8 of 20

Yet another implementation of AOP uses mixins or an
equivalent feature. Kuhlemann et al. [S7] use Jak, a Java lan-
guage extension that combines classes and mixins, to achieve
similar functionality to AspectJ. They implement every de-
sign pattern in Jak and compare their implementations to
AspectJ implementations [S12]. They conclude that Jak has
better support for modularizing cross-cutting concerns, but
that the extension should be complementary to AspectJ. Ax-
elsen et al. [S8] propose the concept of Package Templates to
implement the Observer pattern and compare it to an AspectJ
implementation. Package Templates function like module
mixins (at the package level) in that they can introduce (gen-
erate) new classes, methods and attributes when used. They
showed that their approach provides a sufficiently powerful
framework to implement design patterns with minimal AOP
mechanism compared to the join-point approach.

5.1.2. Layer Objects
Springer et al. [S26] present the concept of Layer Objects

to implement the Decorator, Observer, and Visitor design
patterns using Context-Oriented Programming, which allows
changing the behaviour of objects based on scope (or context).
A Layer Object can be activated (e.g., with the with keyword)
within a specific scope, and will override the behaviour of
specified classes within that scope. They present examples
implemented in a Java-like pseudo-code.

With this feature, it is possible to add behaviour to an
existing object (as per the Decorator pattern). For example,
if we had a Field class, representing a tile in a game and
wanted to add a “burning” by which a player takes damage
when entering the field, the BurningFieldDecorator could be
implemented as such:

class Field {

def enter(player) {

// Do something when a player enters the field.

}

}

class BurningFieldDecorator {

def damage = 15;

def Field.enter(player) {

player.health -= thisLayer.damage;

proceed(player);

}

}

// Usage example

def decorator = new BurningFieldDecorator();

field.activate(decorator);

5.1.3. Pattern Keywords
Some studies opted for introducing design patterns di-

rectly. Ghaleb et al. [S27] propose integrating Decorator,
Observer, and Singleton as keywords. For example, a Single-
ton could be declared like this:

public singleton class A

{

instantiate A as s1;

public static void main(String[] args)

{

instantiate A as s2, s3;

}

}

The singleton keyword marks the class A as a Single-
ton, of which its unique instance can be obtained using the
instantiate keyword.

Zhang and Oliveira [S28] do something similar with the
Visitor pattern by introducing EVF. EVF is a framework
to implement Visitors in Java. It introduces new keywords
in the form of annotations (such as @Visitor) to create data
structures with internal or external visitors.

Adding keywords to a language to directly support design
patterns requires either the use of Meta-programming or the
creation of language extensions or domain-specific language.
Unlike the approach presented by Krishnamurthi et al. [S34],
where they used themacro feature ofMzScheme to implement
Zodiac, an extension to the language for implementingVisitor,
the studies presented under this feature used third-party tools
to add keywords to Java. The effect, however, is the same
as if they had used macros to create these keywords (which
Java does not support). Whether design patterns should be
language features is however debatable [22].

5.1.4. Reflection
Reflection is an application of meta-programming. It

allows developers to manipulate the data structures at run-
time. For example, one could add a newmethod to an existing
class, change the type of an attribute, etc. Unlike macros or
Aspect-Oriented Programming, Reflection typically does not
allow modifying code directly (e.g., inserting lines of code in
themiddle of amethod). Reflection is available inmainstream
programming languages like Java and C#.

Fortuin [S29] uses Reflection to implement the Abstract
Factory pattern in Java. They use a static method that, based
on the given arguments, constructs an object by accessing the
proper class constructors and passing the arguments using a
hashtable.

Mai and Champlain [S30] and Hussein et al. [S31] use
Reflection to implement the Visitor pattern to overcome the
limitation of Java of only supporting single dispatch (as dis-
cussed in Section 5.3.1 about Case Classes). Mai and Cham-
plain [S30] defined a findMethod method that gets the correct
Visit method on the visitor object. Reflection could also
be used to automatically implement accept methods on the
target, removing the cross-cutting concern from the visitable
object.

5.2. Reactive Programming
Reactive Programming [S33] is a design paradigm which

addresses asynchronous programming logic, especially con-
cerning value updating and change propagation. It can be

W. Flageol et al.: Preprint submitted to Elsevier Page 9 of 20

combined with Functional and Object-Oriented Program-
ming to facilitate dealing with problems related to data up-
dating (the same kind of problems targeted by the Observer
design pattern). Scala offers libraries such as REScala [23]
and Scala.react [24] to enable reactive programming in the
language.

5.2.1. Signals
Signals are a feature of Reactive Programming that al-

lows expressing dependencies among values [S33]. When a
dependency of a signal changes, the expression defined by the
signal is automatically recomputed from the new values of the
dependencies. This functionality is similar to the Observer
pattern. For example, take the following Scala code:

val a = Var(1)

val b = Var(2)

val s = Signal{ a() + b() }

println(s.getVal()) // 3

a() = 4

println(s.getVal()) // 6

When the value of variable a changes, so does the value of
signal s. Thus, support of Signals and Reactive Programming
in a language renders the Observer pattern obsolete.

5.3. Functional Programming
Functional Programming is a paradigm that uses pure

functions to assemble higher-order functions (i.e., functions
that receive other functions as arguments, such as map, re-
duce, etc.) to create programs. We classified studies that
used features related to this paradigm: case classes [S1] (also
called pattern matching), closures [S2, S3], and immutabil-
ity [S34]. We admit that immutability is less of a feature
and more of a property, but it is a property of pure function
and functional languages usually support and sometimes en-
force immutability. Immutability can also affect how design
patterns are implemented [S34], which is why we chose to
include it here.

5.3.1. Case Classes
Case Classes, also known as pattern matching, are a fea-

ture of functional programming languages. In Scala, Case
Classes are used to create sets of classes that can be distin-
guished using the match keyword. Oliveira et al. [S1] use
Scala to present many variations of the Visitor design pat-
terns, as well as a library to use them. They use Case Classes
to implement the accepting mechanism of this design pattern.
They then use pattern matching to distinguish the different
types to visit. Using their library, it is possible to implement
the Visitor design pattern:

// Visitor structure for a Binary Tree.

trait Tree {

def accept[R] (v :TreeVisitor[R]):R

}

case class Empty extends Tree {

def accept[R] (v :TreeVisitor[R]):R = v.empty

}

case class Fork (x :int,l : Tree,r: Tree) extends Tree {

def accept[R] (v :TreeVisitor[R]):R =

v.fork (x,l,r)

}

trait TreeVisitor[R] {

def empty :R

def fork (x : int,l :Tree,r: Tree):R

}

// Concrete implementation of visitor to calculate

// the depth of the Tree.

def depth = new CaseTree [External,int] {

def Empty = 0

def Fork (x : int,l :R[TreeVisitor],r:R[TreeVisitor]) =

1+max (l.accept (this),r.accept (this))

}

This implementation does not require both accept and
visit methods usually present in the Visitor implementation.
They only implement an accept method.

5.3.2. Closures
Closures are the main feature of the Functional Program-

ming paradigm. A Closure is an encapsulation of behaviour
and data, much like Classes are in OOP. Unlike Classes, a
Closure only encapsulates one function and its data cannot
be directly accessed from outside the closure (with some
exceptions). Closures are supported by most modern lan-
guages, such as Java, C#, C++, Python (with some caveats),
JavaScript, Kotlin, etc. In most languages, Closures are cre-
ated using some kind of lambda syntax such as :

var i = 42

var closure = (argument) => {

// Some code which can use the i variable.

}

Gibbons [S2] present advanced uses of the map, fold, and
other standard FP methods in Haskell. They discuss func-
tional implementations of the Composite (using recursive
data structures), Iterator (using map), Visitor (using fold),
and Builder (using unfold) design patterns.

Compared to Closures, the Command design pattern has
the advantage of being able to expose its data to the outside
world if needed, allowing some degree of control over the be-
haviour of the object. Batdalov and Nikiforova [S3] propose
to replace conventional functions with a generalization of the
Command design pattern. Every function or method would
become a Functor (an object with a single public method)
and would make usage of the Command pattern obsolete.

5.3.3. Immutability
Immutability is a property of many Functional Program-

ming languages. The Haskell language enforces immutabil-
ity, which in turn makes the use of certain functional design
patterns, such as monads, ubiquitous in the language.

W. Flageol et al.: Preprint submitted to Elsevier Page 10 of 20

Immutability has an effect on design patterns implemen-
tations. For example, we stated above that the Command
design pattern is similar to Closures, with the exception that
it can expose its internal data and mutators. In an immutable
context, this advantage becomes unconsequential as the ex-
posed data could not be interacted with in any significant
way. In an immutable context, Closures make the Command
pattern obsolete.

