
JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS
J. Softw. Evol. and Proc. 2014; 00:1–35
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr

SCAN: An Approach to Label and
Relate Execution Trace Segments

Soumaya Medini1, Venera Arnaoudova11, Massimiliano Di Penta2,
Giuliano Antoniol1, Yann-Gaël Guéhéneuc1, Paolo Tonella3

1 DGIGL, École Polytechnique de Montréal, 2900, Boul. Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
2 Department of Engineering, University of Sannio, Via Traiano 1, 82100 Benevento, Italy

3 Fondazione Bruno Kessler (FBK), Via Sommarive 18, 38050 Povo, Trento, Italy

SUMMARY

Program comprehension is a prerequisite to any maintenance and evolution task. In particular, when
performing feature location, developers perform program comprehension by abstracting software features
and identifying the links between high-level abstractions (features) and program elements.
We present SCAN (Segment Concept AssigNer), an approach to support developers in feature location.
SCAN uses a search-based approach to split execution traces into cohesive segments. Then, it labels the
segments with relevant keywords and, finally, uses formal concept analysis to identify relations among
segments. In a first study, we evaluate the performances of SCAN on six Java programs by 31 participants.
We report an average precision of 69% and a recall of 63% when comparing the manual and automatic
labels and a precision of 63% regarding the relations among segments identified by SCAN. After that, we
evaluate the usefulness of SCAN for the purpose of feature location on two Java programs. We provide
evidence that SCAN 1) identifies 69% of the gold set methods and 2) is effective in reducing the quantity of
information that developers must process to locate features—reducing the number of methods to understand
by an average of 43% compared to the entire execution traces.

Copyright c© 2014 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Concept identification; dynamic analysis; information retrieval; formal concept analysis.

1. INTRODUCTION

Program understanding activities are preliminary to any software maintenance and evolution task.
Among these activities, feature location is the activity during which developers identify the program
elements contributing to implement specific domain concepts, program features, or computation
phases, as well as understand the relations among these elements [1, 2]. The understanding that
developers gain allows them to accomplish their tasks, e.g., fix a bug or enhance an existing feature.

Among other works several researchers proposed approaches to ease feature location, e.g.,
[1, 2, 3, 4, 5]. These approaches typically use static and–or dynamic information extracted from
the source code of a program or from some execution traces to relate method calls to user-visible
features. These approaches also use several different techniques to locate feature in source code
and–or execution traces, e.g., Antoniol et al. [4] proposed an epidemiological metaphor to analyze

1Correspondence to: DGIGL, École Polytechnique de Montréal, Pavillon Mackay et Lassonde, 2900, Boul. Édouard-
Montpetit, Montréal, Québec, H3T 1J4, Canada. E-mail: venera.arnaoudova@polymtl.ca

Copyright c© 2014 John Wiley & Sons, Ltd.
Prepared using smrauth.cls [Version: 2012/07/12 v2.10]

2 S. MEDINI ET AL.

source code, Poshyvanyk et al. [6] used latent-semantic indexing (LSI) and then a combination of
formal-concept analysis and LSI [7] to locate feature from source code and execution traces, Rohatgi
et al. [5] used graph dependency ranking on static and dynamic data, Pirzadeh et al. [8] studied
psychology laws describing how the human brain groups similar methods in execution traces.

Cornelissen et al. [9] present a systematic survey of 176 articles from the last decade on program
comprehension through dynamic analysis. They found the first article on program comprehension
through dynamic analysis back to 1972 where Biermann builds finite state machines from execution
traces [10]. Despite the advantages of dynamic analysis techniques, there are also known drawbacks,
one of which is scalability [9]: “The scalability of dynamic analysis due to the large amounts
of data that may be introduced in dynamic analysis, affecting performance, storage, and the
cognitive load humans can deal with.” Indeed execution traces are a precious source of information
but they can be overly large and noisy. For example, the trace corresponding to the simple
scenario “Draw a rectangle” in JHotDraw v5.1 contains almost 3,000 method invocation-related
events. Hence, execution traces might not be of immediate support to developers for program
comprehension activities, in general, and feature location, in particular. To address scalability issues,
some approaches propose to compact execution traces (e.g., Reiss and Renieris [11], Hamou-Lhadj
and Lethbridge [12]), build high-level behavioral models (e.g., Hamou-Lhadj et al. [13], Safyallah
and Sartipi [14], Lo et al. [15] [16]), extract dynamic slices (e.g., Agrawal et al. [17], Zhang et
al. [18]), and segment execution traces (e.g., Asadi et al. [19], Medini et al. [20], Pirzadeh and
Hamou-Lhadj [8]).

Approaches analyzing execution traces, e.g., [6, 8], generally aim at mapping user-visible features
to segments in traces. However, when splitting an execution traces, not all segments correspond
to the user-activated features. Other segments exist to support the user-activated features, for
example segments containing the method calls necessary to set up the user-interface or segments
with methods performing background save of opened files. Therefore, it is often not sufficient to
segment traces: segment must be labeled as well and related to one another within a trace and across
traces. Paraphrasing Eisenbarth et al. [21]: “Assigning meaning to the [segments] was generally
simple for [segments] [...] specific to a subset of all features. Understanding the [segments] became
increasingly difficult when [more generic segment] were inspected.”

We specifically tackle the problem of splitting traces into segments, assigning labels to segments,
and relating these segments in and across traces to help developers understand execution traces. We
propose SCAN, Segment Concept AssigNer, an approach to support feature location by breaking
execution traces into segments and labeling those segments to represent the features that they
execute. SCAN starts from a set of execution traces obtained by exercising a program of interest
under different scenarios. It uses dynamic programming [22, 23] to identify cohesive segments in
the execution traces, as described in our previous work [19, 20]. Additionally, to cope with multi-
threading, SCAN merges similar segments from different execution traces: segments of method
calls whose methods have high conceptual cohesion [24] and low coupling with methods in other
segments. Finally, SCAN uses Information Retrieval (IR) techniques to identify sets of keywords,
called labels, describing the segments as well as Formal Concept Analysis (FCA) to identify the
relations among segments: (1) segments activating the same feature, (2) segment(s) activating part
of a feature activated by other segment(s), and (3) sequences of segments activating the same set of
features. Thus, SCAN helps developers to understand the features implemented by these segments.

This paper extends our previous work [25], which proposed a preliminary approach to label
segments and identify relations among them. The novel contributions of this paper are:

1. An approach to reduce segment size by retaining only the most important method calls using
tf-idf and Vector Space Model (VSM) IR techniques. In our previous work, we considered all
method calls as being equals when splitting the traces and labeling their segments;

2. An algorithm to automatically identify relations among segments using FCA and lattice
partitioning. In our previous work [25], this identification was performed manually by
partitioning concept lattices produced by FCA;

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SCAN: LABELING AND RELATING SEGMENTS 3

3. An empirical evaluation involving 31 participants and six programs of (1) the impact of
segment size reduction on the labels, (2) the accuracy of the labels generated by SCAN, and
(3) the accuracy of the relations among segments reported by SCAN;

4. An empirical study of the usefulness of SCAN using two other real-world programs and their
execution traces and bug reports. We provide evidence that SCAN is effective in retrieving
relevant methods and reducing the quantity of information that developers must process to
locate features.

Outline. This paper is organized as follows. Section 2.1 provides the necessary background.
Section 3 describes SCAN. Section 4 describes the empirical evaluation of the performances of
SCAN. Section 5 describes and reports the results of the empirical study of the usefulness of
SCAN. Section 6 discusses threats to the validity of the performances and usefulness studies.
Section 7 relates this work to the existing literature on trace segmentation, feature location, and
code summarization. Finally, Section 8 concludes the paper and outlines directions for future work.

2. BACKGROUND

In this section, we briefly summarize key concepts and techniques used in this paper. Specifically, we
summarize our approach for trace segmentation and we report a primer on formal concept analysis
(FCA). We use FCA to discover commonalities between segments and high level relations between
segments.

2.1. Trace Segmentation

This section summarizes the trace segmentation approach by Medini et al. [20], which aims at
grouping together subsequent method calls that form conceptually cohesive segments [24]. To
collect execution traces of the program under study we execute a scenario and we use the MoDeC
instrumentor to record the sequence of events exercised during such execution. MoDeC is part of
the Ptidej Tool suite and is used to extract and model sequence diagrams [26]. Before segmenting
the traces, SCAN filters out utility methods repeated in various trace regions, e.g., methods related
to mouse events, by analyzing the distributions of method calls. Then, it compresses the trace,
using a run-length encoding algorithm, to remove repetitions of method calls. From the filtered
and compressed trace, SCAN collects unique methods and models each method as a document,
by collecting the method name, parameters, and body from the program source code. To this
end, SCAN parses the source code and creates an Abstract Syntax Tree (AST) using the Eclipse
Java Development Tools (JDT). SCAN processes each document (method) by applying the Latent
Semantic Indexing (LSI) technique as usually applied in software engineering [24]. It first extracts
terms from the source code, splits compound identifiers separated by camel case (e.g., getBook is
split into get and book), removes programming-language keywords and English stop words, and
performs stemming [27]. SCAN then indexes the obtained terms using the tf-idf weighting scheme
[28]. It thus obtains a term–document matrix on which it applies LSI to reduce the size of the term–
document matrix [29]. In the current implementation of SCAN, we choose, as in previous work
[19, 20], an LSI subspace size equal to 50. We use FacTrace to generate the term–document matrix
[30].

Finally, SCAN uses a dynamic-programming optimization technique to segment the trace using
the term–document matrix. The cost function driving the optimization relies on conceptual cohesion
and coupling measures [24, 31] rather than structural cohesion and coupling measures. SCAN
computes the quality of the segmentation of a trace split into K segments using the fitness function
(fit) defined in Equation 1, which balances between the cohesion of a segment (the higher the
better) and its coupling with all other segments in the trace (the lower the better).

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

4 S. MEDINI ET AL.

fit(segmentation) =
1

K
×

K∑
i=1

COHi

COUi + 1
(1)

COHl =

∑end(l)−1
i=begin(l)

∑end(l)
j=i+1 σ(mi,mj)

(end(l)− begin(l) + 1)× (end(l)−begin(l))
2

(2)

COUl =

∑end(l)
i=begin(l)

∑N
j=1,j<begin(l) or j>end(l)σ(mi,mj)

(N − (end(l)− begin(l) + 1))× (end(l)− begin(l) + 1)
(3)

SCAN computes the cohesion of a segment l (denoted as COHl) as the average (textual)
similarity between the source code of all pairs of methods called in l. Equation 2 shows the definition
of COHl in which begin(l) is the position of the first method call of segment l and end(l) the
position of the last method call in l. The similarity σ(mi,mj) between two methods mi and mj is
computed using the cosine similarity measure over the term–document matrix.

SCAN computes the coupling of segment l (denoted as COUl) as the average similarity between
methodsmi belonging to segment l and methodsmj outside l. It uses the formula shown in Equation
3 in which N is the length of the trace. COUl represents the average similarity between methods in
l and those in the rest of the segments.

More details can be found in previous work by Asadi et al. [19] and Medini et al. [20].

2.2. Formal Concept Analysis

This section provides the details of Formal Concept Analysis (FCA) technique and the algorithm
used to build a FCA lattice. FCA [32] groups objects that have common attributes. The starting
point for FCA is a context (O,A, P), i.e., a set of objects O, a set of attributes A, and a binary
relation among objects and attributes P , stating which attributes are possessed by which objects. A
FCA concept is a maximal collection of objects that have common attributes, i.e., a grouping of all
the objects that share a set of attributes. More formally, for a set of objectsX ⊆ O, a set of attributes
Y ⊆ A, and the binary relation between them P , a FCA concept is the pair (X,Y) such that:

X 7→ X ′ = {a ∈ A | ∀o ∈ X : (o, a) ∈ P}
Y 7→ Y ′ = {o ∈ O | ∀a ∈ Y : (o, a) ∈ P}

where X ′ = Y and Y ′ = X . X ′ is the set of attributes common to all objects in X and Y ′ is the set
of objects possessing all attributes in Y .X is the extent of the concept and Y is its intent. The extent
X of a concept is obtained by collecting all objects reachable from (X,Y) down to the bottom node.
The intent Y is obtained following the opposite direction, i.e., from (X,Y) to the top node, and by
collecting all reachable attributes. The concepts define a lattice.

To build a FCA lattice from a set of segments and terms, we use the general bottom-up algorithm
described by Siff and Reps [33]. First, the algorithm computes the bottom element of the concept
lattice. Next, it computes atomic concepts. Atomic concepts are the smallest concepts with an extent
containing each object treated as a singleton set, such as c0 in Figure 1. Then, the algorithm closes
the set of atomic concepts under join. Initially, a work-list is formed containing all pairs of atomic
concepts (c′, c) where c * c′ and c′ * c. While the work-list is not empty, the algorithm removes
the element (c0, c1) from the work-list and computes c′′ = c0 ∪ c1. If c′′ is a concept that is not yet
discovered, then it adds all pairs of concepts (c′′, c) to the work-list, where c * c′′ and c′′ * c. This
process is repeated until the work-list is empty.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SCAN: LABELING AND RELATING SEGMENTS 5

bot

top

FCA latticeConceptsContext

a1 a2 a3 a4
o1 X X X
o2 X X X
o3 X X

bot = {{},{a1,a2,a3,a4}}
c0 = {{o2},{a1,a3,a4}}
c1 = {{o1},{a1,a2,a3}}
c2 = {{o1,o2},{a1,a3}}
c3 = {{o1,o3},{a2,a3}}
top = {{o1,o2,o3},{a3}}

Figure 1. Concepts partition example.

Execution
Trace(s)

Trace
Segmentation

Segment
Merger

Segment
Labeling

Identification
of relations
between
segments

Figure 2. Overview of SCAN.

