
Research

Detecting Asynchrony and
Dephase Change Patterns by
Mining Software Repositories

Fehmi Jaafara,b, Yann-Gaël Guéhéneuca, Sylvie Hamelb, and Giuliano Antoniolc

a PTIDEJ Team, DGIGL, École Polytechnique de Montréal, Québec, Canada
bLBIT Lab., DIRO, Université de Montréal, Québec, Canada
c SOCCER Lab., DGIGL, École Polytechnique de Montréal, Québec, Canada

SUMMARY

Software maintenance amounts for the largest part of the costs of any program. To reduce this part of the
costs, previous work proposed approaches to identify the artefacts of programs that change together and,
thus, reveal the (hidden) dependencies among changing artefacts. These approaches analyse historical data,
mined from version control systems, and report change patterns, which hint at the causes, consequences,
and actors of the changes to software artifacts, generally source code files. They also introduce so-called
change patterns that describe some typical change dependencies among files. In this paper, we introduce two
novel change patterns: the Asynchrony change pattern, akin to macro co-changes (MCC), i.e., of files that
co-change within a large time interval (change periods), and the Dephase change pattern, akin to dephase
macro co-changes (DMCC), i.e., macro co-changes that always happen with the same shifts in time. We use
the k-nearest neighbor algorithm to group changes into change periods and we use the Hamming distance to
detect approximate occurrences of MCC and DMCC. We present our approach, Macocha, to identify these
two change patterns in large programs. We apply Macocha and compare its results in terms of precision and
recall with UMLDiff (file stability) and association rules (co-changing files) on seven systems: ArgoUML,
FreeBSD, JFreeChart, Openser, SIP, XalanC, and XercesC, developed with three different languages (C,
C++, and Java) and of sizes ranging from 532 to 1,693 C, C++, or Java files and from 1,555 to 23,944 change
commits. We also use external information and static analyses to validate the (approximate) MCC and
DMCC found by Macocha. We thus show the existence and usefulness of theses novel change patterns to
ease software maintenance and, thus potentially, reduce related costs.

KEY WORDS: Change Pattern; Co-changes; Stability; Change Period; Bit Vectors.

1. Introduction

Any program must change to meet new requirements and user needs. Developers must continually
adapt programs else they become progressively unsatisfactory [LB85] and eventually become obsolete

1Correspondence to: Fehmi Jaafar – Jaafarfe@iro.umontreal.ca

2 FEHMI JAAFAR ET AL.

to the point of disappearing. Indeed, developers need knowledge to identify hidden dependencies
among programs’ artefacts to improve the speed and accuracy of changes while reducing maintenance’s
cost.

The literature describes several approaches to extract and analyse such hidden dependencies
and to infer the patterns that describe these changes to help developers maintain their programs
[BKZ10, KR11]. Artefacts can be source code files, classes in object-oriented programs, specifications,
and so on. As in previous work, e.g., [ZWDZ04], [ARV05], and [SBA06], for the sake of simplicity,
we focus on C, C++, and Java source code files (.c, .cpp, and .java) as they are among the most
common and popular programming languages.

Several of the previous approaches identify co-changes among files, e.g., [YMNCC04, ZWDZ04],
which represent the (often implicit) dependencies or logical couplings among files that have been
observed to frequently change together. Two files are co-changing if they were changed by the same
developer and with the same log message in a time-window of less than 200 ms. [ZWDZ04]. Mockus
et al. [MFH02] defined the proximity in time of changes by the check-in time of files that differ by
less than three minutes. Other studies (e.g., [FPG03] and [Ger06]) described issues about identifying
atomic change sets and supposed that they differed by few minutes. Change patterns are motifs that
highlight co-changing groups of files [SBA06] and that describe the (often implicit) dependencies or
logical couplings among files that have been observed to frequently change together [GHJ98].

In our previous paper [JGHA11], we showed that, because previous approaches cannot detect change
patterns between files with long time intervals between their changes and–or performed by different
developers and with different log message, they miss occurrences of other change patterns. We also
showed that such change patterns provide interesting information to developers. For example, in
the Bugzilla of ArgoUML, the bug ID 53782 states, in relation to ArgoDiagram.java, that an
“ArgoDiagram should provide constructor arguments for the concrete classes to create”, which relates
to ModeCreateAssociationClass.java. The bug report thus confirms that these two files
have a relationship, which is hidden because we cannot detect dependencies among these two files by
static analysis. However, no previous approach can detect that these files co-changed because they were
maintained by the same developer bobtarling but their changes were always separated by a few
hours. Yet, knowing the dependency among theses files is useful to a new developer that must change
ArgoDiagram.java: she must assess ModeCreateAssociationClass.java for change.

Let F1 and F2 be two file of the same program, the scenario illustrated with ArgoUML could happen
when a developer is in charge of a subset of a large program, composed of, among others, files F1 and
F2. She may change and commit these two files in the same day but with a few hours between each
commit, as illustrated in Figure 1. This scenario may repeat for years and would be undetected by
previous approaches, which use sliding windows of few minutes to group changes committed by the
same developer and with the same log message. Yet, such co-change contains important information
both for the developer and her colleagues: changes to F1 must likely propagate to F2 because these
two files have a, possibly hidden, dependency, to avoid introducing bugs in the program.

As another example in ArgoUML, we found that the developers mvw and tfmorris contributed
with some patches that contains NotationUtilityJava.java and ModelElementName-

2http://argouml.tigris.org/issues/show_bug.cgi?id=4604

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

DETECTING ASYNCHRONY AND DEPHASE CHANGE PATTERNS 3

NotationUml.java3 and the bug ID 29264 confirms that the two files have dependencies (see
Section 4 for details). No previous approach can detect that these files co-changed because, during
the development and the maintenance of ArgoUML, these two files were never changed by the
same developer at the same time but were always changed by developers mvw and tfmorris in
two consecutive times: first NotationUtilityJava.java and, subsequently after some hours,
ModelElementNameNotationUml.java, pointing out dependency among these files.

This previous scenario from ArgoUML happens when a developer D2 is always reminded to change
file F2 after some time by developer D1, whenever D1 changed file F1, as illustrated in Figure 2.
Previous work, e.g., [YMNCC04], [ZWDZ04], [CCCDP], does not consider co-changed files if they
were changed by two different authors in the same period even though knowing the, possibly hidden,
dependency among such co-changed files could prevent developers to release a program with a bug
because of a mismatch between files F1 and F2.

In this paper, we describe Macocha, an approach to detect two novel change patterns, summarised
in our previous work [JGHA11] and detailed in Section 2. Macocha detects the Asynchrony change
pattern, macro co-changes (MCC), and the Dephase change pattern, dephase macro co-changes
(DMCC). It builds on previous work on co-changes and uses the concept of change periods, detailed in
Section 2, and defined as a set of changes committed by developers in a continuous period of time. In
particular, we use the k-nearest neighbor algorithm [Das91] to group changes into their change periods.

The Asynchrony change pattern (MCC) describes a set of files that always change together in the
same change periods. The Dephase change pattern (DMCC) describes a set of files that always change
together with some shift in time in their periods of changes. We also consider approximate MCC
and DMCC when co-changes occur “almost” always in the same change periods, using the Hamming
distance and by dividing the MCC (respectively, DMCC) set into two sets: the SMCC (respectively,
SDMCC) set that contains files that follow exactly the same (dephase) change pattern and the SMCCH

(respectively, SDMCCH) set that contains approximate (dephase) macro co-changing files.
As shown in [JGHA11], Macocha relates to file stability and co-changes. We thus perform two

types of empirical studies. Quantitatively, we compare the stability analysis of Macocha with that
of UMLDiff [XS05a] and the co-change analysis of Macocha with the state-of-the-art association
rules [YMNCC04, ZWDZ04]. We also use external information provided by bugs reports, mailing
lists, and requirement descriptions to validate the Asynchrony and Dephase change patterns not
found using previous approaches and to show that these novel change patterns explain real evolution
phenomena and could help reduce maintenance costs. We apply our approach on seven programs:
ArgoUML, FreeBSD, JFreeChart, Openser, SIP, XalanC, and XercesC, developed with three different
programming languages, C, C++, and Java.

