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SUMMARY

Design patterns offer design motifs, solutions to object-oriented design problems. Design
motifs lead to well-structured designs and thus are believed to ease software maintenance.
However, after use, they are often “lost” and are consequently of little help during
program comprehension and other maintenance activities. Therefore, several works
proposed design pattern identification approaches to recover occurrences of the motifs.
These approaches mainly used the structure and organisation of classes as input.
Consequently, they have a low precision when considering behavioural and creational
motifs, which pertain to the assignment of responsibilities and the collaborations among
objects at runtime. We propose MoDeC, an approach to describe behavioral and
creational motifs as collaborations among objects in the form of scenario diagrams.
We identify these motifs using dynamic analysis and constraint programming. Using
a proof-of-concept implementation of MoDeC and different scenarios for five other Java
programs and Builder, Command, and Visitor, we show that MoDeC has a better precision
than a state-of-the-art static approaches.
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1. Introduction

Software maintenance is a crucial phase of the object-oriented software development process.
Indeed, it can take as much as 90% of the total resources dedicated to a program [9, 33].
Program comprehension is the main activity of maintenance. During program comprehension,
developers must understand the structure and organisation of classes. They typically use
code reading techniques or reverse-engineering tools to analyse and relate classes before
performing other maintenance activities, such as debugging or adding new features. Program
comprehension is facilitated significantly if the program possesses a well-structured design.

Since their inception in 1995, design motifs—the solutions offered by design patterns [12]—
have been increasingly used in object-oriented development to obtain well-structured designs.
They pertain to the structure and organisation of classes and to the creation and behaviour
of objects at runtime. However, after use, they are often “lost” in the source code because
their responsibilities are scattered over several classes and their implementation are often not
explicitly documented. Therefore, they cannot be readily used during program comprehension.

Several approaches have been proposed to identify occurrences of micro-architectures similar
to structural design motifs using static analysis [16, 24, 26, 27, 30, 34, 40, 43]. For example,
we proposed DeMIMA [16], a Design Motif Identification Multi-layered Approach, which uses
explanation-based constraint programming to identify structural motifs in program models
reverse-engineered from source code. DeMIMA has a good accuracy; yet, as other approaches,
it suffers from a low precision when motifs cannot be exclusively described by their structure.

Behavioral and creational motifs as well as some structural motifs can hardly be described
only by the structure and organisation of their classes. They must be described as runtime
collaborations among objects, as shown in [21, 22, 42]. Thus, the responsibility of runtime
objects should not be neglected because collaborations among these objects, along with the
structure of their classes, could increase the precision of the identification process.

Consequently, we propose MoDeC, a semi-automated 3-step approach to identify behavioral
and creational design motifs in source code using dynamic analysis. The novelty of MoDeC
is three-fold: it uses (1) scenario diagrams of both the programs and the motifs as input; (2)
the static occurrences produced by a previous design pattern identification approach to reduce
the search space and guide the building of interesting scenarios; and, (3) explanation-based
constraint programming to identify occurrences of the motifs in the programs while providing
automation and explanations.

In this paper, we use the Memento pattern to illustrate the modelling of motifs, the
instrumentation of code, and the generation of a scenario diagram. We also show the
practicality of our approach by reusing existing components to implement a proof-of-concept
and by performing an empirical validation using this implementation. The empirical validation
divides in a case study with the Command motif and JHotDraw, an empirical study using
five real-world Java programs and the Builder, Command, and Visitor motifs, and a comparative
study with previous work. It shows that MoDeC has a good precision and recall and allows
increasing the precision of static occurrences.

This work extends our previous work [37] with a description of our approach using a toy
example, a complete case study on JHotDraw; an empirical study; and a comparative study.
This paper is organised as follows. Section 2 provides an overview of our approach. Section
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Figure 1. A 3-step approach for design pattern identification through dynamic analysis. Steps in bold
are automated.

3 introduces a metamodel to capture the collaborations among objects at runtime, which
is similar to the UML metamodel for sequence diagrams. It also illustrates the use of the
metamodel. Section 4 details our technique to reverse engineer scenario diagrams of object-
oriented programs using dynamic analysis. It includes a description of the use of the results of
a static approach to build appropriate scenarios. Section 5 elaborates on the technique used to
identify behavioral and creational design motifs. Section 6 illustrates MoDeC on JHotDraw
and, using five Java programs, reports the results of the identification of the Builder, Command,
and Visitor motifs. It also compares MoDeC to previous approaches. Section 8 presents related
work. Finally, Section 9 concludes with future work.

2. MoDeC in a Nutshell and Design Rationale

Figure 1 describes the different steps of the MoDeC approach; steps in bold are automated
while the others are intrinsically manual. First, a behavioral or creational design motif (or the
behavioural/creational part of a mostly-structural motif) is described as a scenario diagram
(a subset of a UML-like sequence diagram as explained in Section 3). Second, using dynamic
analysis, a dynamic model of the collaborations among the objects of a program is reverse-
engineered for a given scenario, also in the form of a scenario diagram. Motifs are modelled as
collaborations among objects and their operations, i.e., scenario diagrams, as are the behavior
of programs, to unify the representation of both motifs and programs and to subsequently ease
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(a) The Memento motif

(b) The Command motif

Figure 2. Description of motifs in terms of collaborations.

the dynamic identification process. The scenario used to reverse engineer the dynamic model
is built from the static† occurrences identified by a static approach, DeMIMA. Finally, the
identification process is translated into a constraint satisfaction problem (CSP). By solving
the CSP, concrete objects and operations from the program scenario diagram are assigned to
the roles in the motif scenario diagram. We thus obtain the dynamic occurrences of the motif.
MoDeC is semi-automated. The user’s input is required (1) to describe motifs, (2) to design,
and (3) to exercise appropriate scenarios to generate traces. The first user’s input, the motif
description, is the result of a short activity performed only once because each motif is kept in a
repository for later use. Automation is provided to identify static occurrences using DeMIMA
and to apply the constraint solver to identify dynamic occurrences.

In the rest of this paper, we illustrate the details of each step of MoDeC using, as running
example, a toy program, which implements the Memento motif. The Memento design pattern

†We use the adjectives static and dynamic to distinguish occurrences identified by DeMIMA and MoDeC,
respectively.
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provides a solution to the problem of capturing and exporting the internal state of some
object, so that the object can be restored to this state later, without violating encapsulation.
Figure 2(a) is a scenario diagram illustrating the collaborations among the classes and objects
participating in the Memento motif. A caretaker requests a memento from an originator, holds
it for a time, and passes it back to the originator. The caretaker may never pass the memento
back to it originator, if it never needs to revert to an earlier state. Mementos are passive, only
the originator that created a memento can assign or retrieve its state.

We could use a static or a dynamic analysis to capture the behavior of programs and build
their scenario diagrams. Each type of analyses has advantages and drawbacks. On the one
hand, a static analysis would provide a complete sequence diagram (set of scenario diagrams)
of a program. However, it would not reflect its real behaviour and would require to analyse
source code to determine the dynamic types of object references, which is not conceivable for
large programs [13]. Moreover, static approaches can have 100% recall at the price of a low
precision. On the other hand, a dynamic analysis provides only parts of the whole behaviour
of a program but reports precisely the collaborations among objects. We seek to improve
precision and thus choose to use dynamic analysis.

The programming language in which the programs are written does not impact the
principles of our approach but impacts the instrumentation strategy [4]. There are several
possible strategies to retrieve data by dynamic analysis. These strategies include source-
code, intermediate-code, and virtual-machine instrumentation or the use of a customised
debugger. We choose to instrument the intermediate code to avoid maintaining a “clean”
and an instrumented version of the same source code and handling inconsistencies between
the two versions. Also, intermediate-code instrumentation is less intrusive than instrumenting
a virtual machine or customising a debugger. The limitations of this strategy are its specificity
to the target language and the additional delays in the program executions. We accept these
two limitations because they do not undermine our approach. Following [4], we instrument
intermediate code to trace method calls at runtime and translate these calls into sequences of
operations. We do not trace “patterns” of execution and conditions under which operations
are executed because they are unnecessary in our approach.