Sakamoto et al. [S4] present two variations on the State
design pattern implemented using Scala. One of these is
the Deeply Immutable State pattern, which makes use of the
immutability features of Scala (such as the ability to easily
clone Type Classes whilemodifying certain attributes, similar
to Record Updating in OCaml6) for its implementation.

5.4. Object-Oriented Programming
Object-Oriented Programming is a paradigm that uses

four general features to organize code: encapsulation, ab-
straction, inheritance, and polymorphism. Features classified
under this paradigm directly affect OOP or require it to func-
tion. For example, the Chameleon Objects [S3] feature allows
objects to dynamically change class. This requires and af-
fects classes and objects, features which are directly related
to OOP.

5.4.1. Chameleon Objects
Chameleon Objects is a feature proposed by Batdalov and

Nikiforova [S3] to help with the implementation of the State
and Factory Method design patterns. The feature allows an
object to change class at runtime. While no language was pre-
sented in Batdalov and Nikiforova’s paper, some languages
allow such change already (e.g., Common Lisp, Perl). With
this feature, it is possible to implement the State pattern by
changing the class of an object when it changes state. The
same feature could be used to allow a class constructor to
change the instantiated object class depending on its argu-
ments, effectively implementing a Factory Method.

In Common Lisp, a class can be changed using the fol-
lowing simple line:

(change-class target-object target-class)

The same can be achieved in Perl with the bless keyword:

bless $targetObject, 'Package::TargetClass';

5.4.2. Class Extension
Hanneman and Kiczales [S12] use AOP to implement

design patterns using different features of AspectJ for differ-
ent patterns. For Adapter, Bridge, Builder, Factory Method,
Template Method, and Visitor, they specifically use the open
class feature of AspectJ, which allows classes to be extended
with new methods and attributes outside of their declaration
(at compile-time).

With class extensions, it becomes possible to encapsulate
duplicated code from a design pattern implementation into an
extension. For example, we could extract the accept method

6https://dev.realworldocaml.org/records.html

of the Visitor pattern into a class extension, effectively allow-
ing a Visitor-free implementation to exist independently of
its pattern implementation.

5.4.3. Default Implementation
Default Implementation is a feature proposed by Batdalov

and Nikiforova [S3]. It allows abstract classes to specify a de-
fault concrete implementation. This feature is similar to how
the Abstract Factory pattern is implemented in Dependency
Injection frameworks, such as Spring7. Beyond Abstract
Factory, the authors argue this feature would help imple-
mentations of the Builder, Bridge, Command, and Strategy
patterns.

5.4.4. Extended Initialization
Extended Initialization is a feature proposed by Batdalov

and Nikiforova [S3] to help with the implementation of the
Builder and Fatory Method patterns. This feature would
allow object creation to be divided into multiple steps (effec-
tively achieving the same functionality as the Builder pattern
and rendering it obsolete).

5.4.5. Mixins
While we already introduced Mixins in the context of

Aspect-Oriented Programming in Section 5.1.1, this feature
can be used separately from AOP. Mixins are an extension
of the OOP paradigm to combine classes together. Unlike
inheritance, Mixins do not enforce an “is-a” relationship
between the individual classes.

Burton and Sekirinski [S32] present implementations of
the Decorator, Proxy, Chain of Responsibility, and Strategy
design patterns using Mixins in Java. For example, a Decora-
tor may be implemented by combining the Decorator with
the target class, as such:

class Component { Operation(); }

class ConcreteComponent implements Component { ... };

class DecoratorMixA implements Component

needs Component

Operation() { ... Component.Operation() };

class DecoratorMixB implements Component

needs Component

Operation() { ... Component.Operation() };

// Usage

class Client {

main() {

ConcreteComponent cc =

new ConcreteComponent with DecoratorMixA;

extend cc with DecoratorMixB;

cc.Operation();

}

}

7https://spring.io/

W. Flageol et al.: Preprint submitted to Elsevier Page 11 of 20

The authors declared that both decorators are of type
Component but also require a concrete instance of Compo-
nent as a Mixin. In the usage section, they mix the concrete
instance ConcreteComponent with the DecoratorMixA class, and
then extend it with DecoratorMixB, effectively creating an ob-
ject which is a combination of all three classes.

Sakamoto et al. also use Mixins in their implementation
of the State pattern in Scala. Batdalov and Nikiforova [S3]
propose a concept of Responsibility Delegation, which would
allow a class to delegate a part or all of its responsibility to an-
other class (perhaps similar to the DoesNotUnderstand method
in Smalltalk), achieving a behaviour similar to Mixins.

5.4.6. Multiple Inheritance
Many OOP languages only support single inheritance.

This led to the introduction of interfaces to circumvent the
limitation of an object only being able to be part of one
hierarchy. Interfaces, however, do not typically allow reuse.

Some design patterns have duplicated code that we could
factor into another class, to reduce code duplication and cross-
cutting concerns. For example, one could extract the book-
keeping logic of the Observer pattern into another class and
have observable objects inherit that class. However, in a
single-inheritance context, this would “hijack” the only in-
heritance possibility for the observable object.

Sakamoto et al. [S4] present an implementation of the
State design pattern in Java (using single inheritance) and
C++ (using multiple inheritance). They evaluated that the
Java implementation has code duplication, while the C++
implementation does not.

5.4.7. Object Interaction Styles
Object Interaction Styles is a feature proposed by Bat-

dalov and Nikiforova [S3] to help with the implementation
of the Proxy, Observer, and Facade patterns. They would al-
low different ways of interacting with objects through method
calls. The default interaction style is synchronous calls, where
a caller awaits the result of the method before continuing to
the next instruction. Other interaction styles include asyn-
chronous request/response, broadcast, and publish/subscribe.
An example of this would be the async syntax in C# and
JavaScript.

5.4.8. Subclassing Members in a Subclass
Batdalov and Nikiforova [S3] propose that OOP lan-

guages allow subclassing a member in a subclass to help
with the implementation of the Template Method and Visitor
patterns. A subclass may redefine one of its members by
restricting its class.

To understand this feature, let us take the example from [S3]
about Android development. Take the following pseudocode:

class Activity { ... }

class Fragment {

...

Activity getActivity() { ... }

}

If we wanted to subclass Activity into a new class MyActi-
vity and Fragment into MyFragment, we would end with the
following subclasses:

class MyActivity extends Activity { ... }

class MyFragment extends Fragment {

...

Activity getActivity() { ... }

}

However, if we knew the getActivity method of MyFrag-
ment could ever only return instances of MyActivity, we could
not make the change, as the interface of the parent class
Fragment requires this method to return the type Activity.

The proposed feature would allow us to make that change.
The feature does not violate covariance or contravariance but
could be considered unsafe in some cases [25].

5.5. Design Patterns
For each primary study, we extracted the design patterns

for which improvements were suggested. Figure 5 shows the
distribution of the number of studies by design pattern. As
discussed in Section 4, we only considered patterns from the
GoF book [1].

Figure 5 shows researchers’ interest in design patterns.
We notice that some patterns are more prevalent than others
in our dataset. In particular,Observer, Visitor, andDecorator
receive the most attention from researchers.

If we look at the number of features associated with each
pattern, Observer and Visitor also come on top, but there
is an interesting relationship at play here. While Observer
has received overwhelmingly more attention from papers
(20 papers against Visitor 13), they have the same number
of associated features. Also, they have a similar amount of
papers focusing solely on them ([S8, S9, S13, S14, S17, S33]
for Observer and [S1, S23, S28, S30, S31, S34] for Visitor).
Other patterns have very few papers that address only them.
The only other two are Abstract Factory [S29] and State [S4].

5.6. Measures
We extracted the different measures used in the studies

to compare the suggested improvements to design patterns to
the classical implementations. Some studies did not measure
or compare their implementation and were demonstrations
of new language features or of a language extension. We
observed 39 different measure names.

Somemeasures are more prevalent than others to measure
improvements. The top ten measures are related to the usage
of inheritance (DIT), coupling and cohesion (CBC, LCOO),
concern diffusion (CDC, CDLOC, CDO), code size (LOC,
NOA, WOC), and reusability. This matches the stated goal
of design patterns [1].

Most of these measures (DIT, CBC, LCOO, LOC, WOC)
come from the Chidamber andKemerer suite ofmeasures [26].
Concern diffusion measures relate to measuring improve-
ments from Aspect-Oriented Programming regarding cross-
cutting concerns [S11].

W. Flageol et al.: Preprint submitted to Elsevier Page 12 of 20

Figure 5: Number of papers by design pattern

Many of the other measures are unique to only one paper.
For example, Teebiga and Velan [S10] use a measure they call
lines of class code (LOCC), which they attribute to Ceccato
and Tonella [27]. LOCC measures the number of lines of
code within classes (as opposed to within aspects). The
measure is similar to the number of lines of code (LOC), but
the context in which it is used (i.e., to differentiate between
aspect and class code) is different enough that we opted to
classify it as its own entry.