Thus, this paper extends our previous work [JGHA11] with the following contributions. First, we
describe in more details our approach, Macocha. Second, we use the k-nearest neighbor algorithm
(KNN) to group changes into change periods and therefore to determine automatically the different
duration of change periods. Third, we perform an extensive validation of Macocha on three new
programs, JFreeChart, Openser and XercesC, developed with three different languages: C, C++ and

3http://argouml.tigris.org/issues/showattachment.cgi/2118/20101116-patch-notation.
txt
4http://argouml.tigris.org/issues/show_bug.cgi?id=2926

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

4 FEHMI JAAFAR ET AL.

Java. In particular, we study the variations in precision and recall of our approach when using different
values of its parameters and we perform a static analysis to validate the occurrences of new change
patterns. Finally, we provide evidence on the relevance of the Dephase change patterns detected with
different shifts in time.

This paper is organised as follows: Section 2 presents Macocha. Section 3 describes our empirical
study while Sections 4 and 5 report and discuss its results as well as threats to its validity. Section 6
discusses related work. Section 7 concludes with future work.

2. Our Approach: Macocha

We propose Macocha to mine version-control systems (CVS and SVN), to identify the change periods
in a program, to group source files according to their stability through the change periods, and to
identify, among changed files, those that follow the Asynchrony or Dephase change patterns, i.e., are
macro co-changing or dephase macro co-changing. We now present the concepts of our approach using
examples from ArgoUML.

2.1. Definitions

2.1.1. Change Period

A change period is a period of time during which several commits to different files occurred without
“interruption”, i.e., the dates of these commits are “close” to one another. We need the concept of
change period because we analyse different programs belonging to various domains and with different
sizes, histories, and programming languages: the change periods (beginning dates and durations)
cannot be the same in each program.

Consequently, we want to identify the change periods in a program by grouping all the changes
committed in nearby dates, independently of the developers who committed them and of their log
messages. To identify changes occurring closely to one another, i.e., belonging to a same change
period, with use the k-nearest neighbor algorithm (KNN). The KNN is an non-parametric learning
algorithm[KZP07] that does not make any assumptions on the underlying data distribution.

Hatton [Hat07] presented an empirical study to estimate the time for the handling of a particular
maintenance request (also known as change request) and showed that the largest duration of a change
period to implement a maintenance request is not more than 40 hours. Thus, we set the initial duration
of the change periods to 40 hours.

Our KNN-based algorithm to identify the change periods in a program history works as follows, as
illustrated on Figure 3:

• First, we divide the whole maintenance period, from first to last considered changes, of a given
program into equal sub-periods. Thus, following Hatton, we divide the history of the program
into change periods of equal duration of 40 hours.

• Second, to each change period, we assign the first change committed at a date nearest to but later
than the beginning date of the change period.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

DETECTING ASYNCHRONY AND DEPHASE CHANGE PATTERNS 5

Figure 1. Two changes performed by one developer on F1 and F2 are sequential in time (after few hours), F1 and
F2 follow the Asynchrony change pattern

• Third, we use the KNN with k = 2 to assign the rest of the changes into their appropriate change
periods: each change is assigned to the change period including its k nearest neighbors in term
of date of commit, whatever their developers and their log messages, and even if its change date
is earlier than the beginning date of the change period.

• Fourth, when the KNN has assigned all changes into the different change periods, we recompute
the beginning and end dates of each change period based on the dates of their earliest and latest
changes. If there exists one or more change periods of duration greater than 40 hours, then we
reapply the KNN algorithm with an increased value of k, else we stop.

In section 4, we show that using this algorithm to group changes into change periods allow us to
improve precision and recall over previous approaches.
In ArgoUML: We find 290 change periods in two years of maintenance. In Figure 4, we present the
durations of all the different change periods detected in ArgoUML using the KNN algorithm. The mean
duration of these change periods is equal to 27 hours 8 minutes 14 seconds 640 ms. and the standard
deviation is equal to 12 hours 6 minutes 4 seconds 572 ms.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

6 FEHMI JAAFAR ET AL.

Figure 2. Files F1 and F2 are changed by different developers and in two consecutive periods of time, F1 and F2
follow the Dephase change pattern

2.1.2. Profile

We define a profile as a bit vector that describes if a file is changed or not during each of the change
periods of a program. The length n of this bit vector is the number of change periods. We indicate that
a file has changed in the ith period by putting the ith bit to one; zero otherwise.

Thus, for each file in a program, its profile is defined as a vector x = x1...xn, where n represents
the number of change periods. The value of xi indicates whether the file F is changed or not at the ith

change period.

xi =

{
1 if file is changed in the change period i
0 otherwise.

We use bit vectors because they allow efficient operations: setting a bit is constant in time, O(1);
computing the union or intersection of two bit vectors, or the complement of a bit vector, is linear
in time, O(n). Moreover, it is often possible to implement these operations with instruction-machine
processing 32 or 64 bits simultaneously.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

DETECTING ASYNCHRONY AND DEPHASE CHANGE PATTERNS 7

Figure 3. Illustration of the KNN-based algorithm’s steps to identify the change periods in a program history

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

8 FEHMI JAAFAR ET AL.

Figure 4. Change periods durations in ArgoUML detected by the KNN algorithm

Figure 5. Profiles showing file Stability

Figure 6. Files F1 and F2 follow the same occurrence of the Asynchrony change pattern

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

DETECTING ASYNCHRONY AND DEPHASE CHANGE PATTERNS 9

Figure 7. Three different bit vectors showing dephase macro co-change

Figure 8. Three different bit vectors showing approximate macro co-change

2.1.3. File Stability

Macocha groups files according to their stability: idle and changed, as shown in Figure 5. Each group
is a set of profiles with similar stability. Idle files do not change after their introduction into the
program, i.e., their profiles mostly contain zeroes, while changed files are files that changed after their
introduction into the program. Macocha uses this group to identify which files follow the Asynchrony
or Dephase change patterns.
In ArgoUML: Macocha identifies 478 idle files and 1,143 changed files.

2.1.4. Change Patterns

Similar profiles grouped together represent occurrences of the Asynchrony and Dephase change
patterns. Idles files do not change in any change period after their introduction into the program. Thus,
we do not consider this group of files because they are not useful for the co-change analysis due to
their rare evolution.

A SMCC is two or more changed files that change together, i.e., that have identical profiles during
the life of a program, as illustrated in Figure 6. Given a file F1, a SDMCC is the set composed of F1
and one or more files, F2...FM, such that F2...FM always macro co-change with the same shift in time
s ∈ [0, n− 1] with respect to F1 during the evolution of a program.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

10 FEHMI JAAFAR ET AL.

Figure 9. The mean of Precision and Recall achieved by Macocha with different values of DH for the seven
programs

Figure 7 illustrate that F1 and F2 are in dephase macro co-change with s = 1; F2 and F3 are in a
DMCC with s = 2; and, F1 and F3 are in a DMCC with s = 3.
In ArgoUML: Macocha reports that ProgressEvent.java and TestActionAddEnumera-
tionLiteral.java followed the Dephase change pattern with s = 2; and, ProgressEvent-
.java and IConfigurationFactory.java are in a DMCC with s = 3. Previous approaches
cannot detected that these files follow such change patterns.

Macocha considers both identical and similar profiles (with or without shifts in time) to account for
cases where the files did not change exactly in the same change periods. We use the Hamming distance
[HAM50] DH to measure the amount of differences between two profiles, i.e., the number of positions
at which the corresponding bits are different. For a fixed length n, the Hamming distance is a metric
on the vector space of the bit vectors of that length, as it fulfills the conditions of non-negativity and
symmetry. The Hamming distance between two profile a and b is equal to the number of ones in the
the vector a⊕ b.

After analysing several values of DH between two profiles in different programs, we found that
DH < 3 is the best trade-off between precision and recall (as shown in Figure 9). Thus, in this paper,
we consider that two profiles are similar if their Hamming distance is less then three (DH < 3).