3. THE SCAN APPROACH

SCAN accepts as input one or more execution traces obtained by exercising some scenarios in a
program. Such execution traces can be obtained by executing the scenarios for which the developer
is interested to perform feature location. Then, as depicted in Figure 2, it consists in a series of four
steps. In Step 1, SCAN splits traces into cohesive segments, using the approach previously proposed
by Medini et al. [20]. Then, in Step 2, it merges similar segments using the Jaccard measure on terms
extracted from the segments. After that, in Step 3, it uses an IR-based approach to label segments.
Finally, in Step 4, it uses FCA to identify relations among segments.

3.1. Definitions

In the following, we use a vocabulary similar to that used in previous works. An execution trace is a
sequence of events occurring during the execution of a scenario. Execution traces are generally very
large and the occurring events, or method calls, likely relate to multiple features of the program. An
execution trace can be divided into segments, where each segment is a cohesive sequence of method
calls activating one feature or a small set of features. A segment is a set of successive method calls,
which is characterized by the number of method calls and the number of distinct (unique) methods
called. A label can be assigned to each segment, i.e., a set of words describing the possible feature(s)
activated by the segment. Two or more segments activating the same feature are part of the same
phase. Finally, repeated sequences of phases can be abstracted into macro-phases. A macro-phase
thus activates a set of features.

3.2. Step 2: Segment Merging

In this step, SCAN merges similar segments using the Jaccard measure on terms extracted from the
segments. The aim of the merging is to recognize similarities among segments belonging to multiple
execution traces and merge these segments. Indeed, we expect to have a great number of common
segments between multiple execution traces of a same scenario or, even, of different scenarios even
though the ordering of the segments and some other segments may be different among traces due to
thread interleaving, variations in application inputs (some of which cannot be fully controlled while
instrumenting the programs to collect traces), or variations in machine-load conditions. We thus

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

6 S. MEDINI ET AL.

suppose that highly similar segments in different traces contribute to the same feature, regardless of
the specific thread interleaving or trace region in which they occur. SCAN merges segments from
different execution traces of a same scenario only. It handles the relations among segments in a same
trace in Step 4, using Formal Concept Analysis, as described in Section 3.4.

Let S = (s1, . . . , sn) and Z = (z1, . . . , zm) be two segmentations of two traces, i.e., two
sequences of segments. For each si, SCAN computes all similarities σ(si, zj) and keeps pairs above
a given threshold. The similarity between two segments is computed as the Jaccard coefficient
between the segments terms, extracted from the term–document matrices of the segments. The
Jaccard coefficient for two sets A and B is defined as:

Jaccard(A,B) =
|A ∩B|
|A ∪B|

The higher the number of terms in common between two segments, the higher the similarity.
Once SCAN has identified all pairs of similar segments, it generates a synthetic trace containing n
segments. Each segment is the result of a (possibly multiple) union of si and zj where σ(si, zj) is
above the threshold. SCAN attempts to find both one-to-one as well as one-to-many relations among
the segments. It keeps track of the pairs of merged segments to allow mapping the information
computed in subsequent steps back to the original segments.

Consider for example a trace Z split into four segments Z = (z1, z2, z3, z4) and a threshold equal
to 70%. First, SCAN computes the similarities between s1 and the segments of the trace Z as
follows σ(s1, z1) = 0.8, σ(s1, z2) = 0.2, σ(s1, z3) = 0.6, and σ(s1, z4) = 0.9. Then SCAN generates
a synthetic segment s′1 by merging the segments s1, z1, and z4 since σ(s1, z1) and σ(s1, z4) are
greater than 70%.

SCAN expects a (reasonably) high similarity between segments to merge two segments but
this similarity is not necessarily close to one. Indeed, two segments might deserve to be merged
even though their similarity is lower: let us suppose that one of the two segments is contained in
the second segment as a sub-segment. In this situation, the segment similarity may not be very
high. Therefore, the threshold should also not be very high. Using a lower threshold does not
compromise the accuracy of the merging because the computed segments are ensured to be cohesive
and decoupled, as explained in the previous Section 2.1 and, consequently, the algorithm has no
incentive in putting together non-cohesive methods.

We explain in details our experimental choice of the threshold used by SCAN in Section 4.2.

3.3. Step 3: Label Identification

In this step, SCAN uses an IR-based approach to label segments. The first issue when labeling
segments is the choice of the most appropriate source of information. Segments are composed of
method calls and, thus, we could consider (1) the terms2 contained in method signatures only, (2) the
whole source code lexicon of the called methods, or (3) the whole source code lexicon and related
comments. However, a previous study [34] reported that lexicon from method signatures provide
more meaningful terms when labeling software artifacts than other sources. Moreover, developers
often pay more attention to method signature when understanding source code. Consequently,
we decided to use only terms contained in the signatures of the called methods. Given a trace
segmentation S = (s1, . . . , sn), SCAN extracts the signatures of all the called methods in each
identified segment si. Then, it models the segments as a set of documents, uses Vector Space Model
(VSM) to represent segments as vectors of terms and computes for each term tl ∈ si the tf-idf
weighting scheme [28]. Specifically, tf-idf provides a measure of the relevance of the terms for a
segment, rewarding terms having a high term frequency in a segment (high tf) and appearing in few
segments (high idf). We make the hypothesis that a term appearing often in a particular segment but
not in other segments provides important information for that segment.

Then, SCAN ranks the terms in the segment by their tf-idf values and keeps the top ones. The
number of retained terms is a compromise between a succinct and a verbose description. Several

2We assume that method signatures are not obfuscated.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SCAN: LABELING AND RELATING SEGMENTS 7

possible strategies exist to select the top terms. First, SCAN could retain a maximum percentage,
e.g., top 10%, of the terms that have the highest ranking; second, SCAN could apply a gap-based
strategy, i.e., retain all terms up to when the difference between two subsequent terms in the ranked
list is above a certain percentage; and, third, SCAN could choose a fixed number of top terms. The
retained terms form the label of a segment.

We explain in details the choice of the strategy used by SCAN in Section 4.2.

3.4. Step 4: Relation Identification

While we expect the labels produced in the previous step to fully describe the feature implemented
by a segment, they do not help developers to relate segments in a same trace with one another.
For example, segments with identical labels may appear multiple times, in different trace regions.
Furthermore, two segments may share many terms, which could possibly indicate the existence
of a higher-level feature common to both segments. To discover such relations among segments,
SCAN uses Formal Concept Analysis (FCA) and highlights commonalities and differences among
segments by identifying terms shared between multiple segment labels and terms that are specific to
particular segment labels. In SCAN, objects are segments and attributes are the terms in the segment
labels. The binary relation states which term is included in which segment label. A FCA concept is
a cohesive set of segments sharing some terms in their labels. Figure 3 shows an example of a FCA
lattice for the ArgoUML scenario “add a new class” in which each node represents a formal concept
(X,Y). To visualize the lattice we use Concept Explorer3 [35]. Blue (black) filled upper (lower)
semi-circle indicates that an attribute (object) is attached to the concept. SCAN uses the lattice to
identify relations among segments as explained in the following.

Figure 3. ArgoUML FCA lattice for the scenario “add a new class”.

Types of Relations. By applying FCA on the segments and terms from their labels and analyzing
the resulting lattices, we identified the following relations among segments: same phase, sub/super
feature, and macro-phase.

Two distinct segments sharing the same relevant terms are considered to activate the same feature,
thus forming a phase. For example, in Figure 3, SCAN identifies Segments 2, 8, and 14 as part of
the same phase because these segments belong to the same concept. These three segments share the
same terms and actually activate the same feature.

Sub-feature relation exists when a set of segment(s) activate part of a feature of another set of
segment(s). SCAN identifies a sub-feature relations between two segments when relevant terms in
the label of one segment are a superset of the terms of the label of another segment, i.e., by selecting

3http://conexp.sourceforge.net/

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

8 S. MEDINI ET AL.

Figure 4. ArgoUML sequence diagram derived from the FCA lattice for the scenario “add a new class”.

the intent of a concept of interest in the lattice. For example, in Figure 3, Segments 2, 8, and 14
share the terms “generat, key, java, and modul” with the Segments 3, 9, and 15 and thus are a sub-
feature of these segments. Conversely, a super-feature relation exists when terms in the label of one
segment are a subset of the terms of another.

A macro-phase is the result of the abstraction of repeated sequences of identical phases, which
activates a set of features. SCAN identifies macro-phases by finding repeating sequences of FCA
concepts. For example, in Figure 3, there are several phases such as: Phase 2: Segments 2, 8, and
14; Phase 3: Segments 3, 9, and 15; Phase 4: Segments 4, 10, and 16; Phase 5: Segments 5, 11, and
17; and Phase 6: Segments 6, 12, and 18. A segment activates the phase that it belongs to, thus, for
example, Segment 2 activates Phase 2. The next segment in the trace, Segment 3, activates Phase 3.
In the same way segments 4, 5, and 6 activate respectively Phases 4, 5, and 6. Thus, the sequence of
Segments 2 to 6 activates the sequence of Phases 2 to 6. However, the same sequence of phases is
also activated with the sequence of Segments 8 to 12 as well as with the sequence of Segments 14 to
18. Thus, the three sequences of Segments 2 to 6, Segments 8 to 12, and Segments 14 to 18, activate
the same features, i.e., activate the features of Phases 2 to 6. SCAN abstracts those five phases and
identifies the macro-phase containing Phases 2 to 6.

Example of Sequence Diagram. The FCA lattice shown in Figure 3 can be used by developers
in the more familiar form of a UML sequence diagram. To obtain a sequence diagram from the
FCA lattice, segments are considered in the order in which they appear in the execution trace. Each
segment is associated with its most specific FCA concepts in the FCA lattice. Methods are activated
in the sequence diagram for each FCA attribute of the segment-specific FCA concepts. The topmost

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SCAN: LABELING AND RELATING SEGMENTS 9

reachable FCA attributes are activated first and all FCA attributes in the sub-FCA concepts are
activated as nested operations.

A portion of the sequence diagram for the FCA lattice in Figure 3 is shown in Figure 4 (generated
using PlantUML4). The sequence diagram shown in Figure 4 contains the same information
available from the FCA lattice, but the sequential ordering of the called method makes it easier
to read and understand for developers.

Segment 1 is associated with a FCA concept that has three super-FCA concepts, two of which
are annotated with FCA concept-specific attributes. Starting from the topmost annotated FCA
concept, the following methods are activated in the sequence diagram: “model, notat, ...”, “factori,
diagram, ..”, and “implement”. Similarly, Segment 2 activates “generate, key, ...”, which has a
nested activation labeled “display”, while Segment 3 activates only “generate, key, ...”. For the
sake of clarity, only a portion of the method calls in Segment 4 are shown.

4. EVALUATING THE PERFORMANCES OF SCAN

The goal of the experimental evaluation is to evaluate the performances of SCAN with the purpose
of assessing its capability to (1) select the most important methods of a segment, (2) label segments,
and (3) identify relations among segments. The quality focus is the comprehension of execution
traces. The perspective is of researchers interested in providing support to program comprehension
by labeling and relating segments in execution traces.

4.1. Research questions

The evaluation aims at answering the following research questions:

• RQ1: How do the labels of the trace segments produced by the participants change when
providing them different amount of information? This research question investigates whether
providing participants with the list of the most relevant methods in a segment is sufficient
to produce labels. We rank methods by relevance according to their tf-idf [28], i.e., methods
frequently invoked in the particular segment but not in other segments.
• RQ2: How do the labels of the trace segments produced by the participants compare to the

labels generated by SCAN? This research question evaluates the performances of SCAN
when labeling segments. Similarly to De Lucia et al. [34] when evaluating the labeling of
software artifacts, we aggregate labels produced by the participants and compare the sets of
most frequent terms with the labels automatically produced by SCAN.
• RQ3: To what extent does SCAN correctly identify relations among segments? This research

question assess the use of FCA by scan to identify relations among segments. We ask
participants to assess the relations among segments identified by SCAN.

4.2. Study Set Up

This section describes the set up of the experimental evaluation. It describes the research questions
that we aims to answer, the objects, i.e., execution traces of six Java programs, the participants, i.e.,
31 students and professionals that participated in the experiment, and the choice of the thresholds
and strategy for the trace segmentation and the label identification.

4.2.1. Objects

The objects of our evaluation are execution traces collected from six Java programs belonging to
different domains. ArgoUML5 is a leading open-source UML modelling tool. It supports all standard
UML v1.4 diagrams. JHotDraw6 is a Java GUI framework for technical and structured graphics. Its

4http://plantuml.sourceforge.net/
5http://argouml.tigris.org/
6http://www.jhotdraw.org/

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

10 S. MEDINI ET AL.

Table I. Program characteristics.

Programs LOCs Trace Trace
size

ArgoUML v0.19.8 163K New class new package 36K
JHotDraw v5.1 8K Draw rectangle delete rectangle 6K
Mars v4.3 32K Screen magnifier 673K
Maze r186 9K Micro mouse 1,075K
Neuroph v2.1.0 10K Kohonen visualizer 75K

Pooka v2.0 44K New account new e-mail 36K
Create folder open folder 23K

Total for the 6 systems 7 traces

Table II. Segments Characteristics.

Programs - Traces # of Number of method calls
segments Min. 1st Qu. Median Mean 3rd Qu. Max.