Most of the measures extracted are used in AOP studies.
The results presented by the studies were mixed. In general,
AOP implementations of design patterns show smaller code
size (LOC and NOA), a decrease in concern diffusion (CDC,
CDO, CDLOC) and an increase in cohesion (LCOO) [S10,
S11, S12, S20, S21, S24, S25]. However, some studies report
AOP pattern implementations with increased code size and
higher complexity (WOC) [S11, S24]. One study by Giunta
et al. [S15] compared the execution time of AOP design
patterns implementations to classical implementations and
found that AOP implementations tend to be slightly slower.
Note that despite DIT being the most popular measure, re-
sults in most studies showed no difference between the AOP
implementations and the classical implementations.

Only three non-AOP papers make use of any measure at
all [S4, S28, S33].

Zhang and Oliveira [S28] use lines of code to compare
various Visitor implementations. They unsurprisingly find
that the version using a Pattern Keyword, via annotations,
has a smaller code size.

Salvaneschi et al. [S33] ask participants to answer specific

questions to test their comprehension of Reactive Program-
ming. They then measure their correctness in answering the
questions (score of the participants on the task), their com-
prehension of the code (time required to complete the task)
and the skill floor (a correlation between measured program-
ming skill and performance during the task). They find no
significant relationship with regards to comprehension and
skill floor but find that the correctness of the participants is
increased in the group analyzing code programmed using
Reactive Programming.

Sakamoto et al. [S4] compare the amount of duplicated
code and the number of classes and coupling between im-
plementations of the State patterns. They find that using
Multiple Inheritance to implement the pattern reduced the
amount of code duplication and that using mixins reduced
both code duplication and the number of classes and relations.

The other non-AOP papers were descriptive studies pre-
senting a new feature without any comparison. They argued
improvements in an informal way.

5.7. Experiments and Participation
We extracted out of the papers those that were case studies

and experiments to answer our fourth research question: What
experiments have been done on these language features?

We found 10 case studies and only one experiment out
of the 34 studies in our data. The case studies compare a
new feature against established OOP implementations. Case
studies can be divided based on the source of their subjects:
either in-vivo or in-vitro. In-vivo case studies are done on
already-existing software, often available online as open-

W. Flageol et al.: Preprint submitted to Elsevier Page 13 of 20

source projects. In-vitro case studies are done on software
made specifically for the case study. Every case study in our
analyzed studies was in-vitro because there are not many (if
any) opportunities to find projects developed by third parties
using new tools or methods proposed by a paper.

We found only one study that performed a controlled
experiment. Salvaneschi et al. [S33] performed an empirical
experiment on program comprehension of design patterns
using reactive programming with 38 undergraduate students
(which we discuss in Section 5.6).

These findings mean that there was no study involving
practitioners (e.g., professional developers). The only ex-
periment used students and every case study used a project
developed in-vitro. We interpret this fact to mean that most of
the new features proposed have not been extensively tested.

6. Discussion
6.1. Language Features

Our first research question is: What language features
have been suggested to improve design patterns implementa-
tions?

We extracted 18 features from 34 selected papers. These
features range across a variety of programming paradigms and
improve design patterns implementations in various ways.

Many of these features (7 out of 18) were implemented
as extensions to Java. In general, Java seems to be the most
popular language to discuss improvements in design patterns.
The next most popular language seems to be Scala, which is
another JVM language, most often used to discuss functional
programming features. Even when using dynamically-typed
pseudo-code, Springer et al. [S26] describe it as "Java-like",
even though to us it looks more like Python with brackets.
There seems to be a prevalence of Java in design patterns and
OOP research, which may be a concern because Java does not
represent every OOP language, and many features available
in other OOP languages, such as C#, Common Lisp, Kotlin,
and Smalltalk, are not available in Java.

Most features stem fromMeta-programming applications,
which modify or insert code into OOP software. Features
like Reflection and Pattern Keywords are used to reduce the
amount of code duplication and code size of design patterns.
It is not surprising that Meta-programming is a popular tool to
address code duplication and size, as one of its main strengths
is the ability to factor out code and remove duplication.

Aspect-Oriented Programming is a major part of the
Meta-programming features. AOP and Layer Objects, while
also reducing code duplication, focus on reducing cross-
cutting concerns in design patterns [S12]. Despite AOP being
a language and paradigm-agnostic feature (the original paper
was presented using Common Lisp [6]), every paper in our
dataset discusses it using various Java extensions. While
there are solutions which borrows from AOP in other lan-
guages, such as the PostSharp library in C#, the paradigm
itself does not seem to have gained much traction in other
languages.

Some studies also presented domain-specific languages

added on top of an existing language, such as Zodiac, an
extension ofMzScheme used to implement the Visitor pattern
[S34].

Many features were also suggested to extendOOP. Chame-
leon Objects allow changing the class of an object at runtime.
Mixins allow combining multiple classes together to facilitate
reuse through composition. Multiple Inheritance solves some
issues with code duplication by allowing multiple sources of
reuse. Code reuse in pure OOP is usually limited to inheri-
tance and subtyping mechanisms, so naturally, the features
suggested interact with these mechanisms.

Some features come from Functional Programming. Case
Classes in Scala are an implementation of pattern matching,
which can be used to circumvent the issues of single dispatch
languages and facilitate the implementation of the Visitor
pattern. The feature has been gaining popularity of late, being
added to existing languages such as C# and Java in the form
of Records.

Closures are another functional feature that has been im-
plemented in many OOP languages, such as Java, C++, and
C#, but also part of older languages, such as Smalltalk (code
blocks) and Common Lisp. They can make the implemen-
tation of many design patterns easier by storing behaviour
as values. It is interesting, and telling, that the feature was
already included in Smalltalk, one of the originators of OOP,
but was then excluded from later implementations of the
paradigm in Java and C++, only to be added back to these
languages later.

Immutability, when combined with other features such
as Closures, can render certain patterns obsolete (e.g., Com-
mand) and simplify the implementation of others (e.g., State).
Patterns that are built around the idea of encapsulating chang-
ing state are made much simpler when state changes are
eliminated entirely.

Finally, Signals and Reactive Programming have been
created to solve the same underlying problem as the Ob-
server pattern. Managing events and changes in a program is
a common concern. Especially in GUI development, many
platforms propose different approaches to this concern. Some,
like Java Swing, make use of the Observer pattern. Others,
like Microsoft WPF, propose a system based on the Com-
mand pattern. Reactive Programming incorporates change
management at the language level.

Research Question #1

What language features have been suggested to im-
prove design patterns implementations?
We catalogued 18 language features used to improve
design patterns implementations. Meta-programming
features are the most suggested, with many studies
have written about Aspect-oriented Programming.
However, our timeline analysis suggests that AOP
is not as prevalent nowadays and that Functional Pro-
gramming features are becoming more and more pop-
ular.

W. Flageol et al.: Preprint submitted to Elsevier Page 14 of 20

6.2. Design Patterns
The second research question is RQ2: Which design pat-

terns have the most associated language features sugges-
tions?

Our data indicate that some design patterns are more
prevalent than others as targets for improvement. Some pa-
pers include every 23 GoF design patterns in their study (3
papers), but most analyze specific patterns.

We observe that the most prevalent patterns to improve
are the Observer, Visitor, and Decorator design patterns. We
could interpret pattern prevalence in different ways. Perhaps
these patterns are those that have the most obvious flaws, and
that is why many papers propose features to improve them.
We thought perhaps the most prevalent patterns in research
would also be the most used in practice, but that does not
seem to be the case. Observer may well be the most used
pattern of all, but it would be difficult to argue that Visitor is.

The fact that Observer and Visitor are the most prevalent
patterns, that they have the most associated language features,
and that they have the most papers focusing solely on them
would indicate that the underlying problems these patterns
are solving are of great interest to OOP.

In the case of Observer, there is a need in software sys-
tems for controlling data flow and change propagation. The
Observer pattern as described in the GoF book [1], however,
comes with some limitations. As discussed in Section 5.4.6
about Multiple Inheritance, the Observer implies duplica-
tion that cannot be easily abstracted using inheritance. It
also has cross-cutting concerns [6, S12] because it requires
the observed object to know and manage its observers. The
proposed language features improve on these aspects.

In the case of Visitor, modern programming languages
(such as Java, C++, and C#) lack support for dynamic dis-
patch on function parameters. In OOP, dynamic dispatch is
only supported on the object on which a method is invoked
(allowing the use of polymorphism). Some languages, such
as the Common Lisp Object System (CLOS), support both
OOP and dynamic dispatch on function arguments, effec-
tively allowing multiple dispatch. In such languages, the
visitor pattern becomes trivial as there is no longer any need
for the accept/visit mechanism.