Figure 8 illustrate that F1 and F2 are in approximate macro co-change with DH < 3; F2 and F3
are in approximate MCC with DH < 3; and, F1 and F3 are in a approximate MCC with DH < 5.
In ArgoUML: Macocha reports that ProgressEvent.java and ProgressListener.java
follow the Asynchrony change pattern (they have exactly the same profile); and, ProgressEvent-
.java and HelpListener.java are in approximate MCC with DH < 2;

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

DETECTING ASYNCHRONY AND DEPHASE CHANGE PATTERNS 11

Figure 10. Meta-model of our data

Figure 11. Analysis-process

2.2. Data Model, Implementation, and Outputs

Figure 10 describes the data used by Macocha. A change contains several attributes: the changed file
names, the dates of changes, the developers having committed the changes. Using this data, Figure 11
illustrates the concrete process of Macocha. It takes as input a CVS/SVN change log. First, Macocha
calculates the duration of different change periods using the k-nearest neighbor algorithm. Second, it
groups changes in adequate change periods. Third, it creates a profile that describes the evolution of
each file in each change period. fourth, it uses these profiles to compute the stability of the files and,

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

12 FEHMI JAAFAR ET AL.

then, to identify changed files. Finally, Macocha detects macro co-changing files (changed files that
follow the Asynchrony change pattern) and dephase macro co-changing files (changed files that follow
the Dephase change pattern).

Macocha returns the following sets of occurrences of change patterns:

• SMCC , the set of macro co-changing files with identical profiles in a program;
• SDMCC , the set of dephase macro co-changing files identified when shifting profiles by s change

periods with s ∈ [0, 5];
• SMCCH , the set of approximate macro co-changing files with similar profiles in a program by

using the Hamming distance with DH ∈]0, 3[;
• SDMCCH , the set of approximate dephase macro co-changing files identified when shifting

profiles by s change periods and by using the Hamming distance with DH ∈]0, 3[.

Macocha weighs, also, changes according to their distance in time: files co-changing frequently in
the past but not in recent times may be less interesting than files having recently changed together. Thus,
Macocha converts the bit vectors of files following a same change pattern to a decimal number, compare
these decimals numbers to report the set of occurrences of change patterns including the most recently
changed files (because as files are changed more recently, the conversion will naturally lead to greater
decimal numbers). Because they are out of the scope of this paper, future work includes empirical
studies of the usefulness for developers of ranking occurrences of the Asynchrony and Dephase change
patterns.

3. Empirical study

Following GQM [BW84], the goal of our study is to show that our Macocha can identify occurrences of
the Asynchrony and Dephase change patterns and that these occurrences describe interesting evolution
phenomena. Our purpose is to bring generalisable, quantitative evidence on the existence of the
Asynchrony and Dephase change patterns. The quality focus is the reduction of maintenance costs
by detecting and using change patterns. The perspective is that of both researchers and practitioners
who should be aware of the hidden dependencies among files to make informed changes. The context
of our study is the maintenance of programs.

3.1. Research Questions

We formulate five research questions:

• RQ1: How does Macocha compare to previous work (UMLDiff) in terms of changed files?
• RQ2: How does Macocha compare to previous work (association rules) in terms of precision and

recall?
• RQ3: What is the precision and recall of Macocha when detecting occurrances of the Asynchrony

pattern?
• RQ4: Are there occurences of Dephase change patterns in programs?
• RQ5: What is the usefulness of Dephase change patterns?

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

DETECTING ASYNCHRONY AND DEPHASE CHANGE PATTERNS 13

ArgoUML FreeBSD JFreeChart Openser SIP XalanC XercesC
Languages Java C Java C Java C++ C++
Numbers of Versions 9 11 5 5 16 13 14
Numbers of Files 1,621 500 1,106 383 1,693 390 396

Table I. Descriptive statistics of the object
programs

3.2. Objects

We choose seven programs developed with three different programming languages: ArgoUML,
JFreeChart and Sip developed with java; FreeBSD and Openser developed with C; XalanC and
XercesC developed with C++. We use these programs because they are open source, have been used in
previous work [CCCDP] [ZBLL06], are of different domains and in different programming languages,
span several years and versions, and underwent between thousands and hundreds of thousands of
changes. Table I summarises some programs statistics.

ArgoUML5 is an UML diagramming program written in Java and released under the open-source
BSD License. We analyse the evolution of this program for a period of 11 years, from 2007-02-19 to
2009-02-19. In this period, ArgoUML has gone through over 9 major versions.

FreeBSD6 is a free Unix operating system written in C and released under the open-source BSD
License. We analyse the evolution of this program for a period of two years, from 2007-11-08 to 2009-
11-08. In this period, FreeBSD has gone through 11 major versions.

JFreeChart7 is a Java open-source framework to create complex charts in a simple way. We analyse
the evolution of this program from2008-02-13 to 2010-02-09. In this period, JFreeChart has gone
through five versions.

Openser8 is an open source implementation of a SIP server, licensed under the GNU General Public
License. This program can be used as : SIP registrar server, SIP router, SIP redirect server, etc. It can
be used, also, in small systems, for example in embedded systems like DSL routers, but also for large
installations at Internet service providers with several million customers. The Openser project was
created on 14 June 2005. We detect asynchrony and dephase change patterns in this program from this
date to March 2007-06-04. In this period, Openser has gone through five versions.

SIP Communicator9 is an audio/video Internet phone and instant messenger that supports some of
the most popular VoIP and instant messaging protocols, such as SIP, Jabber, AIM/ICQ, MSN. SIP is
open source and freely available under the GNU Lesser General Public License. It is written in Java.
We analyse the evolution of this program among 16 versions, from 2006-12-11 to 2008-12-08.

5http://argouml.tigris.org/
6http://www.freebsd.org/
7http://www.jfree.org/
8http://www.opensips.org/
9http://www.sip-communicator.org/

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

14 FEHMI JAAFAR ET AL.

XalanC10 is an open-source software library from the Apache Software Foundation written in C++.
We analyse the evolution of this library for a period of 11 years, from 1999-02-21 to 2001-12-20. In
this period, XalanC has gone through over 13 major versions.

XercesC11 is a collection of software libraries for parsing, validating, serialising, and manipulating
XML. We analyse the evolution of this program from its publishing in 99-11-09 for a period of two
years. In this period, XercesC has gone through 14 versions.

3.3. Analyses

To answer our research questions, we apply Macocha to different object programs and we collect all the
occurrences of the Asynchrony and Dephase change patterns. We then perform two types of empirical
studies. Quantitatively, we first compare the results of Macocha with those of UMLDiff for file stability.
We thus show that Macocha can identify the same idle and changed files as UMLDiff using only data
from change logs. It does not produce as detailed information as UMLDiff but this information is
sufficient for our needs. Second, we compare the results of Macocha with those of the state-of-the-
art approach for detecting co-changing files [ZWDZ04], which uses association rules. We also thus
show that the set SMCC produced by Macocha includes the same co-changing files as reported using
association rules plus new co-changing files.

Qualitatively, we confirm that each MCC found by Macocha but not by the association rules-
based approach [ZWDZ04] is indeed a dependency link, using external information from bug reports,
requirement descriptions, and mailing lists. We validate, also, each occurrence of DMCC and MCC
patterns found by Macocha in the analysed programs by studying their static relationships (such as
use relations, inheritance relations, and so on). For program written in Java (ArgoUML, JFreeChart,
and SIP), we use an existing tool, PADL [GA08], to automatically reverse-engineer class diagrams
from the source code of object-oriented programs. A model of a program is a graph whose nodes
are classes and edges are relationships among classes, such as: associations, use relations, inheritance
relations, creations, aggregations, and container-aggregations (special case of aggregations [GAA04]).
As of today, PADL can only handle all static relations for programs written in Java. Thus, for programs
considered in this study and written with other language (FreeBSD, Openser, XalanC, and XercesC),
we investigate static relationships among files following the Asynchrony and Dephase change patterns
by manual source-code verification.

We thus report a quantitative analysis in accordance with the state of the art and a qualitative analysis
in accordance with external information and a static analysis. We also report and discuss the number
of occurrences of the (approximate) Asynchrony and Dephase change patterns.

We do not report performance because, using a standard computer with a Intel Core i7-740QM (1.73/
2.93GHz), 6GB RAM, and 1GB VRAM, Macocha identifies (dephase) macro co-changes in FreeBSD
(the largest program in terms of number of files and of changes) in less than ten minutes.

