
A Multi-dimensional Study on the State of the
Practice of REST APIs Usage in Android Apps

Manel Abdellatif1,2, Rafik Tighilt1, Abdelkarim Belkhir1, Naouel Moha1,
Yann-Gaël Guéhéneuc3, and Éric Beaudry1

1 Université du Québec à Montréal, Montréal, Québec, Canada
2 Polytechnique Montréal, Montréal, Québec, Canada.

3 Concordia University, Montréal, Québec, Canada

Abstract. REST APIs are gaining a tremendous attraction in industry
and a growing usage in mobile platforms. They are well suited for pro-
viding content to apps running on small devices, like smartphones and
tablets. Several research works studied REST APIs development prac-
tices for mobile apps. However, little is known about how Android apps
use/consume these APIs in practice. Consequently, we propose a multi-
dimensional study on the state of the practice of REST APIs usage in
Android apps. We follow three directions: analysing of Android apps,
mining Stack Overflow posts on REST APIs usage in Android apps, and
surveying Android developers about their usage of REST APIs in their
mobile apps. We (1) build a catalog of Android REST mobile clients
practices, (2) propose an automatic approach to detect these practices,
(3) analyze 1,595 Android apps downloaded from the Google Play store,
(4) mine 12,478 Stack Overflow posts to study REST APIs usage in
Android apps, and (5) conduct an online survey with 118 Android devel-
opers to understand their usage of these practices. We report that only
two good practices are widely considered by Android developers when
implementing their mobile apps. These practices are network connec-
tivity awareness and JSON vs. XML response parsing. We also report
Android developers’ recommendations for the use of third-party HTTP
libraries and their role in implementing the recommended practices.

Keywords: REST API · Android · Practices · third-party HTTP li-
braries

1 Introduction

Smartphone ownership has spread rapidly around the globe in the past decades.
It is estimated that, in 2019, the total number of smartphone users stood at
more than 3.8 billion4. Also, in the same year, Google Play store boosted close
to 2.4 millions of mobile applications (apps) while the Apple App Store has over
2 millions5. Most of these mobile apps access data, business rules, and business

4https://www.statista.com/statistics/330695/number-of-smartphone-users-
worldwide/

5https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-
app-stores/



2 Abdellatif et al.

processes of vital information-systems remotely for architectural, efficiency, and
security reasons.

REST APIs (Representational State Transfer Application Programming In-
terfaces) have been a mainstream form of services for some years now. They are
well suited for providing content to mobile devices, like smartphones and tablets,
because they offer a lightweight and flexible access to remote services for end
users and mobile apps developers.

Several research works studied best practices in the implementation of REST
APIs [1,2,3,4]. However, little is known on how Android apps use/consume these
APIs in practice. HTTP requests to REST APIs were first implemented for
mobile apps with “low-level” APIs provided by programming languages (sockets)
or class libraries (HttpURLConnection). However, these requests can now be
implemented using dedicated, third-party HTTP libraries, such as Google Volley,
OkHttp, or Retrofit.

Consequently, we ask in this paper how dedicated HTTP libraries are used
in practice and if they help adopt the recommended practices of REST APIs
usage in Android apps. We investigate “good” and “poor” practices of REST
APIs usage in Android apps. We also study the prevalence of these practices
and how they are used. We perform a multi-dimensional study of the state of
the practice of REST APIs usage in Android apps. We answer the following
research questions:

– RQ1: What is the state of the practice in the use of REST APIs by An-
droid apps? We want to observe the use of practices by developers and their
prevalence.

– RQ2:What is the state of the implementation of HTTP libraries in Android
apps? We want to observe the implementations used by developers for REST
APIs, which will inform the choice of HTTP client libraries.

– RQ3: Do third-party HTTP libraries help developers adopt the recom-
mended practices of REST APIs usage in Android apps? We want to study
if third-party HTTP libraries promote the use of the recommended practices
of REST APIs usage in Android apps and study as well the recommended
libraries for each practice.

By answering these research questions, we want to recommend to developers
the libraries and practices to adopt based on their prevalence in implementa-
tions and their benefits for developers. Such recommendations are important for
REST APIs providers because (1) mobile apps run on mobile devices that have
many constraints in terms of memory, battery, computational power, and com-
petition for resources, (2) they would help them offer more features that ease the
Android developers’ work, and (3) they would help them improve the usability
and performance of the third-party HTTP libraries [5,6].

This paper presents an extension to our previous observational study [6]. We
additionally conduct an online survey to assess the importance of the identi-
fied practices from Android developers’ point of view. We study in detail why
developers consider/ignore the recommended practices of REST APIs usage in



A Multi-dimensional Study of REST APIs Usage in Android Apps 3

Android apps. We also study the role of third-party HTTP libraries in promot-
ing the implementation of the good practices from the point of view of Android
developers.

Therefore, we provide a total of five contributions. We review the literature
extensively and compile a catalog of seven practices related to the development
of mobile apps that consume REST APIs. These practices pertain to the use
of dedicated, third-party HTTP libraries and help to understand how Android
apps use/consume REST APIs. Then, we propose a framework, PIRAC, that
automatically detects occurrences of all these practices using detection rules.
Then, we perform an observational study on 1,595 Android apps out of 9,173
apps downloaded from the Google Play store to report how they use/consume
REST APIs. We mine 12,478 Stack Overflow posts to assess the importance
of the identified practices from Android developers’ point of view. Finally, we
conduct an online survey with 118 Android developers to study further the
usage of these practices, the reasons of ignoring them as well as the developers’
recommendations for using third-party HTTP libraries.

Fig. 1. Methodology of our multi-dimensional study

Figure 1 outlines our methodology to realise these contributions and response
to our research questions. It shows that we pursued a three-prong approach by
(1) developing a tool, PIRAC, to identify occurrences of REST mobile clients
practices, which we analyse manually the precision and recall; (2) performing an
observational study on the occurrences of these practices in real Android apps
using PIRAC; and, (3) confirming the importance of these practices through a
study of Stack Overflow posts related to Android REST clients and a survey of
developers’ perception of these practices.

We show in this paper that developers tend to ignore some good practices of
REST APIs usage in Android clients: caching responses, timeout management,



4 Abdellatif et al.

and error handling. We also report that only two good practices are widely
considered by Android developers: network connectivity awareness and JSON
vs. XML responses parsing. We show that third-party HTTP libraries promote
the use of recommended practices of REST APIs usage in Android apps.

The remainder of this paper highlights the multi-dimensionality of our work
as follows. Section 2 describes related works. The next three sections follow the
same plan: study design, study results, threats to their validity for, in Section
3, the practices, in Section 4, the developers’ questions on Stack Overflow, and,
in Section 5, the developers’ answers to a survey. Finally, Section 6 answers and
discusses our research questions while Section 8 concludes with future work.

2 Related Work

Several research works have been proposed in the literature on bad and good
practices in REST APIs. However, few are the works that study how Android
apps use/consume REST APIs.

In the context of mobile apps, Rodriguez et al. [1] were the first to study the
traffic of HTTP requests from mobile clients. They evaluated the conformance of
some state-of-the-art design best practices of REST APIs from the perspective
of mobile clients. They analyzed these practices on a large dataset of 78 GB of
HTTP requests collected from a mobile-Internet traffic-monitoring site. However,
the best practices analyzed are common to any kinds of REST APIs and they
focused specifically on HTTP requests.

Oumaziz et al. [5] conducted an empirical study on 500 popular Android apps
and 15 popular services to identify best practices when using/consuming REST
APIs for Android mobile clients. They showed that Android clients generally
favour invoking REST APIs by using official dedicated service libraries instead
of invoking services with a generic HTTP client like HttpURLConnection. They
also presented which good practices service libraries should be implemented fol-
lowing an online survey and manual analyses of the apps. In this paper, we
go more in details to identify how dedicated service libraries are used by An-
droid clients. We propose a tool to automate the detection of these practices in
Android mobile apps. We empirically analyze more than 9,000 Android mobile
clients to study the usage of REST APIs in Android mobile apps. We mine Stack
Overflow posts and conduct an online survey with 118 Android developers to as-
sess the importance of the identified practices from the point of view of Android
developers.

Several works were carried out for the detection of service anti-patterns
[1,2,3,4,7,8]. For example, in the context of REST APIs implementation, Palma
et al. evaluated the design of several REST APIs and proposed different ap-
proaches to detect automatically REST (anti)patterns. They proposed SODA-R
(Service Oriented Detection for Anti-patterns in REST) [4], a heuristics-based
approach to detect (anti)patterns in REST systems. They relied on heuristics
and detection rules for eight REST anti-patterns and five patterns. They applied
their tool on a set of 12 widely-used REST APIs including BestBuy, DropBox,



A Multi-dimensional Study of REST APIs Usage in Android Apps 5

and Facebook. Then, Palma et al. proposed a syntactic and semantic approach
to detect REST linguistic (anti-)patterns, which they define as poor/good prac-
tices in the naming, documentation, and choice of identifiers in REST APIs [8].
Finally, Palma et al. proposed UniDoSA [7], a unified approach that (1) embeds
a unified meta-model for the three main service technologies REST, SCA, and
SOAP and (2) detects the presence of anti-patterns in service-based systems.

A set of automatic approaches for the detection of REST (anti)patterns are
proposed in these works. However, they specifically evaluated APIs without con-
sidering any interaction with clients, in particular mobile clients, as we do here.
Other works proposed similar (anti)patterns detection approaches in service ap-
plications. They implemented other techniques, such as bi-level optimization
problems [9] or ontologies [10].