Most of the solutions proposed a way to circumvent the
lack of dynamic dispatch on function arguments through
the use of Reflection, Case Classes (pattern matching), or
Aspects. Many studies propose ways to make the implemen-
tation of the Visitor easier by integrating it into the language
using aspects [S12], factoring its complexity using reflec-
tion [S30, S31], or simplifying it using pattern matching [S1].

Research Question #2

Which design patterns have the most associated lan-
guage features suggestions?
Research done to improve design patterns seems to
favour specific patterns. Observer, Visitor, and Deco-
rator (in order of appearances) are most often studied.

In particular, Observer and Visitor appear to stem
from a lack of language support of certain features
(such as propagation of change and dynamic argument
dispatch).

6.3. Measures
For the third research question, RQ3: What measures

have been used to evaluate the impact of these language fea-
tures on design patterns implementations?, we extracted the
measures used by each paper and looked at their distribution.

Themeasuresmost often usedwere those related to reusabil-
ity. In particular, two sets of measures were prevalent: the
CK measures [26] and AOP-related measures [S11].

Most of the papers with measurements and comparisons
were related to AOP. Most non-AOP papers were descriptive
studies and offered no measurement or comparison of the
performance of their proposed features.

For AOP papers, measure results were mixed. While
many AOP implementations showed improvements with re-
gard to concern diffusion, cohesion, and code size, some
studies reported increased code size and higher complexity.
Non-AOP papers showed more straightforward results, with
reduced code size for Pattern Keywords, reduced code du-
plication for Multiple Inheritance and Mixins, and improved
understandability for Reactive Programming.

The measures most used indicate that design patterns
may be a source of complexity and that maintainability and
understandability could be improved by making their imple-
mentation simpler using certain language features. There is
also a concern about concern diffusion in design patterns.
For example, the objects involved in the Visitor pattern have
the added concern of being part of the pattern (i.e., having
Visit or Accept methods). Some studies propose to extract
this concern from the involved objects and abstract it into its
own unit (e.g., an aspect).

Research Question #3

What measures have been used to evaluate the im-
pact of these language features on design patterns
implementations?
The measures most often used in the literature to eval-
uate improvements to object-oriented design patterns
are measures related to maintainability and under-
standability, especially those proposed by Chidamber
and Kemerer [26]. AOP-related papers also add mea-
sures related to concern diffusion, or cross-cutting
concerns.

6.4. Empirical Studies
Our final research question concerns empirical studies:

RQ4: What experiments have been done on these language
features?

Most of the studies in our dataset are descriptive studies
(23 papers) proposing or explaining a new feature or lan-

W. Flageol et al.: Preprint submitted to Elsevier Page 15 of 20

guage extension. These typically do not offer concrete data
to compare the new features with existing approaches.

There are also 10 case studies in our dataset. Every case
study on the subject is done in-vitro, with the studied subjects
created specifically for the case study. It would be difficult to
find software “in the wild” using new features just proposed
by a scientific paper. Because in-vivo case studies are im-
practical, controlled experiments are important to evaluate
the effectiveness of new technology.

We only found one experiment done on evaluating im-
provement to design patterns implementations with 38 un-
dergraduate students. As mentionned above and in Section
5.7, there is a clear need for more empirical experiments to
evaluate the effects of proposed new features on design pat-
terns implementations and on object-oriented development in
general. In general, practitioners’ participation was lacking.
While experiments on students have their advantages, experi-
ments should also be done on professional developers to gain
better insight into the impact that the proposed features have
on development.

Research Question #4

What experiments have been done on these language
features?
Most of the studies are descriptive studies without
comparison data. There are also many in-vitro case
studies, with a lack of studies done on professional
projects developed independently. We found only one
experiment, which used student participants.

7. Recommendations
We list below notable or interesting findings and add our

recommendations for future work.
Meta-programming features seem the most prevalent to

implement new features to potentially improve OOP design
patterns implementations. The past prevalence of the AOP
paradigm indicates that it had good potential for improving
OOP design patterns. Perhaps the introduction of another
layer of complexity (i.e., aspects and the popular join-point
mechanism used by AspectJ) on top of the OOP rebuked de-
velopers from adopting the paradigm. While AOP popularity
has faded in recent years, it may still be of some use as a
comparison point for new methods or improvements.

Meta-programming in general offers the possibility to
extend languages by adding new features without the need
for external tools. While some features have been prevalent
in mainstream languages, such as Reflection in Java and C#,
many Meta-programming features are absent in mainstream
languages. For example, Lisp-style macros, allowing the
effective addition of new keywords within a language, are
seldom seen in modern languages.

While we found few works that used Functional Program-
ming to improve OOP design patterns, the popularity of func-
tional programming appears to be on the rise. As more func-
tional programming features are added to OOP languages, it

would be interesting to study how we can use those features
to improve OOP design patterns. There certainly seems to
be a trend in recent years to try to fuse OOP and FP together.
We believe the impact of this is worth studying.

Most existing research seems to favour specific design
patterns. Observer, Visitor, and Decorator were studied
much more often than others. Thus, we have more data on
approaches to improve the implementation of these specific
patterns. Some design patterns only appear in studies con-
cerned with all 23 GoF patterns (most likely for the sake
of completeness). It would be interesting to study the less
prevalent patterns to understand what kind of approaches
would specifically improve those. Each design pattern solves
a recurring design problem, so the community should strive
to study these problems and, perhaps ideally, find features to
solve them.

For reproducibility and comparability with existing re-
search, when evaluating or comparing improvement to OOP
design patterns, it would be beneficial to include measures
pertaining to maintainability and understandability. In par-
ticular, the CK measures [26] are particularly prevalent in
this kind of research. These include depth of inheritance tree,
lack of cohesion in operations, coupling between components,
number of lines of code, and weighted operations per compo-
nent. AOP-related measures might be interesting to use also,
for comparison with the many papers published proposing
improvement using AOP. AOP measures are mainly focused
on cross-cutting concerns.

However, these measures do not cover every possible
improvement. Some improvements are difficult to measure
using quantitative data. It would be important to explore less
prevalent measures, or survey developers’ opinions on code
complexity and reusability and perform qualitative reviews.

Most papers we found were descriptive studies. More
empirical studies on real-world case studies and experiments
using professional developers would yield a deeper under-
standing of the techniques, tools and features that can be used
to improve OOP design patterns, and OOP in general.

8. Threats to Validity
In this section, we discuss potential threats to the validity

of this study. While we tried to keep the study and its results
as objective as possible, there are some threats that need to
be addressed. We divided the threats into Internal, External,
Construct, and Conclusion Validity.

8.1. Interval Validity
The manual sorting, filtering, and compilation steps of

the review were done by the first author, which increases the
consistency of the results. Yet, it also introduces a threat to
reliability and trustworthiness, so we added a second reviewer
to help with the snowballing step and add some redundancy
and a second viewpoint.

8.2. External Validity
Our results come from papers from a very diverse set of

publication venues. The papers are not concentrated in pop-

W. Flageol et al.: Preprint submitted to Elsevier Page 16 of 20

ular venues concerning programming languages and design
patterns, such as TOPLAS and POPL. We attribute this to the
fact that this particular subject, proposing language features
to improve OOP design patterns implementation, is more of
a niche subject and less popular in prominent publications,
and pertains more to software engineering than programming
languages. Most of the results in our query that were from
major publication venues tended to be about measuring the
impact of design patterns, which was not within the scope of
this study (and already has a mapping study [11] discussed
in our related studies section).

8.3. Construct Validity
We defined our methodology as precisely as possible

to make our results reproducible. The dataset used for this
study is available online8. We took some decisions that could
affect the results of our study. The query used has many
exclusion keywords to obtain more precise results. We tried
queries with fewer exclusion keywords, but they did not add
more relevant results which made the manual filtering more
difficult. We believe any missing relevant results that were
lost because of this decision would have been caught during
the snowballing step.

The manual sorting, filtering, and compilation steps of
the review were done by the first author, which increases the
consistency of the results. Yet, it also introduces a threat to
reliability and trustworthiness, so we added a second reviewer
to help with the snowballing step and add some redundancy
and a second viewpoint.

8.4. Conclusion Validity
We believe that the previous threats are acceptable and

that different choices would not significantly alter the results
of this mapping study, whose goal is to identify trends in
research on the subject of language features to improve OOP
design patterns implementations. As such, we limit our con-
clusions to that goal and propose recommendations based on
our findings.