The implementation of our instrumentation strategy consists of five sub-steps, illustrated
in Figure 1, Steps 2.1 to 2.5. First, we compile the source files of a program to obtain its
intermediate code. Second, we instrument the intermediate code. Third, we choose a scenario
to be executed. The choice of the scenario is guided by the documentation of the program,
where a list of functionalities is described, possibly including terms found in the descriptions of
some motifs (their intents and motivations principally) and by the static occurrences identified
by a static identification approach, such as DeMIMA. Fourth, we execute the instrumented
program following the chosen scenario to produce an execution trace. Finally, we analyse the
trace and instantiate a scenario diagram. We illustrate this strategy on Java in Section 4 after
presenting the meta-model of a scenario diagram in the following section.
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Figure 3. Scenario diagram metamodel following UML naming convention.

3. Scenario Diagrams of Behavioural and Creational Design Motifs

We model behavioral and creational design motifs as collaborations among objects. We use
scenario diagrams to express these collaborations because they describe the objects and their
operations according to the scenario for which the motifs bring design solutions. We first
describe the scenario diagram metamodel [39] and then discuss its use and illustrate its
instantiation on the running example.

3.1. Metamodel of Scenario Diagrams

In [12], some design motifs are provided with representations in the form of collaborations
among objects. Gamma et al. chose to use diagrams similar to scenario diagrams to show the
sequences of operations among objects, i.e., the order in which operations among the objects
participating in the motifs are executed.

Therefore, our metamodel (cf. Figure 3) focuses on describing control flow, i.e., the sequence
of operations passed among objects at runtime, and allows describing a scenario diagram of a
motif, i.e., a UML sequence diagram obtained from the execution of one particular use case
[4]: the one scenario for which the motif brings a solution. A scenario diagram is only a partial
UML sequence diagram, describing one scenario instead of all possible alternatives for the
exercised use case.

A scenario diagram, class ScenarioDiagram on Figure 3, contains an ordered list of
components, class Component, that can either be messages, class Message, or combined
fragments, class CombinedFragment. Messages can be of three different types: an operation,

Copyright c⃝ 2009 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2009; 00:0–0
Prepared using smrauth.cls



6 J. K.-Y. NG, Y.-G. GUÉHÉNEUC, AND G. ANTONIOL

class Operation, a destruction, class Destroy, or a creation, class Creation. Messages have
a sourceClassifier and a destinationClassifier to represent the concept of caller and
callee. Caller and callee are of type Classifier and are specialised as either an Instance or
a Class, the latter case being applicable if the message represents a class-level operation. If
appropriate, messages include arguments, class Argument, of different types: either primitive
types or object types. The return value of messages is represented by class ReturnValue. (In
the following, we use “operation” as a synonym for “message”.)

The class CombinedFragment is inspired by the UML notation [28] to group sets of operations
to show conditional flows in sequence diagrams. Although [28] provides 11 interaction types of
combined fragments, we performed a study of the motifs defined in [12] that showed that only
the combined fragments loop and alternative are necessary to the identification of behavioral
and creational motifs. Consequently, combined fragments are specialised into two types: loops,
class Loop, to illustrate repetitions of operations and alternatives, class Alt, to describe
mutually exclusive choices among sequences of operations. The composition relationships
operand between classes Loop and Component and between classes Alt and Component allow
to model nested loops and–or alternatives. A loop has one and only one operand, while an
alternative has one or more operands. For example, the classic alternative if then else has two
operands: operand if and operand else.

This metamodel defines a class of languages: each modelled design motif defines a language
that is used to generate an acceptor of this language. The acceptor takes as input a trace, also
in the form of a scenario diagram, and outputs sequences of the input matching the language,
i.e., occurrences of the motif. Within this perspective, our metamodel can be classified as
a Type-3 grammar (regular grammar) that generates regular languages. The metamodel is
extensible and it is thus possible to add new interactions types in the future.

3.2. Illustration of a Scenario Diagrams

In our approach, see Figure 1, Step 1, behavioral and creational design motifs are described
by translating manually the collaborations suggested in a motif into an instance of the
scenario diagram metamodel. For example, for each operation involved in the diagram of
the Memento motif, in Figure 2(a), we instantiate an object Operation that is added to
the ordered list components of an instance of ScenarioDiagram representing the Memento
motif. Given operation setMemento(Memento aMemento) takes an object of type Memento as
argument, we instantiate an object Argument, whose attribute type points to Memento. This
object Argument is added to the ordered list arguments of operation setMemento(Memento

aMemento). The participants collaborating in the motif, aCaretaker, anOriginator, and
aMemento, are instantiated as instances of Instance, and are set to be the sourceClassifier
or destinationClassifier of the corresponding operations. The sourceClassifier of
createMemento() and setMemento(Memento aMemento) is aCaretaker, while anOriginator
is their destinationClassifier.

Similarly to structural design motifs, behavioural and creational motifs must be adapted
by the developers to the context in which they are used. Consequently, the suggested
collaborations may not be implemented strictly. Our validation led us to identify two recurring
variants in the concrete collaborations with respect to the suggested collaborations. First, we
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⟨trace⟩ → ⟨event⟩ ∣ ⟨event⟩ ⟨trace⟩ ∣ ²
⟨event⟩ → ⟨message type⟩ ⟨message state⟩ ⟨message signature⟩ callee ⟨class identifier⟩ {⟨[id]⟩}
⟨message type⟩ → operation ∣ constructor ∣ destructor
⟨message state⟩ → start ∣ end
⟨message signature⟩ → {⟨visibility⟩} {static} ⟨return type⟩ ⟨message identifier⟩ ( {⟨argument⟩} )

⟨visibility⟩ → public ∣ private ∣ protected
⟨message identifier⟩ → name of the message being called

⟨argument⟩ → ⟨argument type⟩ ⟨argument identifier⟩ {, ⟨argument⟩} ∣ ²
⟨argument type⟩ → type of the argument

⟨argument identifier⟩ → name of the argument

⟨class identifier⟩ → name of the class to which belongs the message being called

⟨id⟩ → unique number of the instance object to which belongs the message being called

Figure 4. The trace format.

observed that it is a common practice to add intermediate objects and operations to the original
collaborations while implementing a motif. Second, we also observed that collaborations are
often implemented by more than one operation.

For example, in the description of the Command motif shown in Figure 2(b), the Command

object invokes the unique operation action() on its receiver to carry out a request. This
operation will often correspond to several concrete operations in real programs. Indeed, it is
unlikely that one operation will be sufficient to carry out the request of the invoker. Instead,
a set of operations will be called to complete the request.

Therefore, in the descriptions of the motifs, we immediately consider these two variants
because they neither change the structure characterising the motifs nor the semantics of their
original collaborations but reflect concrete implementations. However, we do not vary more our
descriptions. Instead, constraints on the collaborations among objects will be relaxed based
on the descriptions, as further explained in Section 5.

4. Scenario Diagrams of Programs

We also model the dynamic behaviours of programs as scenarios diagrams. Following our
approach shown in Figure 1, we now describe the model of execution traces used in Step 2.4,
the instrumentation of programs to generate such traces in Step 2.2, the building of appropriate
scenarios to exercise the programs in Step 2.3, and the combination of these steps to obtain
scenario diagrams in Step 2.5.

4.1. Execution Trace

In MoDeC, each execution trace must comply with the syntax shown in Figure 4. A trace
contains a set of events. Each event corresponds to either the start or the end of an operation,
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8 J. K.-Y. NG, Y.-G. GUÉHÉNEUC, AND G. ANTONIOL

so that we can infer nested operations. Each event records the name of the operation, its formal
arguments, as well as the unique ID of the callee, i.e., receiver object. Traces are independent
of the programming language, program, and scenarios and could be generated for any object-
oriented programming language.

4.2. Instrumentation

We instrument Java byte-code with Bcel—the Byte Code Engineering Library [3], which
offers the possibility to create, analyse, and manipulate Java class files easily. Following the
definition of the metamodel and its three types of messages, we instrument constructor and
method executions.

We now detail the instrumentation of constructors. Constructors appear in byte-code as
instance methods with a special name <init>. Figure 5 illustrates the constructor of class
Memento from the Memento motif shown in Figure 2(a). Its byte-code before instrumentation
is shown in Figure 6.

