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SUMMARY

Several techniques are used by requirements engineering practitioners to address difficult problems such
as specifying precise requirements while using inherently ambiguous natural language text and ensuring
the consistency of requirements. Often, these problems are addressed by building processes/tools that
combine multiple techniques where the output from one technique becomes the input to the next. While
powerful, these techniques are not without problems. Inherent errors in each technique may leak into the
subsequent step of the process. We model and study one such process, for checking the consistency of
temporal requirements, and assess error leakage and wasted time. We perform an analysis of the input
factors of our model to determine the effect that sources of uncertainty may have on the final accuracy of the
consistency checking process. Convinced that error leakage exists and negatively impacts the results of the
overall consistency checking process, we perform a second simulation to assess its impact on the analysts
efforts to check requirements consistency. We show that analysts effort vary depending on the precision
and recall of the sub-processes and that the number and capability of analysts affect their effort. We share
insights gained and discuss applicability to other processes built of piped techniques. Copyright c© 2015
John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Sensitivity analysis; error propagation; requirements engineering; consistency checking;
information retrieval; natural language processing; classification; semantic role labeling;
error leakage; process model; machine learning; genetic algorithms; search-based
software engineering; work flow process

1. INTRODUCTION

Challenges loom large as we endeavour to develop software systems. Many of these challenges
are related to requirements engineering (RE) and its subareas of process, elicitation, specification,
analysis, and validation [1]. In eliciting requirements, we face several obstacles as we attempt to
ensure that all stakeholders are represented. In striving for thoroughness and exactness, we contend
with customers and end users who do not understand formal languages or specifications. We also
struggle to specify requirements that are complete and consistent because we deal with the inherent
ambiguity of natural language text. Biggerstaff et al. labeled this the concept assignment problem
[2]. As researchers, we strive to understand these and other issues and to develop approaches
alleviating these challenges for practitioners.

We can address requirements challenges by various techniques, such as information retrieval,
natural language processing, classification, clustering, to name a few. Complex requirements
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problems may be addressed by a collection of such techniques. For example, classifying a
requirement as functional or non-functional requires this sequence of steps: (1) to perform pre-
processing on the text of all of the requirement elements (remove stop words, spell out acronyms,
etc.); (2) to tag each token in each requirement element with its part of speech; (3) to develop a
training set to be used with a given dataset; and, (4) to use a classification or clustering technique to
determine the labels for each requirement element (functional or non-functional requirement).

The aforementioned techniques (as any others) are powerful but not perfect. When researchers or
practitioners build complex processes or tools from these non-perfect techniques, errors may leak
into subsequent process steps (analogous to defects leaking into subsequent software development
phases). For example, it is well known that typical information retrieval techniques used in tracing
requirements achieve high recall but only low to moderate precision. Errors due to the imperfect
and imbalanced precision and recall may seem insignificant, particularly if a process uses only one
technique. But more complex requirements engineering processes require multiple techniques and,
as in the functional/non-functional classification example given above, it is often the case that the
output of one technique is the input to another technique, e.g., the output of parts of speech tagging
becomes the input to the classification technique. Errors that leak from one technique to the next will
impact the accuracy of the final result and will result in wasted time due to false positives introduced
into the process.

Errors in the techniques have been the subject of much work but researchers focused on the
quality of individual techniques, such as improving the recall and precision of information retrieval
techniques used for feature location. To the best of our knowledge, they did not study sequences
of these techniques and error leakage. In this paper, we only consider fully-automated processes, in
which analysts do not intervene; future work includes modelling the impact of the analyst-in-the-
loop [3].

Practitioners often have a number of techniques from which to choose at the various steps of
a requirements engineering process. For example, in the functional/non-functional requirement
categorization example, they can select one among a multitude of clustering techniques. It seems
intuitive that they should select the technique with the highest quality, i.e., the lowest error rate or
error leakage rate. However, quality has different definitions and values depending on the technique.
Also, quality is influenced by the characteristics of the artifacts and/or the domain of the artifacts
and, consequently, quality has a level of uncertainty. For example, the vector space model (VSM)
with term frequency-inverse document frequency weighting (tf-idf) is used often for requirements
tracing. In a comparison of studies on requirement tracing, we observed that VSM (not enhanced by
thesauri or similar) achieved recall of 83% with precision of 54% [4]. In a different setting, using
different datasets written using different vernacular, recall was merely 25.4% with precision of only
11.4% [5, 6]. This uncertainty must be taken into account. Further, it is well known that the outputs
of such a requirements engineering process will not be accepted at face value [6, 7, 8] . Rather, a
human analyst will vet the results. These vetted results will constitute the final output that will be
used to support subsequent activities in the software development lifecycle.

For many years, researchers assumed that a process resulting in high accuracy output would lead
to a high quality final result (after the human analyst vetted). In fact, the study of methods assumed a
perfect analyst when modeling the human in the loop (analyst would always make correct decisions
when evaluating results from an automated tool) [6]. About five years ago, this was shown to be an
incorrect assumption [7, 8, 9]. For trace recovery, such as between a requirements specification and
a design document, studies showed that human analysts vetting the output of an automated process
tended to make the results worse than what the process output (that is, they lowered the recall and
precision of the results given to them for vetting) [7]. Interestingly enough, human analysts tended
to make the best decisions and improve results when the process output was not so accurate. In fact,
analysts who were given output of 100% recall, 100% precision actually returned final results that
were much worse than analysts given much lower quality outputs.

One study found a “sweet spot” for the quality of a process output in terms of recall and precision
that lead to analysts making the most improvement to the results and resulting in the best final
output. The sweet spot was in the range of 25-62% recall, 25-50% precision [7]. Work also indicated
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SENSITIVITY AND EFFORT ANALYSIS OF A REQUIREMENTS CONSISTENCY CHECKING PROCESS 3

that human analysts are much better at vetting results given to them than at going to look for
elements that were not retrieved by an automated process. Further work also indicated that when
vetting results, analysts are correct roughly 75% of the time [10].

Thus, it is not sufficient for a practitioner to simply find the “best” techniques (in terms of recall
and precision) to assemble a process that will result in the best final output for use in subsequent
activities. A practitioner can be confronted with many degrees of freedom in putting together a
process: what techniques shall be selected (based on recall, precision, accuracy), in what order shall
these techniques be run, how shall the process be “configured” (here we limit ourselves to the notion
of optional versus non optional technique usage-configuration in the broader sense is not within the
scope of this paper). While it may seem intuitive that higher quality techniques will lead to the best
processes, validation is still required. Pioneers in empirical software engineering such as Vic Basili
and Mary Shaw have emphasized the need for empirical validation [11, 12]. We argue that search-
based software engineering can support the decision process by guiding selection of techniques and
selection or ordering of techniques to minimize error leakage and wasted time. This paper, the first
to study this problem, is a step toward that goal.

Using the consistency checking of temporal requirements with Temporal Action Language
(TeAL) [13] as our running example, we formulate the problem as a fully automated process - a
piped sequence of techniques with the output of each serving as the input to the next. We perform
exploratory sensitivity analyses, using published data on accuracy of techniques, simulated data,
and data collected by applying TeAL on a real world system. As expected, we found that retrieval
rates and precision values of the techniques influence the quality of the overall process.

Then, following the sensitivity analysis, we study the impact of error leakage and wasted time on
analysts efforts when they check the consistency of temporal requirements at each step of a checking
process. Reusing our previous example, we model an objective function using three terms: a term
modelling the analysts work times, a term modelling the overall time that it takes analysts to vet
all requirements at each step of the process, and a term accounting for analysts wasted time. Using
a genetic algorithm, we compute this objective function in four scenarios with different precision
and recall values of each sub-process, as well as perfect and imperfect analysts, and show that error
leakage leads to wasted time but that the overall time is decreased. We also show that error leakage
causes the decrease of the overall time at the cost of errors introduced into the process.

This paper is an extension of the paper “Error Leakage and Wasted Time: Sensitivity Analysis of
a Requirements Consistency Checking Process” [14]. The major extension contains two parts. One
is a sensitivity analysis of the impact of varying sub-process orders and optionality in a process of
consistency checking of temporal requirements. The other is a study that uses a genetic algorithm
to analyze the impact of error leakage.

The paper is organized as follows. We present related work in Section 2 before modeling error
leakage and wasted time and collecting data about the accuracy of techniques through a literature
review in Section 3. We present the sensitivity analysis in Section 4. Section 5 presents the analysts
effort model as a genetic algorithm as well as analysis and results. We discuss the threats to the
validity of our results in Section 6. Finally, we conclude and present future work in Section 7.

2. RELATED WORK

This paper is an extension of the previous paper “Error Leakage and Wasted Time: Sensitivity
Analysis of a Requirements Consistency Checking Process” [14], which studies error leakage in
a sequence of analysis steps and its impact on accuracy and wasted effort. This section presents
prior related work and shows that, although researchers studied bias in various kinds of data and
processes in software engineering, they did not study error leakage in this way.