9. Conclusion
In this paper, we presented amapping study of the primary

studies on language features to improve Object-Oriented Pro-
gramming design patterns implementations. Our objective
was to catalogue the language features that were used in the
literature to improve OOP design patterns. We asked the four
following research questions:

1. What language features have been suggested to im-
prove design patterns implementations?

2. Which design patterns have the most associated lan-
guage features suggestions?

3. What measures have been used to evaluate the impact
of these language features on design patterns imple-
mentations?

4. What experiments have been done on these language
features?

8https://www.ptidej.net/downloads/replications/ist22/

We devised and followed a methodology (which we de-
scribe in Section 4) that would yield the data needed to answer
these questions and the main objective of the mapping study
and create a catalogue of 18 language features claiming to
improve design patterns implementations.

We performed a search query in three databases which
yielded 874 papers, which we then assessed for quality and
used for snowballing, resulting in a total of 34 primary studies.
We then extracted relevant data from these 34 studies and
discussed and catalogued our observations and their meaning.

We categorized the language features found in the papers
into categories based on programming paradigms. We pre-
sented a summary of this map with every paper in our study,
as well as a catalogue describing every feature extracted. We
found that most of the research on the topic suggested ap-
proaches related to Meta-programming, with Aspect-oriented
Programming often considered, although interest in it seems
to have faded in recent years. The design patterns most often
cited in papers on the topic were the Observer, Visitor, and
Decorator. We also extracted every measure used in each
paper into a table to find the most frequently used. We found
that measures related to maintainability and understandability
were most often used, with the Chidamber and Kemerer [26]
measures being particularly prevalent.

With these findings, we contribute a catalogue of 18
language features proposed in the literature to improve
Object-Oriented design patterns. These features mostly
aim to improvemaintainability and understandability by
reducing concern diffusion and code duplication.

Our goal in finding language features that improve the
implementation of design patterns in OOP is to improve the
OOP paradigm itself. As design patterns are solutions to re-
curring problems, including features in an OOP language that
makes it easier to solve these problems makes the paradigm
and languages themselves easier to use for practical purposes.

This study can be used as a road map of existing liter-
ature that we intend to use to research improvement to the
Object-Oriented Programming paradigm. We will look at
what features are needed in a language to improve maintain-
ability and understandability and reduce code size, coupling,
and concern diffusion. We will use the identified measures
to compare alternatives. We also intend to perform empirical
studies, in particular experiments.

It may also be interesting to replicate this study on gray
literature, with a similar systematic approach adapted to gen-
eral public search engines (i.e., Google, Bing, DuckDuckGo,
etc.). This would likely yield even more language features to
improve design patterns, and perhaps different approaches to
measuring improvements.

10. Acknowledgement
This work was supported by the Fonds de Recherche du

Québec en Nature et Technologies (Grant No: 273582).

W. Flageol et al.: Preprint submitted to Elsevier Page 17 of 20

References
[1] Erich Gamma et al. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley Professional, 1994.

[2] Joshua Kerievsky. Refactoring to Patterns. Addison-Wesley Profes-
sional, 2004.

[3] Cheng Zhang and David Budgen. “What Do We Know About the
Effectiveness of Software Design Patterns”. In: IEEE Transactions
on Software Engineering 38 (2012), pp. 1213–1231.

[4] Daniel von Dincklage. “Iterators and encapsulation”. In: Proceed-
ings 33rd International Conference on Technology of Object-Oriented
Languages and Systems (2000).

[5] H. Masuhara and R. Hirschfeld. “Classes as Layers: Rewriting De-
sign Patterns with COP: Alternative Implementations of Decorator,
Observer, and Visitor”. In: Proceedings of the 8th International
Workshop on Context-Oriented Programming (2016), pp. 21–26.

[6] G. Kiczales et al. “Aspect-oriented programming”. In: Proceed-
ings of the European Conference on Object-Oriented Programming
(1997), pp. 220–242.

[7] Tobias Dürschmid. “Design pattern builder: a concept for refinable
reusable design pattern libraries”. In: Companion Proceedings of
the 2016 ACM SIGPLAN International Conference on Systems,
Programming, Languages and Applications: Software for Humanity
(2016), pp. 45–46.

[8] Jan Hannemann and Gregor Kiczales. “Design pattern implementa-
tion in Java and AspectJ”. In: Proceedings of the 17th ACM SIG-
PLAN conference onObject-oriented programming (2002), pp. 161–
173.

[9] Khalid Aljasser. “Implementing design patterns as parametric as-
pects using ParaAJ”. In: Computer Languages, Systems & Struc-
tures 45 (2016), pp. 1–15.

[10] Peter Norvig. Design Patterns in Dynamic Programming. 1996.
URL: https://norvig.com/design-patterns/design-patterns.pdf.

[11] Apostolos Ampatzoglou, Sofia Charalampidou, and Ioannis Stame-
los. “Research state of the art on GoF design patterns: A mapping
study”. In: Journal of Systems and Software 86.7 (2013), pp. 1945–
1964. ISSN: 0164-1212. DOI: https://doi.org/10.1016/j.jss.2013.
03.063. URL: https://www.sciencedirect.com/science/article/pii/
S0164121213000757.

[12] Apostolos Ampatzoglou, Sofia Charalampidou, and Ioannis Stame-
los. “Design pattern alternatives: what to do when a GoF pattern
fails”. en. In: Proceedings of the 17th Panhellenic Conference on
Informatics - PCI ’13. Thessaloniki, Greece: ACM Press, 2013,
p. 122. ISBN: 978-1-4503-1969-0. DOI: 10.1145/2491845.2491857.
URL: http://dl.acm.org/citation.cfm?doid=2491845.2491857.

[13] L. Ferreira and C. M. F. Rubira. “The Reflective State Pattern”.
In: Proceedings of the 5th Conference on Pattern Languages of
Programs (PLOT ’98) (1998).

[14] M.E. Nordberg III. “The Reflective State Pattern”. In: Proceedings
of the 3rd Conference on Pattern Languages of Programs (PLOT
’96) (1996).

[15] B. Bafandeh Mayvan, A. Rasoolzadegan, and Z. Ghavidel Yazdi.
“The state of the art on design patterns: A systematic mapping of the
literature”. In: Journal of Systems and Software 125 (Mar. 2017),
pp. 93–118. ISSN: 01641212. DOI: 10.1016/j.jss.2016.11.030.

[16] K. Peterson, S. Vakkalanka, and L. Kuzniarz. “Guidelines for con-
ducting systematic mapping studies in software engineering: An
update”. In: Information and Software Technology 64 (2015), pp. 1–
18.

[17] B.A. Kitchenham. “Procedures for Undertaking Systematic Re-
views”. In: Joint Technical Report, Computer Science Department,
Keele University (TR/SE-0401) and National ICT Australia Ltd. (
0400011T.1) (2004).

[18] B. Kitchenham and S. Charters. “Guidelines for Performing Sys-
tematic Literature Review in Software Engineering”. In: Technical
Report EBSE 2007-001, Keele Univ. and DurhamUniv. Joint Report
(2007).

[19] Elsevier.Engineering Village.URL: https://www.engineeringvillage.
com/.

[20] The AspectJ Project. URL: https://www.eclipse.org/aspectj/.

[21] PostSharp: C♯ design patterns without boilerplate. URL: https:
//www.postsharp.net/.

[22] C. Chambers, B. Harrison, and J. Vlissides. “A Debate on Language
and Tool Support for Design Patterns”. In: Proceedings of the 27th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (2000).

[23] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. “REScala:
Bridging between Object-Oriented and Functional Style in Re-
active Applications”. In: Proceedings of the 13th International
Conference on Modularity. MODULARITY ’14. Lugano, Switzer-
land: Association for Computing Machinery, 2014, pp. 25–36. ISBN:
9781450327725. DOI: 10.1145/2577080.2577083. URL: https://doi.
org/10.1145/2577080.2577083.

[24] Ingo Maier and Martin Odersky. “Higher-Order Reactive Program-
ming with Incremental Lists”. In: ECOOP 2013 – Object-Oriented
Programming. Ed. byGiuseppe Castagna. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 707–731. ISBN: 978-3-642-39038-8.

[25] F. S. Løkke. “Scala & design patterns”. In: Master’s thesis, Univer-
sity of Aarhus (2009).

[26] S. Chidamber and C. Kemerer. “A Metrics Suite for Object Ori-
ented Design”. In: IEEE Transactions on Software Engineering, 20
(1994).

[27] M. Ceccato and P. Tonella. “Measuring the effects of software
aspectization”. In: 1st Workshop on Aspect Reverse Engineering
(2004).

Primary Studies
[S1] Bruno C.d.S. Oliveira, Meng Wang, and Jeremy Gibbons. “The vis-

itor pattern as a reusable, generic, type-safe component”. In: ACM
SIGPLAN Notices 43.10 (Oct. 27, 2008), pp. 439–456. ISSN: 0362-
1340, 1558-1160. DOI: 10.1145/1449955.1449799. URL: https://dl.
acm.org/doi/10.1145/1449955.1449799 (visited on 11/01/2022).