In contrast, in this paper, we consider and automatically detect practices
related to the development of REST mobile clients. We take also into account
the interactions among clients and REST APIs, not on the service side but on
the client one. We study in details the use of REST APIs libraries for mobile
clients and how Android mobile apps use/consume REST APIs.

3 Study of the Practices of REST APIs Usage in Android
Apps

In this section we will describe the first dimension of our study that focus on the
analysis of the practices of REST APIs usage in Android apps. We will detail
the study design, the obtained results as well as its related threats to validity.

3.1 Study Design

We conduct an observational study on hundreds of Android apps from the Google
Play store. First, we reviewed the literature and developers’ forums to build a
catalog of Android REST clients practices. Second, we developed a tool, PIRAC6,
to detect each of the identified practices. Third, we validated the detection pre-
cision of PIRAC on 116 Android apps collected from the F-Droid repository.
Fourth, we applied PIRAC on 9,173 mobile apps downloaded from Google Play
store to study the state of the practices in Android clients.

3.1.1 Step 1: Cataloguing Android REST Mobile Clients Practices

To answer our first research question, we performed a domain analysis of the de-
velopment practices related to Android REST clients. We studied the definitions
and specifications of the practices in the literature as well as in online resources
and articles. We executed a search query on Google, Scopus, IEEE Xplore, and
Engineering Village to obtain references about Android REST mobile clients
practices. The search query was: Android And (REST OR RESTful OR HTTP)

6http://git.sofa.uqam.ca/mabdellatif/PIRAC/tree/master



6 Abdellatif et al.

And (API OR Service OR Webservice). We excluded references about the de-
sign of REST APIs for mobile apps and kept only references that described how
Android apps should consume REST APIs. We extracted from these references
all practices related to Android REST mobile clients and classified these prac-
tices as good, neutral, or bad. This domain analysis allowed us to identify seven
practices described in the following.

List of Good and Bad Practices for Android REST Clients

1. 3 Use of third-party HTTP client vs. 7 HttpURLConnection: This
practice concerns the use of third-party libraries to manage REST requests.
It is recommended that mobile HTTP queries should be encapsulated in
a method proposed by the interface of official third-party libraries, such
as OkHttp, Retrofit, Google Volley, etc. A Non-encapsulated HTTP Query
must be manually built by the developer with all the needed parameters
using HttpURLConnection. This process could be long and complicated in
some cases and could make the code difficult to maintain.

2. 3 Network connectivity aware vs. 7 Unaware REST service invo-
cation: This practice pertains to the validation of the network connectivity
before sending REST request. It is recommended to check network connec-
tivity (1) to offload heavy REST queries when the device is connected to
WiFi, (2) to increase device battery life, (3) to avoid charges related to lim-
ited mobile data, and (4) to detect network changes and resume incomplete
REST requests.

3. 3 Timeouts vs. 7 Perpetual requests: This practice is related to setting
or not timeouts for REST requests. There are several types of timeouts:
connection timeout, read timeout, write timeout, etc. If a mobile client fails
to establish a connection to the server within the set connection timeout,
it will consider that the request failed. It is recommended to set proper
timeouts values to make mobile apps more responsive and user friendly.

4. 3 JSON vs. 7 XML: This practice pertains to REST responses parsing
by mobile clients. It is recommended to parse REST responses with JSON
as it is more human-readable than XML. Also, JSON is more CPU-friendly
to parse as it is more compact than XML [11,12].

5. 3 Caching vs. 7 Non caching: Caching is the ability to keep copies of
frequently accessed data in several places along the request–response path.
Some third-party Android REST libraries offer facilities to manage response
caching, such as removing a single cached response, clearing the entire cache,
retrieving the date of a cached response, so that developers can accurately
decide when an update should be made. It is recommended to cache frequent
REST requests to reduce bandwidth usage, network latency, and battery
consumption.

6. 3 Specification vs. 7 Non specification of a behaviour for failed
requests: The specification of a behaviour when REST requests fail is highly
recommended to increase usability and responsiveness of the mobile client
apps. Possible behaviours include to drop the requests until some change



A Multi-dimensional Study of REST APIs Usage in Android Apps 7

to the network connectivity or to retry the requests in some chosen time-
intervals until successfully, etc.

List of Neutral Practices for Android REST Clients

1. Synchronous vs. Asynchronous requests: REST APIs requests can be
synchronous or asynchronous. For synchronous requests, the code execu-
tion will block until the API call returns. For asynchronous requests, calls
to remote APIs are made while the execution continues. Android develop-
ers should carefully choose whether to invoke REST APIs synchronously or
asynchronously based on their needs to increase the responsiveness of their
apps.

3.1.2 Step 2: Detection of the Practices

We developed a framework, PIRAC, to detect the seven identified practices.
As depicted in Figure 2, our framework takes as input Android APKs, their
corresponding meta-data, and a list of HTTP libraries, which we use to filter
the code to analyze. Our tool uses the SOOT framework [13] to parse the byte-
code of mobile apps and extract all the information needed for our analyses, such
as classes and methods. PIRAC creates models for Android mobile apps based on
the information extracted by SOOT,and those extracted from the reconstructed
manifest file. Then, we apply the detection algorithms for the identified practices
to detect their uses.

Fig. 2. Detection of REST APIs practices usage in Android apps with PIRAC

An Android APK contains the compiled source code of the app as well as
that of third-party and Android libraries. Running our analyses on the entire
packaged code would (1) produce misleading results, and (2) affect the execution
time of our analyses. Thus, we filter the application code to differentiate the code



8 Abdellatif et al.

of the app currently under analysis from the code belonging to Android SDK and
third-party libraries. We rely on a list of third-party Android libraries, which
contains 1,353 package names of the most used libraries identified by Li et al.
[14]. This list has not been updated since 2016 so we updated it by adding
1,176 package names of the libraries that we manually collected from Android
community Web sites7.

After filtering the app code, we construct models of the APKs that embed
all the required information to apply our detection heuristics. Afterwards, we
identify classes of interest that are related to REST APIs services calls. Finally,
we analyze these classes and identify the practices based on our detection rules.

In the following, we describe some of the detection rules that we use in our
framework.

Android REST Clients Identification. Identifying automatically Android
apps that make REST calls can be a very complicated task, especially with the
use of static analyses methods. Indeed, we can only rely on some used practices
in the apps source code to verify whether a given app is potentially using a
REST API. We rely primarily on these rules:

1. The use of Android INTERNET permission. Android apps require Inter-
net permission to access the mobile network. This information is explicitly
defined in the Android manifest file.

2. The referencing of an HTTP library. The communication with REST APIs
is primarily based on the HTTP protocol. REST apps must use an HTTP
library to communicate through this protocol. We rely on a list of 75 HTTP
libraries collected from a Maven repository8.

When we detect these practices in an app, it is automatically marked as
“Potentially Using a REST API”. For a better accuracy of the detection of our
targeted practices, we ensured that the HTTP library is executing REST calls
and that it is not just referenced for other purposes/uselessly (dead code). In-
deed, the simple presence of an HTTP library in the APK file does not guarantee
that this app uses/consumes REST APIs. Also, some Android apps may refer-
ence an HTTP library to use only some of its classes without executing any
REST calls.

Use of Third-party HTTP Library vs. HttpURLConnection. When it
comes to executing HTTP calls, developers can rely on the native HttpURLCon-
nection API or choose to use an external HTTP library. Our tool detects the
usage of HttpURLConnection or an external library by analyzing the instanti-
ation of objects and calls made with the specific Java methods of each of the
libraries.

7https://android-arsenal.com/
8https://mvnrepository.com/open-source/http-clients



A Multi-dimensional Study of REST APIs Usage in Android Apps 9

Cached vs. Non-cached Responses. Developers can use the caching capa-
bilities offered by the HTTP libraries or develop their own caching strategy. To
detect response caching, PIRAC detects the use of relevant methods and classes
provided by the libraries, which allow such operations. PIRAC detects also the
creation and use of caching folders dedicated to Android apps.

Network-connectivity Aware vs. Unaware REST Requests. The Android
SDK provides a class named ConnectivityManager, which provides information
about the network connectivity of a device (network type, availability, etc.).
Developers can use this class to adapt their use of REST API requests. To
detect such behaviour, our tool detects the invocations of methods that provide
information about network connectivity from the ConnectivityManager class.

JSON vs. XML Response Parsing. The responses from REST APIs come
in multiple formats, mainly JSON and XML. The use of JSON is recommended
due to its size relatively to XML, its readability by developers, and its ease
of use. To detect the usage of one of these two data formats, our framework
detects the usage of the most common JSON and XML libraries as well as their
instantiation in a code executing an HTTP call.

Timeout vs. Perpetual REST Requests. Each one of the studied client
libraries provide classes or methods to configure a timeout for their HTTP re-
quests. To detect a timeout configuration, PIRAC detects invocations of these
methods or instantiation of classes with a timeout value in the constructor.

Specification vs. Non-specification of a Behaviour Upon Failure. When
a request fails, regardless of the reason, developers should implement custom
logic and show an adapted message to the end user. To detect this behaviour, in
the case of HttpURLConnection, we detect the retrieval of HTTP status codes
after a request. For external libraries, we detect the usage of specific library
error-handling methods (e.g., onFailure() or response.isSuccessful()).