ArgoUML - New class new package 12 2 2 2 104 37 714
JHotDraw - Draw rectangle delete rectangle 32 2 2 2 17 3 183
Mars - Screen magnifier 30 2 2 2 11 3 167
Maze - Micro mouse 75 2 2 2 30 3 999
Neuroph - Kohonen visualizer 4 2 2 4 8 10 23
Pooka - New account new e-mail 60 2 2 2 33 3 1,038
Pooka - Create folder open folder 18 2 2 2 78 5 957
Overall 231 2 2 2 34 3 1,038

design relies heavily on some well-known object-oriented design patterns because it was developed
as an example of the use of design patterns. Mars7 is a simulator for the MIPS assembly language. It
also includes a lightweight interactive development environment (IDE) for programming in MIPS.
Maze8 is a micro-mouse maze editor and simulator. It provides statistics on the comparisons of
different mazes and AI algorithms. Neuroph9 is a lightweight Java neural network framework to
develop common neural network architectures. It includes a library of neural network concepts and
a user-interface to create, train, and save networks. Pooka1 is an email client written in Java, using
Swing and JavaMail. It supports IMAP, POP3, and Unix-style mailbox folders. It also has support
for encryption using PGP and S/MIME.

The choice of these six programs was of convenience, driven by the availability of documentation
to ease the participants’ task of labeling the segments and by the possibility to generate traces related
to different execution scenarios. Table I summarizes characteristics of the programs, i.e., their sizes
(in terms of lines of code), short descriptions of the scenarios used to generate the execution traces,
and the sizes of the traces (in terms of number of executed events, i.e., constructor and method
calls). We used one scenario per program, except for Pooka, for which we used two scenarios. Table
II reports descriptive statistics about the numbers and sizes of the segments that SCAN identifies in
the execution traces.

4.2.2. Participants

The experiment involved a total of 31 participants. Eight of them were professionals, i.e., developers,
researchers, or postdoctoral research fellows, and the others were students, i.e., Ph.D., M.Sc., or
B.Sc. Table III provides descriptive statistics of the participants’ programming experience. All
participants were volunteers.

7http://courses.missouristate.edu/kenvollmar/mars/index.htm
8http://code.google.com/p/maze-solver/
9http://neuroph.sourceforge.net/index.html
1http://www.suberic.net/pooka/

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SCAN: LABELING AND RELATING SEGMENTS 11

Table III. Participants characteristics.

of Years of programming experience
Participants Min. Median Max.

Students 23 3 7 14
Professionals 8 4 9 14
Overall 31 3 7 14

None of the participants is an original developer of the object programs. This lack of knowledge
could decrease the participants’ ability to properly comprehend the traces. However, developers of
large software programs may not be familiar with the entire program and thus would have been
subject to the same threat. To cope with this threat, we ask more than one participant to perform the
same task. Because none of the participants know the programs, we do not have to take into account
possible differences between “novices” or “experts” that could influence our results [36].

4.2.3. Trace Segmentation Threshold

30 40 50 60 70 80 90

10
30

50
70

Similarity threshold

N
um

be
r o

f d
iff

er
en

t
te

rm
s

False positives
False negatives

Figure 5. False positives and negatives according to different threshold values.

To determine a threshold providing a good accuracy when SCAN merges segments, we performed
an experiment using five scenarios for ArgoUML and JHotDraw and their 11 corresponding
execution traces. We varied the threshold values from 30% to 90% and evaluated the accuracy
of the merged segments using the labels that SCAN generates for these merged segments and the
manual labels. Our hypothesis is that the variation of the false positives and negatives is due to the
merging of segments. Thus, when segments that pertain to the same feature are merged the number
of false positives and negatives will be lower compared to when segments pertaining to different
features are merged. The solid line in Figure 5 shows the average number of terms in the manual
labels that did not appear in the automatic labels, i.e., false negatives. The average is between 26.5
for a threshold at 30% and 25.7 at 90%. The minimum value is equal to 25.5, at 60% and 70%. The
values are very close thus the threshold does not significantly affect the merged segments in terms
of false negatives. The dotted line in Figure 5 shows the average number of terms in the automatic
labels that did not appear in the manual labels, i.e., false positives. The average is between 71.8 for
a threshold at 30% and 52.9 at 90%. Using 30% as a similarity threshold, the number of different
terms is more important because SCAN merges segments that pertain to different features. False
positive values are more stable between 70% and 90%, between 54.7 and 52.9. Thus, we choose the
value 70%, in the range of 70% to 90%.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

12 S. MEDINI ET AL.

Table IV. Segments used to evaluate the filtering using tf-idf.

Programs Traces Segments Full seg- # of unique
IDs ments sizes methods

ArgoUML New class new package s5 92 49

JHotDraw Draw rectangle delete rectangle s1 183 77
s20 69 41

Mars Screen magnifier s1 167 160
s22 93 82

Maze Micro mouse s4 142 71
s45 102 36

Pooka New account new e-mail s52 131 91
Create folder open folder s1 88 67

Overall 9 segments 1,067 674

4.2.4. Label Identification Strategy

SCAN ranks the terms in segments by their tf-idf values and keeps the topmost ranked terms. The
number of retained terms must be a compromise between a succinct and a verbose description.
Several possible strategies are foreseeable to select the top-ranked terms. First, it is possible to
retain a maximum percentage (e.g., top 10%) of the terms that have the highest ranking; second,
a gap-based strategy is applicable (i.e., retaining all terms up to when the difference between two
subsequent terms in the ranked list is above a certain percentage of gap); and third, one could choose
a fixed number of topmost terms. In this paper, we adopt the latter strategy and we found that
considering the topmost 10 terms represents a reasonable compromise, which yields meaningful
segment labels. Note that this value represents the maximum number of terms, thus, segments
containing very few methods may be labeled by SCAN with fewer terms.

4.3. Experimental Design and Analysis

In the following, we describe the evaluation design and procedure followed to answer the three
research questions.

4.3.1. RQ1: How do the labels of the trace segments produced by the participants change when
providing them different amount of information?

When the size of a segment (in terms of its numbers of method calls) is large, it is difficult to
understand. To reduce the time and effort for understanding a segment, we propose to characterize a
segment using only the calls to 5 or 15 different, unique methods. Note that a method can be called
more than once in a segment. We selected the values in a way to have one small and one medium
versions of the segment (5 and 15 respectively). The small version reduces the number of methods to
understand substantially but may result in loss of relevant information. The medium version of the
segment is likely to better preserve the relevant information but at the expense of the larger number
of methods that one must understand.

To address RQ1, we compare the labels produced by the participants when showing them three
versions of a same segment: full, i.e., the segment in its original size; medium, i.e., a subset of the
segment reduced to the calls to only 15 unique methods; and small, i.e., a subset of the segment
reduced to the calls to only 5 unique methods. We select the unique methods using the top-most
ranked methods according to the tf-idf weighting scheme [28]. A segment subset is obtained by
removing all method calls other than the top 5 or 15 from the original segment. The order of the
method calls are preserved.

The experiment is designed as follows. We select nine segments (belonging to different programs)
whose full sizes, i.e., numbers of method calls, is between 50 and 200. We set an upper limit to
control the participants’ effort. We set a lower limit to ensure that the medium and small subsets of
the segments are still meaningful and do not reduce only to a couple of methods. Table IV shows

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SCAN: LABELING AND RELATING SEGMENTS 13

the segments used for this part of the experiment, their original sizes, and the numbers of unique
methods.

We group participants into three groups, G1, G2, and G3. We assign each version of a segment
to a different group. For example, to G1, we assign the subset of the top 5 unique method calls
of segment s5 of ArgoUML, “New class new package”, representing a total of 12 method calls as
some methods are called more than once. To G2, we assign the subset of the top 15 unique method
calls of the same segment resulting in a total of 31 method calls. To G3, we give the segment in its
original version (92 method calls to 49 unique methods). Participants belonging to each group label
an equal number of small, medium, and full segments.

We evaluate the filtering approach, i.e., the approach of reducing the size of segments, from two
aspects: (1) the degree to which information is preserved and (2) the degree to which it preserves
the agreement between participants, as explained in the following.

Preservation of Information. We use the labels produced by the participants working on the full
segments as oracle to assess the preservation of information in the medium and small subsets of the
segments. Thus, to evaluate the preservation of information, we compute the intersection between
terms provided by participants working with medium and small segments and those produced with
the full segments. The greater the intersection between the reduced (medium and small) and full
versions of the segments, the higher the recall.

Preservation of Agreement among Participants. We consider the number of terms on which
participants agree to be representative of a segment and of the degree of agreement among
participants. Again, we use as oracle the labels produced by the participants working on full
segments. To evaluate the preservation of agreement among participants, we use a two-way
permutation test [37] to verify if the degree of agreement is significantly influenced by (1) the
number of participants considered to compute the agreement, (2) the size of the segment subset
given to the participants (i.e., full segment, medium and small subsets), and (3) the interaction
between the number of participants and the segment size. Thus, we investigate if (1) the agreement
decreases when a larger number of participants provide labels (because different participants may
provide different labels) and (2) the agreement changes when providing participants with a different
amount of information, i.e., full or reduced versions of the segments.

The permutation test [37] is a non-parametric alternative to the two-way ANalysis Of VAriance
(ANOVA). Differently from ANOVA, it does not require data to be normally distributed. It builds the
data distributions and compares the distributions by computing all possible values of the statistical
test while rearranging the labels (representing the various factors being considered) of the data
points. We used the implementation available in the lmPerm R package. We have set the number
of iterations of the permutation test to 500,000. The permutation test does sample permutations of
combinations of factor levels and, therefore, multiple runs of the test may produce different results.
We made sure to choose a high number of iterations so that results did not vary over multiple
executions of the test. When performing the test, we assume a significance level α = 0.05.

To assess the agreement among participants, we follow a rule to decide when two terms
are considered equivalent. In our previous work [20], we ruled that there exist an agreement
between two participants on a term if both participants provide two terms sharing the same
stem. In the following, we extend this rule to synonyms (e.g., shape and figure), terms holding
a hypernym/hyponym relation (e.g., display and screen), and terms holding a holonym/meronym
relation (e.g., point and location). We use WordNet [38] to obtain these taxonomic relations among
terms and we will refer to terms sharing those relations as synsets.

We considered different options to select the numbers of participants that must choose a synset
to consider this synset representative of a segment. For example, we could consider a synset if at
least one participant chooses it. Such a choice is equivalent to considering the union of all terms
proposed by all participants. A minimum of two participants would mean that we consider only
synsets chosen by at least two participants. The number of required participants can grow until it
reaches the total number of participants, which would mean that a synset must be chosen by all

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

14 S. MEDINI ET AL.

Table V. Examples of labels provided by SCAN and the participants.

Labels SCAN
Precision Recall

SCAN figure, listener, add, internal, multicaster, event, change
Participants - intersection figure, event, change 43% 100%
Participants - union trigger, figure, event, change, listener, multicaster, manage, add 86% 75%

Table VI. Example of relations among segments.

Segments Labels Relations

SCAN 9 listener, add, change, figure sub/super feature10 figure, listener, add, internal, multicaster, event, change

Participant I 9 composite, figure, trigger, event sub/super feature10 manage, figure, change, event, trigger

Participant J 9 abstract, figure, change, add, listener same feature10 figure, change, event, multicaster, add, listener

participants to be considered representative. To avoid making choice that could bias the results of
the experiment, we consider the entire range of possible values in our experiment.

4.3.2. RQ2: How do the labels of the trace segments produced by the participants compare to the
labels generated by SCAN?

To evaluate the labels produced automatically by SCAN, we first build an oracle consisting of 210
segments labeled manually by the participants. The inclusion criteria was that these segments must
include less than 100 method calls to ease the participants’ labeling tasks, because larger segments
could have been more difficult for participants to understand. Each segment is labeled by at least one
participant. More than half of the segments (116) are labeled by two participants. Then, we evaluate
SCAN by computing the precision and recall of its automatically-generated labels with respect to
the labels provided by the participants.

To explain how we performed the evaluation of the labels generated by SCAN, let us consider
the automatic label produced by SCAN for a segment of JHotDraw and the corresponding manual
labels provided by the participants, shown in Table V. The two possible operators to combine the
manual labels are intersection and union. The first operator (i.e., intersection) considers a synset to
be relevant if both participants suggested it. The second operator (i.e., union) considers a synset to be
relevant if at least one of the participants suggested it. We observe that, depending on the operator,
the precision and recall of SCAN varies. When the more conservative operator (intersection) is
chosen, the number of synsets in the manual oracle significantly decreases thus resulting in higher
recall but lower precision. Union provides a balance between the two measures. We show results for
union and intersection.

To evaluate SCAN segment merging, we use two execution traces for each scenario presented in
the Table IV of the five studied programs. We compute the precision and recall of the automatically-
generated labels after merging the segments of the execution traces for the same scenario. We use
the same oracle consisting of 210 segments labeled manually by the participants. Then, we compare
the results of the labels produced automatically by SCAN with and without segment merging, i.e.,
the results obtained using a single or multiple execution traces for the same scenario.

4.3.3. RQ3: To what extent does SCAN correctly identify relations among segments?

To address RQ3, we ask the participants to validate all relations among segments identified by
SCAN. We do not ask participants to manually identify the relations among segments for two
reasons. First, identifying the relations requires to compare each segment in a trace with any
other segments, taking into account the possible reordering of method calls as well as inclusions.
Thus, such a task would have been very demanding for the participants. Second, identifying these

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SCAN: LABELING AND RELATING SEGMENTS 15

relations is not a task commonly undertaken by participants and, thus, its results would have been
of a quality inferior to that of the labeling task, which participants perform implicitly or explicitly
when understanding a segment. Participants validating the relations between segments use the full
segments to understand and label the segments. Next, they use the labels that they just produced
and the comprehension they have gained to validate the possible relations. We provide definitions
for the different types of relations between segments: same feature (phase) or sub/super feature. For
macro-phases, we ask the participants to validate all the phases of a given macro-phase. If all phases
participating in a sequence of SCAN phases is validated by the participants then the macro-phase is
also considered valid by construction.