[S2] Jeremy Gibbons. “Design patterns as higher-order datatype-generic
programs”. In: Proceedings of the 2006 ACM SIGPLAN workshop
on Generic programming - WGP ’06. the 2006 ACM SIGPLAN
workshop. Portland, Oregon, USA: ACM Press, 2006, p. 1. DOI:
10.1145/1159861.1159863. URL: http://portal.acm.org/citation.
cfm?doid=1159861.1159863 (visited on 11/01/2022).

[S3] Ruslan Batdalov and Oksana Nikiforova. “Towards Easier Imple-
mentation of Design Patterns”. In: The Eleventh International Con-
ference on Software Engineering Advances. ICSEA 2016. Rome,
Italy: International Academy, Research, and Industry Association,
2016.

[S4] Kazunori Sakamoto, Hironori Washizaki, and Yoshiaki Fukukaza.
“Extended design patterns in new object-oriented programming
languages”. In: Proceedings of the International Conference on
Software Engineering and Knowledge Engineering. SEKE. Eslevier,
2013, pp. 600–605.

[S5] Rosario Giunta, Giuseppe Pappalardo, and Emiliano Tramontana.
“Using aspects and annotations to separate application code from
design patterns”. In: Proceedings of the 2010 ACM Symposium on
Applied Computing - SAC ’10. the 2010 ACM Symposium. Sierre,
Switzerland: ACM Press, 2010, p. 2183. ISBN: 978-1-60558-639-
7. DOI: 10.1145/1774088.1774548. URL: http://portal.acm.org/
citation.cfm?doid=1774088.1774548 (visited on 11/01/2022).

W. Flageol et al.: Preprint submitted to Elsevier Page 18 of 20

https://norvig.com/design-patterns/design-patterns.pdf
https://doi.org/https://doi.org/10.1016/j.jss.2013.03.063
https://doi.org/https://doi.org/10.1016/j.jss.2013.03.063
https://www.sciencedirect.com/science/article/pii/S0164121213000757
https://www.sciencedirect.com/science/article/pii/S0164121213000757
https://doi.org/10.1145/2491845.2491857
http://dl.acm.org/citation.cfm?doid=2491845.2491857
https://doi.org/10.1016/j.jss.2016.11.030
https://www.engineeringvillage.com/
https://www.engineeringvillage.com/
https://www.eclipse.org/aspectj/
https://www.postsharp.net/
https://www.postsharp.net/
https://doi.org/10.1145/2577080.2577083
https://doi.org/10.1145/2577080.2577083
https://doi.org/10.1145/2577080.2577083
https://doi.org/10.1145/1449955.1449799
https://dl.acm.org/doi/10.1145/1449955.1449799
https://dl.acm.org/doi/10.1145/1449955.1449799
https://doi.org/10.1145/1159861.1159863
http://portal.acm.org/citation.cfm?doid=1159861.1159863
http://portal.acm.org/citation.cfm?doid=1159861.1159863
https://doi.org/10.1145/1774088.1774548
http://portal.acm.org/citation.cfm?doid=1774088.1774548
http://portal.acm.org/citation.cfm?doid=1774088.1774548

[S6] Liu Jicheng, Yin Hui, and Wang Yabo. “A novel implementation of
observer pattern by aspect based on Java annotation”. In: 2010 3rd
International Conference on Computer Science and Information
Technology. 2010 3rd IEEE International Conference on Computer
Science and Information Technology (ICCSIT 2010). Chengdu,
China: IEEE, July 2010, pp. 284–288. ISBN: 978-1-4244-5537-9.
DOI: 10.1109/ICCSIT.2010.5564893. URL: http://ieeexplore.ieee.
org/document/5564893/ (visited on 11/01/2022).

[S7] Martin Kuhlemann et al. “A Multiparadigm Study of Crosscutting
Modularity in Design Patterns”. In: Objects, Components, Models
and Patterns. Ed. by Richard F. Paige and Bertrand Meyer. Red.
by Will van der Aalst et al. Vol. 11. Series Title: Lecture Notes
in Business Information Processing. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 121–140. DOI: 10.1007/978-3-540-
69824-1_8. URL: http://link.springer.com/10.1007/978-3-540-
69824-1_8 (visited on 11/01/2022).

[S8] Eyvind W. Axelsen, Fredrik Sørensen, and Stein Krogdahl. “A
reusable observer pattern implementation using package templates”.
In: Proceedings of the 8th workshop on Aspects, components, and
patterns for infrastructure software - ACP4IS ’09. the 8th work-
shop. Charlottesville, Virginia, USA: ACM Press, 2009, p. 37. ISBN:
978-1-60558-450-8. DOI: 10 . 1145 / 1509276 . 1509286. URL: http :
//portal.acm.org/citation.cfm?doid=1509276.1509286 (visited on
11/01/2022).

[S9] Matthew F. Tennyson. “A study of the data synchronization concern
in the Observer design pattern”. In: 2010 2nd International Confer-
ence on Software Technology and Engineering. 2010 2nd Interna-
tional Conference on Software Technology and Engineering (ICSTE
2010). San Juan, PR, USA: IEEE, Oct. 2010, p. 5608911. ISBN:
978-1-4244-8667-0. DOI: 10.1109/ICSTE.2010.5608911. URL: http:
//ieeexplore.ieee.org/document/5608911/ (visited on 11/01/2022).

[S10] R Teebiga and S Senthil Velan. “Comparison of applying design pat-
terns for functional and non-functional design elements in Java and
AspectJ programs”. In: 2016 International Conference on Advanced
Communication Control and Computing Technologies (ICACCCT).
2016 International Conference on Advanced Communication Con-
trol and Computing Technologies (ICACCCT). Ramanathapuram,
India: IEEE, May 2016, pp. 751–757. ISBN: 978-1-4673-9545-8.
DOI: 10.1109/ICACCCT.2016.7831740. URL: http://ieeexplore.ieee.
org/document/7831740/ (visited on 11/01/2022).

[S11] Cláudio Sant’Anna et al. “Design patterns as aspects: a quantitative
assessment”. In: Journal of the Brazilian Computer Society 10.2
(Nov. 2004), pp. 42–55. ISSN: 0104-6500. DOI: 10.1590/S0104-
65002004000300004. URL: http://www.scielo.br/scielo.php?script=
sci_arttext&pid=S0104-65002004000300004&lng=en&nrm=iso&tlng=

en (visited on 11/01/2022).

[S12] Jan Hannemann and Gregor Kiczales. “Design pattern implementa-
tion in Java and aspectJ”. In: ACMSIGPLANNotices 37.11 (Nov. 17,
2002), pp. 161–173. ISSN: 0362-1340, 1558-1160. DOI: 10.1145/
583854.582436. URL: https://dl.acm.org/doi/10.1145/583854.
582436 (visited on 11/01/2022).

[S13] Tobias Dürschmid. “Design pattern builder: a concept for refinable
reusable design pattern libraries”. In: Companion Proceedings of
the 2016 ACM SIGPLAN International Conference on Systems,
Programming, Languages and Applications: Software for Humanity.
SPLASH ’16: Conference on Systems, Programming, Languages,
and Applications: Software for Humanity. Amsterdam Netherlands:
ACM, Oct. 20, 2016, pp. 45–46. ISBN: 978-1-4503-4437-1. DOI:
10.1145/2984043.2998537. URL: https://dl.acm.org/doi/10.1145/
2984043.2998537 (visited on 11/01/2022).

[S14] J. Borella. “The observer pattern using aspect oriented program-
ming”. In: Proceedings of the Viking Pattern Languages of Pro-
grams. Viking PLOP. 2003.

[S15] Rosario Giunta, Giuseppe Pappalardo, and Emiliano Tramontana.
“AODP: refactoring code to provide advanced aspect-oriented mod-
ularization of design patterns”. In: Proceedings of the 27th Annual
ACM Symposium on Applied Computing - SAC ’12. the 27th An-
nual ACM Symposium. Trento, Italy: ACM Press, 2012, p. 1243.
ISBN: 978-1-4503-0857-1. DOI: 10.1145/2245276.2231971. URL:
http://dl.acm.org/citation.cfm?doid=2245276.2231971 (visited on
11/01/2022).

[S16] N. El Maghawry and A. R. Dawood. “Aspect oriented GoF design
patterns”. In: The 7th International Conference on Informatics and
Systems. INFOS. 2010, pp. 1–7.

[S17] Jose M. Felix and Francisco Ortin. “Aspect-Oriented Program-
ming to Improve Modularity of Object-Oriented Applications”.
In: Journal of Software 9.9 (Sept. 1, 2014), pp. 2454–2460. ISSN:
1796-217X. DOI: 10.4304/jsw.9.9.2454- 2460. URL: http://ojs.
academypublisher.com/index.php/jsw/article/view/13246 (visited
on 11/01/2022).