We insert byte-code instructions, lines 3–5 in Figure 7, after the invocation of the superclass
constructor so that a constructor start event is written in the execution trace. Then,
we identify every return byte-code instruction and calls to System.exit(int) to write
a constructor end event in the execution trace, lines 19–21 in Figure 7, and thus trace
corresponding constructor end events.

Each time a constructor start event or constructor end event is written, we also write
in the trace the destinationClassifier class name and the object identity hash-code to
identify each object in a program uniquely. The corresponding byte-code instructions are
shown on lines 10–15 and 26–31 in Figure 7. The sourceClassifier is determined when
instantiating the scenario diagram, as discussed in Section 4.4. Multi-threading is not an issue
in our approach because (1) each thread holds the lock to the trace file upon writing and (2)
in our experience, objects playing a role in a motif are always called within the same thread.
Consequently, interleaved messages would only be an issue if a strict ordering of messages was
required and if two objects playing a role in a motif were accessed by two different threads.

The generation of destruction events from the execution of Java programs is difficult
because Java does not provide explicit destructors, as C++ does for example. It only allows
finalize() methods that may or may not be called by the Java virtual machine when the
garbage collector collects objects, as we discussed in our previous study [17].

4.3. Building a Scenario

The choice of the scenario to run the program to collect its execution trace is important because
it should exercise as many objects as possible from classes most likely to implement the design
motif of interest. The problem of building scenarios and choosing the most appropriate scenario
to exercise certain classes, objects, methods, or functions of a program has been previously
studied in previous works, for example [6, 7, 8, 14, 38]. We get inspiration from these works
to avoid building arbitrary scenarios and to reduce the large space of all possible scenarios
for any non-trivial program: we use the static occurrences obtained from DeMIMA to identify
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1 public class Memento {

2

3 public Memento (String state) {

4 this.setState(state);

5 }

6 }

Figure 5. Partial source code of class Memento.

1 aload_0

2 invokespecial Object.<init> ()V

3 aload_0

4 ldc "state"

5 putfield Originator.state String;

6 return

Figure 6. Constructor byte-code before instrumentation.

1 aload_0

2 invokespecial Object.<init> ()V

3 ldc "Memento_GOF_EVALUATION.trace"

4 ldc "constructor start <init> CALLEE Originator"

5 invokestatic LogToFile.write (Object;)V

6 ldc "Memento_GOF_EVALUATION.trace"

7 new <Integer>

8 dup

9 aload_0

10 invokestatic System.identityHashCode (Object;)I

11 invokespecial Integer.<init> (I)V

12 invokestatic LogToFile.write (Object;)V

13 ldc "Memento_GOF_EVALUATION.trace"

14 ldc "\n"

15 invokestatic LogToFile.write (Object;)V

16 aload_0

17 ldc "state"

18 putfield Originator.state Ljava/lang/String;

19 ldc "Memento_GOF_EVALUATION.trace"

20 ldc "constructor end <init> CALLEE Originator"

21 invokestatic LogToFile.write (Object;)V

22 ldc "Memento_GOF_EVALUATION.trace"

23 new <Integer>

24 dup

25 aload_0

26 invokestatic System.identityHashCode(Object;)I

27 invokespecial Integer.<init> (I)V

28 invokestatic LogToFile.write(Object;)V

29 ldc "Memento_GOF_EVALUATION.trace"

30 ldc "\n"

31 invokestatic LogToFile.write(Object;)V

32 return

Figure 7. Constructor byte-code after instrumentation.
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1 operation start public static void main(String[] args) callee ModelMementoTest [-1]

2 constructor start public void <init>() callee Caretaker [14613018]

3 constructor start public void <init>() callee Originator [12386568]

4 constructor end public void <init>() callee Originator [12386568]

5 constructor end public void <init>() callee Caretaker [14613018]

6 operation start public void callCreateMemento() callee Caretaker [14613018]

7 operation start public Memento createMemento() callee Originator [12386568]

8 constructor start public void <init>() callee Memento [17237886]

9 constructor end public void <init>() callee Memento [17237886]

10 operation start public void setState(String state) callee Memento [17237886]

11 operation end public void setState(String state) callee Memento [17237886]

12 operation end public Memento createMemento() callee Originator [12386568]

13 operation end public void callCreateMemento() callee Caretaker [14613018]

14 operation start public void undoOperation() callee Caretaker [14613018]

15 operation start public void setMemento(Memento m) callee Originator [12386568]

16 operation start public String getState() callee Memento [17237886]

17 operation end public String getState() callee Memento [17237886]

18 operation end public void setMemento(Memento m) callee Originator [12386568]

19 operation end public void undoOperation() callee Caretaker [14613018]

20 operation end void public static void main (String[] args) callee ModelMementoTest [-1]

Figure 8. Execution trace of a toy program implementing the Memento motif.

1 <OPERATION> public static void main (String[] args)

2 <CALLEE> ModelMementoTest <CALLER> inexistant

3 <CREATE> public void <init>()

4 <CALLEE> Caretaker [14613018] <CALLER> ModelMementoTest

5 <CREATE> public void <init>()

6 <CALLEE> Originator [12386568] <CALLER> Caretaker [14613018]

7 <OPERATION> public void callCreateMemento()

8 <CALLEE> Caretaker [14613018] <CALLER> ModelMementoTest

9 <OPERATION> public Memento createMemento()

10 <CALLEE> Originator [12386568] <CALLER> Caretaker [14613018]

11 <CREATE> public void <init>()

12 <CALLEE> Memento [17237886] <CALLER> Originator [12386568]

13 <OPERATION> public void setState(String state)

14 <CALLEE> Memento [17237886] <CALLER> Originator [12386568]

15 <OPERATION> public void undoOperation()

16 <CALLEE> Caretaker [14613018] <CALLER> ModelMementoTest

17 <OPERATION> public void setMemento(Memento m)

18 <CALLEE> Originator [12386568] <CALLER> Caretaker [14613018]

19 <OPERATION> public String getState()

20 <CALLEE> Memento [17237886] <CALLER> Originator [12386568]

Figure 9. Textual representation of the scenario diagram from the execution trace in Figure 8.
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IDENTIFICATION OF DESIGN MOTIFS THROUGH DYNAMIC ANALYSIS 11

the classes whose objects are most likely to collaborate in a scenario diagram similar to the
scenario diagram of a motif.

Indeed, considering that DeMIMA has a 100% recall [16], the static occurrences include all
potential classes playing a role in a motif. Using these classes, the program source code, and
its documentation, we manually build a scenario that exercises as many of these classes as
possible and, thus, that is most likely to generate a trace including objects indeed playing a
role in the motif.

For example, for the running example, DeMIMA provides static occurrences including
the classes Caretaker, Memento, and Originator. Consequently, we develop a scenario that
exercises all of these classes: in this simple case, this scenario consists solely of running the
program once.

DeMIMA has an average precision of 34% and ranked occurrences from the most likely to
the least likely using a weighting mechanism. Therefore, when building scenarios, developers
should only consider the most likely occurrences and use their knowledge of the structure of
the motif of interest to disregard occurrences that are too approximate.

Obtaining an exhaustive trace with complete coverage of the classes of interest may be
impossible and executing the appropriate scenarios may require knowledge of the functionalities
implemented using these classes. Also, it may happen that, due to feasibility constraints, only
scenarios representing the most commonly used functionalities may be exercised. This problem
is the dual problem of feature identification [2], which attempt to identify the source code
implementing a feature available to users. We are not aware of any work tackling this problem
and plan to study it in future work.

Yet, this problem does not limit the applicability of our approach. Indeed, given a set of n
scenarios, MoDeC does not require all scenarios to identify the behavioural or creational motifs
of interest. It only requires one scenario to increase our confidence that the motif is indeed
present in the program because we can find both a static and a dynamic occurrence of the
motif. If we cannot identify a dynamic occurrence of the motif using a scenario, then either the
scenario is not adequate to identify the motif or the motif scenario diagram is too constraining.
Only developers can decide whether to change the scenario or adapt the motif diagram in a
continuous improvement cycle, using the explanations provided by the identification process,
described in Section 5.