10http://xml.apache.org/xalan-c/
11http://xerces.apache.org/xerces-c/

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

DETECTING ASYNCHRONY AND DEPHASE CHANGE PATTERNS 15

Training set Testing set
Start Date End Date # Transactions # CPs Start Date End Date # Transactions # CPs

ArgoUML 07-02-19 09-02-19 4718 290 09-02-22 11-02-21 2225 191
FreeBSD 07-11-08 09-09-22 23944 85 09-12-21 11-10-31 26201 73
JFreeChart 08-02-13 10-02-09 1555 131 10-02-16 12-02-13 197 24
Openser 05-06-14 07-06-04 2321 247 07-06-05 09-06-15 3639 281
SIP 06-12-11 08-12-08 2870 261 08-12-09 10-12-09 3230 307
XalanC 99-12-21 01-12-20 2242 219 01-12-20 03-12-28 1379 165
XercesC 99-11-09 01-11-09 1820 204 01-11-12 03-11-08 2151 227

Table II. Internal evaluation of Macocha
(CPs: Change periods)

ArgoUML FreeBSD JFreeChart Openser SIP XalanC XercesC
Idle files 478 302 398 71 314 66 40
Changed files 1,143 198 708 312 1,379 324 356
of SMCC 192 45 281 21 350 41 68

Max # files 14 12 51 8 36 8 11
Min # files 2 2 2 2 2 2 2

of SMCCH 353 98 425 41 570 69 125
Max # files 27 20 61 13 51 11 24
Min # files 2 2 2 2 2 2 2

Table III. Cardinalities of the sets obtained in
the empirical study

4. Study Results and Discussions

We now present the results of our empirical study. Table III and Figure 13 summarises the
cardinalities of the sets obtained by applying Macocha.

4.1. RQ1: How does Macocha compare to previous work (UMLDiff) in terms of changed files?

Macocha groups different commits in programs into change periods detected by the k-nearest neighbor
algorithm. Figure 12 show the different change periods detected in each program. We observe that
for the same duration of maintenance (two years for each program), the number of change periods
detected by the KNN algorithm varies between 85 change periods, detected in FreeBSD, and 290
change periods, detected in ArgoUML. We also observe that, in each program, change periods detected
by the KNN algorithm have not the same duration. For example, the duration of the change periods
detected in FreeBSD varies between 1 millisecond and 38 hours 48 minutes 42 seconds 747 ms.

By analysing each file changed or not during different change periods in programs, Macocha creates
the set of profiles describing the evolution of different files in the whole life of the programs. This
analysis involves also eliminating idles files because they do not change in any change period after
their introduction into the program. Therefore, they cannot participate in change patterns.

Because we want to distinguish idle from changed files, we group together the files identified as
short-lived and active by UMLDiff and compare the sets provided by UMLDiff and by Macocha and

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

16 FEHMI JAAFAR ET AL.

Figure 12. Change periods durations in different programs detected by the KNN algorithm

find that they are identical. For example, as shown in Table IV, Macocha finds 1,143 changed files in
ArgoUML, identical to the UMLDiff 414+ = 729 short-lived and active files.

Table IV reports the number of idle, short-lived, and active files found by UMLDiff in the object-
oriented object programs (ArgoUML, JFreeChart, SIP, XalanC and XercesC) and their categorisation
by Macocha. The main limitation for using UMLDiff is that it cannot detect idle, short-lived, and active
files in program developed with non object-oriented programming languages (FreeBSD and Openser
developed in C) because it cannot create their UML-like representations. In the contrary to UMLDiff,
Macocha can analyse file stability for any program, providing that their CVS/SVN repositories are
available.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

DETECTING ASYNCHRONY AND DEPHASE CHANGE PATTERNS 17

Idle Groups Changed Groups

ArgoUML
Idle Clusters 478 0
Short-lived Clusters 0 414
Active Clusters 0 729

JFreeChart
Idle Clusters 398 0
Short-lived Clusters 0 43
Active Clusters 0 665

SIP
Idle Clusters 314 0
Short-lived Clusters 0 742
Active Clusters 0 637

XalanC
Idle Clusters 66 0
Short-lived Clusters 0 122
Active Clusters 0 202

XercesC
Idle Clusters 40 0
Short-lived Clusters 0 170
Active Clusters 0 186

Table IV. Cardinality of Macocha sets (idle
groups and changed groups) in comparison to

UMLDiff [XS05a]

Finally, Macocha computes file stability in few minutes (unlike UMLDiff, which takes few hours
[XS05b]) because it does not create UML-like representations of the programs before performing its
analysis. In the following, we present some examples from the object programs:
In JFreeChart: In two years of maintenance, Macocha analyse 131 change periods. In these periods,
we detect 398 idle files. For example, the file ColumnArrangement.java was modified in only
one change period. Using UMLDiff, we confirm that this file belong to an idle cluster.

We detect, also, 708 changed files. For example, the file BarRenderer.java was modified 17
times during the evolution of JFreeChart. Thus, this file belong to the changed group. Using UMLDiff,
we confirm that this file belong to an active cluster.
In FreeBSD: We find 302 idle files. For example, kvmproc.c was modified in one change period
in two years.

We detect also 198 changed files. The file ufsvnops.c was modified in 15 change periods during
the evolution of FreeBSD. We cannot use UMLDiff to verify this result because UMLDiff can not
analyse file stability in programs written in C.

We thus answer RQ1: How does Macocha compare to previous work (UMLDiff) in terms of
changed files? as follows: Macocha detects changed files with the same precision as UMLDiff
but with a better recall to find occurrences of the Asynchrony and Dephase change patterns in a
program, whatever its programming language.

4.2. RQ2: How does Macocha compare to previous work (association rules) in terms of
precision and recall?

For each program, Macocha detects files that have identical or similar profiles (the MCCs sets) and
report them. We compare the SMCCH found by Macocha with the co-changing files found by an
approach based on association rules [ZWDZ04] (see also [CCCDP]), which uses the Apriori algorithm

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

18 FEHMI JAAFAR ET AL.

Macocha Association Rules
Precision Recall Precision Recall

ArgoUML 49% 30% 28% 29%
FreeBSD 19% 40% 11% 40%
JFreeChart 16% 33% 15% 33%
Openser 51% 32% 50% 32%
SIP 50% 55% 50% 52%
XalanC 82% 34% 79% 33%
XercesC 72% 56% 58% 46%

Table V. Internal evaluation of Macocha
in comparison to an approach based on

association rules [ZWDZ04]

[AS94] to compute association rules. The Apriori algorithm takes a minimum support and a minimum
confidence and then computes the set of all association rules. To obtain a comprehensive set of rules, we
consider as valid rules those achieving a minimum confidence of 0.9 as in previous work [ZWDZ04]
and a minimum support of 2 to compare association rules and our approach. We denoted the set of
co-changing files found by an approach based on association rules [ZWDZ04] as SAR.

We thus perform an internal evaluation similar to that of Zimmermann et al.’s [ZWDZ04]. Given
snapshots Si, i ∈ [1, ..., n], we build two sets Ttrain = {S1...St} and Ttest = {St+1...Sn} , as shown in
Table II. We use Ttrain to build association rules and macro co-change dependencies and we compare
the co-changing files in Ttrain with those in Ttest.

For the seven programs, we observe that Macocha improves precision and recall over the approach
based on association rules, as shown in Table V. For example, for ArgoUML, results indicate that the
precision and the recall of Macocha, respectively 49% and 30%, are better than those of association
rules, respectively 28% and 29%. We observe that the Apriori algorithm generates high support sets of
rules that are later checked for high confidence. Thus, high confidence rules with low support are not
generated [AS94], which could lead to missed co-changing files.

We thus answer RQ2: How does Macocha compare to previous work (association rules) in terms
of precision and recall? as follows: Macocha improves the identified co-changes over an approach
based on association rules in terms of precision and recall.