2.1. Sensitivity and Bias

Previous work on software engineering processes typically focused on the quality of individual
techniques, not of the full process. For example, Le et al. [15] built a classifier model to
predict whether or not a given fault localization approach would be successful for a given fault.

Copyright c© 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOI: 10.1002/smr



4 W. LI ET AL.

The classifier model does not provide feedback about accuracy or wasted effort, only a yes/no
classification. More generally, sensitivity analysis on the impact of certain input variables on an
approach or algorithm is commonplace in software engineering research (e.g., [16, 17]).

The closest work to ours is the work on error leakage due to bias in software engineering process
data (not the actual techniques), i.e., the imperfect sampling or composition of a data set can
have negative consequences on the subsequent analyses. Many kinds of bias have been identified,
together with their impact on the successive phases of analysis, such as defect or effort prediction.
Antoniol et al. [18, 19] analyzed tagging bias caused by interpreting all reports in a project’s issue
tracking system as bug reports, whereas analysts often use issue tracking systems to track other
kinds of issues, such as tasks, decisions, and enhancements. Hence, the number of bug reports is
overestimated and can impact the accuracy of defect prediction models.

Linkage bias [20, 21] corresponds to the observation that low severity bugs have a higher chance
of being tagged with the source code changes in the version control system that fixed them and
that experienced analysts are more likely to add such tags for the bugs that they resolve than less
experienced analysts. Again, any subsequent analysis step will be impacted by the biased data set.
Many other kinds of bias exist, such as code changes that bundle multiple bug fixes and features
into one code change [22], limitations and risks in development data recoverable from repositories
using Git [23] and GitHub [24], and the size of (a possibly biased) data set [25]. While our paper
also focuses on bias, the bias that we analyze applies to the techniques that are being applied (and
their order) and, hence, is complementary to bias in the data.

Closer to the bias that we analyze is the work of Dit et al. [26] and Binkley et al. [27] on the
impact of various kinds of preprocessing operations of textual data on the effectiveness of feature
location and traceability recovery from source code. Both papers compared the impact on feature
location algorithms of using different approaches for splitting identifiers. They found that only for
some source code projects feature location approaches based on information retrieval techniques do
benefit from cleanly split source code identifiers.

Binkley et al. [28] and Haiduc et al. [29] studied how different ways of pre-processing and
modeling queries for information retrieval impact the performance of traceability techniques when
applied on issue reports and source code. Binkley et al. [28] found large differences in performance
depending on (1) the parts of the issue report included in the analysis, (2) the use of different
identifier splitting techniques, (3) inclusion or not of synonyms, and (4) choice of likelihood-based
information retrieval models instead of LSI-based models. They reported that stemming of words
did not have any impact. Haiduc et al. [29] proposed a model to recommend the best query rewriting
approaches for a given information retrieval query. Instead of the impact of bias on information
retrieval queries or concept location, we focus on consistency checking of temporal requirements.

2.2. Search-based Software Engineering

Search-based software engineering (SBSE) is a discipline that uses search-based optimization
techniques to solve software engineering-related problems [30]. Any problem that can be formulated
in terms of minimizing a cost function can be attempted using SBSE. Once a cost function is
established (and a suitable representation of the problem is found), traditional search techniques,
like linear programming, or meta-heuristic approaches, like genetic algorithms, can be applied. For
example, Baker et al. [31] studied the selection of components to be released in a next version as a
search-based problem, with net revenue of the selected components as cost.

Genetic algorithms (GAs) are one of the most popular search algorithms for SBSE [26], with
applications ranging from test input data generation [32], project planning [33], refactoring [34] to
web service composition [35], just to name a few. However, to the best of our knowledge, GAs have
not been used before in SBSE to perform a sensitivity analysis. Among the various works using GAs,
more similarity can be found with the paper of Di Penta et al. [33] in that we also seek for a robust
solution. This work and the work by Baker et al. [31] inspired us to use search-based techniques to
explore the optimal configuration of techniques to use in a requirement traceability process, with
the precision and recall of the final results as cost function. Panichella et al. [36] also presented a
study which uses a genetic algorithm to explore configurations of different IR steps in typical IR
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SENSITIVITY AND EFFORT ANALYSIS OF A REQUIREMENTS CONSISTENCY CHECKING PROCESS 5

processes for software engineering tasks and find an optimal configuration. This method can obtain
up to 50% better precision than a default configuration, close to ideal, basically by measuring the
quality of clusters of configurations (silhouette coefficient).

2.3. Process Modeling

Alegria et al. [37] described a tool for building software process models, Avispa, which is a graphical
tool for analyzing Software Process Engineering Metamodel (SPEM) 2.0 process models [1]. The
authors discussed the notion of error patterns that are commonly encountered in process modelling,
such as Isolated roles (node not connected with an edge), Multiple Purpose tasks (too many output
work products), and Overloaded Roles (role involved in too many tasks). However, they did not
model or simulate the impact of these error patterns on the final results of the process.

Anan et al. [38] examined the number of errors by phase of the software development lifecycle,
using various models to estimate errors. For example, they examined software reliability models,
such as Goel-Okumoto, to examine failures during testing to estimate remaining undetected errors.
They did not discuss the impact of the different techniques used during each phase on the overall
errors and final results of the software development process.

Other research work modeling software engineering processes includes that of Pandey, Suman,
and Ramani [39], of Krusche, Alperowitz, Bruegge, and Wagner [40], and of Sadiq, Mohd, and
Hassan [41]. Although these previous works modelled various processes and provided evaluation
of these processes, they did not study the impact of errors at each step of the processes and the
propagation of these errors through the whole processes and their impact on the final results.

2.4. Consistency Checking

As the subject of this study, we chose the problem of requirement consistency checking because
it is a well-known and difficult problem in requirements engineering and because proposed
solutions are processes made of several piped techniques. Typically, this problem arises because
inconsistencies among software requirements must be removed to ensure the quality of software
projects. Consistency checking tasks are time-consuming and error-prone if performed manually.
Therefore, researchers proposed alternatives to manual checking using a formal system, such as
Linear Temporal Logic [42], Answer Set Programming [43, 44], and Temporal Action Logic
[45]. Once researchers provided formal representations of requirements, they could use automated
reasoning tools for the automated detection of inconsistencies.

Recently, a promising semi-automated approach was proposed to address consistency checking in
the case of temporal requirements. The approach is based on the Temporal Action Language TeAL
[13], developed by several of the co-authors of this paper, and on tools that process natural language
requirements. A tracing tool, RETRO [46], is used to extract temporal requirements and some
non-temporal related requirements from the requirement document. The extracted requirements
are parsed and the key elements of the system that they specify are identified using the Stanford
Parser [47, 48, 49]. Based on this information, an “almost TeAL” approximation of the sought TeAL
representation is produced by a tool GenerateTeAL. The analyst must finally correct, complete, and
verify the output of GenerateTeAL. This final task has been demonstrated to be significantly easier
for analysts than that of generating the TeAL theory directly from the requirements.

In the following, we use consistency checking of requirements using the Temporal Action
Language as subject of our simulation and sensitivity analysis to show that errors leak from one
technique to the next and that they impact the final results of the requirement consistency checking
process.

3. MODELING ERROR LEAKAGE AND WASTED TIME

We now describe our overall approach to modeling error leakage and wasted time. We then present
the formulation of the problem of designing an automated sequence of techniques for consistency
checking of temporal requirements.
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We use as running example a consistency checking process that is composed of multiple sub-
processes, each implemented by one technique (we limit our scope to single techniques and will
study processes composed of composite sub-processes in future work, i.e., sub-processes using
several techniques in parallel). Based on our industry experience and work with industrial partners,
the results of such an automated process are not accepted at face value. Rather, some level of
checking or review is performed by an analyst before the results are used. It is intuitive that an
automated process that retrieves only relevant elements will result in the easiest review task for
the analyst. On the contrary, an automated process that fails to retrieve relevant elements and only
retrieves irrelevant elements will require too much work and result in frustration for the analyst.
Since reality lies somewhere in between these two extremes [50], what aspects of these techniques
most influence the quality of the overall process?

We seek to understand what most influences the quality of the overall consistency checking
process. For this, we undertake two studies: sensitivity analysis (Sections 4), and problem analysis
using a genetic algorithm (Section 5). We address the sensitivity analysis first, and follow a four-
step approach: 1) We develop a model of the overall consistency checking process that computes a
set of output factors from a set of input factors. We combine the output factors into one objective
function for the overall consistency checking process. 2) We determine the distributions for the
input factors and randomly generate data according to the distributions, as shown in Figure 1. We
use three of the four sources suggested by Wagner [51]: scientific literature, expert opinion where
needed, and a controlled experimental study of our Temporal Action Language (TeAL) process [13].
3) We generate scatterplots of the input factors to determine their influence. Finally, 4) we model
the process with optionality and varying order of sub-processes and perform a sensitivity analysis
to study the impact of these factors.