4.4. Instantiation of a Scenario Diagram

Figure 8 shows the trace obtained from the instrumented version of the running example.
We analyse this trace to instantiate the corresponding scenario diagram. This instantiation
process is independent of the target language of the program, as long as the execution trace
follow the syntax in Figure 4. First, we identify the sourceClassifier of an operation by
determining the callee of the start event immediately preceding the currently considered
operation. In Figure 8, the preceding operation of Message createMemento() is Message

callCreateMemento() at line 6. The sourceClassifier of createMemento() is then set as
the destinationClassifier of callCreateMemento(). Once the sourceClassifier of each
operation is identified in the execution trace, all needed data is available to instantiate a
scenario diagram.
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12 J. K.-Y. NG, Y.-G. GUÉHÉNEUC, AND G. ANTONIOL

Figure 9 is a textual representation of the scenario diagram corresponding to the execution
trace in Figure 8. For each event, a message of the appropriate type is instantiated. The
component corresponding to the event currently considered in the execution trace is referred
to as the current component. If the current component is of type CombinedFragment, we add
the subsequent objects Message or CombinedFragment to its ordered list operands until the
corresponding end event is met. Otherwise, they are added to the ordered list components of
the ScenarioDiagram instance. Each time an object Message is instantiated, its corresponding
sourceClassifier and destinationClassifier of type Classifier are also instantiated (if
needed). The set arguments of a message is determined by processing the data positioned
between the parenthesis of the corresponding event.

5. Identification of Motifs Scenario Diagrams in Programs Diagrams

Using the metamodel and techniques described in the previous sections, we can instantiate two
scenario diagrams: one for a design motif and another for a program. Then, the identification of
behavioural or creational motifs translates into a matching between the two scenario diagrams,
i.e., into finding all occurrences of the motif diagram in the program diagram.

We perform the matching between the two scenario diagrams using explanation-based
constraint programming as in our previous work [16]. As shown in Figure 1, Step 3, we translate
the identification into a CSP, which defines the variables, constraints, and domains representing
the problem that an explanation-based constraint solver must solve to identify occurrences of
the motifs. The CSP includes:

Variables. The set of variables Classifier and Message corresponds respectively to the
entities Classifier and Message modelling the scenario diagram of a design motif.

Domains. The domains of each variable (Classifier or Message) corresponds to a set of
integers, each corresponding to a unique Classifier or Message in the program diagram.

Constraints. The set of constraints among the variables corresponds to the relations among
the entities of the scenario diagram defined by a motif.

For example, the Memento motif shown in Figure 2(a) is modelled by associating a variable
with each of its entity: var createMemento, var newMemento, var setState, var setMemento,
var getState, var aCaretaker, var anOriginator, and var aMemento. The domain of each
variable corresponds to the entities in the scenario diagram of the program in which to identify
occurrences of this motif. The scenario diagram modelling the Memento motif in Figure
9 includes ten operations: main (String[]), <init>(), <init>(), callCreateMemento(),
createMemento(), <init>(), setState(), undoOperation(), setMemento(Memento), and
getState() as well as four objects: ModelMementoTest, Caretaker, Originator, and
Memento. Therefore, the domains of the variables var aCaretaker, var anOriginator,
and var aMemento are of size 4 while the domains of variables var createMemento,
var newMemento, var setState, var setMemento, and var getState are of 10.
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IDENTIFICATION OF DESIGN MOTIFS THROUGH DYNAMIC ANALYSIS 13

5.1. Constraints

We use binary constraints of the form constraint(variable1, variable2) to express the
existence of relations between variable1 and variable2. Constraints can be defined among
variables of different types, Classifier and–or Message. They allow to describe motifs with
precision because a relation can be expressed between Messages, Classifiers, or between a
Message and a Classifier. To the best of our knowledge, in previous work, for example [31]
or [16], constraints were only defined among variables of the same type.

We define the following set of constraints to express the relations among variables:

Constraint calls(classifier1,message2) (respectively isCalled) defines the relation
classifier1 is the sourceClassifier of message2 (respectively destination-

Classifier) between classifier1 and message2. As shown in Algorithm 1, the
domain of variables classifier1 (respectively message2) corresponds to the instances
of Classifier in the program scenario diagram (respectively Message). For each value
taken by message2, there must be a corresponding value taken by classifier1 so that
classifier1 is the sourceClassifier of message2. Conversely, for each possible value
taken by classifier1, there must be a corresponding value taken by message2 so that
the sourceClassifier of message2 is a Classifier in the domain of classifier1.
Any value of classifier1 and message2 failing to satisfy this constraint is removed
from the corresponding domain.

Constraint creates(classifier1, message2) (respectively isCreated) is similar to
constraint calls(classifier1, message2), except that message2 is an instance of
Create instead of Operation. For each possible value of message2, there must be a

Algorithm 1 Constraint calls(classifier1, message2)

1: toBeRemoved Ã true
2: domain1 Ã Domain(classifier1)
3: for i = 0 to Size(domain1) and toBeRemoved = true do
4: listOfMessages Ã MessagesWℎoseCallerIs(classifier1)
5: for j = 0 to Size(listOfMessages) and toBeRemoved = true do
6: aMessage Ã ElementAt(listOfMessages, j)
7: domain2 Ã Domain(message2)
8: if ContainsMessage(domain2,message2) then
9: toBeRemoved Ã false

10: end if
11: end for
12: end for
13: toBeRemoved Ã true
14: domain2 Ã Domain(message2)
15: for i = 0 to Size(domain2) and toBeRemoved = true do
16: domain1 Ã Domain(classifier1)
17: if ContainsClassifier(domain1, classifier1) then
18: toBeRemoved Ã false
19: end if
20: end for
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14 J. K.-Y. NG, Y.-G. GUÉHÉNEUC, AND G. ANTONIOL

corresponding value of classifier1 so that classifier1 is an instance of Create and
the sourceClassifier of message2.

Constraint strictlyFollows(message1, message2) defines the relation message2 is
executed after message1. The domains of variables message1 and message2 correspond
to the instances of Message in the program diagram. For each possible value taken by
message2, there must be a corresponding value taken by message1 so that message2 is
called after message1. Conversely, for each possible value taken by message1, there must
be a corresponding value taken by message2 so that message1 is called before message2.
Any value of message1 and message2 failing to satisfy this constraint is removed from
the corresponding domain.

Constraint follows(message1, message2) is similar to strictlyFollows in its definition
but allows, in its satisfaction, other messages to occur between the two messages of
interest, message1 and message2. This constraint is useful when the implementation of
message1 may reasonably include intermediate calls before the actual call to message2.

Constraint notEqual(classifier1, classfier2) (respectively (message1, message2))
defines the relation classifier is not equal to classifier2 (respectively message1

is not equal to message2).

Constraint parameterCalleeHasSameType(message1, message2) defines that the first
parameter of message1 is of same type as the callee of message2. The domains of
variables message1 and message2 correspond to the instances of Message in the program
diagram. For each possible value taken by message2, there must be a corresponding
value taken by message1 so that the callee of message2 is of the same type as the
first parameter of message1. Conversely, for each possible value taken by message1,
there must be a corresponding value taken by message2 so that the first parameter of
message1 is of same type as the caller of message2. A value of message1 or message2
failing to satisfy this constraint is removed from the corresponding domain.

Constraint isContainedIn(message1, message2) defines the relation message1 is
eventually called during the execution of message2. The domains of variables message1
and message2 correspond to the instances of Message in the program diagram. For
each possible value taken by message2, there must be a corresponding value taken by
message1 so that message1 is called during the execution of message2, even if message2
does not call directly message1. Conversely, for each possible value taken by message1,
there must be a corresponding value taken by message2 so that message2 has not
returned when message1 is called. A value of message1 or message2 not satisfying
this constraint is removed from the appropriate domain.