We report the accuracy, i.e., the percentage of relations that SCAN has correctly identified
as vetted by the participants. We also report separately the accuracy for SCAN capability to
identify super/sub-feature relations because of the participants’ difficulty to distinguish sub-, super-
, and same-feature as illustrated by the following example. Table VI shows two segments from
JHotDraw labeled by SCAN and by two participants, Participant I and Participant J. Both SCAN
and Participant I identify Segment 9 as activating a sub-feature of the feature activated by Segment
10. However, according to Participant J, the two segments activate the same feature. This example
shows that distinguishing between sub/super feature and same feature is difficult. Therefore, when
presenting the results, we report the percentages of agreements between the participants and SCAN
with and without distinguishing between sup/super feature and same feature.

4.4. Experiment Results

This section reports the results of our experimental evaluation to address the research questions
formulated in Section 4.1.

4.4.1. RQ1: How do the labels of the trace segments produced by the participants change when
providing them different amount of information?

●

●●

●

●

●

●

●

●

60 80 100 120 140 160 180

0
5

10
15

20

Full segment size

N
um

be
r

of
 c

om
m

on
 s

yn
se

ts

● 2 participants agreement
5 participants agreement

Figure 6. Agreement among participants for full segments.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

16 S. MEDINI ET AL.

Before analyzing the participants’ labels with different subsets of the segments, we assess the
quality of the participants’ labels with full segments, i.e., when using all information available.
When the sizes of segments are large, the agreement among participants could be low due to the
overwhelming amount of method calls, the complexity of the segments, or other factors, resulting
in a random selection of terms. Figure 6 shows the number of synsets on which participants agree
as a function of the sizes of the segments in their full version. To simplify the figure, we only show
the cases of two and five participants. The figure shows that there is no linear relation between
agreement and sizes, but rather a constant relation. This constant relation is confirmed by building
a linear regression model and observing that the size of the segments is never a significant variable.

Table VII. Precision (P), Recall (R), and F-Measure (F) on the synsets of labels when comparing small and
medium subsets versus full segments.

Segment Small versus Full Medium versus Full
2 participants 5 participants 2 participants 5 participants

P(%) R(%) F(%) P(%) R(%) F(%) P(%) R(%) F(%) P(%) R(%) F(%)

ArgoUML - New class new package: Segment 5 62 50 55 100 67 80 50 50 50 50 100 67
JHotDraw - Draw rectangle delete rectangle: Segment 1 62 33 43 0 0 0 73 53 61 20 33 25
JHotDraw - Draw rectangle delete rectangle: Segment 20 78 47 59 67 67 67 88 47 61 67 67 67
Mars - Screen magnifier: Segment 1 44 33 38 67 50 57 62 42 50 25 25 25
Mars - Screen magnifier: Segment 22 38 45 41 0 0 0 57 73 64 20 50 29
Maze - Micro mouse: Segment 4 30 21 25 40 67 50 60 43 50 67 67 67
Maze - Micro mouse: Segment 45 57 80 67 50 100 67 80 80 80 100 100 100
Pooka - New account new e-mail: Segment 52 64 60 62 50 14 22 82 60 69 67 29 40
Pooka - Create folder open folder: Segment 1 33 31 32 25 50 33 64 54 59 33 50 40
Overall 52 44 47 44 46 42 68 56 60 50 58 51

Preservation of Information. To analyze the amount of information lost when reducing the sizes
of segments, we calculate the precision and recall of the labels produced with the reduced segments,
i.e., the small and medium subsets of the segments, with respect to the labels produced with the full
segments. Table VII shows the results. We vary the number of participants considered for agreement
and we show results for two and five participants1.

We observe that, with the increase of the minimum number of participants, the variation of
both precision and recall increases too. Thus, a smaller number of participants results in a smaller
standard deviation of precision and recall across different segments. The larger standard deviation
when increasing the number of participants is due to the small number of synsets in the manual
labels of the segments. Thus, the size of the manual oracle decreases when the number of
participants increases, which impacts negatively the evaluation of the precision of SCAN because
the number of terms in the automatic labels is constant.

Considering the mean values of precision and recall and varying the numbers of participant
between two and five, precision for small subsets varies between 42% and 52% and recall varies
between 42% and 46%. For medium subsets of the segments, the mean values for precision and
recall are greater and vary between 50% and 68% for precision and between 56% and 66% for
recall. These results show that we can significantly reduce the number of methods that participants
must use to understand a segment, i.e., on average 92% for small and 76% for medium subsets,
while keeping about half of the synsets that would appear if the segment was not reduced in size.

Considering small and medium subsets, we loose about half of the information, which explains
the difference between labels produced using, on the one hand, medium and small segment, and, on
the other hand, labels produced using the full segments. Participants analyzing reduced segments
have less information and thus may tend to provide more details regarding the key concepts.
However, participants understanding the full segments must provide more effort to extract the key
concepts; they may produce more concise labels concerning the key concepts while trying to reach
as many concepts as possible.

1When six participants is the minimum number required to consider a synset as representative for a segment, the resulting
labels for some of the analyzed segments are empty.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SCAN: LABELING AND RELATING SEGMENTS 17

●

●

●

●

●

●

●
●

● ●

2 4 6 8 10 12

0
5

10
15

Minimum number of participants to agree on a synset

N
um

be
r

of
 c

om
m

on
 s

yn
se

ts

● Small
Medium
Full

Figure 7. Agreement among participants.

Table VIII. Results of two-way permutation test of agreement by number of participants and size of the
segment subset (full, medium, small).

Df R Sum Sq R Mean Sq Iter Pr(Prob)
Participants 1 2448.7364 2448.7364 500000 <0.0001
Size 2 0.8222 0.4111 156267 0.8915
Participants:Size 2 11.3515 5.6758 500000 0.2062
Residuals 264 968.0566 3.6669

Preservation of Agreement among Participants. Figure 7 shows the mean value and the
standard deviation of agreements among participants for the nine segments, considering their full
versions, as well as their reduced versions, i.e., small and medium subsets. The only notable decrease
in the number of synsets on which participants agree happens when two participants consider a
synset as representative for a segment. We tested whether the agreement was influenced by (1) the
number of participants, (2) the size of the provided segment subset (full, medium, small), and (3)
their interactions. Results of the permutation test, shown in Table VIII, indicate that, while there is a
significant difference of agreement when considering a different number of participants, as expected,
the sizes of the subsets and their interactions with the number of participants do not significantly
influence the agreement.

We thus answer RQ1: How do the labels of the trace segments produced by the participants change
when providing them different amount of information? as follows: Small and medium subsets of
segments preserve 50% or more of the synsets provided by participants while drastically reducing
the amount of information that participants must process to understand a segment. The reduction of
size with respect to the original size of the segment is on average 92% for small subsets and 76%
for medium subsets.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

18 S. MEDINI ET AL.

0
5

10
15

Labeled by 1 person Labeled by 2 - union Labeled by 2 - intersection

N
um

be
r o

f s
yn

se
ts

Figure 8. Number of synsets in manual labels.

Table IX. Precision (P) and Recall (R) of automatic labels assigned by SCAN without merging segments
compared to oracle built by participants.

Program 1 participant only 2 participants - intersection 2 participants - union
P R P R P R

ArgoUML - - 27% 50% 48% 37%
JHotDraw - - 53% 91% 82% 62%
Mars 60% 100% 48% 97% 65% 64%
Maze 60% 53% 18% 92% 32% 45%
Neuroph 28% 48% - - - -
Pooka 85% 82% 43% 93% 74% 73%
Averages 66% 62% 43% 90% 69% 63%

4.4.2. RQ2: How do the labels of the trace segments produced by the participants compare to the
labels generated by SCAN?

Figure 8 shows violin plots for the number of synsets in the manually-labeled segments. Violin plots
[39] combine boxplots and kernel density functions, thus showing the shape of a distribution. The
dot inside a violin plot represents the median; a thick line is drawn between the lower and upper
quartiles; a thin line is drawn between the lower and upper tails. We observe from Figure 8 that
segments that have been labeled by two participants have a median of 3 common synsets when
considering intersection, but with a large proportion of values being concentrated at 2 synsets. We
consider this number of common synsets to be a reasonable agreement provided that the median for
segments that have been labeled by one participant only is at 5.5, again with high concentration in
lower values—5. When considering the union of the synsets the median is higher at 7.

Table IX reports the results of evaluating the automatic labels when considering both operators.
When considering all programs, the average values for precision and recall for segments labeled
by one participant are 66% and 62%, respectively. For segments labeled by two participants,
precision and recall values are 69% and 63% on average, respectively. Finally, when we consider the
intersection of synsets for segments labeled by two participants, the recall is high, 90% on average,
but precision can be as low as 18% with an average of 43%. This low precision is partially due to the
lower number of synsets in the manually-labeled segments compared to the number of terms in the
labels generated by SCAN. As shown in Figure 8, the median for the number of synsets in manual
labels is three when intersection is considered. However, SCAN generates 10 terms for any label.

Table X shows examples of labels assigned by SCAN and the corresponding labels assigned by
the participants. The first part of the table shows labels for which both precision and recall are low
(≤ 40%). The second part shows cases where SCAN has a precision and recall greater than 75%.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SCAN: LABELING AND RELATING SEGMENTS 19

Table X. Examples of labels produced by SCAN and participants.

Examples of labels with low accuracy

Segment SCAN label Participants label

Maze - s9 info description cell template maze model creating new maze setting its properties
size page painter icon creating paths

Maze - s19 count controller step robot model steps history move done turn
Neuroph - s1 network neural components tree project application initiate Kohonen view train randomize

neurons component easy folder view
Neuroph - s4 draw visualizer kohonen frame application return the view of the current Kohonen

neurons easy

Examples of labels with high accuracy

Segment SCAN label Participants label

Mars - s5 key dump stroke file memory action venus save icon dump save file item menu action create memory
JHotDraw - s21 unlock standard unfreeze drawing view unfreeze unlock standard view drawing
Pooka NewAccountNewMail - s6 network connection add listener item manager change connection manager change item listener add network
Pooka CreateOpenFolder - s15 item connection network network connection item id

Table XI. Precision (P) and Recall (R) of automatic labels assigned by SCAN after merging segments
compared to oracle built by participants.

Program 1 participant only 2 participants - intersection 2 participants - union
P R P R P R

ArgoUML - - 27% 50% 47% 36%
JHotDraw - - 53% 91% 82% 62%
Mars 60% 100% 48% 97% 65% 64%
Maze 59% 53% 18% 92% 32% 45%
Neuroph 27% 43% - - - -
Pooka 85% 82% 43% 92% 73% 71%
Averages 66% 62% 43% 90% 69% 63%

Table XII. Examples of relations detected by SCAN for Pooka, scenario “New account new e-mail”.

Phase Relations Segments in the Phase SCAN Labels Participants

Phase 16 Segments 16, 28, and 41 load state wizard editor pane
√

Phase 17 Segments 17, 29, and 42 wizard state controller editor pane beginning
√

Phase 18 Segments 18, 30, and 43 set end wizard focus accept state editor pane property beginning
√

Phase 19 Segments 19, 31, and 44 controller wizard state pane editor
√

Phase 20 Segments 20, 32, and 45 composite focus accept label editor swing property
√

Macro-phases Relations Involved Phases Number of Repetitions
Macro-phase 1 Phases 16, 17, 18, 19, and 20 The sequence of phases is repeated 3 times

√

Sub-feature Relations Segments/Phases involved Details
Sub-feature 5 Phase 17 activates a sub-feature Both activate features regarding state of the wizard

√

of Phase 19 editor pane. Phase 17 is specific to beginning state.
Sub-feature 10 Segment 38 activates a sub-feature Both fire property committing events.

√

of Segment 15 Segment 38 fires additional property events.

Table XI reports the results of evaluating the automatic labels after merging the segments of two
execution traces for each scenario when considering both operators. When considering all programs
results are very close to the results obtained when using a single execution trace. The only notable
exception is Neuroph, for which when we consider one participant only the recall drops with 5%
(i.e., from 48% for labels generated using a single execution trace to 43% for labels generated after
the merge of segments of two execution traces of the same scenario).

We thus answer RQ2: How do the labels of the trace segments produced by the participants compare
to the labels generated by SCAN? as follows: SCAN automatically assigns labels with an average
precision and recall of 69% and 63%, respectively, when compared to manual labels produced by
merging the labels of two participants using union.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

20 S. MEDINI ET AL.

Figure 9. Excerpt of the Pooka FCA lattice for the scenario “New account new e-mail”.

4.4.3. RQ3: To what extent does SCAN correctly identify relations among segments?

Figure 9 shows an excerpt of the Pooka FCA lattice for the scenario “New account new e-mail” and
Table XII shows some of the relations identified by SCAN for this scenario. For example, SCAN
identifies that Segments 16, 28, and 41 form a phase, i.e., Phase 16 in Table XII, as they all activate
the same feature, which is loading the state through the wizard editor pane. SCAN automatically
labels this phase as “load state wizard editor pane”.

Hence, Segment 16 activates Phase 16. The next segment in the trace, Segment 17, activates
Phase 17. In the same way Segments 18, 19, and 20 activate respectively Phases 18, 19, and 20.
Thus, the sequence of Segments 16 to 20 activate the sequence of Phases 16 to 20. However, the
same sequence of phases is also activated with the sequence of Segments 28 to 32 as well as with
the sequence of Segments 41 to 45. Thus, the three sequences of Segments 16 to 20, Segments 28
to 32, and Segments 41 to 45, activate the same features, i.e., activate the features of Phases 16 to
20. Thus, SCAN identifies a macro-phase from the repeated execution of Phase 16→ Phase 17→
Phase 18→ Phase 19→ Phase 20.

Considering the automatic labels produced by SCAN, we observe that Phase 17 and Phase 19
activate features pertaining to the state of the wizard editor pane. However, Phase 17 is more specific
as it is concerned with beginning states. SCAN identifies a sub-feature relation between Phase 17
and Phase 19, as shown in Figure 9. SCAN also reports that Segment 38 has a sub-feature relation
with Segment 15. The former raises different property events, including property committing events,
in common with Segment 15.