4.3. RQ3: What is the precision and recall of Macocha when detecting occurrances of the
Asynchrony pattern?

The rationale of an internal evaluation is that no expert and no pre-existing groups of co-changing
files are available. Precision and recall are measured for the testing sets by considering, for each file,
the groups resulting from the training sets as oracles. Such an internal validation have some limits
[VKvRvV09] [DLL09]: (1) Files co-changing frequently in the past (training set) but not recently (test
set) will be considered wrongly as false negatives; (2) Files co-changing frequently recently (test set)
but not in the past (training set) will be considered wrongly as false positive; (3) If the training set
contained false positives or negatives, they cannot be detected using the testing set.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

DETECTING ASYNCHRONY AND DEPHASE CHANGE PATTERNS 19

Macocha vs. Association Rules
Precision Recall

ArgoUML 94% 98%
FreeBSD 82% 100%
JFreeChart 65% 96%
Openser 95% 89%
SIP 98% 100%
XalanC 100% 99%
XercesC 100% 100%

Table VI. External evaluation of Macocha
when using the results of an approach based

on association rules [ZWDZ04] as oracle

To overcome the limits of an internal validation and to validate change patterns not found using
association rules, we also perform an external evaluation of Macocha by considering the results of the
association rules as an oracle and by manually comparing them with those of Macocha.

We also apply a static analysis to validate the MCCs not detected by the approach based on
association rules because co-change analysis is known to be more useful when combined with static
analysis [HH04]. Thus, for each (approximate) occurrences of the Asynchrony change pattern, we
validate the dependencies among their files by detecting their static relationships. If we cannot detect
such static relationships, we check for other external information from bug reports, mailing lists, and
so on to validate the MCCs detected by Macocha.

Thus, for each set returned by the association rules-base approach, if an identical set is returned by
Macocha, it is considered a true positive. If the two sets are not identical, we use external information
to validate missing files and to decide if they present a true positive, a false negative, or a false positive.
For example, in JFreeChart, all the sets detected using association rules are detected by Macocha
except nine sets. We detect static relationships among files of seven sets from the nine missed sets
and we validate the dependencies among the files of last two sets using bug reports in the Bugzilla of
JFreeChart.

Table VII reports, under the External Information header, the precision and recall values of Macocha
after manual validation, which show that Macocha detects occurrences of change patterns missed or
wrongly reported using association rules. Table VII also reports, under the Association Rules header,
the precision and recall of Macocha with respect to the approach based on association rules [ZWDZ04].
It shows that Macocha detects the majority of co-changing files detected using association rules in the
seven object programs. In addition, Macocha detects other occurrences of change patterns not detected
using association rules.

In the following, we describe some (approximate) occurrences of the Asynchrony change pattern that
are missed by the previous approach and justify why there are missed and why it is important to detect
them. We choose theses examples from the most-recently changed files following the (approximate)
Asynchrony change pattern.
In ArgoUML: SelectionActionState.java and SelectionState.java followed the
same occurrence of an asynchrony change pattern. On the one hand, by using PADL [GA08] to
automatically reverse-engineer class diagrams from the source code of ArgoUML, we detect a static

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

20 FEHMI JAAFAR ET AL.

External Validation of SMCCH - SAR

Precision Recall
ArgoUML 100% 99%
FreeBSD 88 % 100%
JFreeChart 93 % 100%
Openser 100% 100%
SIP 100% 100%
XalanC 100% 100%
XercesC 100% 100%

Table VII. External evaluation of Macocha
when using the results of an approach based
on association rules [ZWDZ04] as oracle
and after manual validation using external

information and static analysis

dependency among these two files. On the other hand, in the Bugzilla of ArgoUML, the bug ID 255212

states that “we should use 3 state [...] this model could simply be the Action” in relation with these two
files. By applying the co-change analyses for “Error Prevention” described in [ZWDZ04], we cannot
find co-change dependencies among them. Thus, we could not explain and-or predict bugs in relation
with theses two files.
JFreeChart: AbstractXYDataset.java and RenderAttributes.java were in MCC.
As confirmed in the Bugzilla of JFreeChart by the bug ID 165421513 relating these two files. In fact, this
bug reports that “Adding renderer with no dataset causes exception” and confirms static dependencies
detected after analysing JFreeChart source code by PADL. These two files were changed by the same
developer mungady in a time-window of more than few minutes. Thus, by applying the association
rules-based approach described in [ZWDZ04], we cannot not find that these files are co-changing.
Thus, we could not give to the developer the necessary knowledge about dependencies among these
two files to maintain them properly.

We thus answer RQ3: What is the precision and recall of Macocha when detecting occurrances
of the Asynchrony pattern? as follows: the occurrences of the (approximate) Asynchrony change
pattern found by Macocha are valid and brings interesting information to developers to prevent
bugs.

4.4. RQ4: Are there occurences of Dephase change patterns in programs?

No previous approach can detect files maintained with similar trends and some given shifts in time.
We validate the existence of occurrences of the (approximate) Dephase change patterns by detecting
static relationships among their files. We also validate these occurrences using external information.

12http://argouml.tigris.org/issues/show_bug.cgi?id=2552
13http://sourceforge.net/tracker/index.php?func=detail&aid=1654215&group_id=
15494&atid=115494

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

DETECTING ASYNCHRONY AND DEPHASE CHANGE PATTERNS 21

Figure 13 illustrates the number of occurrences of the (approximate) Dephase change pattern detected
and validated using external information and static analysis, in each program.

Macocha can detect occurrences of the (approximate) Dephase change pattern with several values
of shift s. After analysing different sets of DMCCs detected in the seven object programs, we observed
that the number of occurrences of the (approximate) Dephase change pattern detected by Macocha and
validated by external information decreases from s = 3 and is close to 0 from s = 5, as shown in
Figure 13. Thus, in our study, we detect DMCCs for s ∈ [0, 5] to obtain accurate sets of results.

We now report some typical occurrences of the (approximate) Dephase change pattern from different
programs with different value of shift s. We choose theses examples from the most-recently changed
files following the (approximate) Dephase change patterns.
In FreeBSD: We find that ip-fw2.c and sysv-msg.c follow the same occurrence of a dephase
change pattern with a shift s=2. After manually investigation of the source code of these two files
we do not find any static relationships among them. However, in the mailing list of FreeBSD,
the Message-ID: <20120107201823.H3704@sola.nimnet.asn.au> states that the two
files are related in a lengthy the message from Ian Smith about “IPFW transparent VS dummynet
rules”. Thus, we confirm dependencies among these two files by external information.
In SIP: We find that Html2Text.java and FileTransfReceiveListener.java were
changed systematically with five shift change period in two years. Thus, they followed the Dephase
change pattern with shift s = 5. These two files implement the same feature14: “Instant Messaging”.
By performing a static analysis, we detect a static dependency among these two files. Thus, we validate
the occurrence of the Dephase change pattern formed by these two files.
In XercesC: We find that XercesXPath.cpp and XMLDateTime.cpp follow the same
occurrence of an approximate dephase change pattern with shift s = 1. This change dependency is
confirmed by multiple static relationships detected when we examine the source code of these two
files. In addition, in the mailing list of XercesC, a message15 from Wesley Smal on April 1, 2009
about “a legitimate bug with the time of day” states that these two files are related.

We thus answer RQ4: Are there occurences of Dephase change patterns in programs? as follows:
in all the object program, Macocha detects valid occurrences of the (approximate) Dephase change
pattern.

4.5. RQ5: What is the usefulness of Dephase change patterns?

In the following scenarios, we summarise the usefulness of the DMCCs reported by Macocha.

4.5.1. Management of Development Teams

If two files follow the same occurrence of a dephase change pattern, they should ideally be maintained
by the same team of developers to minimise the risks of introducing bugs in the future. The team of

14http://www.jitsi.org/index.php/Main/Features
15http://markmail.org/message/a5secbiwkgxtegxb

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

22 FEHMI JAAFAR ET AL.

developers most likely possesses a wealth of unwritten knowledge about the design and implementation
choices that they made for these files, which would help them to prevent introducing bugs [RWBW90].

Consequently, a team leader should redefine the organisation of the maintenance team according
to the DMCCs links among files, so that her team does not introduce bugs because of the absence
of information or lack of communication among developers. For example, in ArgoUML, when we
analysed changes made in three16 17 18 dephase macro co-changing files that have generated bugs, we
found that these changes have been made with one shift in time in their periods of change and by
different developers. Thus, such co-changes can not be detected by previous work. Thanks to DMCCs,
a team leader should ensure that team who will maintain these files in each change period have the
necessary knowledge to maintain the dependency among these files.