3.1. Model of the Consistency Checking Process

For our discussion, we assume that we work with the set R = {r1, . . . , rn} of n requirements
specifying a software system. We denote by T the subset of R consisting of all temporal
requirements in R and assume that T = {t1, . . . , tm}.

We assume that to check the consistency of the temporal requirements in R, we use a process P
comprising sub-processes to be performed in a sequential order: the input to P is sent as the input to
the first process, its output is sent as input to the next process, etc. We write P =< P1, . . . , Pk > to
indicate the sub-processes forming P , as well as the order in which they are performed. We further
assume that each step Pi, i = {1, . . . , k}, can be accomplished by any of the several available ji
techniques in the set Ci =< p1, . . . , pj >. We denote as pk the technique chosen to fulfill the sub-
process k.

Each technique has a retrieval rate ar. This is the recall of the technique, where recall is defined
as the percentage of relevant elements that are retrieved over all retrieved elements. There is also an
error rate er associated with the technique; this represents non-retrieved or “lost” elements. These
elements can also be thought of as false negatives or Type 2 errors. Together they satisfy the identity
er + ar = 1. Thus, if an information retrieval technique, such as LDA, has recall of 0.9, its error
rate is 0.1. If a noun-verb classifier has retrieval rate of 0.8, its error rate is 0.2. With ar and er,
we limit our interest to lost elements, which likely will no longer be considered in the subsequent
sub-processes due to the imperfect recall of upstream techniques. We denote error leakage as el; for
a given sub-process el = number of relevant elements× er.

Each technique has a wasted time cost rate cr due to irrelevant elements retrieved that must
be processed in this and subsequent sub-processes. These elements can also be thought of as
false positives or Type 1 errors. For techniques that are retrieving elements from a collection,
the precision of the technique, or pr, is defined as the percentage of retrieved elements that are
relevant over the retrieved elements. For classification techniques, pr measures how well elements
are labelled or categorized. In either case, pr can be used to find cr. Together they satisfy the
identity cr + pr = 1. Thus, if an information retrieval technique has precision of 0.6, cr is 0.4.
We are interested in the false positive elements because these connote possible wasted time/extra

Copyright c© 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOI: 10.1002/smr



SENSITIVITY AND EFFORT ANALYSIS OF A REQUIREMENTS CONSISTENCY CHECKING PROCESS 7

effort in subsequent sub-processes. We denote wasted time as wt; for a given sub-process, wt =
number of relevant elements× cr.

The objective function process-cost that we will use in performing the sensitivity analysis
combines these error leakages and wasted times. We quantify the extra work for an analyst
examining the output of a given process as the time that must be invested to find lost elements
el plus time that must be invested to examine elements that should not have been retrieved wt:

process-cost = el(pk) + wt(pk).

Running Example: In our running example, we examine the four sub-processes of consistency
checking of temporal requirements, i.e., i = 4. Let us assume a document R describing 500
requirements, R = {r1, . . . , r500}, 100 of which, denoted t1, . . . , t100, are temporal, i.e., T =
{t1, . . . , t100}. We apply a four-step consistency checking process P to analyzeR, where the process
P =< P1, P2, P3, P4 >. Let us assume that each step Pi, i = {1, 2, 3, 4}, can be accomplished by a
technique pi with accuracy rate ari, cost cri, and precision pri. We model and study the quality of
the output of P4, that is, the output of the entire process P . This quality is expressed by our objective
function, which depends on the parameters of the techniques selected for each step.

sub-process P1 determines the set T consisting of temporal requirements in R. It maps any set
of requirements R to its subset o1 = P1(R). Ideally, o1 will consist of all temporal requirements in
R. However, in performing this mapping, some temporal requirements may not be retrieved from
R, and we quantify this error with the error rate er1, while some non-temporal requirements will be
retrieved, which we quantified by the precision pr1. In our notation and because ar = 1− er and
cr = 1− pr by definitions, we have:

el(p1) = n× er1
wt(p1) = n× cr1

The goal of the second sub-process P2 is to identify in R non-temporal requirements that are
related to the temporal ones and so might affect the consistency of the temporal requirements. That
sub-process takes as input the original setR of requirements less the set o1 of requirements identified
as temporal in Step 1. The set o1 is only an approximation of T . In this example, sub-process P2

outputs the set o2.
In performing this transformation, some related requirements may not be retrieved due to the

error er2 of the sub-process P2, and some unrelated ones may be depending on the precision pr2.
Taking these rates into account and applying them to o1 and R, we have:

el(p2) = (cardinality(R)− cardinality(o1))× er2
wt(p2) = (cardinality(R)− cardinality(o1))× cr2

sub-process P3 is applied to each of the requirements in the sets o1 and o2 to tag their parts of
speech. The output consists of a set o3 of tags. In performing this transformation, we use only the
retrieval rate ar3 for this sub-process and set pr3 to 0 because one and only one tag is assigned per
part of speech by definition of the requirement consistency checking problem. We thus assume that
all tags in a requirement are correct or all are incorrect. This assumption is based on the internal
cohesion of requirements: if one tag is correct, than majority (if not all) of the tags will be correct.
So, given a collection of 10 requirements that are tagged with 0.8 ar3, we assume that 8 requirements
are correctly tagged and 2 are not. We thus have:

el(p3) = (cardinality(o2) + (cardinality(R)− cardinality(o2)))× er3
wt(p3) = wt(p2) + pr3

Finally, sub-process P4 is applied to the tagged temporal and related requirements retrieved from
P3, o3, to identify the semantic roles in each requirement (such as action, agent). P4 transforms the
output of P3 to a set of roles for each requirement tagged in P3. In performing this transformation,
some roles may not be retrieved due to er4, some may be retrieved that should not be, because of
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Figure 1. Consistency checking process with error leakage/wasted time measures from three sources

pr4. We thus have:

el(p4) = cardinality(o3)× er4
wt(p4) = cardinality(o3)× cr4

Finally, the overall objective function is:

process-cost = el(p4) + wt(p4)

where higher values of process-cost indicate more work for the analysts and, consequently, lower
process-cost values are desired.

3.2. Determining the Distributions for the Input Factors

Information retrieval (IR) techniques have been used in a variety of process/tools supporting
requirements engineering and software engineering, most notably in requirements tracing. To model
the distribution of the input variables for our model, i.e., the set of error and cost rates of the used
techniques, we sought published quality levels for existing techniques. We undertook a limited
literature review, using appropriate search terms in the Google search engine as well as ACM Digital
Library to retrieve articles, URLs, and related sources of information on IR technique accuracy.

In Table 1, we show the values, summarized as lower and upper bounds for some techniques, as
well as the source of the data and the dataset under evaluation when the measures were captured.
For example, VSM with tf-idf weighting has a pr value of 0.276 with ar of 0.829 for the LEDA
dataset. VSM has a lower bound for er of 0.000 and an upper bound of 0.746, while ar ranged from
0.254 to 1.000. The set of IR techniques have a lower bound of 0.110 and an upper bound of 0.540
for pr. Table I focuses on IR techniques because they are used to accomplish sub-processes P1 and
P2 in our running example of consistency checking.

Parts of speech (POS) taggers have been used in a variety of process/tools supporting
requirements engineering and software engineering, most notably in requirements analysis, in
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SENSITIVITY AND EFFORT ANALYSIS OF A REQUIREMENTS CONSISTENCY CHECKING PROCESS 9

Table I. Measures for IR techniques

er ar cr pr Lit Source Dataset
0.746 0.254 0.886 0.114 [5] MODIS
0.000 1.000 0.862 0.138 [52] Albergate

VSM tf-idf 0.500 0.500 0.567 0.433 [52] Albergate
0.276 0.724 0.829 0.171 [53] LEDA
0.100 0.900 0.830 0.170 [54] eTour

[low,upp] [0.000, [0.254, [0.567, [0.114,
0.746] 1.000] 0.886] 0.433]

LDA 0.400 0.600 0.890 0.110 [54] eTour
0.000 1.000 0.836 0.164 [52] Albergate
0.140 0.860 0.788 0.212 [52] Albergate

LSI 0.000 1.000 0.882 0.118 [52] LEDA
0.167 0.833 0.460 0.540 [52] LEDA
0.100 0.900 0.830 0.170 [54] eTour

[low,upp] [0.000, [0.833, [0.460, [0.118,
1.000] 1.000] 0.882] 0.540]

Jensen Shannon 0.090 0.910 0.830 0.170 [54] eTour
IR summary values [0.000, [0.254, [0.460, [0.110,

[low,upp] 0.746] 1.000] 0.890] 0.540]

Table II. Measures for POS tagging techniques

ar Lit Source Dataset
OpenNLP 0.966 [55] OpenNLP training data

Stanford Parser 0.973 [56] Penn Treebank WSJ
CLAWS [0.950, 0.960] [57, 58, 59, 60, 61] Penn Treebank WSJ

LBJ 0.966 [62] Wall Street Journal corpus
Minipar 0.800 [63] SUSANNE corpus

POS summary values [low, upp] [0.800, 0.973]

particular for consistency checking. We examined the literature and found the following information
on the accuracy of a number of POS tagging techniques. In Table II, we show the lower and upper
bounds for the measures as well as the source of the data and the dataset from which the values
were obtained. For example, the CLAWS parser has a lower bound of 0.0400 for er and an upper
bound of 0.050; a lower bound of 0.950 for ar and an upper bound of 0.960 when applied on the
Wall Street Journal (WSJ) subset of the Penn Treebank dataset (recall that er + ar = 1). POS tagging
techniques are used to accomplish sub-process P3.