Table XIII reports the number of relations identified by SCAN in the six programs (we do not
report numbers for Neuroph, as no relation was identified among its segments), with and without
the numbers of sub/super relations. SCAN identifies 100 relations: 59 sub/super, 7 macro-phase,
and 34 same feature relations. An agreement between SCAN and the participants occurs when the
same relation is identified by SCAN and at least one of the participants. We do not show results
when both participants agree, as the number of cases in which participants disagree is low (six and
eight relations in case of no distinction and distinction, respectively).

We can conclude that, depending on whether we distinguish sub/super relations or not, the overall
accuracy of SCAN in identifying relations between segments is 91% and 63%, respectively. When
evaluating relations with distinction, the precision of SCAN is greater than 75% in the majority of
the programs. The two exceptions are ArgoUML and Mars, and for both of these programs, the

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SCAN: LABELING AND RELATING SEGMENTS 21

Table XIII. Evaluation of the automatic relations.

Programs Relations Sub/Super Agreements Agreements
identified by feature with participant(s) with participant(s)

SCAN relations without distinction with distinction
btw. sub/super relations btw. sub/super relations

ArgoUML 6 6 100% 33%
JHotDraw 9 5 100% 100%
Mars 22 18 100% 9%
Maze 12 1 100% 83%
Pooka 51 29 82% 78%
Total 100 59 91% 63%

proportion of detected sub-feature relations is extremely high with respect to other relation, i.e.,
100% and 82% for ArgoUML and Mars, respectively.

For ArgoUML, the majority of the detected relations involve class MetaTypesMDRImpl, which
retrieves objects that represent the different UML types. SCAN labels Segment 2 as “mdr meta impl
types”, which is the general feature implemented by the class. SCAN labels the rest of the segments
by specifying additional terms, e.g., “composite state meta impl synch mdr types” for Segment 11.
Thus, Segment 2 is identified as the super-feature of five other segments, as SCAN considers them
as addressing more specific features. Both participants labeling ArgoUML traces produced similar
label for Segment 2, e.g., “implementation dependent UML class type” but also for the rest of the
segments and, thus, considered all segments to implement the same feature. We observe a similar
phenomenon for Mars, as shown in Table XIII, i.e., when no distinction is made participants agree
100% with the identified relations.

We thus answer RQ3: To what extent does SCAN correctly identify relations among segments? as
follows: SCAN identifies relations among segments with an overall precision of 63% and a precision
greater than 75% in the majority of the programs.

5. APPLYING SCAN TO SUPPORT FEATURE LOCATION

According to Dit et al. [40] feature location is “one of the most frequent maintenance activities
undertaken by developers because it is a part of the incremental change process [41]”. Given the
importance of feature location in the context of software maintenance tasks, we further explore how
trace segmentation and labeling performed by SCAN can be used to support feature location to help
developers in their everyday activity.

Consider a feature location techniques that uses dynamic analysis, as the Single Trace and
Information Retrieval approach (SITIR) proposed by Liu et al. [42], which combines dynamic
analysis and textual analysis based on Latent Semantic Indexing (LSI). Given a change request—
e.g., bug description—and an execution trace, the approach proposed by Liu et al. [42] ranks
methods of the source code that appear in the execution trace based on their textual similarity
with the change request—e.g., the bug description or title. It is important to point out that feature
location techniques aim at finding a starting point of the modification, i.e., the “seed”—a method in
the source code that is relevant for the change request and where developers will start the necessary
modifications to implement the change request. The motivation for that is because, once the seed is
known, the developer can identify the other methods that would be impacted by any change related
to such a feature, e.g., impacted by a bug fixing activity.

For this reason, the effectiveness of a feature location technique is evaluated in terms of the
number of methods in the ranked list produced by the technique that a developer has to scrutinize
before reaching any method belonging to the impact set of the feature. Such a method would be the
seed for a modification. In order to perform this kind of evaluation, we require the availability of

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

22 S. MEDINI ET AL.

a gold set, i.e., the set of all methods (and those methods only) that a developer should modify in
order to fix a bug. The lower the number of methods to explore before finding the seed, the better
the technique.

In this context, we are interested to evaluate whether SCAN can be used to reduce the burden
of developers when identifying the set of methods impacted by a feature, once a feature location
technique identifies one of these methods (i.e., the seed). The conjecture is that methods related
to a feature should be contained in one or few segments. Hence, to analyze the feature impact set,
a developer could only focus on one or few segments instead of looking at the entire execution
trace. In addition to that, we also want to investigate whether, instead of relying on feature location
techniques, SCAN can be used as a standalone technique to automatically identify segments relevant
for a query.

In the rest of this section we describe a typical scenario showing how SCAN can be used to
support feature location (Section 5.1). Then, we evaluate the usefulness of SCAN through an
empirical study, whose definition and planning are provided in Section 5.2, and whose results are
reported and discussed in Section 5.3.

5.1. Typical scenario

Figure 10 shows an example of a bug report for JabRef and the top 5 ranked methods produced by
SITIR. In a typical scenario the developer assigned to implement the changes will start by looking
into the first method of the ranked list—i.e., method isiAuthorsConvert(String) defined in
IsiImporter—by trying to understand the source code and–or execution trace. The execution
trace in this particular case consists of 13, 616 method calls.

To ease the analysis of the execution trace, a developer can use SCAN to segment it. Figure 10
shows one segment of this trace—the segment containing the top 1 ranked method provided by the
feature location technique. The segment shows the methods in their order of execution, thus method
isiAuthorsConvert(String) occurs two times (in positions 2 and 16) as it was executed twice.
Since SCAN’s segmentation is guided by the textual cohesion between methods, segment 4 can be
regarded as the smallest, highly cohesive part of the trace activating the problematic feature that
provides the context in which the top 1 ranked method is executed. In other words, rather than
considering the entire execution trace, one may limit the context of a method to the segment in
which it appears. From the methods of segment 4 one can quickly grasp that the author conversion
is indeed performed in the context of importing a bibliographical entry. A further analysis of the
methods contained in segment 4 reveals that the segment also contains a couple of other gold set
methods—appearing at positions 1, 3, 4, 6, 7, 17, 18, 20, and 21. Indeed the developer fixing the
wrong author import also fixed other related problems in the import of an ISI entry—the parsing
of month and pages in particular. Thus, we conjecture that methods relevant to a change request
are grouped in few segments. If this is indeed the case SCAN can be used to reduce the analysis
of the trace to the analysis of few segments, i.e., reduce the number of methods to be analyzed.
This assumes that a feature location technique is used to guide the search and is able to retrieve the
segments containing the gold set methods.

However, when no feature location technique is available to guide the search, SCAN can also
be used to retrieve the segments that contain relevant methods by using the FCA lattice produced
in the earlier stage and the title of the issue report as a query to guide the search. Figure 11
shows the partial FCA lattice corresponding to the trace of the example shown in Figure 10.
We include the query as part of the set of objects and use the terms of the query to retrieve
the segments it is related to. In other words, in order to identify the relevant segments, we look
for the segments that share terms with the query. Thus, we start from the node representing
the query and following the paths towards the top node the first two reachable nodes connect
Query with Segment 3 (as they share the words “isi” and “inspec”) and Query with Segment 4
(as they share the words “isi” and “author”). Those are the segments containing the methods
from the gold set. In general, the closer we are to the top node, the more segments we collect as
we are less restrictive on the terms that those segments must contain. The closer we are to the
Query node, the less segments we collect as we impose greater number of terms to be shared

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SCAN: LABELING AND RELATING SEGMENTS 23

between them. Our conjecture is that SCAN can be used to automatically identify the segments
containing the relevant methods. We also hypothesize that the automatically retrieved segments
reduce the number of methods to be analyzed, compared to the analysis of the entire execution trace.

Rank Method Similarity

1 IsiImporter.isiAuthorsConvert(String) 0.48
2 IsiImporter.isiAuthorsConvert(String[]) 0.44
3 AuthorList.getAuthorList(String) 0.35
4 NameFieldAutoCompleter.addBibtexEntry(BibtexEntry) 0.33
5 AuthorList.AuthorList(String) 0.31
…

Order of
execution! Method

1 IsiImporter.importEntries(InputStream)

2 IsiImporter.isiAuthorsConvert(String)

3 IsiImporter.isiAuthorsConvert(String[])

4 IsiImporter.isiAuthorConvert(String)

5 Util.join(String[]-String-int-int)

6 IsiImporter.parseMonth(String)

7 IsiImporter.parsePages(String)

8 Globals.getEntryType(String)

9 BibtexEntry.BibtexEntry(String-BibtexEntryType)

10 BibtexEntry.setType(BibtexEntryType)

11 BibtexEntry.firePropertyChangedEvent(String-Object-Object)

12 IsiImporter.processSubSup(HashMap<String-String>)

13 IsiImporter.processCapitalization(HashMap<String-String>)

14 CaseChanger.changeCase(String-int-boolean)

15 BibtexEntry.setField(Map<String-String>)

16 IsiImporter.isiAuthorsConvert(String)

17 IsiImporter.isiAuthorsConvert(String[])

18 IsiImporter.isiAuthorConvert(String)

19 Util.join(String[]-String-int-int)

20 IsiImporter.parseMonth(String)

21 IsiImporter.parsePages(String)

22 Globals.getEntryType(String)

23 BibtexEntry.BibtexEntry(String-BibtexEntryType)

24 BibtexEntry.setType(BibtexEntryType)

25 BibtexEntry.firePropertyChangedEvent(String-Object-Object)

26 IsiImporter.processSubSup(HashMap<String-String>)

27 IsiImporter.processCapitalization(HashMap<String-String>)

28 BibtexEntry.setField(Map<String-String>)

29 ImportFormatReader.purgeEmptyEntries(Collection<BibtexEntry>)

30 BibtexEntry.getAllFields()

31 ParserResult.ParserResult(BibtexDatabase-HashMap<String-String>-HashMap<String-BibtexEntryType>)

32 ParserResult.ParserResult(Collection<BibtexEntry>)

33 ImportFormatReader.createDatabase(Collection<BibtexEntry>)

34 ImportFormatReader.purgeEmptyEntries(Collection<BibtexEntry>)

35 BibtexEntry.getAllFields()

36 Util.createNeutralId()

37 BibtexEntry.setId(String)

38 BibtexEntry.firePropertyChangedEvent(String-Object-Object)

39 BibtexDatabase.insertEntry(BibtexEntry)

40 BibtexDatabase.getEntryById(String)

41 BibtexEntry.addPropertyChangeListener(VetoableChangeListener)

42 BibtexDatabase.fireDatabaseChanged(DatabaseChangeEvent)

43 BibtexEntry.getCiteKey()

44 BibtexDatabase.checkForDuplicateKeyAndAdd(String-String-boolean)

45 BibtexDatabase.addKeyToSet(String)

46 ParserResult.ParserResult(BibtexDatabase-HashMap<String-String>-HashMap<String-BibtexEntryType>)

47 JstorImporter.isRecognizedFormat(InputStream)

48 JstorImporter.importEntries(InputStream)

49 ImportFormatReader.purgeEmptyEntries(Collection<BibtexEntry>)

50 MsBibImporter.isRecognizedFormat(InputStream)

SITIR: Top 5 ranked method

SCAN: Segment 4Bug report

convert hash author entri isi bibtex result databas chang typeLabel:

Figure 10. Bug#460 in JabRef: Wrong author import from Inspec ISI file.

Figure 11. Bug#460 in JabRef: Resulting FCA lattice.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

24 S. MEDINI ET AL.

Table XIV. Program characteristics.

Program Release Range Issues Traces with two or
more gold set methods Gold set methods

JabRef 2.0–2.6 39 17 280

muCommander 0.8.0–0.8.5 92 48 717

Overall 131 65 997

Table XV. Traces and Segments Characteristics.

Number of method calls
Min. 1st Qu. Median Mean 3rd Qu. Max.

Traces 3K 57K 95K 95K 126K 264K
Segments 2 2 2 104 3 5K

5.2. Empirical Study Definition and Planning

The goal of the study is to assess the usefulness of SCAN for developers with the purpose of
showing its usefulness when performing feature location tasks as a complement to a feature location
technique or as a standalone technique. The quality focus is the possible effort reduction achieved
when using SCAN, due to the smaller number of methods a developer should scrutinize. The
perspective is of researchers interested in providing support to program comprehension by labeling
and relating segments in execution traces.

5.2.1. Study Set-Up

This section details the study set-up, specifically describing the datasets that we use, i.e., the
execution traces and gold set methods of selected issue reports for two Java programs.

The objects of our evaluation are execution traces collected from two Java programs belonging to
different domains. JabRef10 is an open source bibliography reference manager. It uses the BibTeX
file format and provides a user-interface to manage BibTeX files. muCommander11 is a lightweight,
cross-platform file manager with a dual-pane interface. It allows users to perform file operations on
a variety of local and networked file systems, including FTP, Windows shares, and so on.

Table XIV summarizes characteristics of the programs, i.e., the interval considered (i.e., from
release x to release y) the numbers of bugs occurred in such a time interval, the number of traces
that include two or more gold set methods, and the total number of gold set methods. The execution
traces were generated for the latter release—i.e., 2.6 for JabRef and 0.8.5 for muCommander.

The choice of JabRef and muCommander for this study is related to the availability of execution
traces, issue reports, and the associated gold set methods. The dataset was made publicly available
by Dit et al. [43].

Overall, we analyzed a total of 65 execution traces from the two programs—17 from JabRef and
48 from muCommander. Table XV reports descriptive statistics about the numbers of method calls
in the execution traces as well as in the segments that SCAN identifies.