4.5.2. Bug and Change Propagation

Knowing that two files are in DMCCs implies the existence of (hidden) dependencies between these
two files. If these dependencies are not properly maintained, they can introduce bugs in a program.
With our approach, for each program studied, we detected files in dephase macro co-changes. By using
external information, we confirmed our observation and that these files indeed participate to bugs. For
example, in SIP, we detected seven bugs in relation with dephase macro co-changing files. By applying
the association rule approach described in [ZWDZ04], we cannot find that these files are co-changing.
Thus, by knowing files that are in DMMCs, we could explain and possibly prevent bugs; we plan to
study in future work the bug prediction using (approximate) dephase macro co-changes.

4.5.3. Traceability Analysis

The change history represents one of sources of information available for recovering traceability links
that are manually created and maintained by developers. The version history may reveal hidden links
that relate files and would be sufficient to attract the developers’ attention. For example, in SIP, we
detect traceability links between four approximate dephase macro co-changing files. By applying the
association rule approach described in [ZWDZ04], we cannot find that these files are co-changing.

Due to the distributed collaborative nature of open-source development, version-control systems are
the primary location of files and the primary means of coordination and archival. The requirements of
open-source programs are typically implied by communication among project participants and through
test cases. However, such traces of requirements are lost in time. Thus, by knowing classes there are in
(approximate) dephase macro co-change, we could detect potentially traceability links between them,
which we plan to concretely study in future work.

We thus answer RQ5: What is the usefulness of Dephase change patterns? as follows: in all
the object programs, the occurrences of the (approximate) Dephase change pattern detected by
Macocha could be useful to ease maintenance and reduce its costs.

16http://argouml.tigris.org/issues/show_bug.cgi?id=1957
17http://argouml.tigris.org/issues/show_bug.cgi?id=2926
18http://argouml.tigris.org/issues/show_bug.cgi?id=4604

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

DETECTING ASYNCHRONY AND DEPHASE CHANGE PATTERNS 23

5. DiscussionsWith our approach, we detect several occurrences of the (approximate) Asynchrony and Dephase
change patterns in seven different programs belonging to different domains and with different sizes,
histories, and programming languages. However, we do not detect MCCs and DMCCs with the same
proportions in each program. We observe that the numbers of MCCs and DMCCs found in the
programs developed in Java (ArgoUML, JFreeChart, and SIP) are greater than the number of MCCs
and DMCCs found in programs developed in C or C++ (see Table III and Figure 13). We explain this
finding by the fact that, on the one hand, the majority of FreeBSD files are idle and that, on the other
hand, Openser, XalanC, XercesC are the smallest object programs (having less than 400 files). Thus,
we also apply our approach to detect (dephase) macro co-changes on fewer C and C++ files than
Java files, which could thus explain the lower numbers of MCCs and DMCCs. In future work, we will
conduct studies on other programs in these languages to confirm this observation and to assess the
numbers of MCCs and DMCCs according to the programming languages.

5.1. Threats to the Validity
Some threats limit the validity of the result of our empirical study.

Construct Validity: Construct validity threats concern the relation between theory and observations.
In this study, they could be due to implementation errors. They could also be due to a mistaken relation
between changed files. We believe that this threat is mitigated by the facts that many authors discussed
this relation, that this relation seems rational, and that the results of our analysis shows that, indeed,
MCCs and DMCCs exist and are corroborated by external sources of information (bug reports and
others). As previous work detected co-changes committed by the same author in a short time window,
relaxing these constraints may also lead to false positives. The results of our empirical study show that
Macocha improves precision and recall with respect to the state of the art in seven different programs.
However, we cannot claim that our approach will give similar results for any program.

Internal Validity: Internal validity is the validity of causal inferences in studies based on experiments.
The internal validity of our study is not threatened because we have not manipulated a variable (the
independent variable) to see its effect on a second variable (the dependent variable).

Reliability Validity: Reliability validity threats concern the possibility of replicating this study. We
attempted to provide all the necessary details to re-implement our approach and replicate our empirical
study. The change logs and the changed files of the seven programs analysed with their profiles
to obtain our observations are available on-line at http://www.ptidej.net/downloads/
experiments/jsme12/.

External Validity: We performed our study on seven different real programs belonging to different
domains and with different sizes, histories, programming languages. Yet, we cannot assert that our
results and observations are generalisable to any other programs, and the fact that all the analysed
programs are open-source may reduce this generability; future work includes replicating our study in
other contexts and with other programs.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

24 FEHMI JAAFAR ET AL.

Figure 13. Evolution of the number of occurrences of dephase change patterns detected and validated by static
analyses for different values of shift s

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

DETECTING ASYNCHRONY AND DEPHASE CHANGE PATTERNS 25

6. Related Work
The concepts of MCCs and DMCCs relate our work to that on file stability, co-change and change
patterns, and change propagation. We present related work and discuss these works in comparison to
our approach.

6.1. File Stability

Many approaches exist to group files based on their relative stability throughout the software
development life cycle. For example, Kpodjedo et al. in [KRGA09] and [KRG+] proposed to identify
all files that do not change in the history of a program, using an Error Tolerant Graph Matching
algorithm. They studied the evolution of the program class diagram by collecting over several years,
reverse-engineering their class diagrams, and recovering traceability links between subsequent class
diagrams. Their approach identified evolving classes that maintain a stable structure of relations
(association, inheritance, and aggregation) and, thus, that likely constitute the stable backbone of
programs. As other example, UMLDiff [XS05a] compares and detects the differences between the
contents of two object-oriented program versions. A fact extractor parses each version to extract models
of their design. Next, a differencing algorithm, UMLDiff, extracts the history of the program evolution,
in terms of the additions, removals, moves, renamings, and signature-changes of design entities, such
as packages, classes, interfaces, and their fields and methods. UMLDiff then assigns a stability to each
class: short-lived classes (that exist only in a few versions of the program and then disappear), idle
classes (that rarely undergo changes after their introduction in the program), and active classes (that
keep being modified over their whole lifespan).

Discussion: The Error Tolerant Graph Matching algorithm and UMLDiff take few hours to analyse
file stability for the seven programs analysed in this paper because they require parsing and comparing
AST-like representations of the programs before performing their analyses. Macocha computes
stability in few minutes using the change periods of a program, which depend on how the developers
of the program organise their work and group changes through the life cycle of the program.

Lanza et al. [LD02] presented an evolution matrix to display the evolution of the files of a program.
Each column of the matrix represents a version of the program, while each row represents the different
versions of the same file. Within the columns, the files are sorted alphabetically. Then, the authors
presented a categorisation of files based on the visualisation of different versions of a class: a pulsar
class grows and shrinks repeatedly during its lifetime, a supernova file suddenly explodes in size, a
white dwarf is a file who used to be of a certain size, but lost its functionality, a red giant file tends to
implement too many functionalities and is quite difficult to refactor, and an idle file does not change
over several versions.

Discussion: Our work differs in the level of granularity and on the aspects considered, Lanza
et al. [LD02] considered only file implementation to identify stability in different version without
considering information coming from version-control systems. Thus, idle classes for example are those
that did not change too much after their introduction in term of source code and not in term of commits.
Thus, if a file changes frequently but without majors modifications in it implementation during the
observation period, it will be identified as “idle file” which is contradictory to its category name (idle
files). Macocha identifies file stability by mining program history. Thus, if a file changes frequently but

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

26 FEHMI JAAFAR ET AL.

without majors modifications in it implementation, it will be identified by our approach as “changed
file”.

6.2. Co-changing Files

Ying et al. [YMNCC04] and Zimmermann et al. [ZWDZ04] applied association rules to identify co-
changing files. Their hypothesis is that past co-changed files can be used to recommend source code
files potentially relevant to a change request. An association-rule algorithm extracts frequently co-
changing files of a transaction into sets that are regarded as change patterns to guide future changes.
Such algorithm uses co-change history in CVS and avoids the source code dependency parsing process.

Discussion: Approaches based on association rules [YMNCC04] and [ZWDZ04], compute only
the frequency of co-changed files in the past and omits many other cases, e.g., files that co-change
with some shifts among change period. In Section 4, we showed that approaches based on association
rules cannot detect all occurrences of MCCs and any occurrences of DMCCs because, by their very
definition, they do not integrate the analysis of files that are maintained by different developers and–or
with some shift in time, which could lead to missed co-changing files.