Semantic role labelers are used more and more frequently as researchers and practitioners alike
realize that syntactic analysis of natural language text will not suffice for today’s applications. These
role labellers glean semantic information from natural language text by ascribing meaning, in a
contextual setting, to tokens in texts. These techniques support processes/tools such as translation
of requirements to LTL. We examined the literature and found the following information on the
accuracy of a number of SRL techniques. In Table 3, we show the lower and upper bounds for the
measure and the source of the data and the datasets used to collect the values. For example, Senna
has a lower bound of 0.550 for er and an upper bound of 0.570; a lower bound of 0.430 for ar and
an upper bound of 0.450 when applied on biomedical texts. SRL are used to accomplish sub-process
P4 during consistency checking.

Finally, consistency checking of temporal requirements using the TeAL technique was studied
and applied to the 511 phone system in California [64]. During a previous study [65], we collected
the same measures described above, the values are shown in Table 4. Our approach uses the
techniques introduced above: VSM, Stanford parser, and Senna. The sub-process P1, identifying
temporal requirements, has 0.288 for er, 0.712 for ar, 0.516 for er, and 0.484 for pr. The sub-
process P2, identifying non-temporal related requirements, has 0.559 for er, 0.441 for ar, 0.516 for
er, and 0.484 for pr. The sub-process P3, tagging parts of speech, has 0.143 for er and 0.857 for ar.
The sub-process P4, identifying semantic roles (predicates and arguments), has 0.130 for er, 0.870
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Table III. Measures for SRL techniques

er ar cr pr Lit Source Dataset
Senna [0.550, [0.430, [0.320, [0.680, [66] Biomedical texts

[low, upp] 0.570] 0.450] 0.290] 0.710]
ISRL 0.368 0.630 0.324 0.666 [67] WSJ from PropBank

NLPNet SRL 0.302 0.598 0.328 0.662 [68] PropBank-Br
SRL summary [0.302, [0.430, [0.320, [0.662,

[low, upp] 0.570] 0.630] [0.328] 0.710]

Table IV. Measures for TeAL technique

er ar cr pr Lit Source Dataset
P1-VSM 0.288 0.712 0.516 0.484 Unpublished notes Phone 511
P2-VSM 0.559 0.441 0.516 0.484 Unpublished notes Phone 511

P3-Stanford 0.143 0.857 [65]† Phone 511
P4-Senna [0.130]‡ [0.870]‡ [0.167]‡ [0.833]‡

[low, upp] [0.385]‡ [0.615]‡ [0.294]‡ [0.706]‡ Unpublished notes Phone 511

for ar, 0.167 for cr, and 0.833 for pr when we use Senna to find predicates, and has 0.385 for er,
0.615 for ar, 0.294 for cr, and 0.706 for pr when we use Senna to find arguments.

3.3. Sensitivity Analysis

A sensitivity analysis is used to assess the impact of variations in the inputs of a mathematical model
on its outputs to understand the impact of uncertainty in the inputs on the results of the model as
well as assessing the robustness of the model, i.e., does the model produce aberrant results if the
inputs vary slightly or greatly? Sensitivity analysis provides a ranking of the model inputs based on
their relative contributions to model output variability and uncertainty [69]. In this study, we seek to
assess the impact of the variation of input factors ar and pr on the overall output (which, due to the
identity relationships, in turn tells us about er and cr), process-cost, of the requirement consistency
checking process.

To do this, we first determined the distribution of ar and pr for each sub-process. We generated
data for the sub-processes P1 ar1 and pr1 values, P2 ar2 and pr2 values, P3 ar3 value, and P4

ar4 and pr4 values in three cases: a) we took the data provided in Tables 1 through 4 in Section
4 and used the lower bound as a worst case, upper bound as a best case, and modeled a uniform
distribution; b) we assumed a mean of 0.5 and standard deviation of 0.125 for all values and
assumed a normal distribution; and c) we used the values from our empirical study on TeAL [13]
and considered them as the means of a normally distributed distribution and used expert opinion
to estimate variance (plus or minus 10%). We use uniform distribution because this method gives
equal weight to each value within the lower and upper bounds, and is commonly used in sensitivity
analysis researches whose main object is to understand model behavior [70, 71, 72]. We use 0.5 as
mean and 0.125 as standard deviation because the assessments imply that in such cases the standard
deviation is about one fourth of the mean [69]. We estimate the variance as plus or minus 10%
because this method has been used in studies [73] to simulate the uncertainty on the mean variance.
We randomly generate 500 samples for each case, varying one factor at a time, keeping all other
measures set at their mean values, e.g., the mean of the values from literature. This data serves as
the input for step three of our research approach.

In step three of our methodology, we generate XY scatter plots for each input factor and the
objective function with all the samples. We apply a virtual trend line to the scatter plots and analyze
them. We look for possible unexpected plots that may indicate an error in the model. We also look for

†We found the Stanford parser to be 0.937 accurate.
‡Predicates on the first line and arguments in the second line.
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Figure 2. P4 ar scatter plot

interesting trends that may indicate that one factor is highly correlated with the objective function,
i.e., the output factors.

4. ANALYSIS RESULTS FOR ERROR LEAKAGE AND WASTED TIME

We examined the three data sources for each of our model factors. We then modeled the process
using two different sub-process orderings as well as modeled one sub-process as optional. We
examine the output objective function, process-cost, as well as the ar and pr of the output result
that would be provided to the analyst for evaluation.

4.1. Literature Values

The literature values for the seven factors from Table IV (retrieval and error rates ar1 and pr1 for
P1, ar2 and pr2 for P2, ar3 for P3, and ar4 and pr4 for P4) were examined and used to generate
output objective-function values using scatter plots. The resulting plots were fairly unremarkable so
for brevity we present one plot and merely describe the rest here. The data is chaotic for P2 ar and
pr as well as for P4 pr. P1 ar has a clear lower bound around 190 and an upper bound of 350. As
can be seen in Figure 2, P4 ar has a columnar shape between 0.450 and 0.625 yielding objective
function values bounded by 268 and 280.

4.2. Analysis of Synthetic Data

Figure 3 shows an exemplary scatter plot for the synthetic data for P2 ar. Note that all such data was
generated using a normal distribution with a mean of 0.5. We use this method to generate the data
because this is a commonly used method for understanding model behavior in sensitivity analysis.
The figure shows that P2 ar is bounded between objective function values of 125 and 290. P1 ar
ranges between 262 and 274. P1 pr is tightly clustered at 272. P2 pr is bounded tightly at 293. In
contracts, P3 ar values range from 276 to 286. P4 is bounded by 265 (lower bound) and 305 (upper
bound). Finally, P4 pr is tightly clustered at 288. We note that the synthetic data pr for P4 has fewer
variations than for the literature values.
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Figure 3. P2 ar scatter plot

Figure 4. P4 ar scatter plot

4.3. Analysis of TeAL Data

The TeAL study data from Table IV was examined. P1 ar was found to range very little from 273
to 274.9. P1 pr is clustered tightly around 263 (and 0.470 for pr). P2 ar is tightly clustered at 226
and 0.433 for pr. P3 ar is also tightly clustered, but at 274. P4 ar is columnar from 260 to 267. As
can be seen in Figure 4, P4 pr appears to be bounded between 265.5 and 271.
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4.4. Analysis of Impact of Ordering and Optionality

Next, we examined the potential orderings of the sub-processes. Order 1 describes the “nominal”
organization of the sub-processes as described in Section 3: P1 (retrieve temporal requirements)
followed by P2 (retrieve related requirements) followed by P3 (parts of speech tagging) followed
by P4 (semantic role labeling). It is also possible to perform parts of speech tagging (P3) as the first
sub-process. There is evidence that retrieval is enhanced when parts of speech tags are present [74].
Analogously, it is posited that semantic role labels could also assist with retrieval, so P4 (semantic
role labeling) could also be performed prior to retrieval activities. Thus Order 2 is defined as P3

followed by P4 followed by P1 followed by P2.
In addition to possible variations in the ordering of the sub-processes, it is also possible to

omit certain sub-processes. A classic example is the ongoing “controversy” of whether or not
to use stemming as a pre-process to retrieval. Proponents argue that ar is improved as related
terms such as computer, computing, and computed will all be retrieved due to the common stem
“comput-”. Opponents argue that such stemming can result in increased false positives and thus
lowered precision, when terms such as “user” and “usefulness” are deemed similar/related due
to the common stem “us-”. In some processes, stemming would be performed prior to retrieval.
In other processes, stemming would be omitted. In this vein, we note that the retrieval of related
requirements could be considered as an optional sub-process. These requirements serve to provide
a larger context for the temporal requirements but their retrieval also results in many false positives.
Our Optional sub-process is thus P2, providing a three step sub-process ordering in addition to the
four step ordering described above. Three step Order 1 is P1 followed by P3 followed by P4. Three
step Order 2 is P3 followed by P4 followed by P1.