In the validation of our approach, these constraints were sufficient to express several design
motifs. For example, the relations among the entities of the scenario diagram of the Memento
motif in Figure 2(a) are translated one-to-one into the constraints shown in Figure 10.
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IDENTIFICATION OF DESIGN MOTIFS THROUGH DYNAMIC ANALYSIS 15

1 strictlyFollows(var_createMemento, var_newMemento)

2 strictlyFollows(var_newMemento,var_setState)

3 strictlyFollows(var_setState, var_setMemento, 90)

4 strictlyFollows(var_setMemento, var_getState, 90)

5 calls(var_aCaretaker, var_createMemento)

6 isCalled(var_anOriginator, var_createMemento)

7 creates(var_anOriginator, var_newMemento)

8 isCreated(var_aMemento, var_newMemento)

9 calls(var_anOriginator, var_setState)

10 isCalled(var_aMemento, var_setState)

11 calls(var_aCaretaker, var_setMemento)

12 isCalled(var_anOriginator, var_setMemento)

13 calls(var_anOriginator, var_getState)

14 isCalled(var_aMemento, var_getState)

Figure 10. Constraints among the variables describing the Memento motif. By default, satisfying all
constraints is mandatory; some constraints may be relaxed with a cost given as last parameter.

5.2. Solver

Complete occurrences, which are exactly similar to the scenario diagram of a design motif, may
not be present in a program diagram, because the motif has been adapted by the developers
to the program context. Approximate occurrences, which do not verify all the collaborations
suggested by the motif, may be present and interesting for program comprehension. These
occurrences correspond to solutions of a CSP that do not satisfy all the constraints.

We use an explanation-based constraint solver [23] to identify occurrences of the motifs.
Given a CSP, an explanation-based constraint solver identifies automatically both complete
and approximate occurrences. First, the solver iterates through each domain and removes the
entities that satisfy all the constraints to form solutions representing complete occurrences
of the motifs. It terminates its iterations on a contradiction: there are no more entities in
the domains satisfying all the constraints. The solver then provides an explanation of the
contradiction: the set of constraints that cannot be satisfied by the remaining entities. Relaxing
or removing one or more constraints from the contradiction in the CSP allows the solver to
form more solutions satisfying and, thus, to identify approximate occurrences. Relaxing or
removing one of the constraints suggested in the explanation does not necessarily lead to a
new solvable CSP, but the constraints can be relaxed and removed combinatorially until a
solvable CSP is obtained or no constraint remains in the explanation.

Relaxation and removal may be performed manually or automatically. If performed
manually, the user’s is asked to choose the constraint(s) to relax or remove. To ease the user’s
choice, weights are given to the constraints that reflect an a priori hierarchy among them and
allow the solver to present an ordered list of constraints from the explanation to the user.
Thus, the user can restrict interactively the identification to the approximate occurrences of
interest. Typically, the hierarchy among the constraints includes strictlyFollows as parent
of follows because follows is less constraining: it allows other messages to occur between
the two messages of interest.
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16 J. K.-Y. NG, Y.-G. GUÉHÉNEUC, AND G. ANTONIOL

1 var_createMemento = createMemento()

2 var_newMemento = new Memento()

3 var_setState = setState(String state)

4 var_setMemento = setMemento()

5 var_getState = getState()

6 var_aCaretaker = Caretaker [14613018]

7 var_anOriginator = Originator [12386568]

8 var_aMemento = Memento [17237886]

Figure 11. Occurrence of the Memento motif.

For example, in Figure 10, two constraints can be relaxed, strictlyFollows(var setState,

var setMemento, 90) and strictlyFollows(var setMemento, var getState, 90), be-
cause their weights are 90%, i.e., their satisfaction is not mandatory and their impact on
the dynamic occurrence is to reduced our confidence by 10%. In this particular example, the
two constraints could be relaxed into follows constraints.

Explanations, weights, and the hierarchy among constraints also allow automating the
relaxation and removal process in the solver to generate automatically all complete and
approximate occurrences without the user’s input. For example, we apply the automated solver
on the running example of the Memento motif and obtain the occurrence shown in Figure 11
without any manual intervention. We apply the automated solver in the validation of our
approach to avoid any bias from the user’s input.

An occurrence consists of a mapping between the CSP variables from the motif scenario
diagram and the entities in the program scenario diagram. The entities can be operations,
for example createMemento(), or objects, for example an instance of Caretaker with unique
identifier 14613018.

6. Case, Empirical, and Comparative Studies

To validate our approach, we implemented MoDeC in a proof-of-concept implementation and
now describe the identification of occurrences of the Command motif on the real-world program
JHotDraw v5.4b1. This example highlights the use of DeMIMA occurrences to direct MoDeC
and the use of MoDeC to increase the precision of DeMIMA. We also study empirically MoDeC
on a set of five Java programs and report the precision and recall of MoDeC and discuss the
threats to the validity of this empirical study. Finally, we compare the results of MoDeC with
those of previous approaches.

6.1. JHotDraw Case Study

JHotDraw is a drawing editor that allows users to create and manipulate 2D vector figures.
It has originally been developed in 1998 by Gamma and Eggenschwiler [11] as a show-case
for the use of design patterns. It has since evolved into a full-fledged framework. We choose
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IDENTIFICATION OF DESIGN MOTIFS THROUGH DYNAMIC ANALYSIS 17

Figure 12. Description of the Command motif in term of its structure (from [12]).

1 inheritanceConstraint(var_ConcreteCommand, var_Command)

2 aggregationConstraint(var_Invoker, var_Command)

3 associationConstraint(var_ConcreteCommand, var_Receiver)

4 associationConstraint(var_Client, var_Receiver)

5 creationConstraint(var_Client, var_ConcreteCommand)

Figure 13. Constraint among the variables describing the Command motif in term of its structure.

JHotDraw because the motifs used in its implementation are well documented and, thus,
can be used to validate the identified occurrences.

There are 18 occurrences of the Command motif in JHotDraw, all subclasses of interface
Command. This information could be used in the descriptions of the motif either for DeMIMA or
for MoDeC. However, we do not use this information in the following to respect the approaches
described in [16] and in the previous sections.

We use the measures of precision and recall from the domain of information retrieval [10]
to validate our approach. Precision assesses the number of true occurrences of a design motif
identified in one scenario of a program, while recall assesses the number of true occurrences of
a motif existing in one scenario of a program:

precision =
∣{existing occurrences of a design motif} ∩ {identified occurrences of a design motif}∣

∣{identified occurrences of a design motif}∣

recall =
∣{existing occurrences of a design motif} ∩ {identified occurrences of a design motif}∣

∣{existing occurrences of a design motif}∣

6.1.1. Identifying Static Occurrences with DeMIMA

We apply the approach described in [16] to describe and statically identify occurrences of
the Command motif. The motif is described by modelling its structure using the constituents
of the PADL meta-model, as shown in Figure 12. This structure is translated into a
PADL model, which is turn is translated into a CSP. The CSP includes five variables:
var Client, var Command, var ConcreteCommand, var Invoker, and var Receiver. The
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18 J. K.-Y. NG, Y.-G. GUÉHÉNEUC, AND G. ANTONIOL

1 var_Invoker-1 = CH.ifa.draw.test.contrib.CommandMenuItemTest

2 var_Invoker-2 = CH.ifa.draw.util.CommandButton

3 var_Invoker-3 = CH.ifa.draw.standard.AbstractCommand.EventDispatcher

4 var_Invoker-4 = CH.ifa.draw.test.contrib.CommandCheckBoxMenuItemTest

5 var_Invoker-5 = CH.ifa.draw.standard.StandardDrawingView.DrawingViewKeyListener

6 var_Command = CH.ifa.draw.util.Command

7 var_ConcreteCommand = CH.ifa.draw.standard.AlignCommand

8 var_Receiver = CH.ifa.draw.framework.DrawingView

9 var_Client = CH.ifa.draw.application.DrawApplication

Figure 14. An occurrence of the Command motif in term of its structure.

1. Launch JHotDraw.
2. Click on the rectangle tool.
3. Draw two rectangles.
4. Select the two rectangles.
5. Click on the align command.
6. Close JHotDraw.

Figure 15. A scenario to exercise the AlignCommand class in JHotDraw.

constraints among the variables, shown in Figure 13, describe the relationships among the
classes in the class diagram, in Figure 12. They are systematically derived from the class
diagram of the Command motif and therefore describe the inheritance, aggregation, associations,
and creation among the classes.

Applying DeMIMA produces complete and approximate static occurrences of the motif:
zero complete occurrences and 45 approximate occurrences‡. The approximate occurrences
include the 18 true occurrences. Therefore, precision is equal to 18/45 = 0.4 = 40% and
recall to 100%, as expected when using DeMIMA. The approximate occurrences are ranked
automatically according to their closeness to the original description of the motif.