Ceccarelli et al. [CCCDP10] and Canfora et al. [CCCDP] proposed the use of a vector auto-
regression model, a generalisation of univariate auto-regression models, to capture the evolution and the
inter-dependencies between multiple time series representing changes to files. They used the bivariate
Granger causality test to identify if the changes to some files are useful to forecasting the changes to
other files. They concluded that the Granger test is a viable approach to change impact analysis and
that it complements existing approaches like association rules to capture co-changes.

Antoniol et al. [ARV05] presented an approach to detect similarities in the evolution of files starting
from past maintenance. They applied the LPC/Cepstrum technique, which models a time evolving
signal as an ordered set of coefficients representing the signal spectral envelope, to identify in version-
control systems the files that evolved in the same or similar ways. Their approach used cepstral distance
to assess series similarity (if two cepstra series are “close”, the original signals have a similar evolution
in time).

Discussion: In [CCCDP10] and [ARV05], if authors integrate the analysis of files that are maintained
by different developers in periods of time of more than few minutes, their approach could then detect
typical examples of MCCs and DMCCs. Indeed, their approaches could find files having very similar
maintenance evolution history but they did not present a tool to detect MCCs and DMCCs. In this
paper, we present a tool to detect such change patterns and we showed their usefulness of.

Bouktif et al. [SBA06] defined the general concept of change patterns and described one such
pattern, synchrony, that highlights co-changing groups of artefacts. Their approach used a sliding
window algorithm as in [ZWDZ04] to build synchrony change pattern occurrences.

Discussion: In this paper, we introduce two novel change patterns inspired from co-changes and
using the concept of change periods. We define the asynchrony change pattern that describes artefacts
that co-change in large time intervals, and the dephase change pattern that always happen with the
same shifts in time.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

DETECTING ASYNCHRONY AND DEPHASE CHANGE PATTERNS 27

6.3. Change Propagation

Change propagation analyses how changes made to one file propagate to others. Law and Rothermel
[LR03] presented an approach for change propagation analysis based on whole-path profiling. Path
profiling is a technique to capture and represent a program dynamic control flow. Unlike other path-
profiling techniques, which record intra-procedural or acyclic paths, whole-path profiling produces a
single, compact description of a program control flow, including loops iteration and inter-procedural
paths. Law et al.’s approach builds a representation of a program behavior and estimates change
propagation using three dependency-based change-propagation analysis techniques: call graph-based
analysis, static program slicing, and dynamic program slicing.

Hassan and Holt [HH04] investigated several heuristics to predict change propagation among source
code files. They defined change propagation as the changes that a file must undergo to ensure the
consistency of the program when another file changed. They proposed a model of change propagation
and several heuristics to generate the set of files that must change in response to a changed file.

Zhou et al. [ZWG+08] presented a change propagation analysis based on Bayesian networks that
incorporates static source code dependencies as well as different features extracted from the history
of a program, such as change comments and author information. They used the Evolizer system that
retrieves all modification reports from a CVS and uses a sliding window algorithm to group them.

Finally, Canfora and Cerulo [CC05] proposed an approach to derive the set of files impacted by a
proposed change request. A user submits a new change request to a Bugzilla database. The new change
request is then assigned to a developer for resolution, who must understand the request and determine
the files of the source code that will be impacted by the requested change. Their approach exploits
information retrieval algorithms to link the change request descriptions and the set of historical source
file revisions impacted by similar past change requests.

Discussion: We share with all the above authors the idea that change propagation identification into
existing source code is a powerful mechanism to assess code maintainability. Their change-propagation
models can be used to predict future change couplings and may involve several files that are in MCCs
or in DMCCs but they do not allow to differentiate between these two change patterns. All these
approaches grouped change couplings created by the same author and have the same log message;
thus, they can not detect asynchrony and dephase change patterns.

Ambros et al. [DLL09] presented the Evolution Radar, an approach to integrate and visualise
module-level and file-level logical couplings, which is useful to answer questions about the evolution
of a program; the impact of changes at different levels of abstraction and the need for restructuring.
German [Ger06] used the information in the CVS to visualize what files are changed at the same time
and who are the people who tend to modify certain files. He presented SoftChange, a tool that uses
a heuristic based on a sliding window algorithm to rebuild the Modification Record (MRs) based on
file revisions. In Softchange, a file revision is included in a given MR if all the file revisions in the
MR and the candidate file revision were created by the same author and have the same log. Beyer
and Hassan [BH06] introduced the evolution storyboard, a new concept for animated visualisations
of historical information about the program structure, and the story-board panel, which highlights
structural differences between two versions of a program. They also formulated guidelines for the
usage of their visualisation by non-experts and to make their evaluations repeatable on other programs.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

28 FEHMI JAAFAR ET AL.

Discussion: However, Xing and Stroulia [XS07], reported that these visualisations are limited in
their applicability because they assume a substantial interpretation effort of their users and they do not
scale well: they become unreadable for large systems with numerous components.

7. Conclusion and Future Work

The development and maintenance of a program involves handling large numbers of files. These files
are logically related to each other and a change to one file may imply a large number of changes to
various other files. Many previous works try to reduce program maintenance costs by detecting and
using co-changing files. For example, in [SBA06], the authors defined the Asynchrony change pattern
as common and recurring modifications of programs’ files in time.

In this paper, we reused the Asynchrony change pattern and introduced the Dephase change pattern,
as well as their approximate versions, to explain other scenarios of co-change and change propagation,
which could help developers to maintain program’s files appropriately. We proposed an approach,
Macocha, which mines software repositories and uses several algorithms and techniques, such as the
k-nearest neighbor algorithm, the Hamming distance, and a bit vector model, to discover occurrences
of the (approximate) Asynchrony and Dephase change patterns.

Macocha relates to file stability and co-changes. We therefore performed two types of empirical
studies. Quantitatively, we compared Macocha with UMLDiff [XS05a] and an association rules-based
approach [ZWDZ04] by applying and comparing the results of the three approaches on on seven
systems: ArgoUML, FreeBSD, JFreeChart, Openser, SIP, XalanC, and XercesC, and showed that
Macocha has a better precision and recall than the state-of-the-art approached based on association
rules [YMNCC04, ZWDZ04]. Qualitatively, we used external information and static analysis to show
that detected MCCs and DMCCs explain real, important evolution phenomena. We also thus showed
that occurrences of the Asynchrony and Dephase change patterns do exist and can help in explaining
bugs, managing development teams, and performing traceability analysis.

Thus, this paper extended our previous work [JGHA11] with the following contributions. First, we
described in more details our approach, Macocha. Second, we used the k-nearest neighbor algorithm
(KNN) to group changes into change periods and therefore to determine automatically the duration of
the different change periods in each program. Third, we performed an extensive validation of Macocha
on seven programs (three more programs: JFreeChart, Openser and XercesC) developed with three
different languages: C, C++, and Java. Fourth, we studied the variations in precision and recall of our
approach when using different values of its parameters. Finally, we provided evidence on the relevance
of the Asynchrony and Dephase change patterns.

We are currently (1) relating change patterns with design patterns, (2) identifying other scenarios
in which Asynchrony and Dephase change patterns help in reducing maintenance costs, (3) evaluate
the consistency and the usefulness of change patterns’ occurrences including files recently changed
over other occurrences (4) relating Asynchrony and Dephase change patterns with program quality
and external software characteristics, such as change proneness. Also, future work includes empirical
studies of the usefulness for developers of ranking occurrences of the Asynchrony and Dephase change
patterns as well as applying Macocha to different C/C++ programs.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

DETECTING ASYNCHRONY AND DEPHASE CHANGE PATTERNS 29

Acknowledgements

This work has been partly funded by a FQRNT team grant, the Canada Research Chair in Software
Patterns and Patterns of Software. We gratefully thank Massimiliano Di Penta and Daniel M. German
for their generous comments.

REFERENCES

[ARV05] . Giuliano Antoniol, Vincenzo Fabio Rollo, and Gabriele Venturi. Linear predictive coding and cepstrum
coefficients for mining time variant information from software repositories. In Proceedings of the International
Workshop on Mining software repositories, pages 1–5, New York, NY, USA, 2005. ACM Press.