4.4.1. Sensitivity to Varied Factor Values To investigate the sensitivity of these Orders to the values
of the sub-process factors (P1 ar and pr, P2 ar and pr, P3 ar and P4 ar and pr), we performed a
study and varied the values of each sub-process holding all constant while varying one sub-process
at a time. We put all other factors at their upper bound and then set the sub-process of interest to
its lower bound (pr and ar or just ar in the case of P3) or set all sub-process factors to their lower
bound and set the sub-process of interest to its upper bound. We used the lower and upper bound
from the union of the literature data, synthetic data, and TeAL study data. There are ten scenarios
examined:

• Scenario 0 (All max) All factors set to their upper bound
• Scenario 1 (P1 min) All factors set to upper bound except P1 ar and er which are set to the

lower bound
• Scenario 2 (P2 min) All factors set to upper bound except P2 ar and er which are set to the

lower bound
• Scenario 3 (P3 min) All factors set to upper bound except P3 ar which are set to the lower

bound
• Scenario 4 (P4 min) All factors set to upper bound except P4 ar and er which are set to the

lower bound
• Scenario 5 (P1 max) All factors set to lower bound except P1 ar and er which are set to the

upper bound
• Scenario 6 (P2 max) All factors set to lower bound except P2 ar and er which are set to the

upper bound
• Scenario 7 (P3 max) All factors set to lower bound except P3 ar which is set to the upper

bound
• Scenario 8 (P4 max) All factors set to lower bound except P4 ar and er which are set to the

upper bound
• Scenario 9 (All min) All factors set to lower bound

We also varied the importance of a lost link to take into consideration the possible relative
difficulty of finding a lost link (errors of omission) versus vetting a false positive (errors of
commission). We weighted a lost link as having a weight of 1, 2 (meaning it is twice as hard to
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Table V. Order 1, four steps, weight 1,2,5

Secnario Lost link weight 1 Lost link weight 2 Lost link weight 5
0 (All max) 161 199 315
1 (P1 min) 182 226 365
2 (P2 min) 306 390 643
3 (P3 min) 167 216 365
4 (P4 min) 185 243 417
5 (P1 max) 312 403 677
6 (P2 max) 206 279 498
7 (P3 max) 331 428 719
8 (P4 max) 327 421 705
9 (All max) 332 430 727

Figure 5. Order 1, four steps, varied weight of lost links

retrieve a lost link as it is to vet a false positive), and 5 (five times as hard). There is precedence for
simulating errors this way in prior trace recovery research [75]. We captured the objective function
value for each such scenario.

Table XV depicts the results for Order 1, four step process with weights of 1, 2, and 5 for lost
links. Scenarios are in the columns and weights of lost links are in the rows. As can be seen in
row 1, when all values for all factors were set to their maximum with a lost link weight of 1, the
objective function was 1601. This was the lowest value of all the Order 1 scenarios, though P3

variations caused a close result. In the row labeled 3 (p3 min), we see that when all factors are held
to the maximum except for P3 ar and pr, we achieve an objective function of 167, very close to the
overall best.

Figure 5 depicts these scenarios graphically. As can be seen, the lowest process-cost occurs for
the lost link weight of 1 with all factors set to their maximum values (upper bound) 161. This is
not surprising. When all other factors are at their upper bound and P3 ar is at its lower bound, the
process-cost is very close to that best value, at 167. The lost link weight of 2 behaves much the same
way as the lost link weight of 1, but with higher process-cost. Lost link weight of 5 has much higher
process-cost values.

Of interest is the ar, pr that results for the notable process-cost values for link weight 1. Table
XVI provides the resulting ar/pr (at the end of all sub-processes) for the scenarios. ar is 0.103 and
pr is 0.045 for the All min scenario. For the All max scenario it is much higher at 0.648 ar and 0.325
pr. For the P3 min scenario it is 0.549 and 0.307. As can be seen and as highlighted in red, the All
min scenario is not in the “sweet spot” for process output that most benefits analysts, discussed in
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Table VI. Resulting ar/pr for scenarios - Order 1, four steps, link weight 1

Secnario Ar Pr
0 (All max) 0.648 0.325
1 (P1 min) 0.580 0.276
2 (P2 min) 0.232 0.104
3 (P3 min) 0.549 0.307
4 (P4 min) 0.471 0.232
5 (P1 max) 0.170 0.078
6 (P2 max) 0.336 0.173
7 (P3 max) 0.120 0.051
8 (P4 max) 0.140 0.061
9 (All max) 0.103 0.045

Table VII. Order 2, four steps, weight 1,2,5

Secnario Lost link weight 1 Lost link weight 2 Lost link weight 5
0 (All max) 428 622 1202
1 (P1 min) 448 649 1251
2 (P2 min) 623 891 1675
3 (P3 min) 457 705 1450
4 (P4 min) 548 818 2042
5 (P1 max) 751 1152 2362
6 (P2 max) 576 912 1918
7 (P3 max) 763 1143 2255
8 (P4 max) 672 1002 1992
9 (All max) 771 1178 2411

Figure 6. Order 2, four steps, varied weight of lost links

Section 1 (of ar between 0.25 and 0.62 and precision between 0.25 and 0.5). The All max scenario
does result in ar/pr in the sweet spot as do the P3 min and P1 min scenarios.

Next we examine the Order 2, four step scenarios. Table XVII presents the process-cost values
for these scenarios. Figure 6 depicts the values graphically. As can be seen, the All max scenario
has the lowest process-cost at 428. The next best value is for P1 ar and er (scenario 1) set to their
lower bound with a process-cost of 448. The All min scenario for lost link weight of 1 has a process-
cost of 771. Figure 6 shows that lost link weight 1 outperforms the other two lost link weights. In
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Table VIII. Resulting ar/pr for scenarios - Order 2, four steps, link weight 1

Secnario Ar Pr
0 (All max) 0.613 0.915
1 (P1 min) 0.598 0.844
2 (P2 min) 0.464 0.510
3 (P3 min) 0.504 0.814
4 (P4 min) 0.418 0.584
5 (P1 max) 0.195 0.217
6 (P2 max) 0.330 0.472
7 (P3 max) 0.254 0.255
8 (P4 max) 0.340 0.378
9 (All max) 0.180 0.191

Table IX. Order 1, three steps, weight 1,2,5

Secnario Lost link weight 1 Lost link weight 2 Lost link weight 5
0 (All max) 167 210 338
1 (P1 min) 327 420 698
3 (P3 min) 174 228 392
4 (P4 min) 194 258 450
5 (P1 max) 196 268 484
7 (P3 max) 334 432 727
8 (P4 max) 329 424 712
9 (All max) 334 434 736

general, changes to P1 ar and pr and to P3 ar to their lower bound resulted in lower process-costs
than adjustments to other factors.

The ar and pr of several scenarios for lost link weight 1 are shown in Table XVIII. The All max
scenario yields a resulting ar, pr of 0.613, 0.915. In contrast the All min scenario has a fairly dismal
ar, pr of 0.18, 0.191. Note that the ar, pr for P1 ar and er set to their lower bound results in ar,
pr of 0.598, 0.844 very close to the All max scenario. This is not intuitive, but interesting to note.
Looking at our ar, pr sweet spot we see that P2 min, P4 min and P2, P3, and P4 max scenarios all
fall in the desired range. The precision is too high for the All max scenario and P1 min and P2 min
scenarios and both ar, pr are too low for the P1 max and All min scenario.

Next, we examine the two Orders with three sub-processes, sub-process P2 has been omitted.
Table XIX and Figure 7 depict the resulting process-cost values for Order 1, three step, with lost
link weight varied. The All max scenario for lost link weight 1 has the lowest process-cost at 167.
The next best is P3 ar set to its lower bound with a resulting process-cost of 174. The figure shows
that the sub-process “max” scenarios are much less desirable than the sub-process “min” scenarios
in terms of the resulting process-cost.