For example, the first occurrences, closest to the motif, is shown in Figure 14. This
occurrences is approximate because it does not satisfy all constraints, in particular the
inheritance relationship between classes Command and AlignCommand is not direct. An abstract
class AbstractCommand implements interface Command and is inherited by AlignCommand and
all other commands. Also, this occurrence relates several possible invokers, with specific
command, concrete command, receiver, and client. Associating more than one possible class
with the invoker role reduces the computation time and the number of occurrences.

6.1.2. Building a Scenario from a Static Occurrence

The 45 occurrences of the Command motif include 365 distinct classes, for which it may
be impractical to build scenarios. However, when considering, for example, the first five

‡The detailed 45 occurrences are available at http://www.ptidej.net/downloads/experiments/jsme09/.
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IDENTIFICATION OF DESIGN MOTIFS THROUGH DYNAMIC ANALYSIS 19

1 notEqual(var_executeCallee, var_aCommand)

2 notEqual(var_aReceiver, var_aClient)

3 notEqual(var_aClient, var_aCommand)

4 notEqual(var_aCommand, var_anInvoker)

5 notEqual(var_aReceiver, var_aCommand)

6 strictlyFollows(var_newCommand, var_storeCommand)

7 strictlyFollows(var_storeCommand, var_execute)

8 strictlyFollows(var_execute, var_action)

9 creates(var_newCommand, var_aCommand)

10 isCreated(var_aClient, var_newCommand)

11 calls(var_aClient, var_storeCommand)

12 isCalled(var_storeCommand, var_anInvoker)

13 calls(var_anInvoker, var_execute)

14 isCalled(var_execute, var_executeCallee)

15 calls(var_aCommand, var_action)

16 isCalled(var_action, var_aReceiver)

17 parameterCalleeHasSameType(var_storeCommand, var_newCommand)

18 isContainedIn(var_action, var_execute)

Figure 16. Constraints among the variables describing the Command motif in terms of collaborations.

occurrences with highest ranking, which are most likely to be true occurrences, only 119
classes should be considered.

The first static occurrence includes 56 classes: 1 command, 17 concrete commands,
5 invokers, 27 receivers, and 26 clients. In particular, it includes the classes
CH.ifa.draw.util.Command and CH.ifa.draw.standard.AlignCommand as the command
and one concrete command, respectively. Therefore, using JHotDraw documentation,
building a corresponding scenario is straightforward, given its features and simple user
interface: we exercise the class playing the role of concrete command, class AlignCommand

to exercise JHotDraw “align” feature. This scenario is shown in Figure 15.
It is possible that, with other programs, it would be more complex to build and exercise

the appropriate scenario. In such a case, a unit test could also be implemented to exercise the
appropriate classes. (Such a unit test exists with JHotDraw, we also used it as an alternative
and did not find any difference in the following results.)

6.1.3. Identifying Dynamic Occurrences with MoDeC

We follow the steps shown in Figure 2:

Scenario Diagram of the Command Motif (Step 1). Figure 2(b), inspired by [12],
describes the scenario diagram of the Command motif as collaborations among objects.
A client that uses the Command motif creates a Command object, which will be executed
by an Invoker. When a Command object is executed, an appropriate Receiver object
performs the actual concrete action.

Scenario Diagram of the Program (Step 2). As described in Figure 1, Step 2.1,
JHotDraw byte-code is the output from a Java compiler. Once all Java class files
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1 var_newCommand = <CREATE> public void <init>

2 (AlignCommand.Alignment newAlignment, DrawingEditor newDrawingEditor)

3 CALLEE AlignCommand [17652030] CALLER JavaDrawApp [31063377]

4 var_storeCommand = <OPERATION> public synchronized void add (Command command)

5 CALLEE CommandMenu [5626173] CALLER JavaDrawApp [31063377]

6 var_execute = <OPERATION> public void execute ()

7 CALLEE UndoableCommand [8175078] CALLER CommandMenu [5626173]

8 var_action = <OPERATION> public Iterator drawingChangeListeners ()

9 CALLEE BouncingDrawing [5520561] CALLER AlignCommand [17652030]

10 var_aReceiver = BouncingDrawing [5520561]

11 var_aClient = JavaDrawApp [31063377]

12 var_aCommand = AlignCommand [17652030]

13 var_anInvoker = CommandMenu [5626173]

14 var_executeCallee = UndoableCommand [8175078]

Figure 17. An occurrence of the Command motif in term of its collaborations. (Package names have
been removed for the sake of clarity.)

are instrumented (Step 2.2), the chosen scenario (Step 2.3) is executed (Step 2.4) to
obtain a trace and, then, a scenario diagram of the program.

Resolving the CSP (Step 3). Following Figure 1, Step 3, we translate the description of
the Command motif into a CSP. Each entity in the scenario diagram of Figure 2(b) is
associated with a variable of the CSP. The set of constraints among the variables is
shown in Figure 16 and is derived also directly from the scenario diagram.

Solving the CSP produces one dynamic occurrence of the Command motif, shown in Figure
17. According to the documentation of JHotDraw, the values of the variables in this
occurrence indeed correspond to the objects and messages involved in the Command motif
implemented for AlignCommand and other commands.

6.2. Accuracy Empirical Study

We follow the approach described and illustrated in the previous sections to obtain scenario
diagrams of the Builder, Command, and Visitor design motifs, and of five Java programs:
Dresden OCL v1.1, JHotDraw v5.4b1, JRefactory v2.6.24, PMD v1.8., andQuickUML
2001. We choose these programs because they include known occurrences of design motifs.
These occurrences can be used as gold standards against which the accuracy of our approach
can be compared.

Dresden OCL is a modular OCL (Object Constraint Language) toolkit that parses and
type-checks OCL constraints and instruments Java code for runtime verification. It is also
integrated into various CASE-tools and provides a SQL-code generator. JRefactory is a
refactoring tool for the Java programming language that includes a pretty printer, a UML
class diagram viewer, a coding standards checker, and computes program metrics. PMD is a
Java source code analyser that finds unused variables, empty catch blocks, unnecessary object
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creation, and so forth. Finally, QuickUML is a class-diagram graphic editor that tightly
integrates a core set of UML models.

Table I reports the precision and recall for the five programs, the three motifs, and
DeMIMA and MoDeC. First, we applied DeMIMA on the two motifs, Command and Visitor,
which we knew to be not implemented in Dresden OCL. As expected, DeMIMA has a
0% precision and 100% recall: it returns only false positive static occurrences. Using these
false positive occurrences to build a scenario and using this scenario with MoDeC does not
produce any true dynamic occurrences, and thus MoDeC has 100% precision and recall in
these degenerate cases. We did not perform these computations for the other combinations of
motifs/scenarios/programs and noted “–” such cases in the table.

Second, we applied the dynamic identification approach on a subset of scenarios/motifs
of Table I, for which the corresponding motif is known not to be exercised by the scenario.
Results show that no occurrences of the motifs were identified, as expected. For these evaluated
scenarios, no false positives were found by MoDeC. Results appear as N/E in Table I.

Third, we observe that precision and recall are in general very high for each pair of
scenarios/motifs with MoDeC. We explain these high precision and recall values by the fact
that constraints can be relaxed to provide more (true) approximate occurrences when there are
no more complete occurrences of a motif. Our experiments show that not all of the suggested
constraints can be relaxed: only those that do not change the structure characterizing the
motifs, nor the semantics of the original collaborations, should be relaxed/removed to obtain
valid approximate occurrences. For the purpose of the evaluation, we manually limited the
allowed approximations to those constraints that preserve the structure and the semantics of
the motifs, e.g., in the case of the Memento to those forms described in Section 5.

In conclusion, our approach works for several programs and various motifs, with good
precision and perfect recall. Although the executed scenarios for each evaluated program are
not an exhaustive list of all the possible scenarios, the current results are good predictors of
the effectiveness of the proposed approach for the identification of behavioral and creational
motifs using dynamic analysis. The increases of precisions wrt. DeMIMA range from 4× to
more than 8×.

6.3. Comparative Study with Previous Approaches

We now compare the results of MoDeC with two previous approaches that also identify
occurrences of the Command and Visitor in JHotDraw and JRefactory.