Synchronous vs. Asynchronous Requests. When using third-party libraries,
it is simple to perform asynchronous requests because these libraries offer spe-
cific methods with callbacks. To detect synchronous/asynchronous requests from
third-party libraries, we implemented a detection approach specific to each kind
of libraries. We rely on the detection of third-party REST clients methods
dedicated to synchronous/asynchronous REST requests. The detection of asyn-
chronous requests for Java HttpURLConnection is more challenging. When using
this library, developers must customize and hard-code asynchronous requests,
most commonly using the AsyncTask class, which provides methods with call-
backs. We analyze the bodies of the methods running in the background to build
a method-invocation call graph. Finally, we search for a REST call in each of
these methods.



10 Abdellatif et al.

3.1.3 Step 3: Validating PIRAC for the Detection of REST Mobile
Clients and their Practices

For our validation, we analysed 1,448 Android apps from the F-Droid reposi-
tory. We applied our tool on a dataset available online for replications9,10. We
randomly selected a sample of 116 apps from this dataset, which represents a
95% statistically significant stratified sample with > 10% confidence interval of
the 1,448 analysed apps in our dataset [15].

After the selection, one author studied manually the source code of the 116
apps to check that the tool correctly detected Android REST clients as well as
our targeted practices. The author checked the presence of Internet permission
in the APK manifest file and the usage of some HTTP library in the source
code. The same author extracted the URLs of the HTTP requests and manually
checked if the calls were made to some REST API. Then, he also manually
checked if we did not miss any occurrence of the practices in these apps by
studying the HTTP requests in the app source code.

Table 1 summarises the detection precision and recall values of our tool. We
reached a detection precision of Android REST clients of 100% and a recall of
41%. Although our recall is low, we are confident that the selected apps are
indeed REST clients through our manual analysis. The detection precision for
each targeted practice is satisfactory as it varies between 80.44% and 100%. The
recall of our tool for the practices is also satisfactory as it varies between 81.2%
and 96%. We reached an average detection precision of 93.92% and an average
detection recall of 81.26%. These detection results confirm the reliability of our
tool to detect our targeted practices.

Precision Recall
Identification of Android REST clients 100% 41%
Use of third-party HTTP Library vs. HttpURLConnection 100% 81.2%
Cache usage 98% 90.72%
Connectivity aware clients 97.42% 96%
JSON vs. XML 83.15% 85.74%
Timeout setting 92.31% 88.41%
Specification of a behavior at request failure 80.44% 81.98%
Synchronous vs. asynchronous calls 100% 85%
Average 93.92% 81.26%

Table 1. Overview of the detection precision of our tool

3.2 Study Results

We now describe our observations about our dataset and the identified practices.
9https://github.com/rtighilt/PIRAC-Android-Dataset/blob/master/REST-

Client-Validation-apps.csv
10http://www.ptidej.net/downloads/replications/ause20/



A Multi-dimensional Study of REST APIs Usage in Android Apps 11

3.2.1 Dataset
To conduct our observational study, we downloaded randomly 9,173 Android
apps from Google Play. We used Androzoo11 to collect APKs that were originally
extracted from Google Play. Then, for each app, we relied on Google Play to
extract their metadata, including the APK name, its date of release, its size, its
categories, etc. As depicted in Figure 3, the apps belong to varied categories, such
as games, communication, weather, etc. We applied PIRAC on the dataset to
extract all REST clients for a total number of 1,595 Android REST clients12,13.
These apps are also of different sizes, as shown in Figure 4.

Observation 1: We observe that the three main categories that use the
most Android REST clients are Lifestyle, Business & Finance, and Video
& Media.

Fig. 3. Distribution of Android apps
by category

Fig. 4. Android REST clients LOCs

3.2.2 Observations on the Identified Practices
In this section, we present our observations about the distribution of good and
bad practices of REST APIs in Android clients.

Use vs. Non-use of Third-party Libraries for HTTP Requests. Based
on our previous work [5], the most used Android libraries to execute HTTP
requests are OkHttp, Retrofit, Google Volley, and Java HttpURLConnection.
We focused our study on these libraries. We relied on the APK metadata to
extract the date of release of the apps. We reported in Figure 5 the evolution of
the percentage of the apps that use a particular HTTP library by year.

11https://androzoo.uni.lu/
12https://github.com/rtighilt/PIRAC-Android-Dataset/blob/master/pirac-

analysed-dataset.csv
13http://www.ptidej.net/downloads/replications/ause20/



12 Abdellatif et al.

Fig. 5. Evolution of the use of HTTP libraries in time

Fig. 6. Evolution of the practices in time

We noticed that Java HttpURLConnection is the oldest library to execute
HTTP requests in REST Android clients. With Figure 5, we noticed that HttpURL-
Connection is getting less used by developers compared to newer third-party
libraries (i.e., OkHttp, Retrofit, and Google Volley).

In 2014, OkHttp, Retrofit, and Google Volley have been released to ease
and simplify the management of HTTP requests by Android clients. We observe
that between 2014 and 2018, the usage evolution of OkHttp and Retrofit is
almost the same because Retrofit uses the OkHttp library for HTTP requests.
The usage evolution of these two libraries increased rapidly (60% and 64%,
respectively) between 2017 and 2018 compared to Google Volley (37%) and Java
HttpURLConnection (35%).



A Multi-dimensional Study of REST APIs Usage in Android Apps 13

Observation 2: Recently, Android developers have been using OkHttp,
Retrofit, and Google Volley to manage REST requests because they
offer more interesting features compared to Java HttpURLConnection.
For example, implementing asynchronous requests is easier when us-
ing third-party libraries because developers do not need to use Android
AsyncTasks to run network operations in a separate thread.

Fig. 7. Distribution of Android REST client practices

Cached vs. Non-cached Responses. Although caching helps developers im-
plement highly capable and scalable REST clients and services by limiting repet-
itive interactions, REST Android developers widely ignore the caching capability
for their REST requests. Based on Figure 7, we observe that only 4% of REST
Android clients cache REST responses, which forces the apps to retrieve du-
plicate responses from servers. This bad practice is known as Ignoring Caching
anti-pattern [4,16]. Also, based on Figure 6, we observe that the use of response
caching has been rapidly increasing during the past five years.

As depicted in Figure 9, we observe that Android apps using third-party
libraries tend to consider more frequently the use of caching (85% of Android
apps considering caching are using third-party libraries).

Observation 3: Android developers tend to ignore the use of caching
to manage REST requests. However, Android apps using third-party li-
braries tend to consider the usage of caching more.



14 Abdellatif et al.

Fig. 8. Distribution of Android HTTP libraries by practices

Network-connectivity Aware vs. Unaware REST requests. Based on
Figure 7, we observe that 62% of REST Android clients are aware of/check
network connectivity before performing REST requests, which is a good practice
with several advantages. Checking network connectivity first lets mobile clients
improve battery life by offloading heavy network requests when the device is
connected to WiFi, for example.

Observation 4: The check of network connectivity before performing
REST requests is a good common practice for Android REST clients.

JSON vs. XML Response Parsing. Using JSON to communicate via REST
APIs is highly recommended in comparison to XML due to its ease of use. Based
on Figure 7, we observe that this good practice is widely adopted by Android
developers with 78% of Android REST clients using JSON to parse REST APIs
responses while only 24% use XML.

Observation 5: The good practice of using JSON to communicate REST
APIs responses is widely adopted by Android developers.

Timeout vs. Perpetual REST Requests. Based on Figure 7, we observe
that only 36% of Android REST clients consider setting timeouts when per-
forming HTTP requests. As depicted in Figure 10, we also observe that 77%
of Android REST clients that consider timeouts use HttpURLConnection. This
high percentage is due to HttpURLConnection being the only studied HTTP
library that does not specify a default value for timeouts. When using such a
library, developers must specify a value of timeout.



A Multi-dimensional Study of REST APIs Usage in Android Apps 15

Fig. 9. Cache usage by Android HTTP library

Fig. 10. Timeout usage by client li-
brary

Fig. 11. Error-handling usage by An-
droid HTTP client library

Observation 6: Although it is recommended to set proper timeouts val-
ues to make the mobile apps more responsive and user friendly, Android
developers tend to ignore this good practice.

Specification vs. Non-specification of a Behaviour Upon Failure. Based
on Figures 7 and 11, we observe that only 45% of Android REST clients handle
HTTP requests failures when calling REST APIs. We also observe that Android
developers do not take full benefit from the error-handling features provided by
third-party libraries as 88% of error handling in Android apps are implemented
with HttpURLConnection. The wide use of HttpURLConnection may hinder the



16 Abdellatif et al.

adoption of such a good practice as developers must implement themselves how
to catch the requests failures and specify what should happen in case of failures.

Observation 7: The specification of a behaviour in case of request fail-
ures is widely ignored by Android developers as they poorly use third-
party HTTP libraries that facilitate errors handling.

Synchronous vs. Asynchronous REST Requests. Based on Figure 7, we
observe that synchronous and asynchronous calls to REST APIs are almost
equally used by Android clients. We also observe that asynchronous commu-
nications increased by almost 40% in the past five years thanks to the features
offered by third-party libraries: Android developers do not have to manage asyn-
chronous calls by themselves anymore. However, Android developers still poorly
rely on third-party HTTP libraries to make asynchronous calls as 77% of asyn-
chronous communications are made with HttpURLConnection.