Table X presents the ar and pr for the scenarios. The best ar and pr resulted for the All max
scenario with ar of 0.613 and pr of 0.291. The P3 min scenario was a close second with ar of 0.504
and pr of 0.268. Both of these scenarios result in ar, pr pairs in the analyst sweet spot. The All min
scenario is much worse with ar and pr of 0.087 and 0.038, far from the sweet spot. None of the
other scenarios fall in the sweet spot.

Table XI and Figure 8 show the Order 2, three step, varied lost link weight results. The lowest
process-cost results from the All max scenario. The P3 min scenario has the next lowest value
followed by P4 min. It is clear from the figure and table that the All min scenario is much worse
than the All max and P3 min scenarios.

Table XII depicts the ar, pr values for each of the Order 2, three step scenarios for lost link weight
of 1. It is interesting that all of the scenarios except for All max, All min, and P3 min result in ar,
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Figure 7. Order 1, three steps, varied weight of lost links

Table X. Resulting ar/pr for scenarios - Order 1, three steps, link weight 1

Secnario Ar Pr
0 (All max) 0.613 0.291
1 (P1 min) 0.156 0.066
3 (P3 min) 0.504 0.268
4 (P4 min) 0.418 0.194
5 (P1 max) 0.344 0.179
7 (P3 max) 0.106 0.045
8 (P4 max) 0.128 0.055
9 (All max) 0.087 0.038

Table XI. Order 2, three steps, weight 1,2,5

Secnario Lost link weight 1 Lost link weight 2 Lost link weight 5
0 (All max) 428 621 1202
1 (P1 min) 642 918 1745
3 (P3 min) 457 706 1449
4 (P4 min) 548 840 1712
5 (P1 max) 557 885 1869
7 (P3 max) 763 1136 2254
8 (P4 max) 763 1002 1992
9 (All max) 771 1181 2411

pr in the sweet spot. In general, the All max scenarios have resulted in sweet spot results, but for
this Order and step combination the precision is too high for the sweet spot.

4.4.2. Sensitivity to Order and Optionality Here we compare the results of Order 1 and Order 2
as well as three steps versus four step processes. Table XIII presents the rank orders of the varied
orders and number of sub-processes when the ar and pr values for all sub-processes are set to their
upper bound. From this table it is clear that Order 1, four steps has the lowest process-cost followed
by Order 1 with three steps. The Order 2 processes follow Order 1 with much higher process-costs
of 428 for each. For Order 2, we can see that an optional sub-process can be removed with no
additional effort for analysts.

The ar, pr pair for Order 1, four steps All max scenario is 0.648, 0.325 and for Order 1, three
step it is 0.613, 0.291. These are both in the analyst sweet spot. In contrast, the Order 2, 4 step is at
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Figure 8. Order 2, three steps, varied weight of lost links

Table XII. Resulting ar/pr for scenarios - Order 2, three steps, link weight 1

Secnario Ar Pr
0 (All max) 0.613 0.889
1 (P1 min) 0.449 0.470
3 (P3 min) 0.504 0.788
4 (P4 min) 0.418 0.568
5 (P1 max) 0.344 0.508
7 (P3 max) 0.254 0.255
8 (P4 max) 0.340 0.376
9 (All max) 0.180 0.191

Table XIII. Varying order and number of processes - with ar, pr at max (upper bound)

order/num
of sub-processes process-cost rank

order 1 4 step 160.6 1
order 1 3 step 167.3 2
order 2 4 step 428 3
order 2 3 step 428 3

0.613, 0.915 and is not in the sweet spot. Order 2, three step is at 0.613, 0.889, also not in the sweet
spot.

We see that processes with three sub-processes can land in the sweet spot. We also see that Order
2 can achieve similar process-costs as four step sub-processes. In addition, earlier sections showed
that occasionally a lower quality sub-process (put at its min value or lower bound) still resulted in
low process-costs and ar, pr in the sweet spot. This is useful as we may have reasons for wanting
to select a lower quality technique for certain sub-processes, perhaps for ease of integration into
our process (e.g., our tools are all written in Java and the higher quality technique is in a language
that could be difficult to integrate). We can see from such analyses that a lower quality technique is
acceptable at certain sub-processes without much impact to our overall quality.
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5. IMPACT OF ERROR LEAKAGE AND WASTED TIME ON ANALYSIS

The previous sections shows the large difference in performance between different configurations
of the sub-processes P1 to P4, including which techniques to use, the order of the techniques, and
the optional techniques. They showed that the choice of the techniques influence the quality of the
overall process. They did not consider the analysts’ efforts and their opportunities to change the
outcome of the processes through verification/validation and, hence, to impact the quality of the
overall process.

In this section, we simulate the actual processes used by analysts for checking the consistency of
temporal requirements to measure the actual variation in number of errors and wasted time due to
different accuracy of the four sub-processes P1 to P4 as well as the sensitivity of the overall process
to technique accuracy and/or human errors. Based on the result in section 4, we model the process
of Order 1 with 4 steps.

First, we discuss the assumptions that we make for the simulation, followed by our genetic
algorithm implementation, the experiments that we performed, and their results.

5.1. Assumptions

We assume a working day of eight hours, divided into a set of working periods, wps. Each wp lasts
two hours. We further assume that an analyst cannot work two consecutive wps to simulate fatigue
and interruptions. These assumptions are legitimate because they fit a “regular” schedule of 40 hours
of work per week and two straight hours of focused work. It is also realistic because our industry
experience indicates that reviewing lists of retrieved elements is tedious and time consuming work;
lack of rest or shift in focus can lead analysts to introduce errors.

We assume that all analysts are equally competent and capable to verify the output of each
sub-process. We make this assumption to simplify the simulation but also because, to the best of
our knowledge, there is no previous work on the impact of inter-rater agreement in requirements
engineering, in general, and consistency checking, in particular. Only El Emam [76] studied
inter-rater agreement in software process assessments. Future work should be devoted to perform
experiments to measure Cohen’s kappa during consistency checking of requirements by different
analysts.

Following the previous assumption and for the same reasons, we also assume that the verification
efforts of each sub-process are known: efp is the effort to verify false positives, efn the effort to
verify a false negative, etp the effort to verify true positives, and etn the effort to verify a true
negative. We assume that these verification efforts are the same for all analysts and do not depend
on the sub-process, the order of the tasks, or the fact that the same analysts previously verified the
same element: no learning effect.

5.2. Problem Formulation

We model the problem as an array of integers, namely req, where each cell represents a
requirement to be verified (i.e., the setR = {r1, . . . , rn}) and a matrix,wpd, of dimensions WP ×D
representing the verification work plan. Recall that we denote by T the subset of R consisting of all
temporal requirements in R and assume that T = {t1, . . . , tm}. In our formulation, req[l] represents
the l-th element requirement of R and thus if req[l] is equal to zero if it is not relevant (i.e., it is not
in T ) whereas its value is one if req[l] is a temporal requirement (i.e., it belongs to T ).

We assume that there are D available analysts and the overall process is assigned a maximum
completion time of WP time slots, each time slot lasting Twp. Each row in thewpdmatrix represents
a working period, denoted wp. Matrix columns represent analysts: a cell (i, j) contains the sub-
process to which analyst j is assigned at a particular work period i; thus wpd[i, j] = k means that
analyst j in the working period i is assigned to the sub-process k. Recall that an analyst must rest
after each work period; analyst j, after having performed the task in time slot i, must rest for r ≥ 1
time slots before being assigned to a new task. Table XIV shows a sample matrix with three analysts
and six working periods. In this matrix, the sub-process P1 is finished in the first two working
periods. In the third period one analyst is resting (the cell is -1) and the other two are assigned P2.

Copyright c© 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOI: 10.1002/smr



20 W. LI ET AL.

Table XIV. Sample wpd matrix

Work Period Analyst 1 Analyst 2 Analyst 3
1 0 1 1
2 1 -1 -1
3 -1 2 2
4 3 -1 -1
5 -1 3 0
6 4 -1 4

In the fourth period only one analyst is available, thus P3 can only be completed in the fifth period.
Finally the whole process takes six working periods.

Overall, the verification process work plan uses as many analysts as there are non-empty columns
in the matrix wpd; it lasts as long as the last row of wpd where a task is found. Analysts are assigned
as many tasks as there are non-zero cells in the wpd matrix for a fixed column. Furthermore, each
sub-process P1 to P4 is represented as the retrieval and error rates ar and er. The higher the error
rates, the more time each sub-process will require and, thus, the longer the entire process will last.
Our goal is to assign tasks to analysts, that is to fill the wpd matrix, in such a way as to minimize
the process length for a given set of error rates, ar and er, and known verification/validation costs.
We decompose the cost into three terms. The first term Twork considers the times that individual
analysts are working. If a wp is two hours, then Twp = 120 minutes. Twp may be greater than 120
minutes if the analysts need more time to check the consistency of the requirements:

Twork = Twp

D∑
1

WP∑
1

δ(wpd(wp, d))

where the function δ() returns one if the cell is not empty, zero otherwise.
The second term, overall process time, accounts for the total process length; it uses the last row

in which an analyst was assigned to compute the total time of the consistency checking process. For
example, if row 20 has the last entry for any analyst and Twp is 120 minutes, then the total time is
120 × 20 = 2,400 minutes. The term is written as:

Tp = Twpargmaxi[wpd(i, j)]

The third term quantifies the time wasted because of the quality of the results of a sub-process.
If an analyst needs more than Twp to finish her task, say 150 minutes, the difference of 30 minutes
violates the constraint of two hours work/two hours rest. This term represents the penalty for not
being able to finish checking some assigned requirements within a given work period:

Tpenalty =

D∑
1

WP∑
1

α(Twp − wpd(wp, d))×
β(wpd(wp, d))

Twp

where the function β() returns the actual time needed to complete the task assigned to analyst d,
in work period wp for the sub-process wpd(wp, d), and α() is a penalization function increasing
penalty for negative values of Twp − wpd(wp, d).