Similarity Scoring for Design Pattern Identification. Tsantalis et al. [40] introduce a
measure of similarity among matrices representing either motifs or programs to provide better
performance that previous static approaches and to deal with a wide range of structural motifs.
The apply their approach on several motifs, including Command and Visitor, and on three
programs, including JHotDraw v5.1 and JRefactory v2.6.24.

First, they combine the identification results of the Adapter and Command motifs because
their static approach cannot distinguish between the two while MoDeC can because the
scenario diagrams of the two motifs are different. Second, they only report classes playing
some of the roles in each motif while MoDeC includes all the roles. Finally, they do not report
the precision of their approach but the numbers of identified true positive occurrences. They
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also report a wrong occurrence of the Visitor motif in JHotDraw v5.1. In comparison, we
report correct occurrences of both the Command and Visitor in JHotDraw v5.4b1.

Re-classification of the Design Patterns. Shi and Olsson [36] propose a re-classification
of the design patterns in [12] to identify occurrences of their motifs in static models of programs.
They use their re-classification to propose an identification approach, which they illustrate
on four programs, including JHotDraw v6.0b1, and 17 motifs, including Visitor. First,
they use a static model of programs to identify occurrences of behavioural, creational, and
structural motifs—which they re-classify as language-provided, structure-driven, behaviour-
driven, domain-specific, and generic-concepts motifs—while we use a dynamic analysis. Second,
they report more data than any other identification approach, including delegation and
method forwarding (propagation), for example. According to their on-line results§, they do
not identify any occurrence of the Visitor in JHotDraw while its source code hints at one
occurrence, implemented by interface FigureVisitor and classes DeleteFromDrawingVisitor
and InsertIntoDrawingVisitor, since v5.4b1. MoDeC identifies correctly this occurrence.

We conclude that previous works proposed invaluable advances to the state-of-the-art.
MoDeC builds on these works to further improve the precision of the identification of
behavioural and creational motifs.

6.4. Threats to Validity

The previous case, empirical, and comparative studies support our claim that our dynamic
identification approach for behavioural and creational design motifs has a good precision and
recall and that its results are better than those of a static approach and of previous works.
However, the following threat to their validity should be mitigated in the future.

Construct validity threats concern the relation between theory and observation; in this
paper, they are mainly due to errors introduced in measurements. The count of true positive
occurrences of the identified motifs has been performed manually and it is possible that some
of these occurrences are not true positive while some true positives were missed. We reduced
this threat by asking other experts in software engineering to validate the occurrences.

Internal validity threats do not affect our case and empirical studies, being exploratory
studies [44]. Thus, we cannot claim causation, but can only state that on our data (1) MoDeC
seems to increase good precision with respect to static approaches, (2) using static occurrences
to produce scenarios seems to provide good results, and (3) MoDeC seems to have a higher
precision and recall than previous approaches.

External validity threats concern the possibility to generalise our results. First, we are
aware that our study has been performed on limited numbers of programs and motifs, thus
generalisation will require further empirical studies. Yet, JHotDraw has been used in many
previous studies in design pattern identification and we also used three other motifs and
four other programs to illustrate our approach. Different motifs and programs could have led
to different results and should be studied in future work. However, within their limits, our

§http://www.cs.ucdavis.edu/˜shini/research/pinot/results/jhotdraw_results.html, last visited on May
5, 2009.
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case, empirical, and comparative studies confirm our claim and previous works on dynamic
identification approaches.

Conclusion validity threats concern the relationship between a treatment and its outcome:
whether or not it is reasonable to believe that one affects the other. We believe that these
threats do not affect our studies because it is reasonable to believe that it is the combination
of dynamic and static occurrences that lead to the observed precision and recall.

Reliability validity threats concern the possibility of replicating this study. We attempted
here to provide all the necessary steps to duplicate our approach and replicate the case,
empirical, and comparative studies. Moreover, all the programs and data used in the studies,
e.g., scenarios, are freely available on the Internet. We provide some data on-line‡ and will
gladly provide our implementation upon request.

7. Discussion

Our approach must be considered in the light of the following discussions. First, users of our
approach need not be experts in either design patterns or the program under analysis. Indeed,
we provide a library of design motif descriptions that is reusable in any context. Moreover, the
use of explanation-based constraint programming provide explanations about the identified
occurrences, thus easing their use by users while allowing to fine-tune their descriptions. In
addition, the following discussions must be considered:

7.1. Choice of the Motifs

Our approach cannot be fully automated because the description of motifs and the building of
scenarios to reverse-engineer traces of a program are intrinsically manual, as shown in Figure
1, because, to the best of our knowledge, (1) there do not exist general and available models
of design motifs from which to obtain their description and (2) the identification of the feature
exercising particular classes has not been investigated so far, as the dual problem of feature
identification [2]. Consequently, our approach should be applied to behavioural and creational
motifs with limited structural characteristics, i.e., these motifs that have a low precision in
DeMIMA and other structural design pattern identification approaches.

7.2. Description of the Motifs

As explained in Section 5, we describe motifs in terms of collaborations among objects, as
given in [12]. However, as classes participating in a motif need not be collaborating precisely
according to the proposed collaborations, a user interface could help users to easily describe
the collaborations among objects and generate the scenario diagram and–or CSP as well as
grasp the impact of relaxing or removing such or such constraints.
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7.3. Choice of the Programs

Although the programs are intentionally designed to have clear implementations of the motifs
in [12] with explicit class and method names, they still are a good benchmark for the evaluation
of our approach, because they are well documented and have already been the subjects of
evaluation in previous works.

It is useful to evaluate programs for which the presence of a motif is known, because the
measures of precision and recall are calculated with the number of existing occurrences of the
motif. Also, the proposed identification approach is independent of the class and method names.
Therefore, this choice of programs does not constitute directly a threat to the generalisability
of MoDeC. Yet, we plan to evaluate our approach on more programs in the future to confirm
its generalisation.

The evaluated programs are all in Java. As previously discussed in Section 4, the target
language influences only the collection of execution traces. It does not affect the identification
of the motifs. Furthermore, the principles that we proposed in Section 4.2 to instrument
methods can be generalised to most object-oriented programming languages.

7.4. Choice of the Scenarios

While evaluating our approach, we had to choose the scenarios to be executed. An ideal
evaluation requires to trigger as many scenarios as possible, to evaluate the approach on all of
the functionalities of a program. However, due to feasibility constraints, we only used a subset
of the scenarios representing the most commonly used functionalities, which descriptions are
generally available in the documentation. Future work includes the merging of several scenario
diagrams to obtain sequence diagrams.

7.5. Scalability and Performance

One of the key challenges while using dynamic analysis to monitor the behavior of a program is
the large amount of generated data. As the size of the program grows, the execution trace also
grows, and execution time required to solve the CSP increases. For instance, as of today, the
CSP solver needs approximately 24 hours to solve the identification problem for an execution
trace in which 4,000 messages were traced, 9 variables, and 14 constraints (excluding the
combination of the two possible soft constraints).

We did not try to improve the performance of our proof-of-concept implementation in
time or space because in this paper we only wanted to show that our approach increases
precision and recall. The current implementation combines freely available tools, in particular
a generic-purpose explanation-based constraint solver. This solver as well as the definition of
the constraints should be optimised to cope more effectively with larger execution traces.

Among the most commonly used abstractions to cope with high volume of dynamic data, we
used start and end markers to specify respectively the beginning and end of exercising a feature.
We thus placed two markers in the execution trace of the scenario to specify the beginning
and end of a feature, for example the align feature of JHotDraw, which we believed would
exercise the classes of interest participating in occurrences identified by DeMIMA. Operations
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outside each a start and end markers can be omitted from the execution trace. Results after
applying our identification approach both on the original and the shorten execution trace
return identical occurrences. The marker mechanism reduces the volume of dynamic data but
still needs some more refinement to assure that no occurrences of a motif are omitted because
some method executions are eliminated from the original execution trace.

We will also consider summarising an execution trace to extract only its main content. Such
strategy removes implementation details such as calls to utility methods from the trace, which
have no obvious use for the identification of behavioral and creational motifs. Some works have
already researched this direction, for example [19, 20], and we plan to reuse such an approach
to further decrease the size of the trace, and thus improve performance. When summarising
traces, recall could decrease if data useful to the identification is removed. Although we are
confident that existing approaches took care of not removing too much data, empirical studies
will be performed to assess this possible decrease.