[S18] Marc Bartsch and Rachel Harrison. “Design Patterns with Aspects:
A case study”. In: Proceedings of the 12th European Conference
on Pattern Languages of Programs. EuroPLoP ’2007. ACM, 2007,
pp. 797–810.

[S19] Khalid Aljasser. “Implementing design patterns as parametric as-
pects using ParaAJ: The case of the singleton, observer, and decora-
tor design patterns”. In:Computer Languages, Systems & Structures
45 (Apr. 2016), pp. 1–15. ISSN: 14778424. DOI: 10.1016/j.cl.2015.
11.002.

[S20] Pavol Baca and Valentino Vranic. “Replacing Object-Oriented De-
sign Patterns with Intrinsic Aspect-Oriented Design Patterns”. In:
2011 Second Eastern European Regional Conference on the En-
gineering of Computer Based Systems. 2011 2nd Eastern Euro-
pean Regional Conference on the Engineering of Computer Based
Systems (ECBS-EERC 2011). Bratislava, Slovakia: IEEE, Sept.
2011, pp. 19–26. ISBN: 978-1-4577-0683-7. DOI: 10.1109/ECBS-
EERC.2011.13. URL: http://ieeexplore.ieee.org/document/6037510/
(visited on 11/01/2022).

[S21] João L. Gomes and Miguel P. Monteiro. “Design pattern imple-
mentation in object teams”. In: Proceedings of the 2010 ACM Sym-
posium on Applied Computing - SAC ’10. the 2010 ACM Sym-
posium. Sierre, Switzerland: ACM Press, 2010, p. 2119. ISBN:
978-1-60558-639-7. DOI: 10 . 1145 / 1774088 . 1774534. URL: http :
//portal.acm.org/citation.cfm?doid=1774088.1774534 (visited on
11/01/2022).

[S22] M.L. Bernardi and G.A. Di Lucca. “Improving Design Pattern Qual-
ity Using Aspect Orientation”. In: 13th IEEE International Work-
shop on Software Technology and Engineering Practice (STEP’05).
13th IEEE International Workshop on Software Technology and
Engineering Practice (STEP’05). Budapest, Hungary: IEEE, 2005,
pp. 206–218. ISBN: 978-0-7695-2639-3. DOI: 10.1109/STEP.2005.14.
URL: http://ieeexplore.ieee.org/document/1691649/ (visited on
11/01/2022).

[S23] Q. Hachani and D. Bardou. “Using aspect-oriented programming
for design patterns implementation”. In: Workshop on Reuse in
Object-Oriented Information Systems Design. 2002.

[S24] Alessandro Garcia et al. “Modularizing Design Patterns with As-
pects: A Quantitative Study”. In: Transactions on Aspect-Oriented
Software Development I. Ed. by Awais Rashid and Mehmet Ak-
sit. Vol. 3880. Series Title: Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 36–74.
DOI: 10.1007/11687061_2. URL: http://link.springer.com/10.1007/
11687061_2 (visited on 11/01/2022).

[S25] Nelio Cacho et al. “Blending design patterns with aspects: A quan-
titative study”. In: Journal of Systems and Software 98 (Dec. 2014),
pp. 117–139. ISSN: 01641212. DOI: 10.1016/j.jss.2014.08.041.

W. Flageol et al.: Preprint submitted to Elsevier Page 19 of 20

https://doi.org/10.1109/ICCSIT.2010.5564893
http://ieeexplore.ieee.org/document/5564893/
http://ieeexplore.ieee.org/document/5564893/
https://doi.org/10.1007/978-3-540-69824-1_8
https://doi.org/10.1007/978-3-540-69824-1_8
http://link.springer.com/10.1007/978-3-540-69824-1_8
http://link.springer.com/10.1007/978-3-540-69824-1_8
https://doi.org/10.1145/1509276.1509286
http://portal.acm.org/citation.cfm?doid=1509276.1509286
http://portal.acm.org/citation.cfm?doid=1509276.1509286
https://doi.org/10.1109/ICSTE.2010.5608911
http://ieeexplore.ieee.org/document/5608911/
http://ieeexplore.ieee.org/document/5608911/
https://doi.org/10.1109/ICACCCT.2016.7831740
http://ieeexplore.ieee.org/document/7831740/
http://ieeexplore.ieee.org/document/7831740/
https://doi.org/10.1590/S0104-65002004000300004
https://doi.org/10.1590/S0104-65002004000300004
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002004000300004&lng=en&nrm=iso&tlng=en
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002004000300004&lng=en&nrm=iso&tlng=en
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002004000300004&lng=en&nrm=iso&tlng=en
https://doi.org/10.1145/583854.582436
https://doi.org/10.1145/583854.582436
https://dl.acm.org/doi/10.1145/583854.582436
https://dl.acm.org/doi/10.1145/583854.582436
https://doi.org/10.1145/2984043.2998537
https://dl.acm.org/doi/10.1145/2984043.2998537
https://dl.acm.org/doi/10.1145/2984043.2998537
https://doi.org/10.1145/2245276.2231971
http://dl.acm.org/citation.cfm?doid=2245276.2231971
https://doi.org/10.4304/jsw.9.9.2454-2460
http://ojs.academypublisher.com/index.php/jsw/article/view/13246
http://ojs.academypublisher.com/index.php/jsw/article/view/13246
https://doi.org/10.1016/j.cl.2015.11.002
https://doi.org/10.1016/j.cl.2015.11.002
https://doi.org/10.1109/ECBS-EERC.2011.13
https://doi.org/10.1109/ECBS-EERC.2011.13
http://ieeexplore.ieee.org/document/6037510/
https://doi.org/10.1145/1774088.1774534
http://portal.acm.org/citation.cfm?doid=1774088.1774534
http://portal.acm.org/citation.cfm?doid=1774088.1774534
https://doi.org/10.1109/STEP.2005.14
http://ieeexplore.ieee.org/document/1691649/
https://doi.org/10.1007/11687061_2
http://link.springer.com/10.1007/11687061_2
http://link.springer.com/10.1007/11687061_2
https://doi.org/10.1016/j.jss.2014.08.041

[S26] Matthias Springer, Hidehiko Masuhara, and Robert Hirschfeld.
“Classes as Layers: Rewriting Design Patterns with COP: Alter-
native Implementations of Decorator, Observer, and Visitor”. In:
Proceedings of the 8th International Workshop on Context-Oriented
Programming. ECOOP ’16: EuropeanConference onObject-Oriented
Programming. Rome Italy: ACM, July 17, 2016, pp. 21–26. ISBN:
978-1-4503-4440-1. DOI: 10.1145/2951965.2951968. URL: https://
dl.acm.org/doi/10.1145/2951965.2951968 (visited on 11/01/2022).

[S27] Taher Ahmed Ghaleb, Khalid Aljasser, and Musab A. Alturki.
“An Extensible Compiler for Implementing Software Design Pat-
terns as Concise Language Constructs”. In: International Jour-
nal of Software Engineering and Knowledge Engineering 31.7
(July 2021), pp. 1043–1067. ISSN: 0218-1940, 1793-6403. DOI:
10.1142/S0218194021500327. URL: https://www.worldscientific.
com/doi/abs/10.1142/S0218194021500327 (visited on 11/01/2022).

[S28] Weixin Zhang and Bruno C. D. S. Oliveira. “EVF: An Extensible
and Expressive Visitor Framework for Programming Language
Reuse”. In: (2017). In collab. with Marc Herbstritt. Artwork Size:
32 pages Medium: application/pdf Publisher: Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken,
Germany, 32 pages. DOI: 10.4230/LIPICS.ECOOP.2017.29. URL:
http://drops.dagstuhl.de/opus/volltexte/2017/7274/ (visited on
11/01/2022).

[S29] Harold Fortuin. “AModern, Compact Implementation of the Param-
eterized Factory Design Pattern.” In: The Journal of Object Technol-
ogy 9.1 (2010), p. 57. ISSN: 1660-1769. DOI: 10.5381/jot.2010.9.1.
c5. URL: http://www.jot.fm/contents/issue_2010_01/column5.html
(visited on 11/01/2022).

[S30] Yun Mai and Michel Champlain. “Reflective Visitor Pattern”. In:
European Conference on Pattern Languages of Programs. Euro-
PLoP. ACM, 2001, pp. 299–316.