5.2.2. Experimental Design and Analysis

The study aims at answering the following research questions:

• RQ4: Does SCAN has a potential to support feature location? This research questions aims
at evaluating SCAN’s ability to group gold set methods into a low number of segments thus
reducing the number of methods to be analyzed by developers when limiting the analysis to

10http://jabref.sourceforge.net/
11http://www.mucommander.com/

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SCAN: LABELING AND RELATING SEGMENTS 25

the set of segments containing the gold set methods rather than the entire execution trace. The
conjecture—as explained in Section 5.1—is that such segments would contain most of the
methods related to the feature, hence the developer could easily determine the set of methods
impacted when performing the change—e.g., the bug fixing—by looking at the segments
containing the seeds only.
• RQ5: To what extent does SCAN support feature location tasks if used as a standalone

technique? This research question investigates whether it is possible to automatically retrieve
segments containing relevant methods and evaluates the number of methods to be analyzed
compared to the number of methods in the entire execution trace. We calculate the recall with
respect to the segments containing the gold set methods as well as the recall with respect to
the gold set methods.

To address RQ4, we first investigate whether methods from the gold set are grouped within few
segments. To this end, we provide the number of segments containing the gold set methods and the
total number of segments of the traces. The lower the number of segments containing the gold set
methods the more grouped they are and thus the more potentially useful SCAN is. For example, the
execution trace for the example bug report in Figure 10 is segmented by SCAN into 26 segments,
and the gold set methods are concentrated in 2 of those segments—Segment 3 and Segment 4.
Clearly, the sizes of the segments also impact the extent to which SCAN would help to reduce the
effort: analyzing many small segments would not be effort-prone as analyzing few bigger segments
(representing the execution of a whole feature), although the absence of cohesive segments would
provide no guidance to the developer for knowing when to stop analyzing methods. To mitigate this
problem, we consider the size of the segments in terms of total number of method calls and in terms
of unique methods.

We estimate the number of methods in the segments containing the gold set methods and divide
it by the number of methods in the entire execution trace. This ratio represents the number of
methods to be analyzed if one is able to retrieve the segments containing the gold set methods. The
lower such ratio, the better. In the above example, the total number of method calls is 52—2 in
Segment 3 and 50 in Segment 4. The ratio is thus 0.0038 (= 52/13, 616).
We also estimate the ratio of the unique number of methods in the segments containing the gold set
methods over the total number of methods in the execution trace. The lower the ratio the greater
the gain in terms of number of unique methods that developers need to understand. This ratio
indicates the upper bound limit for the reduced number of methods that an automatic technique
retrieving the segments must return to developers. It is an upper bound as reducing more, i.e.,
not analyzing some of those segments, would result in incomplete change implementation. Any
technique that identifies additional segments would be decreasing the reduction of methods to be
analyzed. Reaching the upper bound assumes that we have a perfect way to identify those and
only those segments. For the above example, the unique number of methods called in Segments
3 and 4 is 34 and the unique number methods in the entire execution trace is 479 resulting
in a ratio of 0.07 (= 34/479). This ratio is a proxy for the effort that developers would need to
spent if they concentrate on the segments containing the gold set methods rather than the entire trace.

To address RQ5, we use the labels of segments, the relations among the segments produced by
SCAN, and the title of the bug report as search query to retrieve the segments having one or more
terms in common with this query. For each trace, SCAN builds the FCA lattice using the segments
of the trace while adding the title of the bug report (query) to the set of objects of the lattice. SCAN
considers as objects segments and the query; attributes are the terms in the segments/query. By
analyzing the resulting FCA lattice, SCAN identifies the segments in relation with the query: First,
starting from the node representing the query and following the paths towards the top node SCAN
collects all encountered nodes. Next, for all the collected nodes SCAN identifies the segments they
are connected to. The set of collected segments contains all segments with which the query has same
feature, sub-feature, or super-feature relation.

We evaluate the ability of SCAN to retrieve relevant segments using the gold set methods and
calculating two types of recall. We calculate the recall with respect to the segments containing the

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

26 S. MEDINI ET AL.

Table XVI. Number of gold set methods.

Program Min 1st Qu. Median Mean 3rd Qu. Max

JabRef 2 3 4 5.5 7 16

muCommander 2 2 3 6 7 35

Overall 2 2 3 5.9 7 35

gold set methods as well as the recall with respect to the gold set methods only. To calculate the
recall for segments, we divide the number retrieved segments containing gold set methods by the
total number of segments containing the gold set methods (see Equation 4). For the example shown
in Figure 11, the recall for segments is 1 (i.e., 100%) as both Segments 3 and 4 are retrieved.
To calculate the recall for methods, we divide the number retrieved gold set methods by the total
number of gold set methods (see Equation 5). The recall for methods in the above example is also 1
(= 7/7) as SCAN retrieves all the gold set methods.

RecallSegments =
retrieved segments containing gold set methods

total number of segments containing the gold set methods
(4)

RecallMethods =
retrieved gold set methods

total number of gold set methods
(5)

Here also we also provide a proxy for the effort that developers would need to spent if they
concentrate on the segments retrieved by SCAN rather than the entire trace. This estimate of effort
is expressed as the ratio of the number of methods to be analyzed if analyzing the methods contained
in the retrieved by SCAN segments and the entire trace. For the above example, SCAN retrieves 5
segments with a total of 133 unique methods being called. The trace consists of 479 unique methods
being called thus resulting in a ratio of 0.27 (= 133/479), i.e., 27%.

Finally, we also analyze how the recall varies when the number of terms in labels varies from
10 to 100. Previously, in Section 4, we limited the number of words in a label to ten as we were
seeking to provide a concise summary of a segment—this constraint for conciseness was imposed
by the purpose of the label, i.e., help developers to quickly grasp the concepts of a segment. For the
purpose of automatic feature location, we increase the number of words as the labels will be used to
automatically retrieve the relevant segments and thus a higher amount of terms is not an issue.

5.3. Study Results

This section reports the results of our experimental study to address the research questions
formulated in Section 5.2.2.

5.3.1. RQ4: Does SCAN has a potential to support feature location?

To answer this research question, we investigate whether multiple methods from the gold set are
grouped within the same segments. Thus, from the 131 traces of JabRef and muCommander, we are
interested in those containing at least two gold set methods, i.e., 65 of those traces, see Tables XIV.
Table XVI shows statistics of the numbers of gold set methods for those traces. We observe that the
gold sets consist of around six methods on average, as shown by the column Mean of Table XVI.

Table XVII provides statistics on the distribution of the gold set methods across the different
segments of the traces. We observe that the gold set methods are usually concentrated in only two
segments, as shown by the column Mean of Table XVII (first row) while on average the total number
of segments for a trace is close to 36 (second row). Therefore, we conclude that, indeed, methods
of the gold set are grouped into segments and thus SCAN has the potential to guide developers to
other methods useful to their feature location task.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SCAN: LABELING AND RELATING SEGMENTS 27

Table XVII. Distribution of the gold set methods across the segments.

Min 1st Qu. Median Mean 3rd Qu. Max

Number of segments containing the gold set
methods

1 1 2 2.2 3 5

Overall number of segments in a trace 14 30 38 35.9 41 68

Percentage of the size of the segments
containing gold set methods (over the size of
the trace)

0% 1.56% 2.16% 2.48% 3.37% 6.47%

Unique number of methods appearing in
segments required to understand (compared
to the unique number of methods required to
understand the entire trace)

0% 29.63% 44.77% 47.09% 61.92% 81.83%

As explained in Section 5.2.2, we also provide a rough estimate of the effort developers would
save if they focus their understanding activity on segments containing the gold set methods rather
than understanding the entire trace. The effort to understand a segment (respectively, a complete
trace) is estimated by the number of unique method calls in that segment (respectively, trace). Table
XVII presents statistics regarding the percentage of the sizes of the segments containing the gold
set methods with respect to the overall sizes of the traces. The percentage is also provided in terms
of unique methods. We conclude that the size of the segments containing the gold set methods is
smaller than 3% of the size of the entire traces. If focusing the understanding on relevant segments
only (i.e., those containing methods from the gold set) rather than on the entire trace, we can reduce
the number of methods to analyze by about 47%.

Consider again the example shown in Figure 10. Rather than analyzing the entire execution
trace, the developers may focus on Segment 4, which provides the context in which method
isiAuthorsConvert(String) is called. By looking at the method calls in Segment 4, they
can understand that the author conversion is performed in the context of importing a bibliographical
entry. They can also realize that, in general, importing an ISI entry also requires parsing the month
and pages, which were not performed adequately. Hence, Segment 4 also contains other gold set
methods, appearing at positions 1, 3, 4, 6, 7, 17, 18, 20, and 21, which were modified to fix problems
in the import of an ISI entry, the parsing of month and pages in particular, while fixing the author
conversion.

We thus answer RQ4: Does SCAN has a potential to support feature location? as follows: SCAN
has the potential to be useful during feature location because it groups gold set methods in only two
segments in general. Assuming that the segments containing the gold set methods can be retrieved,
understanding those relevant segments saves about 53% of the methods that developers would need
to understand compared to the entire execution traces.

5.3.2. RQ5: To what extent does SCAN support feature location tasks if used as a standalone
technique?

Table XVIII shows the results of RecallSegments, i.e., the recall with respect to the segments
containing the gold set methods, for different sizes of the labels (we vary the size from 10 to 100,
step by 10). We observe that, for example, when the maximum number of terms in a label is 100, we
can retrieve 75% of the segments containing the gold set methods; for 68% of the traces, we retrieve
all segments—i.e., 100% recall. The minimum retrieved segments is 0% because gold set methods
are sometimes filtered in the preprocessing of the segmentation.

Table XIX shows RecallMethods, i.e., the recall with respect to the gold set methods (rather than
the segments that contain them). Thus, considering again the case where the number of terms in a
label is limited to 100, we observe that, on average, we retrieve 70% of the gold set methods. Table
XX shows that analyzing the retrieved segments represents on average 57% of the methods that one
would have to understand to analyze the entire trace.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

28 S. MEDINI ET AL.

Table XVIII. RecallSegments: Retrieving segments containing gold set methods.

Label Size Min 1st Qu. Median Mean 3rd Qu. Max

10 0% 0% 0% 35.48% 100% 100%

20 0% 0% 33.33% 45.22% 100% 100%

30 0% 0% 50% 50.86% 100% 100%

40 0% 0% 50% 56.55% 100% 100%

50 0% 28.57% 100% 64.59% 100% 100%

60 0% 33.33% 100% 67.41% 100% 100%

70 0% 50% 100% 73.18% 100% 100%

80 0% 50% 100% 74.31% 100% 100%

90 0% 50% 100% 74.31% 100% 100%

100 0% 50% 100% 75.08% 100% 100%

Table XIX. RecallMethods: Retrieving gold set methods.

Label Size Min 1st Qu. Median Mean 3rd Qu. Max

10 0% 0% 0% 36.05% 100% 100%

20 0% 0% 33.33% 43.26% 100% 100%

30 0% 0% 33.33% 46.72% 100% 100%

40 0% 0% 50% 53.27% 100% 100%

50 0% 20% 66.67% 58.88% 100% 100%

60 0% 33.33% 80% 62.36% 100% 100%

70 0% 33.33% 100% 68.18% 100% 100%

80 0% 33.33% 100% 69.24% 100% 100%

90 0% 33.33% 100% 69.24% 100% 100%

100 0% 33.33% 100% 70.01% 100% 100%

Table XX. Number of methods needed to understand the retrieved segments compared to the number of
methods needed to understand the entire trace.

Label Size Min 1st Qu. Median Mean 3rd Qu. Max

10 0% 0% 3.88% 27.05% 50.24% 81.83%

20 0% 0.32% 30.11% 33.39% 67.07% 81.83%

30 0% 1.65% 38.08% 37.2% 67.07% 81.83%

40 0% 22.57% 43.73% 42.66% 68.61% 81.83%

50 0% 25.5% 54.93% 47.78% 71.82% 81.83%

60 0% 31.99% 57.32% 50.6% 77.3% 82.85%

70 0% 35.74% 63.16% 53.75% 77.3% 82.85%

80 0% 40.79% 63.16% 54.4% 77.3% 82.85%

90 0% 44.78% 65.08% 55.76% 77.3% 82.85%

100 0% 49.31% 65.08% 56.56% 77.08% 82.85%

Finally, we observe that increasing the size of the labels leads to more gold set methods and more
segments that contain them to be retried. However, it also increases the number of methods to be
analyzed. From Tables XVIII, XIX and XX, we conclude that a value ranging between 70 and 100
terms in the labels seems to be optimal as it retrieves close to 74% of the segments containing the

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SCAN: LABELING AND RELATING SEGMENTS 29

gold set methods, which corresponds close to 69% of the gold set methods, while saving near 45%
of the methods to analyze.

We thus answer RQ5: To what extent does SCAN support feature location tasks if used as a
standalone technique? as follows: When no technique is used to guide developers, SCAN can
retrieve relevant segments. For the analyzed traces, the recall with respect to the gold set methods
is close to 69% while saving near 45% of the methods to analyze compared to the entire execution
traces.

6. THREATS TO VALIDITY

This section discusses the threats to the validity of our evaluation and explains how we tried to
mitigate them when possible.

Construct validity Construct validity concerns the relation between theory and observations. Our
theory is that participants consistently understand execution traces and, thus, that an automated
approach can accurately segment, label, and relate execution traces. Previous work already used
trace segmentation for feature location, e.g., [44]. Moreover, participants can perform maintenance
tasks so we believe that our theory holds in general. In particular, threats to the construct validity of
our evaluation could mainly be due to our evaluation of the capability of SCAN to label segments
and to identify relations between them. For the former, we compare automatically generated labels
with manually generated labels in RQ2. To limit bias due to subjectiveness, we also report results
obtained by applying union or intersection over labels produced by multiple participants. The
participants of the experiment are not the original developers of the studied programs. To address
this threat to validity, we asked more than one participant to manually label the same segment. Note
also that developers of large software programs may not be familiar with the entire program and
thus would have been participant to the same threat.