Observation 8: Synchronous and asynchronous calls to REST APIs are
almost equally used by Android clients. Also, we observe that Android
developers are still relying on third-party HTTP libraries to make asyn-
chronous calls.

3.3 Threats to Validity

In this section, we discuss the threats to validity of our study analysis of Android
apps and the measures that we took to limit them.

Internal Validity. Although we did not carry any statistical tests, we assume
that the identified practices are representative characteristics of the Android
REST clients. There may be other characteristics that describe more accurately
these Android REST API clients. We will study more practices to cover possible
other characteristics. We also related the practices manually thanks to the infor-
mation provided in the literature. Yet, other researchers should perform similar
analyses to confirm/infirm ours.

To detect REST clients, our tool only checked if the apps have Internet
access permission and use some HTTP library. The tool does not distinguish
between REST and other HTTP requests as (1) official online documentation
of libraries and network queries on Android platform assume that REST is the
main reason to perform HTTP requests, (2) HTTP requests towards REST API
is the recommended way for an app to interact with some server [5,17]. Our tool
could not statically analyse the strings use to encode the URL of REST APIs.
To the best of our knowledge, there exists no such tool available. Moreover, to
mitigate this limitation, we analyse a sample of the studied Android apps and
found a precision and a recall of 100% and 41%, which we deemed good enough
for our study.



A Multi-dimensional Study of REST APIs Usage in Android Apps 17

We did not involve developers in the validation of our tool because this
validation is straightforward and simply consists in mining the source code of the
APKs. In future work, we will involve the developers of the analysed apps (1) to
validate the detection results of our tool and (2) to study possible improvements
of the tool to efficiently assist the developers in the use of the recommended
practices.

The source code of some of the apps in our dataset is obfuscated. Even
a simple obfuscation affects our detection precision because names of packages,
classes, and methods change. Also, we do not detect custom caching strategies as
we only detect cache-related and asynchronous calls using third-party libraries.
Custom caching and synchronisation strategies are challenging to cover because
they vary among apps. More research should be done to cover such custom
implementations.

External Validity. These threats concern the generalizability of our results.
Although we presented the largest study on the practices and implementations
of Android REST apps, we cannot generalise our results to all mobile apps.
Future work is necessary to analyze more mobile REST clients, from other mobile
platforms to confirm and—or infirm our observations on their design quality
characteristics.

4 Study of the Practices of REST APIs Usage in Stack
Overflow

We detail in this section the second dimension of our study that focuses on
mining and analyzing Stack Overflow posts about REST APIs usage in Android
apps.

4.1 Study Design

We mined Stack Overflow posts to assess the importance of the identified prac-
tices from the developers’ point of view. We relied on the tags in Stack Overflow
to extract questions related to the use of REST APIs in Android apps. We used
several keywords for the tags that are related to the practices (e.g., Android,
REST, HTTP, cache, timeout, synchronous, asynchronous, etc.) joined with
the name of each HTTP library (HttpURLConnection, Google Volley, Retrofit,
OkHttp). We obtained a total number of 12,478 posts related to REST APIs
usage practices in Android apps. To verify the correctness of the tagged posts,
two of the authors performed a manual validation by comparing the tags of the
posts with their content. Because of the large number of posts, we adopted a
sampling method to select a validation set [15]. We examined 373 posts to en-
sure that the studied posts yield a confidence interval of 5% and a confidence
level of 95%. The two authors independently evaluated the posts and verified the
correctness of their related tags. We then computed the Cohen Kappa metric
[18] to evaluate the inter-rater agreement, which was 0.91 for all the evaluated



18 Abdellatif et al.

tagged posts, which indicated almost perfect agreement [19]. The two authors
discussed the posts for which they disagreed to obtain a final agreement. Thus,
we found that 87% of the mined posts were correctly tagged and consequently
we decided to rely on the posts tags to map the 12,478 posts to our targeted
practices.

4.2 Study Results

Fig. 12. Distribution of the questions on Stack Overflow about the identified practices

Fig. 13. Evolution of the questions on Stack Overflow about Android HTTP libraries
over the years

We provide Figures 12 to 15 to report the results of our analysis of the 12,478
posts Stack Overflow posts.



A Multi-dimensional Study of REST APIs Usage in Android Apps 19

Fig. 14. Distribution of the questions on Stack Overflow about Android HTTP libraries

Figure 12 show the percentages of questions pertaining to the different prac-
tices among the mined posts. We conclude from this figure that the most dis-
cussed practice on Stack Overflow by Android developers is the use of third-
party HTTP libraries. Android developers seem more interested about using
third-party HTTP libraries to ease the management of HTTP requests.

Figures 13 and 14 show the distributions of the questions in Stack Overflow
per Android HTTP library. Based on Figure 13, we report that, since the ap-
parition of Android third-party HTTP libraries in 2013, the number of questions
about HttpURLConnection has been significantly decreasing.

Observation 9: Since the apparition of third-party HTTP libraries,
Android developers ask more questions about them in comparison to
HttpURLConnection.

Figure 14 shows that there is a high interest in using Android HTTP libraries
by Android REST clients developers to implement the identified practices. We
found that Android developers ask most questions about REST requests, when
using Retrofit (67%). Also, we found that 14% of the questions were about Google
Volley, 12% were about OkHttp, and only 7% were about HttpURLConnection.
We explain the high interest by Android developers in Retrofit by the poor doc-
umentation of this library in comparison to its features and its high performance
in comparison to OkHttp, Google Volley, and HttpURLConnection14.

There is also a concern by Android developers on Stack Overflow about asyn-
chronous (30%) vs. synchronous (2%) HTTP requests to REST APIs because
(1) asynchronous communications with REST APIs have more complicated im-
plementation than synchronous ones, and (2) the multiple ways provided by
HTTP libraries to handle such kind of requests are confusing to novice devel-
opers. Android developers seem more interested in managing such calls with

14https://bit.ly/2ypkEl9



20 Abdellatif et al.

third-party HTTP libraries (mainly Retrofit as shown in Figure 15) as they offer
more straightforward ways to manage such kind of requests in comparison to
HttpURLConnection.

We report that Android developers do not ask many questions about the
“connectivity aware" request practice (only 2%), probably because it is very
simple to implement. Also, we observe that Android developers do not ask many
questions about parsing REST APIs responses with JSON. The more problem-
atic parsing format is XML with 25% of the questions about XML parsing and
only 9% are about JSON.

Observation 10: There is a high interest on Stack Overflow in using
third-party HTTP libraries for Android REST clients wrt. asynchronous
calls, caching responses, error handling, and XML parsing.

Fig. 15. Distribution of the questions on Stack Overflow about Android HTTP libraries
by practice

4.3 Threats to Validity

In this section, we discuss the threats to validity of our observational study and
the measures that we took to limit them.

Internal Validity. Although we used several search queries to collect our data,
we may have missed some interesting posts about REST APIs usage in Android
apps. To mitigate this risk, we used a combination and keywords to gather the
most significant posts on Stack Overflow.

We relied partly on developer-provided tags to filter out irrelevant posts.
These tags may not reflect accurately the contents of the posts and some relevant
posts may not have been tagged properly. We mitigated this threats by studying
12,478 posts in an attempt to apply the law of large numbers to our study.



A Multi-dimensional Study of REST APIs Usage in Android Apps 21

Also, we do not consider any filtering process for duplicate posts as they
are useful for our study: they show the developers’ interest in using/adopting a
particular REST practice.

External Validity. There is a threat to the generalizability of our results as we
only consider posts on Stack Overflow. However, we considered the most popular
forum for software development and analysed a large number of posts that are
related to REST APIs usage in Android apps. To further generalize our results,
we should consider other developers’ forums, such as GitHub, Quora, or Reddit.

5 Study of the Practices of REST APIs Usage with
Android Developers

We conducted an online survey between September 2019 and November 2019 to
collect and understand Android developers’ point of view regarding the studied
practices of REST APIs usage in Android apps.

5.1 Study Design

Our study consisted of four main phases:

A - Preparation of the Survey. We created a Web-based survey15 using
Google Forms based on our literature review, our prior works [6,5,20], and in-
formal discussions with some Android developers who actively use REST APIs
in their mobile apps. We thus could choose the focus of the survey, the indi-
vidual questions, and the possible answers for each question. Before publishing
the survey, we performed a pilot with eight developers, four from academia and
four from industry, to validate the relevance of the questions, their wording, the
coverage of their answers, etc. They revised the questions and suggested minor
changes. The final survey contained six sections: (1) participants’ professional
and demographic data, (2) recommended best practices of REST APIs usage in
Android mobile apps, (3) REST APIs usage in Android Apps, (4) evaluation of
third-party HTTP libraries for Android apps, (5) recommended HTTP libraries
for each practice, and (6) availability for an interview. All the questions of the
survey are available in Appendix A and online16.

B - Selection of participants. We targeted developers who have an expe-
rience in Android development. We relied on (1) Google Play store and GitHub
to collect emails of Android developers, (2) information about companies that
offer Android mobile development services, (3) Slack channels on Android devel-
opment, and (4) search queries on LinkedIn profiles, such as “Android developer
OR Android Architect OR Mobile developer ”. Once we identified potential par-
ticipants, we sent them invitations via e-mail, LinkedIn, Facebook, and Twitter.