Overall, the objective function can be written as:

Twork + Tp + Tpenalty = Twp
∑D

1

∑WP
1 δ(wpd(wp, d)) + Twpargmaxi[wpd(i, j)]

+
∑D

1

∑WP
1 α(Twp − wpd(wp, d))× β(wpd(wp,d))

Twp

which we seek to minimize, i.e., to minimize the time taken by the analysts individually (Twork),
the overall time taken by the analysts (Tp), and the length of the penalty because of extra work
(Tpenalty).

Finally, two situations can be simulated: the first assumes ideal analysts, who make no error and,
thus, no error slips through the sub-processes; the second assumes that some errors slip through.
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Table XV. Configuration of Genetic Algorithm

Initial Population Size 200
Crossover Rate 40%
Mutation Rate 5%

Elitism 5
Number of Generations 1000

In these two situations, the formulation remains unchanged as only the input of each sub-process
(output of the previous sub-process) is changed by introducing errors in the arrays output by the
sub-processes.

5.3. Implementation as Genetic Algorithm

Given the assumptions and problem formulation, our goal is to allocate the analysts to sub-processes
to minimize the result of the objective function, which represents the analysts’ times, the total time
to complete the verification process, and the penalties, i.e., which represent the analysts’ effort. We
call fitness the result of the objective function. We resolve the problem with a genetic algorithm
written in Java. Our implementation uses elitism and specialized mutation and crossover operators.

The initialization of each sub-process is performed as follows. First, an input array of 500 integers
(N = 500), req[l], representing R is created. Elements of req[l] are randomly assigned zero and one,
where the number of ones is based on T (the size of T is 100). These ones represent the set of
temporal requirements in R. Then, each verification sub-process input is generated by introducing
errors in the input array (mimicking the technique’s behavior) based on its assigned pr and ar. ar
and pr values for each sub-process are stored in an auxiliary array to ease computation. If a sub-
process, say P1, introduces an error, it adds 2 to the value of the current array position, given that 0
means a true negative, 1 means a true positive, 2 means a false positive, and 3 means a false negative.
We model 1, 2 verification times as two minutes each, 3’s verification time as four minutes each,
and 0 as requiring no effort [77, 78].

The initial population is a set of work plans using D analysts and taking WP time periods. An
initial work plan, i.e., a problem solution, is created as follows. The number of analysts D and of
working periods WP is randomly selected between a minimum and maximum. The empty matrix
wpd is then created and each analyst has an assigned number of requirements to verify. We estimate
the number NP of time periods needed for processing each sub-process based on the elements in its
array. We then randomly select analysts in a time period and randomly assign N/NP requirements
to each of them. If there are requirements left, then we move to the next time period.

Mutation Operator: Given an individual column of matrix wpd, we can swap two random cells
of which one must be non-zero. We thus swap the sub-process to which an analyst j is assigned
during a work period wp. Thus, indirectly, we simulate the impact of the values of ar and er of the
sub-processes on the consistency checking because the wps depend on ar and er, on which depend
the times worked by analysts (Twork) and the overall time (Tp).

Crossover Operator: The crossover selection mechanism is based on the roulette wheel. We
randomly select the number of columns to be swapped. We then take that number of columns from
the right part of the columns of one possible solution and swap them with the left part of the columns
of another solution. For example, if one wpd has 5 analysts and another wpd has 8 and we randomly
select 3 as the number of columns to be swapped, we take the first three columns of the 8-length
wpd and swap them with the first 3 of the 5-length wpd. Thus, we are swapping the assignments of
work periods to analysts. Overall our genetic algorithm was configured as shown in Table XV.

To model the situation where an analyst must work more than one work period without rest, we
add a penalization mechanism. If, in performing her task, an analyst must go beyond the allocated
wp, then the resting time is increased by the extra time. So, if Analyst 2 is working on requirements
in P1 during work period 3 and this work takes 180 minutes, then the two hour work period is
exceeded by 60 minutes and the rest penalty is 60 minutes.
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5.4. Experiments

We performed experiments using the following four scenarios:
Scenario 1: We define an input configuration of 500 values (0, 1, 2, and 3 to represent true

positives, false positives, etc. as defined above) and we compute the output of P1 to P4 based on
the seven values from the literature survey (probability of false positives, etc.). We keep the inputs
constant for 1,000 generations and we model the verification by perfect analysts, i.e., zero injected
errors (that is, zero false positives selected as true links, zero true links rejected as false, etc.).

Scenario 2: Same as Scenario 1 above, but the analysts make some errors (e.g., inject incorrect
links).

Scenario 3: Same as Scenario 1 above, but, at the beginning of each generation, we randomly
select values (probability of false positives, etc.) that are within the range of the literature survey
values for P1 to P4 to simulate analysts who use different techniques and thresholds. We use these
values to compute the 500 values of 0, 1, 2, and 3.

Scenario 4: Same as Scenarios 2 and 3 combined: we add missed errors and inject wrong links.
For a fixed set P1 to P4 of seven real numbers (these are the values of P1 ar, P1 pr, P2 ar, P2

pr, P3 ar, P4 ar, P4 pr), which we keep the same throughout all our experiments for comparison
purposes, we run these four scenarios 50 times, then compare the input variations with the output
variations. For example, consider the data that we collect across the different runs:

Run\type Input P1 P2 P3 P4 Fit-fct Work Plan
1 array array array array array array two-d array
2 array array array array array array two-d array
3 array array array array array array two-d array
4 array array array array array array two-d array

. . .
50 array array array array array array two-d array

The input array is the array containing only 0s (true negative) and 1s (true positive), while the P1

array is the output after P1 has been reviewed (either perfectly, i.e., “as is” or with analysts’ error,
which would change the values by adding two to some of them). The two-d array for work plan
shows what sub-process different analysts work on in what work period. It should be noted that
ideally, we need to perform a direct comparison between the ar/pr data that is applied to the same
dataset. However, much of the ar/pr data does not exist. So we apply the convenience sampling
method and uses the ar/pr data collected from different datasets. We then compare the variation in
each of the runs for each of the scenarios.

5.5. Results

We analyze the relationships among input arrays, req[l], the output arrays of the four sub-processes,
and the fitness values based on the results of Scenarios 3 and 4. We do not examine Scenarios 1 and
2 further because all runs use the same set of seven values for the sub-process accuracy, regardless
of the number of analysts, thus the time costs of sub-processes in these runs are the same. Later we
use Scenarios 1 and 2 to study the relationship among ar/pr values and the fitness values.

In Scenarios 3 and 4, each run uses a new input array and generates a new set of sub-process
arrays. It should be noted that the input array is randomly generated based on the lower/upper
bounds in Tables I-IV. In this way we simulate that different techniques are used in each sub-process.
We calculate the time costs of these arrays and the Pearson correlation between fitness values and
these time costs. Tables XVI and XVII show the results for Scenario 3, with 10 or 20 analysts. For
example, the correlation coefficient between the input array and P1 array is 0.798. Table XVI shows
strong positive relationships between input and P1 or P2. The relationships between the fitness value
and input or P2 are also very strong. There is also a strong positive relationship between the fitness
value and P1. Table XVII shows some different results. While the relationship between input and P1

is still very strong and positive, Table XVII implies that there is only a strong positive relationship,
instead of a very strong positive one, between input and P2. Similarly, there are strong positive
relationships between the fitness value and input or P2.
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Table XVI. Pearson Correlation for Scenario 3 with 10 Analysts

Input P1 P2 P3 P4 Fitness
Input 1
P1 0.798 1
P2 0.756 0.223 1
P3 -0.094 -0.271 -0.016 1
P4 -0.051 -0.051 -0.072 0.075 1

Fitness 0.865 0.612 0.730 0.015 -0.079 1

Table XVII. Pearson Correlation for Scenario 3 with 20 Analysts

Input P1 P2 P3 P4 Fitness
Input 1
P1 0.889 1
P2 0.574 0.149 1
P3 -0.029 -0.174 0.0519 1
P4 0.213 0.141 0.208 -0.154 1

Fitness 0.681 0.535 0.487 0.143 0.181 1

Table XVIII. Pearson Correlation for Scenario 4 with 10 Analysts

Input P1 P2 P3 P4 Fitness
Input 1
P1 0.673 1
P2 0.514 -0.088 1
P3 -0.123 -0.223 -0.197 1
P4 0.054 -0.036 0.156 -0.243 1

Fitness 0.888 0.622 0.579 -0.071 0.099 1

Table XIX. Pearson Correlation for Scenario 4 with 20 Analysts

Input P1 P2 P3 P4 Fitness
Input 1
P1 0.712 1
P2 0.518 -0.061 1
P3 0.492 0.317 0.135 1
P4 -0.211 -0.167 -0.103 0.054 1

Fitness 0.818 0.731 0.444 0.488 -0.081 1

Tables XVIII and XIX show the results for Scenario 4 with 10 or 20 analysts. Table XVIII shows
that, with error leakage, the only very strong positive relationship exists between the fitness value
and the input. The relationships between input and P1 or P2 and between the fitness value and P1 or
P2 are only strongly positive. However, Table XIX shows three very strong positive relationships.
They exist between the input and P1, the fitness value and input or P1.