In RQ1, we show that using an approach based on tf-idf to identify terms for labeling segments
makes sense, as labels produced by participants when using reduced segment subsets with the most
frequently invoked methods are not significantly different from those obtained when having the full
segments available. As for the relations in RQ3, we asked participants to validate them and, because
they do not know how our approach works, their bias is limited.

In RQ4 and RQ5, we estimate a proxy of the effort a developer has to spend when performing
feature location in terms of the number of methods to be analyzed. We are aware that this is a
roughly estimate, because the actual effort could involve many factors, such as the length and
complexity of those methods, the overall code complexity, quality of the lexicon, experience of
the developer, etc. However, in a context in which the impact set will be determined by performing
a basic understanding of each candidate method—e.g., by looking at its signature and comments if
any—such an approximation may result reasonable.

In RQ4 and RQ5, we estimate a proxy of the effort that developers need to provide to fix a bug.
This proxy measurement is based on the number of methods that developers need to analyze. In
other words, we did not perform an experiment with actual developers to measure the time and
effort required to fix the bug as such an experiment would require that the developers in the control
group use the entire execution trace, which generally is overly large.

Internal Validity The internal validity of an evaluation is the extent to which a treatment changes
the dependent variable. The internal validity of our empirical evaluation could be threatened by our
choice of the traces to segment and label, and whose segments to relate as well as related thresholds
(e.g., the threshold used to merge two segments). We mitigated this threat by using different traces
obtained from executing different scenarios on different programs. Also, participants confirmed the
precision and recall of both the segment labels and their relations.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

30 S. MEDINI ET AL.

Last, but not least, we are aware that the performance of the trace segmentation approach can be
affected by factors such as the choice of the LSI k value. In this context we have used the same
value adopted in our previous work [19, 20] where the segmentation approach was introduced. In
future work we plan to experiment the approach sensitivity to different k values.

External Validity The external validity of an evaluation relates to the extent to which we can
generalize its results. Our empirical evaluation of the performances of SCAN is limited to six
programs; we evaluate the usefulness of SCAN to support feature location on two programs. Yet,
our approach is applicable to any other program. However, we cannot claim that the same results
would be achieved with other programs. Different programs and different scenarios may lead to
different results. Our choices reduce the threat to the external validity of our empirical evaluation. As
explained in Section 4.2.2, participants involved in the evaluation of the performances of SCAN are
not original developers of the analyzed programs, hence results might be different when considering
people having a better knowledge of the systems.

Conclusion validity Conclusion validity threats deal with the relation between the treatment and
the outcome. Wherever appropriate, we use statistical tests to support our claims. Specifically, for
RQ1, we use permutation test, which is a non-parametric alternative to ANOVA, hence it does not
require data to be normally distributed.

7. RELATED WORK

This section describes related work concerning (i) feature and concept location, and (ii) source code
summarization.

7.1. Feature and Concept Location

Feature location aims at identifying subsets of a program source code activated when exercising a
piece of functionality. Techniques using static analysis, dynamic analysis, and their combination,
have been proposed in the literature. A static technique based on abstract dependencies graph was
proposed by Chen and Rajlich [45]. Recently, Le et al. [46] proposed a multi-abstract concern
localization where code units and textual descriptions are represented at multiple abstraction levels.
Le et al. iteratively apply Latent Dirichlet Allocation (LDA) to create an abstraction hierarchy from
the initial bags of words extracted from code units and textual descriptions. Results show that
the multi-abstract VSM-based concern localization outperforms the original VSM-based concern
localization. Also recently, Bassett et al. [47] focused on a static LDA-based feature location
technique and propose a new approach to calculate term weighting. Rather than the common term
weighting (e.g., binary, term frequency, tf-idf), Bassett et al. propose to weight terms based on
structural information extracted from the source code. Thus, terms derived from method names can
be given more importance than terms derived from local variable names. Bassett et al. show that in
the context of an LDA-based feature location technique the structural term weighting significantly
improves the accuracy of the results. In our approach we use tf-idf but in future we plan to investigate
structural term weighting.

Wilde and Scully [48] proposed a dynamic analysis technique for feature location. Eisenbarth
et al. [44] combined the use of both static and dynamic data to identify features. We share
with Eisenbarth et al. the use of both static and dynamic information. However, our purpose is
different: while they aimed at performing feature location, our aim is to identify cohesive segments
in execution traces, assign them a concept (by means labeling), and finally relate them to help
developers to understand traces.

Antoniol and Guéhéneuc [49] presented a hybrid approach for feature location and reported its
results on real-life, large, object-oriented, multi-threaded programs. They used knowledge filtering
and probabilistic ranking to overcome the difficulties of getting rid of uninteresting events. The
approach was improved [4] by using the notion of disease epidemiology. Later, Poshyvanyk et al.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SCAN: LABELING AND RELATING SEGMENTS 31

[6] located features by combining information from the scenario-based probabilistic ranking with
Latent Semantic Indexing (LSI).

Poshyvanyk et al. [7] used Formal Concept Analysis (FCA) and LSI to locate concepts in source
code corresponding to a textual description, e.g., description of a feature or a bug report. Given a
query, i.e., a summary of the description, source code elements are ranked using LSI. From the top-
most elements in the ranked list, the top-most descriptive terms are selected and a concept lattice is
built. As Poshyvanyk et al. did, our approach uses LSI and FCA. It also uses both static and dynamic
information whereas the previous authors used static information only. When building FCA lattices,
we operated at a higher level of abstraction, i.e., in our case objects are segments of execution traces
rather than methods. This is because our aim is different, i.e., identify cohesive segments relevant for
a feature rather than identify single methods related to a feature. Finally, we used relations among
FCA concepts in the lattice to automatically identify relations among segments.

Rohatgi et al. [5] presented a hybrid approach for feature location. They used dynamic analysis
to generate an execution trace by exercising a feature of interest. Then, they used static analysis to
rank the methods of the dependency graph built from the methods invoked in the execution trace.
They ranked the methods by relevance to the feature. The ranking mechanism guides developers to
locate methods implementing a feature of interest, without the need for a deep understanding of the
program.

Pirzadeh et al. [50] proposed a trace sampling framework. They used stratified sampling to
obtain traces of reduced size wrt. the original trace by distributing the desired characteristics of
an execution trace similarly in both the sampled and the original trace. They used random sampling
techniques to generate sampled execution traces. However, random sampling may generate samples
that are not representative of the original trace. They extended their approach [51] by extracting
higher-level views that characterize the relevant information about execution traces.

Alawneh et al. [52] identify computational phases from inter-process communication traces of
High Performance Computing (HPC) systems. The approach targets specifically HPC systems as
the complexity of phase detection is higher due to multi-processing. The approach first identifies
inter-process communication patterns and then groups the identified patterns into clusters, i.e.,
phases. The phase detection is based on Shannon entropy and Jensen-Shannon divergence measure.
The approach also identifies sub-phases using a threshold, the segmentation strength, to control the
number of detected sub-phases. The higher the segmentation strength, the lower the number of sub-
phases. The first aim of SCAN, i.e., generating trace segments, is similar to what also Pirzadeh et
al. [50, 51] and Alawneh et al. [52] did, although based on a different approach, incorporating
conceptual similarity in a search-based optimization technique [19, 20]. In addition to that, as
illustrated in this paper SCAN is also able to label segments and, using FCA, to determine relations
between them.

Our work is also close to the work of Pirzadeh and Hamou-Lhadj [8] who divide execution traces
into segments corresponding to the program’s main execution phases (e.g., initializing variables,
performing a specific computation, etc.). The algorithm for phase detection is inspired by the
psychology laws describing how the human brain groups similar items. Potential execution phases
are identified by applying the similarity and continuity gravitational schemes. The similarity scheme
reduces the distance between same method calls, where distance is defined using a mapping from the
execution order of the method calls to an interval scale, i.e., ruler distance. The continuity scheme
reduces the distance between method calls in higher nested levels and the previous method calls.
Applying the schemes may result in a rearrangement of the methods calls compared to the original
trace, i.e., the order of execution is not preserved. Pirzadeh and Hamou-Lhadj then use the K-means
clustering algorithm to group potential phases thus identifying the execution phases. In contrast
with their work, SCAN preserves the order of method calls when segmenting an execution trace and
labels the resulting segments.

Asadi et al. [19] presented an approach based on genetic algorithms to split execution traces
into cohesive segments. They identified concepts by finding cohesive and decoupled segments by
applying LSI on source code. Although Asadi et al. [19] could identify concepts with high precision,
the approach was computationally intensive and could not be applied on traces with thousands of

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

32 S. MEDINI ET AL.

method calls. Using dynamic programming, the approach was improved by Medini et al. [20] to
improve its scalability. Our work builds upon this previous work on splitting execution traces into
cohesive segments, in that it aims at labeling segments identified using the approach by Medini et
al. [20] and at identifying relations among segments.

7.2. Source Code Summarization

Software artifact summarization consists of techniques extracting short descriptions from software
artifacts to help developers during program comprehension. There are different approaches to
summarize source code. Some of them use heuristics to extract structured or natural-language
summaries [53, 54] whereas others use IR techniques to extract relevant keywords representing
software artifacts [55, 56].

Sridhara et al. [53] proposed a novel technique to automatically generate comments for Java
methods. They used the signature and the body of a method to generate a descriptive natural
language summary of the method. The developer is left in charge to verify the accuracy of generated
summaries. The work was extended [54] by using a classification of code into fragments, to generate
a natural language description of “actions” related to each fragment. The authors identified three
types of fragments: sequence fragments, conditional fragments and loop fragments.

Haiduc et al. [55, 56] applied and combined several automatic summarization techniques. In a
reported case study, they found that a combination of techniques making use of the position of
terms in software and traceability recovery techniques capture the meaning of methods and classes
better than any other of the studied techniques. In addition, an experiment conducted with four
developers revealed that the summaries produced using this combination are sensible.

De Lucia et al. [34] experimented the use of different IR techniques to extract keywords from
source code artifacts. They compared the labeling obtained using simple Vector Space Models
(VSM) and tf or tf-idf weighting schemes with those of more complex techniques, such as LSI.
They used a manual labeling performed by 17 students as oracle against which to compare the
various techniques. They found that simpler indexing techniques, such as VSM, outperform LSI,
whose results were better only for larger artifacts in which LSI clustering capabilities help to reduce
the noise.

Wang et al. proposed an approach that automatically segments source code methods into
meaningful blocks for the purpose of automatic blank line insertion [57]. The approach uses the
program structure and identifiers to identify consecutive statements that logically implement a
high-level action. Examples of meaningful blocks are a sequence of statement that belong to the
same syntactic category (e.g., method call, variable declaration), a sequence of statements that
are related through data flow, and a sequence of statements grouped in a while loop including
the immediately preceding statements initializing variables that control the condition. Wang et al.
also define a statement-pair similarity measure to segment syntactical blocks; the measure is based
on the program identifiers—the use of words that constitute them and naming conventions—and
has only three possible values. For each three consecutive statements there will be a segmentation
if the similarity between the first two and the last two statements is different. Wang et al. study
how developers insert blank lines to define heuristics that automatically mimics their behavior. In
our work it is impossible to use similar approach as execution traces are not manually written. In
contrast to the sliding window used by Wang et al. we start with one statement and we keep adding
the following statements one by one as long as the fitness function is improved; we segment when
adding a statement decreases the value of the fitness function.

We share with all software summarization techniques described above—and in particular
keyword-based summarization techniques—the goal of representing artifacts with shorter
descriptions. In particular, as De Lucia et al. [34], we use a simple VSM (properly complemented
with some heuristics to remove noise) to label execution trace segments. The main difference
between labeling source code artifacts and labeling execution traces is that execution traces must be
(1) pruned, else utility methods and event handlers dominate the creation of labels, thus producing
meaningless labels and (2) segmented, else labels would not be meaningful to developers. Finally,
segments must be related with one another.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SCAN: LABELING AND RELATING SEGMENTS 33

8. CONCLUSION

Program comprehension activities are crucial and preliminary to any maintenance or evolution tasks.
Execution traces help developers to understand programs and relate methods (and methods calls)
with user-visible features. However, execution traces are often overly large. Hence, they cannot be
used directly by developers for program comprehension activities, in general, and feature location,
in particular.

Consequently, we proposed SCAN, Segment Concept AssigNer, to support feature location by
breaking execution traces into segments and labeling those segments to represent the features that
they execute. SCAN also relates (1) segments activating the same feature, (2) segment(s) activating
part of a feature activated by other segment(s), and (3) sequences of segments activating the same
set of features. SCAN relies on dynamic programming to split traces into cohesive segments and to
merge similar segments from multiple traces. Then, it labels the segments with relevant terms using
Vector Space Model (VSM) and tf-idf. Finally, it uses Formal Concept Analysis (FCA) to identify
relations among segments. SCAN thus provides developers with segmented traces, whose segments
are labeled and related with one another.

To evaluate SCAN, we first conducted a study aimed at analyzing the ability of SCAN to
accurately reduce the size of segments, identify labels, and identify relations between segments.
After that, we conducted a second study aimed at investigating the usefulness of SCAN to support
feature location tasks. In the first study, we asked 31 participants (professionals and students) to
assign labels to segments extracted from six Java programs (ArgoUML, JHotDraw, Mars, Maze,
Neuroph, and Pooka). First (RQ1), we investigated whether providing the participants with the most
relevant methods only is sufficient to understand segments; we compare the quality of the labels
and participant agreement with those obtained when full segments were used to produce labels.
Then (RQ2), we compared manually-produced labels for 210 segments with those produced by
SCAN. Finally (RQ3), we used SCAN to identify relations among segments and asked participants
to validate them. Results of the empirical evaluation confirmed the ability of SCAN to select the
most representative methods of a segment, thus reducing on average 92% of the information that
participants must process while guaranteeing that close to 50% of the knowledge is preserved
(RQ1)—the labels produced by participants when analyzing the reduced segments contained 50%
of the information of the labels produced from the original segments. Results also showed that
SCAN can automatically label segments with 69% precision and 63% recall when compared to
the manual labels produced by the participants (RQ2). Finally, the results showed that participants
agreed at 63% with the identified relations among segments identified by SCAN (RQ3).