15https://forms.gle/gQhBeFdNQXERf5wc8
16http://www.ptidej.net/downloads/replications/ause20/



22 Abdellatif et al.

We chose not to solicit more than three professionals from any given company (1)
to have a wide representation of Android developers, and (2) to not overburden
a single organization with our request.

C - Online Survey. We invited 7,543 professionals to answer our survey
and asked them to forward our invitations to other Android developers in their
network. The survey was completed by 122 people, out of whom four did not
use REST APIs. Consequently, we discarded their responses, leaving us with 118
complete responses.

D - Validation. In the survey, we added several related questions to detect
any contradiction among answers. For example, we asked the developers if they
use a given practice in their Android apps. Then, we asked them to mention the
percentage of their Android apps that use this particular practice. Also, we asked
them to mention the reasons for ignoring this particular practice. We assessed the
reliability of the answers in the online survey by looking for spurious/facetious
answers, as well as any contradictions between the answers, etc.

5.2 Survey Results

We now report the results of our survey. We allowed multiple answers to most
questions as well as open answers. Therefore, the sum of the computed percentage
may exceed 100% for some questions. Also, we computed the given percentages
based on the total numbers of participants who answered the question; these
numbers vary from questions to questions. We present in the following subsec-
tions the results of each section of the survey as well as the threats to validity
of this study.

5.2.1 Participants

We reached a total of 118 participants involved in Android development projects.
As shown in Figure 16, 78% were software developers and 9% were software
architects. In terms of experience, Figure 17 shows that 45% had more than 5
years of mobile development experience while 49% had between 1 to 4 years. We
also summarises the sizes of the Android apps developed by the participant in
the box-plot of Figure 4. As shown in Figure 18, 55% of the developed Android
apps were medium-sized (816 KLOCs) while 27% of the apps were large-sized
(>16 KLOCs).

5.2.2 Prevalence of REST APIs Usage

We asked the participants about the numbers of their apps consuming REST
APIs. The majority of the participants (96%) reported that they used REST
APIs in their apps but in different proportions as shown in Figure 20: 42%
mentioned that all their Android apps were REST clients while 4% mentioned
that none used REST APIs.

We also asked the participants what other APIs they use for their Android
apps. As shown in Figure 19, we found that developers are using some other



A Multi-dimensional Study of REST APIs Usage in Android Apps 23

Fig. 16. Professions of the participants Fig. 17. Number of years related to
mobile development experience

Fig. 18. Size of the developed Android apps

APIs, such as SOAP, RPC, and Web sockets. We also found that there is an
increasing interest in using GraphQL (15%), which is an API query language
that could be an alternative to REST for developing APIs. However, REST
APIs are still widely used by all developers.

Fig. 19. Distribution of the used API pro-
tocols/paradigms

Fig. 20. Distribution of Android REST
clients

5.2.3 Developers’ Classification of the Practices
We asked the participants to provide their classification of the studied practices
of REST APIs usage into “good”, “bad”, or “neutral” practices. Figure 21 shows
the practices that are classified as “good”: the use of third-party HTTP libraries,
network-connectivity awareness, JSON response parsing, setting timeouts for
HTTP requests, and the specification of a behavior upon failure. Regarding
caching responses, Android developers considered this practice either “good” or



24 Abdellatif et al.

“neutral” because it depends on its context of usage. Parsing REST responses
with XML is considered by most developers as a “bad” or “neutral” practice as
they highly recommended parsing responses with JSON. Finally, making syn-
chronous API calls is not considered a “good” practice by Android developers:
72% classified it as “neutral” or “bad”.

Fig. 21. The classification of the practices by the developers

5.2.4 Usage of the Recommended Practices
We now report the usage of the recommended practices by the Android devel-
opers, as summarised in Figure 22. We also report on the numbers of apps that
use each practice and the developers’ reasons for ignoring some of them.

HttpURLConnection vs. Third-party Libraries for HTTP Requests.
We notice that Android developers prefer using third-party HTTP libraries
rather than HttpURLConnection. Figure 22 shows that only 33% of the de-
velopers mentioned the use of HttpURLConnection vs. 81% who prefer using
third-party libraries (especially Retrofit) but in different proportions as shown
by Figure 23.

We asked the developers what are the reasons of using HttpURLConnection
to manage REST APIs queries rather than third-party HTTP libraries. Figure
24 shows that 31% of the developers prefer to use HttpURLConnection when
they must customize specific configurations of REST requests and 27% because
of the company internal policies that oblige them to avoid dependencies on third-
party HTTP libraries. The participants mentioned other reasons for considering



A Multi-dimensional Study of REST APIs Usage in Android Apps 25

Fig. 22. Distribution of the usage of the practices

Fig. 23. Distribution of the apps
using HttpURLConnection

Fig. 24. Reasons of ignoring using HttpURLCon-
nection

HttpURLConnection, such as the use of custom HTTP wrappers (20%), the
functional limitations of third-party HTTP libraries (13%), and licensing issues
(13%).

Cached vs. Non-cached Responses. As depicted in Figure 22, caching REST
API responses is not a widely used practice: only 51% of the developers consid-
ered caching in their apps. Also, Figure 25 shows that only 14% of the developers
use caching for REST API responses in all their apps.

We asked the developers the reasons for ignoring caching REST APIs re-
sponses and report the results in Figure 26. The main reasons were that caching
responses was irrelevant in the context of their apps (38%), especially when
dealing with dynamic data that change frequently or when the mobile app do
not perform many REST APIs requests. Another reason for ignoring caching is
security, such as the management of sensitive data, which should not be cached
(29%). Also, 19.5% of the developers reported that implementing cache to be
complex and, thus ignored this practice. Other reasons include performance is-
sues (20.4%) and deadlines (15.9%).

Network-connectivity Aware vs. Unaware REST requests. Network con-
nectivity checking is a popular practice among developers as illustrated by Fig-



26 Abdellatif et al.

Fig. 25. Distribution of the apps
using cache

Fig. 26. Reasons of ignoring caching responses

ures 22 and 27. 52% of the developers declared that they check network connec-
tivity in 100% of their apps; 21% implemented this practice for more than 50%
of their apps; 16.8% for less than 50% of their apps; and, only 10% never check
network connectivity.

We asked the participants when they check the network connectivity of their
Android apps to REST APIs. We report the results in Figure 28: most of the
developers (72%) check network connectivity before each request while a few of
them (9%) only on the initialisation of their apps.

Fig. 27. Distribution of the apps that
check network connectivity

Fig. 28. When do you check network
connectivity?

JSON vs. XML Response Parsing. Parsing REST APIs responses with
JSON rather than XML is a widely used by Android developers. Figure 22 shows
that 86% of the developers mentioned the use of JSON parsers for REST APIs
responses while 24% mentioned the use of XML. We also asked which parsers
they use, as shown in Figure 29, and found that most (89%) rely on Google Gson.
Some use the Jackson parser (31%) and some others native parsers (32%), such
as JsonParser, XmlPullParser, etc.

Timeout vs. Perpetual REST Requests. Figure 22 shows that 63% of the
developers mentioned the use of timeouts for REST requests in their Android
apps. However, Figure 30 shows that only 44% mentioned its use in all their An-
droid apps. We asked the developers the reasons for ignoring this recommended
practice and we found that it was mainly due to their use of third-party libraries



A Multi-dimensional Study of REST APIs Usage in Android Apps 27

Fig. 29. Distribution of the used parsers for REST APIs

that offer default values for timeouts. Another reason is that timeouts do not
matter in the context of their apps (13%) or for performance issues (14%).

Fig. 30. Distribution of the apps
that consider timeouts

Fig. 31. Reasons for ignoring timeouts

Specification vs. Non-specification of a Behaviour Upon Failure. We
found that the specification of a behaviour when REST APIs requests fail is not
a widely spread practice among developers, with only 51% mentioning its use
in their Android apps, as shows by Figure 22. Only 10% mentioned using this
practice in all their apps while 67% in some or none of their apps as shown in
Figure 32.

We found that Android developers tend to ignore such practice because they
are satisfied with the default values, especially when using third-party libraries
(21%). Also, they tend to ignore this practice because of deadlines pushing them
to finish other requirements. They also mentioned other reasons for ignoring
error handling, such as the context of their apps (15%) and the complexity of
the implementation of error handling (11%).

Synchronous vs. Asynchronous REST Requests. Figure 22 shows that
developers highly rely on asynchronous calls: 70% use asynchronous calls in their



28 Abdellatif et al.

Fig. 32. Distribution of the apps that
consider error handling of REST API
requests

Fig. 33. Reasons for ignoring error
handling

apps compared to only 22% using synchronous calls. Figure 34 also shows that
37% of the developers never use synchronous calls while only 11% use them for
all their apps. In comparison, Figure 35 shows that 8% of the developers never
use asynchronous calls while 44% use asynchronous calls for all their apps.

Developers mentioned many reasons for ignoring synchronous calls. Figure
36 shows that performance issues, such as blocking UI thread, is the main reason
for using asynchronous calls (46%), followed by the context of their apps (20%).
Some mentioned that they did not rely on synchronous calls because their apps
were proofs of concept (17%) or because of the complexity of the implementation
of such calls (13%).