We also investigated the relationship between the seven ar/pr values and the fitness values. We
used seven sets of fixed values as the input of Scenarios 1 and 2. The values in each set are the
same. We selected 30%, 40%, 45%, 50%, 55%, 60%, and 70%. For example, with seven 50% as
input (these are the values of P1 ar, P1 pr, P2 ar, P2 pr, P3 ar, P4 ar, P4 pr), the ar and pr for all
sub-processes are 50%. We use fixed ar/pr values so that we can focus on the relationship between
the ar/pr values and the fitness values. Because the ar/pr values are fixed instead of randomly
generated based on the literature survey, Scenarios 3 and 4 are exactly the same as Scenarios 1 and
2. Thus, we only run this part of the experiments for Scenarios 1 and 2.

Figure 9 shows the box plot for fitness values of Scenarios 1 and 2 with 10 analysts. It appears
that the fitness values of Scenario 2 (s2 30, . . ., s2 70) are lower than that of Scenario 1. It is notable
that for five out of seven fixed values, fifty runs generate the same fitness values. This tendency is
more obvious in Figure 10, which shows the fitness values of the two scenarios for 20 analysts. For
each combination of scenario and fixed value, the fitness values of fifty runs are the same.
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Figure 9. Box plot for fitness value, scenarios 1 and 2 with ten analysts, seven fixed measures

Figure 10. Box plot for fitness value, scenarios 1 and 2 with twenty analysts, seven fixed measures

5.6. Discussion

The results give some insights to the relationships among the pr/ar values, the input array, the sub-
process arrays, and the fitness values. Tables XVI-XIX have something in common: the relationships
among the input, P1, P2, and the fitness values are obvious, they are either very strongly positive
or strongly positive. It may appear that the arrays of P1 and P2 are longer than those of P3 and P4

because of the number of elements in each process: we chose P1 array with 500 elements, and P2

with 400 elements, while P3 and P4 arrays each have 200 elements. However, when we tried to vary
the number of elements in P1 and P2, we saw little change in the relationship between these two
process. Thus we believe that P1 and P2 are related by the technology we used. Also, the effects of
P1 and P2 on the fitness values are greater than that of P3 and P4 as shown in Tables XVI-XIX in
Scenario 3.

The Pearson correlations between the fitness values and input/P1/P2 of Scenario 3 are higher
than that of Scenario 4. In Scenario 4, many false negative elements are mistakenly treated as
true negatives and the time that should be spent on these false negative elements (four minutes for
each element) is saved. This decreases the time cost but introduces errors. The impact of imperfect
analysts also shows in Figures 8 and 9. The fitness values of Scenario 2 are smaller than those of
Scenario 1.

Another interesting observation illustrated by Figure 9 is that, with 20 analysts and a set of fixed
values, the fitness values of each run are the same. With 20 analysts, a sub-process can be finished
in one time period. In this case, the fitness value is already optimal. It is easy to generate such a
“best wpd” at the beginning of the GA.

Figure 8 also shows five cases in which all runs have the same fitness values. However, only the
runs of Scenario 2 have this tendency because the imperfect analysts reduce the total time costs.
The fitness values of other runs, with higher time costs, cannot be optimized so easily with only 10
analysts.
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We thus showed that error leakage negatively impacts the analysts’ efforts when there are not
enough analysts to perform all verification of the outputs of the sub-processes within the allocated
work periods. It appears that in such cases, the quality of the process outputs is out of the “sweet
spot,” which prevents analysts from making the most improvement to the results. Therefore, analysts
should strive to prevent error leakage by using appropriate sub-processes and by performing high
quality verifications.

6. THREATS TO VALIDITY

Construct validity is threatened by our choice of considering only retrieval rates and precision values
in our model. It is possible that a determinant factor in the results of a process is the dataset or some
other unknown factor. We limited this threat by performing three analysis using three sets of values:
from the literature, centered around 0.5 mean, and from the TeAL study. Yet, future work should try
to consider other factors.

Content validity is threatened by our use of lower and upper bounds from the literature. Getting
values for many of the techniques from the literature (see Section 4) and using those literature
values to ”limit” our search threaten the content of our study because these bounds may artificially
constraint the search. We limited this threat by considering many different works, from different
authors and on different datasets. Yet our chosen references form a survey of convenience because
we used as our search strings a set of keywords related to the validated accuracy of each technique
category and did not perform a systematic literature review.

Internal validity of the obtained results is not threatened because our model accounts only for the
ar and pr values of the different techniques used in the requirement consistency checking process.

Conclusion validity seems high because there is intuitively a relation between the results obtained
from an overall process and the ar and pr values of the techniques used in this process.

External validity is threatened by our choice of the requirement consistency checking process
as the running example. The results and conclusions obtained here may not apply to different
requirements processes. Future work is necessary to replicate our study on other processes, made of
other techniques, with other ar and pr values.

7. CONCLUSION AND FUTURE WORK

Various techniques exist to build processes to solve problems in requirement engineering, such as
information retrieval, natural language processing, classification, clustering. Complex requirements
problems are typically addressed using a collection of such techniques piped together. Existing
techniques are powerful, but not perfect, and errors leak from one technique to the next much
as defects leak into subsequent software development phases. Errors due to the imperfect and
imbalanced precision and recall of piped techniques will impact the accuracy of the final result
and will result in wasted time due to false positives introduced into the process.

Errors in the techniques have been the subject of much work but researchers focused on the
quality of individual techniques, such as improving the recall and precision of retrieval techniques.
In this paper, we presented a first study of the error leakage between techniques and its impact on
the accuracy and wasted effort resulting from this error leakage. We showed, through an exploratory
sensitivity analysis of a consistency checking process, that error leakage indeed impacts the accuracy
and effort of an analyst. It was also clear from the model of the analyst verification of the sub-
process results that error leakage negatively impacts analysts’ effort when there are not enough
analysts to perform all verification of the outputs of the sub-processes within the allocated work
periods. Analysts should wisely select sub-processes and strive to perform high quality verification.
In addition, it is possible that longer rest periods and/or shorter work periods would assist with
reducing error leakage and thus wasted time.

Following the study presented in this paper, we will move in several directions: one direction is
to learn the features that are inherent in software artifacts and lead to errors in the techniques. For
example, we can attempt to learn what inherent characteristics of a text lead it to have incorrect
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parts of speech tags assigned. By having many training examples, we can move toward developing
a decision support assistant that will assist with configuration from the learned examples. We will
take into consideration simulated or synthetic data. The next direction is to consider the case of
requirements or elements where some of the POS tags or semantic roles are correct and some are
not, rather than using simplifying assumptions. We plan to model the impact of the analyst when
some requirement engineering process has an analyst-in-the-loop. As mentioned in the Introduction,
studies have been conducted that indicate the relative quality of analyst work as they vet the results
of an automated trace recovery tool [7, 8, 10]. Such values can be used for future modeling. In
addition, trace recovery researchers are continuing to study the accuracy of analysts in retrieving
results missed by automated tools. Those emerging results will also be used in our future work of
modeling the impact of the analyst in the loop. Besides, we assume that all analysts are equally
competent in Section 5. We will perform experiments to study the cases in which different analysts
are used in consistency checking. Another direction is to explore more factors other than the quality
of the sub processes that may affect analysts’ effort. In this paper, we have studied the order and
optionality of the techniques. Other factors remain as future work. Finally, we plan to perform a
systematic literature survey on techniques used in software engineering processes in general and
requirement engineering processes in particular. This future work will help us in answering the
more general question: How are we to know what techniques to select for each sub process?

Future work should be devoted to perform experiments to measure Cohens kappa during
consistency checking of requirements by different analysts.
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