In the second study we investigated how SCAN could help in a feature location task, when used in
combination with a state-of-the-art feature location approach (RQ4), or when used as a standalone
approach (RQ5). Our conjecture is that methods relevant for a feature would be grouped by SCAN
in one or two segments, and therefore limiting the analysis to the methods in these segments would
reduce the effort compared to analyzing the methods in the entire execution traces (RQ4). We also
investigated whether SCAN is able to automatically retrieve these relevant segments and whether
analyzing the retrieved segments reduces the number of methods to be analyzed compared to the
entire execution trace (RQ5). Results show that in general relevant methods are grouped in two
segments and analyzing only those segments reduces about 53% of the methods that developers
would need to understand compared to the entire execution traces (RQ4). Results also show that,
for the analyzed traces, SCAN can retrieve close to 69% of the relevant methods while reducing the
number of methods to analyze by 43% compared to analyzing the entire traces (RQ5).

In summary, we showed that SCAN provides useful information to developers performing
feature location tasks: it provides relevant segments, labels for these segments, and relations among
segments. Future work includes investigating the applicability of SCAN to different object-oriented
programming languages, for example C++. Also, we will investigate the applicability of SCAN as a
re-documentation tool, and we plan to perform user studies in which developers use SCAN during
their maintenance activities.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

34 S. MEDINI ET AL.

ACKNOWLEDGEMENT

The authors would like to express their gratitude to all the participants to the experiment who dedicated
between one and two hours of their time to understand the purpose of execution trace segments, to label
them, and to reason on the relations among segments.

REFERENCES

1. Kozaczynski V, Ning JQ, Engberts A. Program concept recognition and transformation. IEEE Transactions on
Software Engineering 1992; 18(12):1065–1075.

2. Biggerstaff T, Mitbander B, Webster D. The concept assignment problem in program understanding. Proceedings
of the International Conference on Software Engineering (ICSE), IEEE CS Press, 1993; 482–498.

3. Koschke R, Quante J. On dynamic feature location. Proceedings of the International Conference on Automated
Software Engineering (ASE), 2005; 86–95.

4. Antoniol G, Guéhéneuc YG. Feature identification: An epidemiological metaphor. IEEE Transactions on Software
Engineering 2006; 32(9):627–641.

5. Rohatgi A, Hamou-Lhadj A, Rilling J. An approach for mapping features to code based on static and dynamic
analysis. Proceedings of the International Conference on Program Comprehension (ICPC), 2008; 236–241.

6. Poshyvanyk D, Guéhéneuc YG, Marcus A, Antoniol G, Rajlich V. Feature location using probabilistic ranking of
methods based on execution scenarios and information retrieval. IEEE Transactions on Software Engineering 2007;
33(6):420–432.

7. Poshyvanyk D, Gethers M, Marcus A. Concept location using formal concept analysis and information retrieval.
ACM Transactions on Software Engineering and Methodology November 2012; 21(4):23:1–23:34.

8. Pirzadeh H, Hamou-Lhadj A. A novel approach based on gestalt psychology for abstracting the content of large
execution traces for program comprehension. Proceedings of the International Conference on Engineering of
Complex Computer Systems (ICECCS), 2011; 221–230.

9. Cornelissen B, Zaidman A, van Deursen A, Moonen L, Koschke R. A systematic survey of program comprehension
through dynamic analysis. IEEE Transactions on Software Engineering September 2009; 35(5):684–702.

10. Biermann A. On the inference of turing machines from sample computations. Artificial Intelligence 1972; 3:181–
198.

11. Reiss SP, Renieris M. Encoding program executions. Proceedings of the International Conference on Software
Engineering (ICSE), 2001; 221–230.

12. Hamou-Lhadj A, Lethbridge T. Summarizing the content of large traces to facilitate the understanding of the
behaviour of a software system. Proceedings of the International Conference on Program Comprehension (ICPC),
2006; 181–190.

13. Hamou-Lhadj A, Braun E, Amyot D, Lethbridge T. Recovering behavioral design models from execution traces.
Proceedings of the European Conference on Software Maintenance and Reengineering (CSMR), 2005; 112–121.

14. Safyallah H, Sartipi K. Dynamic analysis of software systems using execution pattern mining. Proceedings of the
International Conference on Program Comprehension (ICPC), 2006; 84–88.

15. Lo D, Khoo SC, Liu C. Efficient mining of iterative patterns for software specification discovery. Proceedings of
the International Conference on Knowledge Discovery and Data Mining (KDD), 2007; 460–469.

16. Lo D, Maoz S. Scenario-based and value-based specification mining: better together. Automated Software
Engineering (ASE) 2012; 19(4):423–458.

17. Agrawal H, Demillo RA, Spafford EH. Debugging with dynamic slicing and backtracking. Software - Practice and
Experience June 1993; 23(6):589–616.

18. Zhang X, Gupta R, Zhang Y. Precise dynamic slicing algorithms. Proceedings of the International Conference on
Software Engineering (ICSE), 2003; 319–329.

19. Asadi F, Di Penta M, Antoniol G, Guéhéneuc YG. A heuristic-based approach to identify concepts in execution
traces. Proceedings of the European Conference on Software Maintenance and Reengineering (CSMR), 2010; 31–
40.

20. Medini S, Galinier P, Di Penta M, Guéhéneuc YG, Antoniol G. A fast algorithm to locate concepts in execution
traces. Proceedings of the International Symposium on Search-based Software Engineering (SSBSE), 2011; 252–
266.

21. Eisenbarth T, Koschke R, Simon D. Feature-driven program understanding using concept analysis of execution
traces. Proceedings of the International Workshop on Program Comprehension (IWPC), 2001; 300–309.

22. Bellman RE, Dreyfus SE. Applied Dynamic Programming, vol. 1. Princeton University Press, 1962.
23. Cormen TH, Leiserson CE, Rivest RL. Introductions to Algorithms. MIT Press, 1990.
24. Marcus A, Poshyvanyk D, Ferenc R. Using the conceptual cohesion of classes for fault prediction in object-oriented

systems. IEEE Transactions on Software Engineering 2008; 34(2):287–300.
25. Medini S, Antoniol G, Guéhéneuc YG, Di Penta M, Tonella P. SCAN: an approach to label and relate execution

trace segments. Proceedings of Working Conference on Reverse Engineering (WCRE), 2012; 135–144.
26. Ng JKY, Guéhéneuc YG, Antoniol G. Identification of behavioral and creational design motifs through dynamic

analysis. Journal of Software Maintenance and Evolution: Research and Practice 2010; 22(8):597–627.
27. Porter MF. An algorithm for suffix stripping. Program 1980; 14(3):130–137.
28. Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. Addison-Wesley, 1999.
29. Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R. Indexing by Latent Semantic Analysis. Journal

of the American Society for Information Science 1990; 41(6):391–407.
30. Nasir Ali, Guéhéneuc YG, Antoniol G. Trustrace: Mining software repositories to improve the accuracy of

requirement traceability links. IEEE Transactions on Software Engineering October 2012; 39(5):725–741.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SCAN: LABELING AND RELATING SEGMENTS 35

31. Poshyvanyk D, Marcus A. The conceptual coupling metrics for object-oriented systems. Proceedings of the
International Conference on Software Maintenance (ICSM), 2006; 469–478.

32. Ville BGR. Formal Concept Analysis. Mathematical Foundations: Springer, 1999.
33. Siff M, Reps T. Identifying modules via concept analysis. IEEE Transactions on Software Engineering November-

December 1999; 25:749–768.
34. De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichella S. Using IR methods for labeling source code artifacts:

Is it worthwhile? Proceedings of the International Conference on Program Comprehension (ICPC), 2012; 193–202.
35. Yevtushenko SA. System of data analysis ”concept explorer” ((in russian)). Proceedings of the National Conference

on Artificial Intelligence KII-2000, 2000; 127–134.
36. Zéphyrin Soh, Zohreh Sharafi, Bertrand van den Plas, Cepeda Porras G, Guéhéneuc YG, Antoniol G. Professional

status and expertise for uml class diagram comprehension: An empirical study. Proceedings of the International
Conference on Program Comprehension (ICPC), 2012; 163–172.

37. Baker RD. Modern permutation test software. Randomization Tests, Edgington E (ed.), Marcel Decker, 1995.
38. Miller GA. WordNet: A lexical database for English. Communications of the ACM 1995; 38(11):39–41.
39. Hintze JL, Nelson RD. Violin plots: A box plot-density trace synergism. The American Statistician 1998;

52(2):181–184.
40. Dit B, Revelle M, Gethers M, Poshyvanyk D. Feature location in source code: a taxonomy and survey. Journal of

Software: Evolution and Process 2013; 25(1):53–95.
41. Rajlich V, Gosavi P. Incremental change in object-oriented programming. IEEE Software 2004; 21(4):62–69.
42. Dapeng L, Andrian M, Denys P, Vaclav R. Feature location via information retrieval based filtering of a single

scenario execution trace. Proceedings of the International Conference on Automated Software Engineering (ASE),
2007; 234–243.

43. Dit B, Holtzhauer A, Poshyvanyk D, Kagdi H. A dataset from change history to support evaluation of software
maintenance tasks. Proceedings of the Working Conference on Mining Software Repositories (MSR), 2013; 131–
134.

44. Eisenbarth T, Koschke R, Simon D. Locating features in source code. IEEE Transactions on Software Engineering
March 2003; 29(3):210–224.

45. Chen K, Rajlich V. Case study of feature location using dependence graph. Proceedings of the International
Workshop on Program Comprehension (IWPC), 2000; 241–250.

46. Le TDB, Wang S, Lo D. Multi-abstraction concern localization. Proceedings of the International Conference on
Software Maintenance (ICSM), 2013; 364–367.

47. Bassett B, Kraft NA. Structural information based term weighting in text retrieval for feature location. Proceedings
of the International Conference on Program Comprehension (ICPC), 2013; 133–141.

48. Wilde N, Scully MC. Software reconnaissance: Mapping program features to code. Journal of Software
Maintenance 1995; 7(1):49–62.

49. Antoniol G, Guéhéneuc YG. Feature identification: A novel approach and a case study. Proceedings of the
International Conference on Software Maintenance (ICSM), 2005; 357–366.

50. Pirzadeh H, Shanian S, Hamou-Lhadj A, Mehrabian A. The concept of stratified sampling of execution traces.
Proceedings of the International Conference on Program Comprehension (ICPC), 2011; 225–226.

51. Pirzadeh H, Hamou-Lhadj A, Shah M. Exploiting text mining techniques in the analysis of execution traces.
Proceedings of the International Conference on Software Maintenance (ICSM), 2011; 223–232.

52. Alawneh L, Hamou-Lhadj A. Identifying computational phases from inter-process communication traces of hpc
applications. Proceedings of the International Conference on Program Comprehension (ICPC), 2012; 133–142.

53. Sridhara G, Hill E, Muppaneni D, Pollock L, Vijay-Shanker K. Towards automatically generating summary
comments for Java methods. Proceedings of the International Conference on Automated Software Engineering
(ASE), 2010; 43–52.

54. Sridhara G, Pollock L, Vijay-Shanker K. Automatically detecting and describing high level actions within methods.
Proceeding of the International Conference on Software Engineering (ICSE), 2011; 101–110.

55. Haiduc S, Aponte J, Marcus A. Supporting program comprehension with source code summarization. Proceedings
of the International Conference on Software Engineering (ICSE), 2010; 223–226.

56. Haiduc S, Aponte J, Moreno L, Marcus A. On the use of automated text summarization techniques for summarizing
source code. Proceedings of Working Conference on Reverse Engineering (WCRE), 2010; 35–44.

57. Wang X, Pollock L, Vijay-Shanker K. Automatic segmentation of method code into meaningful blocks: Design and
evaluation. Journal of Software: Evolution and Process 2014; 26(1):27–49.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

	1 Introduction
	2 Background
	2.1 Trace Segmentation
	2.2 Formal Concept Analysis

	3 The SCAN Approach
	3.1 Definitions
	3.2 Step 2: Segment Merging
	3.3 Step 3: Label Identification
	3.4 Step 4: Relation Identification

	4 Evaluating the performances of SCAN
	4.1 Research questions
	4.2 Study Set Up
	4.2.1 Objects
	4.2.2 Participants
	4.2.3 Trace Segmentation Threshold
	4.2.4 Label Identification Strategy

	4.3 Experimental Design and Analysis
	4.3.1 RQ1: How do the labels of the trace segments produced by the participants change when providing them different amount of information?
	4.3.2 RQ2: How do the labels of the trace segments produced by the participants compare to the labels generated by SCAN?
	4.3.3 RQ3: To what extent does SCAN correctly identify relations among segments?

	4.4 Experiment Results
	4.4.1 RQ1: How do the labels of the trace segments produced by the participants change when providing them different amount of information?
	4.4.2 RQ2: How do the labels of the trace segments produced by the participants compare to the labels generated by SCAN?
	4.4.3 RQ3: To what extent does SCAN correctly identify relations among segments?

	5 Applying SCAN to support feature location
	5.1 Typical scenario
	5.2 Empirical Study Definition and Planning
	5.2.1 Study Set-Up
	5.2.2 Experimental Design and Analysis

	5.3 Study Results
	5.3.1 RQ4: Does SCAN has a potential to support feature location?
	5.3.2 RQ5: To what extent does SCAN support feature location tasks if used as a standalone technique?

	6 Threats to Validity
	7 Related Work
	7.1 Feature and Concept Location
	7.2 Source Code Summarization

	8 Conclusion