Fig. 34. Distribution of the apps using
synchronous REST APIs requests

Fig. 35. Distribution of the apps using
asynchronous REST APIs requests

Fig. 36. Reasons of ignoring synchronous REST APIs requests



A Multi-dimensional Study of REST APIs Usage in Android Apps 29

5.2.5 Evaluation of Third-party HTTP Libraries

We report on the evaluation of third-party HTTP libraries from the Android
developers’ point of view. We study their prevalence, the elements that the
developers consider for choosing HTTP libraries, and their usefulness in the
adoption/application of the recommended practices of REST APIs usage.

Prevalence of Third-party HTTP Libraries. We asked the developers the
third-party HTTP libraries that they use to manage REST APIs requests in their
Android apps. Figure 37 shows that they rely mainly on Retrofit, followed by
OkHttp and Google Volley. Also, we found that Android developers rarely use
other third-party HTTP libraries as 69% mentioned not using other libraries
than Retrofit, OkHttp, and Google Volley. However, a few mentioned LoopJ,
RxJava, RxAndroid, and Cronet.

Fig. 37. Distribution of the used third-party HTTP libraries

Choice of Third-party HTTP Libraries. We asked the developers what are
the elements that they consider for choosing third-party HTTP libraries. Figure
38 shows that 81% of the developers focus on performance (e.g., reliability when
dealing with heavy resources, execution time, etc.). They also consider the ease
of use (75%) as well as their flexibility to fulfill their apps requirements (71%).
Developers consider quality of the documentation (58%) as well as debugging
and tracing tools (43%). Developers consider less how active is the community of
the libraries (39%) or battery usage (27%) because third-party HTTP libraries



30 Abdellatif et al.

may not have a major impact on energy consumption even through HTTP calls
may impact battery life17.

Fig. 38. Elements considered for choosing third-party libraries

Usefulness of Third-party HTTP Libraries for the Recommended Prac-
tices. We asked the developers if third-party HTTP libraries help them adopt
the recommended practices of REST APIs usage in Android apps. Figure 39
shows that almost all developers (96%) think that such libraries are very helpful
to apply the recommended practices because they provide features that are easy
to use in comparison to HttpURLConnection.

We also asked their recommendations of the libraries to use for each prac-
tice. Figure 39 shows that they highly recommend Retrofit for all the practices,
followed by OkHttp and Google Volley. Only a few developers recommend the
use of HttpURLConnection for the targeted practices.

5.3 Threats to Validity

Construct Validity. These threats refer to the extent to which the opera-
tionalizations of a construct (in our case the survey questions and terminology)
do actually measure what the theory claims. To minimize this threat, we used
both open and closed questions in the survey and tried to minimize the ambi-
guities through our pilot study as we mentioned in Section 5.1.

Internal Validity. Acquiescence bias is a kind of response bias because of
which survey respondents tend to agree with the questions in a survey or to
choose “positive” answers. It is also the tendency to agree with a statement
when in doubt. We mitigate this threat by (1) adding several related questions

17https://developer.android.com/topic/performance/power/network/action-any-
traffic.html



A Multi-dimensional Study of REST APIs Usage in Android Apps 31

Fig. 39. Recommended HTTP libraries by practice

(e.g., the use of the practices and the reasons for ignoring them), (2) checking
and validating the consistency among the responses to questions related to one
another, (3) eliminating contradictory responses, and (4) eliminating responses
in which participants selected all the possible choices. Finally, we decided not to
have incentives for participating in the survey to minimize the response bias.

External Validity. These threats relate to the generalisability of our sur-
vey. The participants might not be representative of the general population of
Android developers as the response rate (122/7,543) is low but expected. To
mitigate this threat, we advertised our survey through various channels (e.g.,
LinkedIn and Facebook) and targeted Android developers from different mobile
development companies. The participants could freely decide whether to par-
ticipate in the study or not (self-selection). They were informed as well about
the topic of the survey, the estimated time to complete it, its purpose, and the
guaranteed anonymity of their (non)participation and answers. Also, to the best
of our knowledge, it is still the largest number of participants to date in any
such study. Finally, while the number of participants cannot ensure the general-
isation of our findings, we believe that the answers provide a valuable source of
information to understand what developers think about the practices.

6 Answers to Our Research Questions

We now answer our research questions using our previous results.



32 Abdellatif et al.

6.1 RQ1: What is the state of the practice in the use of REST APIs
by Android apps?

Based on our analysis of Android apps and our survey, we identified several
practices of REST APIs usage in Android clients that we classified into good,
neutral, or bad.

Good Practices. We observed that only two practices are widely considered
“good” by Android developers when implementing their mobile apps: network
connectivity awareness and JSON response parsing. Connectivity-aware REST
requests and JSON responses parsing are the most evident/trivial practices for
Android developers as reflected by the low number of questions about these
practices on Stack Overflow vs. their high usage in Android apps.

Bad Practices. We found that Android developers ignore some good practices
of REST APIs usage: the use of third-party HTTP libraries, caching responses,
setting timeouts, and error handling. Caching REST responses is the most prob-
lematic practice for Android developers as reflected by the high number of ques-
tions about caching REST requests vs. the low percentage of Android apps using
a cache (as shown in Figures 7 and 12). Specifying a behavior when requests fail
is also difficult for Android developers as they ask many questions about it on
Stack Overflow.

Neutral. Asynchronous REST requests seem to be difficult to implement for
developers as reflected by the high number of questions on this topic vs. the high
number of apps relying on asynchronous calls. We found some discrepancies be-
tween the results of our observational study of Android REST clients and the
results of the survey for synchronous REST requests. Based on our observational
study of Android REST clients, we found an equal distribution between syn-
chronous and asynchronous REST APIs calls in Android apps. However, in our
survey, we found that Android developers do not prefer to rely on synchronous
REST APIs calls. It is even considered as a neutral or a bad practice. Finally,
developers highly recommend avoiding synchronous calls to improve apps per-
formance.

Also, we gathered that developers ignore some of the recommended practices
with good reasons, because they do not apply in their context, for example
caching and timeouts.

6.2 RQ2: What is the state of the implementation of HTTP
libraries in Android apps?

Choosing an efficient mobile HTTP library to communicate with a REST API
can be difficult for developers because they must handle many aspects, such as
making connections, caching, retrying failed requests, parsing responses, han-
dling errors, etc.



A Multi-dimensional Study of REST APIs Usage in Android Apps 33

Although only 28% of the Android apps use third-party HTTP libraries, since
the apparition of such libraries, developers have been using them increasingly.
Indeed, we identified that almost 98% of apps released in 2018 are using third-
party libraries. Also, based on our survey, we found that Android developers
highly use third-party libraries to manage REST APIs requests (81%).

After analyzing the state of the implementation of HTTP libraries in Android
apps, the distribution of questions about these libraries in Stack Overflow, and
the results of our survey, we found that Retrofit is the most used and discussed
third-party HTTP library because of its ease of use, high performance, and its
caching features.

Finally, we found that the choice of a third-party HTTP library to use de-
pends basically on the performance of the library, its ease of use as well as its
flexibility to fulfill the applications requirements.

6.3 RQ3: Do third-party HTTP libraries help developers adopt the
recommended practices of REST APIs usage in Android apps?

Based on our study, we found that since the apparition of third-party libraries,
Android apps tend to use more and more good practices when performing REST
requests. Additionally, almost all Android developers (98%) claimed in our sur-
vey that third-party HTTP libraries help them adopt/apply “good” practices of
REST APIs usage in their apps.

We observe that the non-use of third-party HTTP libraries hinders the adop-
tion of good practices, which is the case for timeouts and error handling that
are still highly implemented with HttpURLConnection, as shown in Figures 10
and 11). Finally, Android developers recommend the use of third-party libraries
to apply the recommended practices of REST APIs usage in Android apps.

Thus, we answer that third-party HTTP libraries help developers in their
implementations of good practices of REST APIs usage in Android mobile apps.
However, Android developers must also carefully choose the right third-party
library that copes with their needs (e.g., performance, flexibility, ease of use,
etc.). Based on our results, we recommend using Retrofit.

7 Recommendations

Developing REST clients for mobile apps is a more challenging task for develop-
ers than “traditional” software application development because they must work
with limited resources, such as the processing power, battery, and connectivity.
We aim through this study to motivate/urge the developers to consider good
practices of implementing Android REST clients to ensure the quality of the
developed apps and, thus, make the best of the limited available resources.

Before performing a REST request, we recommend that developers check
the Internet connectivity (1) to offload heavy REST queries when the device is
connected to WiFi, (2) to increase device battery life, and (3) to detect network



34 Abdellatif et al.

changes and resume incomplete REST requests if necessary. Then, we recom-
mend that developers choose the “right” third-party HTTP libraries, mainly
Retrofit, to manage REST requests on Android apps. Such library speeds up
development by reducing coding efforts and improves quality by promoting the
implementation of good practices of REST APIs usage.

Although the choice between synchronous and asynchronous requests to
REST APIs depends on the context of the apps, developers must carefully choose
between the two ways of communication. They must avoid, when possible, syn-
chronous requests to increase the responsiveness of their apps. When implement-
ing a REST request, we also recommend setting carefully timeouts to increase
the app responsiveness: developers must adapt default timeout values to make
sure they fit with the app responsiveness requirements. We also recommend to
parse REST APIs responses with JSON rather than XML because JSON for-
mat is faster to parse than XML [12]. We also recommend to cache frequent
REST requests to reduce bandwidth usage, network latency, and battery con-
sumption. When a REST request fails, we suggest that developers handle the
errors to increase the reliability of the app. Although Android developers rarely
update their libraries [21], we highly recommend updating their HTTP libraries
to support/implement more good practices of REST APIs usage in their apps.