7.6. Comparing and Filtering Static and Dynamic Occurrences

In addition to using static occurrences to build scenarios, we can also compare and filter
static occurrences using dynamic occurrences to obtain more precise sets of static occurrences
without excluding true occurrences.

Comparing Occurrences. The static and dynamic occurrences do not provide the same
data. Differences exist because static occurrences can only include the declaring types
of methods and relationships and the declared types of method calls, while the dynamic
occurrences include the concrete types of the collaborating objects. For example,
the static occurrence of Command in JHotDraw, shown in Figure 14, identifies
class DrawingApplication as receiver while the dynamic occurrence, shown in Figure
17, identifies class JavaDrawApp. Class JavaDrawApp is actually a sub-type of class
DrawingApplication. Thus, dynamic occurrences are, as expected, more precise than
static occurrences with respect to types. Consequently, dynamic occurrences can make
the static occurrences more precise wrt. types, without impacting the overall precision
and recall of the static approach.

Filtering Occurrences. Dynamic occurrences can also be used to filter static occurrences to
obtain a new set of occurrences, whose precision is equal to or greater than the precisions
of the original set of static occurrences. Indeed, dynamic occurrences can confirm static
occurrences: for example, we can iterate through the 45 static occurrences of Command
in JHotDraw and exclude occurrences in which the Client role is not played by class
DrawingApplication or one of its subclass. We obtain a set of 93 occurrences. Therefore,
we increase the precision from 4% to 18/93 = 0.19 = 19% while keeping the recall equal
to 100%. We could use other role to increase the precision but in this particular case,
other roles would not yield to another increase of precision because no further roles in
the static occurrences match the remaining roles in the dynamic occurrences.

Combining static and dynamic occurrences can lead to an increase in precision from 4%
to 19%. Despite interesting improvement, the precision is still low for the following reason.
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The description of the motif in DeMIMA leads to large number of false positives due to the
behavioural nature of the motif and the static nature of the approach. Therefore, many false
positives must be filtered out by MoDeC. Yet, the description of the motif in MoDeC is not
manually optimised to increase precision by taking into account particular cases but follows
systematically the scenario diagram given in the Collaborations section of Gamma et al.’s
book to ensure 100% recall. Therefore, MoDeC is able to filter out some false positives but not
all of them, because some of them would require to fine-tune the description of the motif in
MoDeC. In the future, we plan to further refine the descriptions to address particular variants
of design motifs that would lead to a greater improvement in precision. Refined descriptions
could include negative constrains as suggested by Heuzeroth [21].

8. Related Work

The identification of motifs in object-oriented programs has been the subject of many works. In
particular, the identification of structural motifs has been investigated since as early as 1998
[43] by many authors. The identification of behavioural and creational design motifs using
dynamic analysis is the subject of fewer work.

8.1. Structural Motif Identification using Static Analysis
Since their inception in 1995, design patterns have been the subject of many works related
to their detection in programs. Most of these works use static data. For example, Wuyts
[43] published a precursor work on structural motif identification. His approach consisted of
representing programs as Prolog facts and in describing motifs as predicates on these facts.
Facts were extracted using static analysis. This approach had performance issues due to the use
of a Prolog engine. It could not deal with variants automatically. It had limited precision and
recall according to subsequent studies. It was followed by many other works to overcome its
limits. These works use different data and different representation and detection techniques. For
example, Quilici et al. [31] introduced the use of constraint programming to describe motifs as
constraint satisfaction problems, while improving both the descriptions and the performance.
Guéhéneuc et al. [18] drew inspiration from these works and introduced the use of explanation-
based constraint programming and of a dedicated metamodel to describe both motifs and
programs, including binary class relationships [15] to improve both the representation and the
handling of variants. Kniesel et al. [25] proposed and evaluated the use of a transformation
framework to specify and identify motifs with good precision and performance. Many other
works exist but, to the best of our knowledge, none of these previous works focused on
behavioral and creational motifs.
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8.2. Structural Motif Identification using Static and Dynamic Analyses

Some design patterns are categorised as creation or behavioural but display a strong structure.
For example, the Observer motif is characterised both by its structure (as illustrated in [12])
and the behaviour of its objects at runtime.

Heuzeroth et al. [22] proposed an approach that uses both static and dynamic data to
identify interaction “patterns” and illustrated their approach on the Observer motif using a
dedicated detection algorithm. It is unclear how their approach can be generalised to pure-
behavioural/creational motifs. Shawky et al. [35] proposed a similar approach to improve the
precision and recall of a static identification approach with limited benefits.

Some previous work also used dynamic data in addition to structural data to improve
precision and recall. In particular, most previous works on the identification of structural
motifs use data related to method calls, which can be considered as dynamic data, for example
[1] or [15] used in [18].

8.3. Creational and Behavioural Motif Identification using Dynamic Analysis

Few authors have tackled the problem of specifying and identifying behavioural and creational
motifs using dynamic analysis. Following Heuzeroth et al. [21], Wendehals [41] also proposed
to combine static and dynamic analyses to allow identifying behavioural and creational motifs.
They defined an approach in which occurrences are identified using static and dynamic analyses
in parallel. Identified static and dynamic occurrences are presented to the maintainers for
acceptance or rejection.

Wendehals and Orso [42] presented an approach to specify behavioural and creational motifs
using UML 2.0 sequence diagrams and to use static occurrences as input of the dynamic
analysis. Sequence diagrams are first customised by the maintainers and then converted into
finite automata for the identification. Static occurrences are weighted with confidence values
based on the results of the dynamic analysis.

Wendehals’ work has been a source of inspiration for our work. We improve on this previous
work by using the static occurrences to direct the generation of the trace and thus increase
the likelihood to capture the interactions among objects participating in the motifs. We also
introduce the use of explanation-based constraint programming to avoid having to customise
the motifs. Finally, we present the results of our approach on a greater number of motifs.

8.4. Recovery of Sequence Diagrams

The recovery of sequence diagrams has been tackled by several authors. An important
contribution to this field is the work of De Pauw et al. [29], which describes a model to
visualize data about the execution of object-oriented programs. Briand et al. [5] proposed a
method to reverse engineer UML sequence diagrams from execution traces. They used the
recovered traces and a metamodel to describe UML v1.x sequence diagrams. Rountev et al.
[32] described a first algorithm to reverse engineer UML v2.0 sequence diagrams by control-
flow analysis. Their approach did not consider data obtained by dynamic analysis, and thus
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is limited by the accuracy of the control-flow analysis. Briand et al. [4] introduced a complete
approach to recover scenario diagrams using execution traces.

9. Conclusion

We proposed MoDeC, a 3-step approach to identify behavioral and creational design motifs
in source code of programs using dynamic analysis. To reduce the number of scenarios, we
used a static approach to design pattern detection. We described behavioral and creational
motifs as scenario diagrams. We showed the reverse-engineering of scenario diagrams of a given
program by means of dynamic analysis through intermediate-code instrumentation. Finally,
we implemented the concrete identification using explanation-based constraint programming,
to identify, in the scenario diagrams of a program, objects and messages satisfying the set of
constraints derived from the scenario diagram of a motif. We illustrated our approach on the
real-world program JHotDraw and the Command motif and showed that combining MoDeC
with our previous static approach, DeMIMA, leads to an increase in precision from 4% to 19%
while keeping the recall equals to 100%. We also evaluated our approach on Dresden OCL
Toolkit, JHotDraw, JRefactory, PMD, and QuickUML with the Builder, Command,
and Visitor motifs to show its good precision and perfect recall.

Future work includes evaluating our approach on more motifs and programs; merging
scenario diagrams to obtain sequence diagrams; using abstraction and summary mechanisms
to reduce the size of execution traces without losing relevant data; adding new constraints
and improving the CSP of the motifs to obtain higher precision without impacting recall. It
also includes improving the performance in space and time of the current implementation;
analysing source code to suggest which feature to exercise to trace classes and objects of
interest, obtained from DeMIMA; increasing further precision by tailoring motif descriptions.
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