[AS94] . Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in large databases. In
Proceedings of the 20th International Conference on Very Large Data Bases, VLDB ’94, San Francisco, CA,
USA, 1994. Morgan Kaufmann Publishers Inc.

[BH06] . Dirk Beyer and Ahmed E. Hassan. Animated visualization of software history using evolution storyboards. In
Proceedings of the 13th Working Conference on Reverse Engineering. IEEE Computer Society Press, 2006.

[BKZ10] . Andrew Begel, Yit Phang Khoo, and Thomas Zimmermann. Codebook: discovering and exploiting relationships
in software repositories. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE ’10, pages 125–134. ACM, 2010.

[BW84] . Victor R. Basili and David M. Weiss. A methodology for collecting valid software engineering data. Software,
10(6):728–738, 1984.

[CC05] . Gerardo Canfora and Luigi Cerulo. Impact analysis by mining software and change request repositories. In
Proceedings of the 11th IEEE International Software Metrics Symposium, page 29, Washington, DC, USA, 2005.
IEEE Computer Society Press.

[CCCDP] . Gerardo Canfora, Michele Ceccarelli, Luigi Cerulo, and Massimiliano Di Penta. Using multivariate time series
and association rules to detect logical change coupling: An empirical study. In Proceedings of the 2010 IEEE
International Conference on Software Maintenance, pages 1–10, Washington, DC, USA. IEEE Computer Society
Press.

[CCCDP10] . Michele Ceccarelli, Luigi Cerulo, Gerardo Canfora, and Massimiliano Di Penta. An eclectic approach for change
impact analysis. In Proceedings of the 32nd International Conference on Software Engineering, pages 163–166,
New York, NY, USA, 2010. ACM Press.

[Das91] . B.V. Dasarathy. Nearest neighbor ({NN}) norms:{NN} pattern classification techniques. 1991.
[DLL09] . Marco D’Ambros, Michele Lanza, and Mircea Lungu. Visualizing co-change information with the evolution

radar. Transactions on Software Engineering, 35(5):720–735, 2009.
[FPG03] . Michael Fischer, Martin Pinzger, and Harald Gall. Populating a release history database from version control

and bug tracking systems. In Proceedings of the International Conference on Software Maintenance, ICSM ’03,
pages 23–, Washington, DC, USA, 2003. IEEE Computer Society.

[GA08] . Yann-Gaël Guéhéneuc and Giuliano Antoniol. DeMIMA: A multi-layered framework for design pattern
identification. Transactions on Software Engineering (TSE), 34(5):667–684, September 2008. 18 pages.

[GAA04] . Yann-Gaël Guéhéneuc and Hervé Albin-Amiot. Recovering binary class relationships: Putting icing on the
UML cake. In Doug C. Schmidt, editor, Proceedings of the 19th Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 301–314. ACM Press, October 2004. 14 pages.

[Ger06] . Daniel M. German. An empirical study of fine-grained software modifications. Empirical Softw. Engg., 11,
September 2006.

[GHJ98] . Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logical coupling based on product release history.
In Proceedings of the International Conference on Software Maintenance, pages 190–, Washington, DC, USA,
1998. IEEE Computer Society.

[HAM50] . R. W. HAMMING. Error detecting and error correcting codes. BELL SYSTEM TECHNICAL JOURNAL, pages
147–160, 1950.

[Hat07] . Les Hatton. How accurately do engineers predict software maintenance tasks? Computer, 40:64–69, February
2007.

[HH04] . Ahmed E. Hassan and Richard C. Holt. Predicting change propagation in software systems. In Proceedings of
the 20th IEEE International Conference on Software Maintenance, pages 284–293, Washington, DC, USA, 2004.
IEEE Computer Society.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

30 FEHMI JAAFAR ET AL.

[JGHA11] . F. Jaafar, Y.G. Guéhéneuc, S. Hamel, and G. Antoniol. An exploratory study of macro co-changes. In Reverse
Engineering (WCRE), 2011 18th Working Conference on, pages 325–334. IEEE, 2011.

[KR11] . David Kawrykow and Martin P. Robillard. Non-essential changes in version histories. In Proceeding of the 33rd
International Conference on Software Engineering, ICSE ’11, pages 351–360, New York, NY, USA, 2011. ACM.

[KRG+] . S. Kpodjedo, F. Ricca, P. Galinier, G. Antoniol, and Y.G. Guéhéneuc. Studying software evolution of large object-
oriented software systems using an etgm algorithm. Journal of Software Maintenance and Evolution: Research
and Practice.

[KRGA09] . Segla Kpodjedo, Filippo Ricca, Philippe Galinier, and Giuliano Antoniol. Recovering the evolution stable part
using an ecgm algorithm: Is there a tunnel in mozilla? In CSMR, pages 179–188, 2009.

[KZP07] . SB Kotsiantis, ID Zaharakis, and PE Pintelas. Supervised machine learning: A review of classification
techniques. FRONTIERS IN ARTIFICIAL INTELLIGENCE AND APPLICATIONS, 160:3, 2007.

[LB85] . M. M. Lehman and L. Belady, editors. Program evolution: processes of software change. Academic Press
Professional, Inc., San Diego, CA, USA, 1985.

[LD02] . Michele Lanza and Stéphane Ducasse. Understanding software evolution using a combination of software
visualization and software metrics. 2002.

[LR03] . James Law and Gregg Rothermel. Whole program path-based dynamic impact analysis. In Proceedings of the
25th International Conference on Software Engineering, pages 308–318, Washington, DC, USA, 2003. IEEE
Computer Society.

[MFH02] . Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two case studies of open source software development:
Apache and mozilla. ACM Trans. Softw. Eng. Methodol., 11:309–346, July 2002.

[RWBW90] . Brian Wilkerson Rebecca Wirfs-Brock and Lauren Wiener, editors. Designing Object-Oriented Software.
Prentice Hall, 1990.

[SBA06] . Yann-Gaël Guéhéneuc Salah Bouktif and Giuliano Antoniol. Extracting change-patterns from cvs repositories.
In Proceedings of the 13th Working Conference on Reverse Engineering, pages 221–230, Washington, DC, USA,
2006. IEEE Computer Society.

[VKvRvV09]. Adam Vanya, Steven Klusener, Nico van Rooijen, and Hans van Vliet. Characterizing evolutionary clusters.
In Proceedings of the 16th Working Conference on Reverse Engineering, Washington, DC, USA, 2009. IEEE
Computer Society.

[XS05a] . Zhenchang Xing and Eleni Stroulia. Analyzing the evolutionary history of the logical design of object-oriented
software. Transactions on Software Engineering, 31:850–868, 2005.

[XS05b] . Zhenchang Xing and Eleni Stroulia. Umldiff: an algorithm for object-oriented design differencing. In
Proceedings of the 20th International Conference on Automated Software Engineering, New York, NY, USA,
2005. ACM Press.

[XS07] . Zhenchang Xing and Eleni Stroulia. Bottom-up design evolution concern discovery and analysis. Technical
report, 2007.

[YMNCC04]. Annie T. T. Ying, Gail C. Murphy, Raymond Ng, and Mark C. Chu-Carroll. Predicting source code changes by
mining change history. Transactions on Software Engineering, 30(9):574–586, 2004.

[ZBLL06] . Thomas Zimmermann, Silvia Breu, Christian Lindig, and Benjamin Livshits. Mining additions of method calls
in argouml. In Proceedings of the International Workshop on Mining Software Repositories. ACM Press, 2006.

[ZWDZ04] . Thomas Zimmermann, Peter Weisgerber, Stephan Diehl, and Andreas Zeller. Mining version histories to guide
software changes. In Proceedings of the 26th International Conference on Software Engineering, pages 563–572,
Washington, DC, USA, 2004. IEEE Computer Society.

[ZWG+08] . Yu Zhou, Michael Würsch, Emanuel Giger, Harald C. Gall, and Jian Lü. A bayesian network based approach
for change coupling prediction. In Proceedings of the 15th Working Conference on Reverse Engineering, pages
27–36, Washington, DC, USA, 2008. IEEE Computer Society.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2000; 00:1–1
Prepared using smrauth.cls