Finally, we recommend that providers of HTTP libraries focus on perfor-
mance, flexibility, and ease of use of their libraries because these are the main
criteria of the developers to choose an HTTP library for Android apps according
to our survey analysis.

8 Conclusion and Future Work

Several research works studied REST APIs development practices for mobile
apps. However, little was known on how Android mobile apps use/consume
REST APIs. We described in this paper a multi-dimensional study about the
state of the practices of REST APIs usage in Android apps, which is an extension
to our previous observational study [6] for which we additionally conducted an
online survey to assess the importance of the identified practices from Android
developers’ point of view.

We thus provided five contributions: (1) we reviewed the literature exten-
sively and compiled a catalog of seven practices related to the development of
apps using REST APIs. These practices pertained to the use of dedicated, third-
party libraries and helped understanding how Android apps use/consume REST
APIs, (2) we proposed a framework, PIRAC, to detect automatically occurrences
of all the identified practices using detection rules, (3) we conducted an observa-
tional study of 1,595 REST mobile apps out of 9,173 Android apps downloaded
from the Google Play store to report how they use/consume REST APIs, (4)
we mined 12,478 Stack Overflow posts to assess the importance of the identified
practices and the use of Android HTTP libraries from the developers’ point of
view, and (5) we conducted an online survey with 118 Android developers to
validate our previous observations.



A Multi-dimensional Study of REST APIs Usage in Android Apps 35

Based on our study, we found that developers tend to ignore some good
practices of REST APIs usage in Android apps. These practices are caching
responses, timeout management, and error handling. We found that only two
good practices are widely considered by Android developers when implementing
their mobile apps: network connectivity awareness and JSON vs. XML responses
parsing. We also showed that third-party HTTP libraries promote the use of
recommended practices of REST APIs usage in Android apps.

We concluded that Android developers should consider more good practices
when implementing mobile REST clients, especially because HTTP requests are
the most energy consuming network operation in apps [22,23]. Thus, efficient
and high quality REST requests should be a developers’ primary focus when
considering the use of network connection on mobile devices. Mobile developers
should also apply these practices to enhance the quality, responsiveness, and
efficiency of their apps. They should consider as well existing HTTP libraries to
benefit from the good practices implemented/provided by these libraries, such
as asynchronous requests, timeout management, caching responses, and error
handling. Finally, we also concluded that service providers must strive to make
their libraries as simple as possible. They should focus on their performance,
flexibility, and ease of use as these are the main criteria for developers to choose
a library.

Our work is beneficial for both practitioners and the research community.
It provides the first overview of the state of the practices of REST APIs usage
in Android apps. Future work includes selecting and–or defining more practices
and analysing their prevalence in Android apps as well as other apps for other
mobile operating systems, in particular iOS. Thus, we could further recommend
to developers best practices when developing apps that use REST APIs on dif-
ferent OSes. We also want to empirically and quantitatively study the impact
of ignoring the recommended practices on the mobile apps in terms of quality
and energy consumption. Finally, we want to study source-code transformations
that would allow developers to migrate their apps from one library, in particular
HttpURLConnection, to other libraries, like Retrofit or Google Volley, to benefit
from their features and good practices.

References

1. Carlos Rodríguez, Marcos Báez, Florian Daniel, Fabio Casati, Juan Carlos Tra-
bucco, Luigi Canali, and Gianraffaele Percannella. REST apis: A large-scale anal-
ysis of compliance with principles and best practices. In 16th International Confer-
ence Web Engineering, volume 9671 of Lecture Notes in Computer Science, pages
21–39. Springer, 2016.

2. Fábio Petrillo, Philippe Merle, Naouel Moha, and Yann-Gaël Guéhéneuc. Are
REST apis for cloud computing well-designed? an exploratory study. In 14th In-
ternational Conference on Service-Oriented Computing, volume 9936 of Lecture
Notes in Computer Science, pages 157–170. Springer, 2016.

3. Hayet Brabra, Achraf Mtibaa, Layth Sliman, Walid Gaaloul, Boualem Benatallah,
and Faiez Gargouri. Detecting cloud (anti) patterns: Occi perspective. In In-



36 Abdellatif et al.

ternational Conference on Service-Oriented Computing, pages 202–218. Springer,
2016.

4. Francis Palma, Johann Dubois, Naouel Moha, and Yann-Gaël Guéhéneuc. De-
tection of REST patterns and antipatterns: A heuristics-based approach. In 12th
International Conference on Service-Oriented Computing, volume 8831 of Lecture
Notes in Computer Science, pages 230–244. Springer, 2014.

5. Mohamed A Oumaziz, Abdelkarim Belkhir, Tristan Vacher, Eric Beaudry, Xavier
Blanc, Jean-Rémy Falleri, and Naouel Moha. Empirical study on rest apis usage
in android mobile applications. In International Conference on Service-Oriented
Computing, pages 614–622. Springer, 2017.

6. Abdelkarim Belkhir, Manel Abdellatif, Rafik Tighilt, Naouel Moha, Yann-Gaël
Guéhéneuc, and Éric Beaudry. An observational study on the state of rest api uses
in android mobile applications. In Proceedings of the 6th International Conference
on Mobile Software Engineering and Systems, pages 66–75. IEEE Press, 2019.

7. Francis Palma, Naouel Moha, and Yann-Gaël Guéhéneuc. Unidosa: The unified
specification and detection of service antipatterns. IEEE Transactions on Software
Engineering, 2018.

8. Francis Palma, Javier Gonzalez-Huerta, Naouel Moha, Yann-Gaël Guéhéneuc,
and Guy Tremblay. Are restful apis well-designed? detection of their linguistic
(anti)patterns. In 13th International Conference on Service-Oriented Computing,
volume 9435 of Lecture Notes in Computer Science, pages 171–187. Springer, 2015.

9. Hanzhang Wang, Marouane Kessentini, and Ali Ouni. Bi-level identification of web
service defects. In 14th International Conference on Service-Oriented Computing,
volume 9936 of Lecture Notes in Computer Science, pages 352–368. Springer, 2016.

10. Hayet Brabra, Achraf Mtibaa, Layth Sliman, Walid Gaaloul, Boualem Benatallah,
and Faïez Gargouri. Detecting cloud (anti)patterns: OCCI perspective. In 14th
International Conference on Service-Oriented Computing, volume 9936 of Lecture
Notes in Computer Science, pages 202–218. Springer, 2016.

11. Nurzhan Nurseitov, Michael Paulson, Randall Reynolds, and Clemente Izurieta.
Comparison of JSON and XML data interchange formats: A case study. In 22nd
International Conference on Computer Applications in Industry and Engineering,
pages 157–162, 2009.

12. Carlos Rodrigues, José Afonso, and Paulo Tomé. Mobile application webservice
performance analysis: Restful services with json and xml. In International Con-
ference on ENTERprise Information Systems, pages 162–169. Springer, 2011.

13. Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. Soot: A java bytecode optimization framework. In CASCON
First Decade High Impact Papers, pages 214–224. IBM Corp., 2010.

14. Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. An investigation
into the use of common libraries in android apps. In 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering (SANER),
volume 1, pages 403–414. IEEE, 2016.

15. Ravindra Singh and Naurang Singh Mangat. Elements of survey sampling, vol-
ume 15. Springer Science & Business Media, 2013.

16. Stefan Tilkov. Rest anti-patterns. InfoQ Article (July 2008), 2008.
17. Mauricio Arroqui, Cristian Mateos, Claudio Machado, and Alejandro Zunino. Rest-

ful web services improve the efficiency of data transfer of a whole-farm simulator
accessed by android smartphones. Computers and Electronics in agriculture, 87:14–
18, 2012.

18. Jacob Cohen. A coefficient of agreement for nominal scales. Educational and
psychological measurement, 20(1):37–46, 1960.



A Multi-dimensional Study of REST APIs Usage in Android Apps 37

19. J Richard Landis and Gary G Koch. The measurement of observer agreement for
categorical data. biometrics, pages 159–174, 1977.

20. Manel Abdellatif, Geoffrey Hecht, Hafedh Mili, Ghizlane Elboussaidi, Naouel
Moha, Anas Shatnawi, Jean Privat, and Yann-Gaël Guéhéneuc. State of the
practice in service identification for soa migration in industry. In International
Conference on Service-Oriented Computing, pages 634–650. Springer, 2018.

21. Pasquale Salza, Fabio Palomba, Dario Di Nucci, Andrea De Lucia, and Filomena
Ferrucci. Third-party libraries in mobile apps. Empirical Software Engineering,
pages 1–37, 2019.

22. Ding Li, Yingjun Lyu, Jiaping Gui, and William GJ Halfond. Automated energy
optimization of http requests for mobile applications. In 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE), pages 249–260. IEEE,
2016.

23. Ding Li and William GJ Halfond. Optimizing energy of http requests in android
applications. In Proceedings of the 3rd International Workshop on Software Devel-
opment Lifecycle for Mobile, pages 25–28, 2015.