[S31] Bilal Hussein, Aref Mehanna, and Yahia Rabih. “Visitor Design
Pattern Using Reflection Mechanism”. In: International Journal
of Software Innovation 8.1 (Jan. 1, 2020), pp. 92–107. ISSN: 2166-
7160, 2166-7179. DOI: 10.4018/IJSI.2020010106. URL: https://
services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/

IJSI.2020010106 (visited on 11/01/2022).
[S32] Eden Burton and Emil Sekerinski. “Using dynamic mixins to im-

plement design patterns”. In: Proceedings of the 19th European
Conference on Pattern Languages of Programs - EuroPLoP ’14.
the 19th European Conference. Irsee, Germany: ACM Press, 2014,
pp. 1–19. ISBN: 978-1-4503-3416-7. DOI: 10.1145/2721956.2721991.
URL: http : / / dl . acm . org / citation . cfm ? doid = 2721956 . 2721991
(visited on 11/01/2022).

[S33] Guido Salvaneschi et al. “An empirical study on program com-
prehension with reactive programming”. In: Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. SIGSOFT/FSE’14: 22nd ACM SIGSOFT
Symposium on the Foundations of Software Engineering. Hong
Kong China: ACM, Nov. 11, 2014, pp. 564–575. ISBN: 978-1-4503-
3056-5. DOI: 10.1145/2635868.2635895. URL: https://dl.acm.org/
doi/10.1145/2635868.2635895 (visited on 11/01/2022).

[S34] ShriramKrishnamurthi, Matthias Felleisen, and Daniel P. Friedman.
“Synthesizing Object-Oriented and Functional Design to Promote
Re-Use”. In: Proceedings of the 12th European Conference on
Object-Oriented Programming. ECCOP ’98. ACM, 1998, pp. 91–
113.

A. Tables
Table 5 contains the reference to every study based on

the design patterns they discuss and the number of features
associated with these design patterns.

Table 6 shows the usage of these measures by number
of papers. The last column cross-references which language

features were measured using the metric. For quantitative
metric, a symbol follows the name of the language feature
showing the presented results in the studies. An arrow point-
ing up (⇑) signifies the results showed the measure increasing
with usage of the language feature. An arrow pointing down
(⇓) shows the opposite. An approximation (≈) signifies there
was no significant difference found for the measure. Finally,
a crossed box (⊠) signifies no comparison was done with a
classical implementation of the design patterns. This may
be because the measure cannot be applied to the classical
implementation (e.g., Crosscutting Degree of an Aspect) or
because the paper used the measure to compare two non-
classical implementations.

W. Flageol et al.: Preprint submitted to Elsevier Page 20 of 20

https://doi.org/10.1145/2951965.2951968
https://dl.acm.org/doi/10.1145/2951965.2951968
https://dl.acm.org/doi/10.1145/2951965.2951968
https://doi.org/10.1142/S0218194021500327
https://www.worldscientific.com/doi/abs/10.1142/S0218194021500327
https://www.worldscientific.com/doi/abs/10.1142/S0218194021500327
https://doi.org/10.4230/LIPICS.ECOOP.2017.29
http://drops.dagstuhl.de/opus/volltexte/2017/7274/
https://doi.org/10.5381/jot.2010.9.1.c5
https://doi.org/10.5381/jot.2010.9.1.c5
http://www.jot.fm/contents/issue_2010_01/column5.html
https://doi.org/10.4018/IJSI.2020010106
https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSI.2020010106
https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSI.2020010106
https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSI.2020010106
https://doi.org/10.1145/2721956.2721991
http://dl.acm.org/citation.cfm?doid=2721956.2721991
https://doi.org/10.1145/2635868.2635895
https://dl.acm.org/doi/10.1145/2635868.2635895
https://dl.acm.org/doi/10.1145/2635868.2635895

Design Pattern # Features Papers # Papers

Abstract Factory 4 [S3, S7, S11, S12, S20, S21, S29] 7
Adapter 4 [S3, S7, S10, S12, S21] 5
Bridge 5 [S3, S7, S12, S21] 4
Builder 6 [S2, S3, S12, S21] 4
Chain of Responsibility 4 [S3, S7, S12, S16, S21, S22, S32] 7
Command 4 [S3, S7, S12, S21, S22] 5
Composite 4 [S2, S3, S7, S12, S15, S18, S21] 7
Decorator 6 [S3, S7, S12, S18, S19, S21, S26, S27, S32] 9
Facade 4 [S3, S12, S21] 3
Factory Method 6 [S3, S5, S7, S12, S15, S21] 6
Flyweight 3 [S3, S7, S12, S15, S20, S21] 6
Interpreter 2 [S7, S12, S21] 3
Iterator 3 [S2, S7, S12, S21] 4
Mediator 3 [S3, S7, S11, S12, S21] 5
Memento 2 [S7, S12, S21] 3
Observer 9 [S3, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S17,

S18, S19, S21, S22, S26, S27, S33]
20

Prototype 2 [S7, S11, S12, S21] 4
Proxy 7 [S3, S5, S7, S12, S15, S20, S21, S32] 8
Singleton 4 [S5, S7, S12, S19, S20, S21, S22, S27] 8
State 6 [S3, S4, S7, S11, S12, S21, S22] 7
Strategy 4 [S3, S7, S10, S11, S12, S16, S21, S32] 8
Template Method 4 [S3, S7, S12, S21] 4
Visitor 9 [S1, S2, S3, S7, S12, S18, S21, S23, S26, S28, S30, S31,

S34]
13

Table 5
Language features per design patterns

W. Flageol et al.: Preprint submitted to Elsevier Page 21 of 20

Measures Type # Papers Language Feature
Depth of Inheritance Tree (DIT) Quantitative 6 AOP≈
Coupling Between Components (CBC) Quantitative 5 AOP⇕
Lack of Cohesion in Operations (LCOO) Quantitative 5 AOP⇕
Lines of Code (LOC) Quantitative 5 AOP⇕, Pattern Keywords⇓
Concern Diffusion over Components (CDC) Quantitative 4 AOP⇕
Concern Diffusion over LOC (CDLOC) Quantitative 4 AOP⇕
Concern Diffusion over Operations (CDO) Quantitative 4 AOP⇕
Number of Attributes (NOA) Quantitative 4 AOP⇕
Weighted Operations per Component (WOC) Quantitative 4 AOP⇕
Reusability Qualitative 3 AOP
Composition Transparency Qualitative 2 AOP
Coupling on Intercepted Modules (CIM) Quantitative 2 AOP⊠
Duplicated Code (DC) Quantitative 2 Mixins⇓, Multiple Inheritance⇓.

AOP (qualitative)
Locality Qualitative 2 AOP
Modularity Qualitative 2 AOP
Unpluggability Qualitative 2 AOP
Weighted Operations in Module (WOM) Quantitative 2 AOP⇕
Abstract-Pattern-Reusability Qualitative 1 AOP
Binding-Reusability Qualitative 1 AOP
Cohesion Qualitative 1 AOP
Comprehension Quantitative 1 Reactive Programming≈
Correctness Quantitative 1 Reactive Programming⇑
Coupling Between Modules (CBM) Quantitative 1 AOP⊠
Coupling on Advice Execution (CAE) Quantitative 1 AOP⊠
Coupling on Field Access (CFA) Quantitative 1 AOP⊠
Coupling on Method Call (CMC) Quantitative 1 AOP⊠
Cross-cutting concerns Qualitative 1 AOP
Crosscutting Degree of an Aspect (CDA) Quantitative 1 AOP⊠
Encapsulation Qualitative 1 AOP
Execution time Quantitative 1 AOP⇑
Generalization (Inheritance) Qualitative 1 AOP
Indirection Qualitative 1 AOP
Lines of Class Code (LOCC) Quantitative 1 AOP⇓
Number of Children (NoC) Quantitative 1 AOP≈
Number of classes and relations (NOCR) Quantitative 1 Mixins⇓
Response For a Module (RFM) Quantitative 1 AOP⊠
Separation of concerns Qualitative 1 AOP
Skill floor Quantitative 1 Reactive Programming≈

Table 6
Measures by usage in papers

W. Flageol et al.: Preprint submitted to Elsevier Page 22 of 20

	Introduction
	Background
	Related Studies
	Methodology
	Keywords for the Search Query
	Databases for the Search Query
	Query Building and Execution
	Filtering
	Snowballing
	Compilation Form

	Results
	Meta-Programming
	Aspect-Oriented Programming
	Layer Objects
	Pattern Keywords
	Reflection

	Reactive Programming
	Signals

	Functional Programming
	Case Classes
	Closures
	Immutability

	Object-Oriented Programming
	Chameleon Objects
	Class Extension
	Default Implementation
	Extended Initialization
	Mixins
	Multiple Inheritance
	Object Interaction Styles
	Subclassing Members in a Subclass

	Design Patterns
	Measures
	Experiments and Participation

	Discussion
	Language Features
	Design Patterns
	Measures
	Empirical Studies

	Recommendations
	Threats to Validity
	Interval Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Conclusion
	Acknowledgement
	Tables