38 Abdellatif et al.

A Appendix 1: Overview of the Survey Questions

ID Question Possible answers
Demographic info
1.1 What describes you the best ? Software architect, Director of technology,

Software engineer, Software developer, Profes-
sor, Student, Other (Open answer)

1.2 How many years of experience in mobile
development do you have ?

Scale from 0 to 10+

1.3 How many android applications have
you developed ?

Less than 5, 5 to 10, 10 to 25, More than 25

1.4 The applications that you have devel-
oped are more often

Small (<8 kLOCs), Medium (8 - 16 kLOCS),
Large (>16 kLOCS)

1.5 In all Android apps that you developed
select all the API protocols that you
used

REST, SOAP, RPC, GraphQL, Other (Open
answer)

1.6 Have you ever developed an Android
app that uses REST APIs?

Yes, No

Recommended Best Practices
2.1 Among the Android apps that you

developed, how many are consuming
REST APIs (REST clients)?

None of them (0%), Some of them (<50%),
Most of them (>50%), All of them (100%)

2.2 If possible, can you provide links to
some Android applications using REST
APIs that you developed?

Open question

2.3 Regarding the Android REST clients
that you developed, which of these
practices did you consider ?

Use of third party HTTP client libraries, Use
of HTTPUrlConnection, Parsing REST APIs
responses with JSON, Parsing REST APIs re-
sponses with XML, Caching responses, Set-
ting timeouts for REST requests, Specifying
a behavior when REST requests fail, Mak-
ing asynchronous HTTP calls, Making syn-
chronous HTTP calls, Other (Open answer)

2.4.1 How do you classify the Use of 3rd party
HTTP client libraries vs HTTPUrl-
connection to manage HTTP requests
when using REST APIs in Android
Apps?

Good, Neutral, Bad, I don’t know

2.4.2 How do you classify caching responses
when using REST APIs in Android
Apps?

Good, Neutral, Bad, I don’t know



A Multi-dimensional Study of REST APIs Usage in Android Apps 39

2.4.3 How do you classify Check for netwotk
connectivity before performing HTTP
requests when using REST APIs in An-
droid Apps?

Good, Neutral, Bad, I don’t know

2.4.4 How do you classify Parsing REST
APIs responses with JSON when using
REST APIs in Android Apps?

Good, Neutral, Bad, I don’t know

2.4.5 How do you classify Parsing REST
APIs responses with XML when using
REST APIs in Android Apps?

Good, Neutral, Bad, I don’t know

2.4.6 How do you classify Specifying a behav-
ior when REST requests fail when using
REST APIs in Android Apps?

Good, Neutral, Bad, I don’t know

2.4.7 How do you classify Making HTTP call
asynchronously when using REST APIs
in Android Apps?

Good, Neutral, Bad, I don’t know

2.4.8 How do you classify Making HTTP call
synchronously when using REST APIs
in Android Apps?

Good, Neutral, Bad, I don’t know

2.5 What other good practices do you rec-
ommend for using REST APIs in An-
droid applications?

Open question

REST APIs usage in Android Apps
3.1 Among the Android apps that you de-

veloped, how many check the network
connectivity for REST requests ?

None of them (0%), Some of them (<50%),
Most of them (>50%), All of them (100%)

3.2 When do you check the network con-
nectivity for REST requests?

On application initialisation, Before each re-
quest

3.3.1 Among the Android apps that you de-
veloped, how many use JSON to parse
HTTP responses?

None of them (0%), Some of them (<50%),
Most of them (>50%), All of them (100%)

3.3.2 Among the Android apps that you de-
veloped, how many use XML to parse
HTTP responses?

None of them (0%), Some of them (<50%),
Most of them (>50%), All of them (100%)

3.4 What libraries do you use to parse
HTTP responses ?

Native parsers, Library defaulkt parser,
Google Gson, Moshi, LoganSquare, XmlPull-
Parser, Jackson, Dom4J, Other (Open answer)

3.5 Among the Android apps that you
developed, how many apps consider
caching responses for REST APIs re-
quests?

None of them (0%), Some of them (<50%),
Most of them (>50%), All of them (100%)



40 Abdellatif et al.

3.6 Regarding the Android REST clients
you developed, what are the reasons for
ignoring caching responses for REST
APIs requests?

Irrelevant to the context, Complex implemen-
tation, Deadlines, Proof of concept / No need,
Performace, Security constraints, I don’t ig-
nore this practice, Other (Open answer)

3.7.1 Among the Android apps that you de-
veloped, how apps perform synchronous
calls to REST APIs?

None of them (0%), Some of them (<50%),
Most of them (>50%), All of them (100%)

3.7.2 Among the Android apps that you
developed, how apps perform asyn-
chronous calls to REST APIs?

None of them (0%), Some of them (<50%),
Most of them (>50%), All of them (100%)

3.8 Regarding the Android REST clients
you developed, what are the reasons for
ignoring asynchronous calls for REST
APIs requests?

Irrelevant to the context, Complex implemen-
tation, Deadlines, Proof of concept / No need,
Performace, Security constraints, I don’t ig-
nore this practice, Other (Open answer)

3.9 Regarding the Android REST clients
you developed, what are the reasons
for ignoring synchronous calls for REST
APIs requests?

Irrelevant to the context, Complex implemen-
tation, Deadlines, Proof of concept / No need,
Performace, Security constraints, I don’t ig-
nore this practice, Other (Open answer)

3.10 Among the Android apps that you de-
veloped, how many apps consider set-
ting timeouts for REST requests?

None of them (0%), Some of them (<50%),
Most of them (>50%), All of them (100%)

3.11 Among the Android apps that you de-
veloped, what are the reasons for ig-
noring setting timeouts for REST re-
quests?

Satisfied with default values, Irrelevant to the
context, Complex implementation, Deadlines,
Proof of concept / No need, Performace, I
don’t ignore this practice, Other (Open an-
swer)

3.12 Among the Android apps that you de-
veloped, how many apps specify a be-
haviour when REST requests fail?

None of them (0%), Some of them (<50%),
Most of them (>50%), All of them (100%)

3.13 Among the Android apps that you de-
veloped, what are the reasons for ig-
noring the specification of a behaviour
when REST requests fail?

Satisfied with default values, Irrelevant to the
context, Complex implementation, Deadlines,
Proof of concept / No need, Performace, I
don’t ignore this practice, Other (Open an-
swer)

3.14 Among the Android apps that you de-
veloped, how many apps use HttpUrl-
Connection to manage HTTP queries?

None of them (0%), Some of them (<50%),
Most of them (>50%), All of them (100%)

3.15 Among the Android apps that you de-
veloped, what are the reasons for using
HttpUrlConnection rather than third-
party HTTP client libraries (Retrofit,
Okhttp, Volley, etc.)?

License compatibility, Custom configuration
of REST requests, Company / internal poli-
cies, Functionnal limitations, Custom HTTP
Wrapper, I don’t ignore this practice, Other
(Open answer)

3.16 If you metionned "Functionnal limita-
tions" above, please give an example

Open answer



A Multi-dimensional Study of REST APIs Usage in Android Apps 41

Evaluation of 3rd party HTTP library for Android apps
4.1.1 Among the Android apps that you de-

veloped, how many use Volley to man-
age HTTP queries?

None of them (0%), Some of them (<50%),
Most of them (>50%), All of them (100%)

4.1.2 Among the Android apps that you de-
veloped, how many use OkHTTP to
manage HTTP queries?

None of them (0%), Some of them (<50%),
Most of them (>50%), All of them (100%)

4.1.3 Among the Android apps that you de-
veloped, how many use Retrofit to man-
age HTTP queries?

None of them (0%), Some of them (<50%),
Most of them (>50%), All of them (100%)

4.1.4 Among the Android apps that you de-
veloped, how many use another third-
party client library to manage HTTP
queries?

None of them (0%), Some of them (<50%),
Most of them (>50%), All of them (100%)

4.2 What other third-party HTTP client li-
braries do you use for Android apps?

Open answer

4.3 What elements do you consider for
choosing the third-party HTTP client
library for your Android app?

Flexibility, Performance, Documentation,
Ease of use, Community, Battery usage,
Debugging and tracing tools, Other (Open
answer)

4.4.1 How do you evaluate the documenta-
tion of Volley client library?

Good, Average, Poor, I don’t know

4.4.2 How do you evaluate the documenta-
tion of OkHTTP client library?

Good, Average, Poor, I don’t know

4.4.3 How do you evaluate the documenta-
tion of Retrofit client library?

Good, Average, Poor, I don’t know

4.5.1 In the context of REST API requests,
what library(ies) you recommend for
caching responses

HTTPUrlConnection, OkHTTP, Retrofit,
Volley, None

4.5.2 In the context of REST API requests,
what library(ies) you recommend for
setting timeouts

HTTPUrlConnection, OkHTTP, Retrofit,
Volley, None

4.5.3 In the context of REST API requests,
what library(ies) you recommend for
specifying behavior at failed requests

HTTPUrlConnection, OkHTTP, Retrofit,
Volley, None

4.5.4 In the context of REST API requests,
what library(ies) you recommend for
making synchronous HTTP calls

HTTPUrlConnection, OkHTTP, Retrofit,
Volley, None

4.5.5 In the context of REST API requests,
what library(ies) you recommend for
making asynchronous HTTP calls

HTTPUrlConnection, OkHTTP, Retrofit,
Volley, None

4.6 If you answered none, please explain
why

Open answer



42 Abdellatif et al.

4.7 Do you think that using 3rd party
HTTP libraries helps you in adopting
the recommended practices of REST
APIs usage in Android apps?

Yes, No

4.8 If you answered "No" in the question
above, please mention why

Open answer

Table 2: Overview of the survey questions


